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Abstract. In the present paper we introduce and study the notion of an
equivariant pretheory: basic examples include equivariant Chow groups, equi-
variant K-theory and equivariant algebraic cobordism. To extend this set of
examples we define an equivariant (co)homology theory with coefficients in
a Rost cycle module and provide a version of Merkurjev’s (equivariant K-
theory) spectral sequence. As an application we generalize the theorem of
Karpenko-Merkurjev on G-torsors and rational cycles; to every G-torsor E


and a G-equivariant pretheory we associate a graded ring which serves as an
invariant of E. In the case of Chow groups this ring encodes the information
concerning the J-invariant of E and in the case of Grothendieck’s K0 – indexes
of the respective Tits algebras.


1. Introduction


In the present paper we introduce and study the notion of a (graded) equivari-
ant pretheory. Roughly speaking, it is defined to be a contravariant functor from
the category of G-varieties, where G is an algebraic group, to (graded) abelian
groups which satisfies localization and homotopy invariance properties. All known
examples of equivariant oriented cohomology theories (equivariant Chow groups,
K-theory, algebraic cobordism, etc.) are pretheories in our sense.


We generalize the equivariant Chow groups of Edidin-Graham by introducing
equivariant (co)homology theory with coefficients in a Rost cycle module. We also
prove a version of Merkurjev’s equivariant K-theory spectral sequence for equivari-
ant cycle homology. This provides many new examples of equivariant pretheories.


One of the key results of Karpenko-Merkurjev [16, Thm. 6.4] tells us that the
characteristic subring of the Chow ring of a variety of Borel subgroups of a split
linear algebraic group G is contained in the image of the restriction map, i.e. always
consists of rational cycles. This fact plays a fundamental role in computations of
canonical/essential dimensions, discrete motivic invariants of G and in the study of
splitting properties of G-torsors.


In the present paper we generalize this result to an arbitrary equivariant prethe-
ory (see Theorem 4.4). In particular, we obtain versions of [16, Thm. 6.4] for
Grothendieck’s K0 and algebraic cobordism Ω of Levine-Morel.


As an application we define for any equivariant pretheory h and G-torsor E a
commutative ring ĥB(E) (see Def. 4.5). If E is generic and h is either the Chow
ring CH∗ or Grothendieck’s K0 or algebraic cobordism Ω, this ring coincides with
the cohomology ring h(G) of G. In general, it is always a quotient of h(G) which
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in the case of the Chow ring is related to the motivic J-invariant of E and in the
case of K0 – to the indexes of the Tits algebras of E. This provides a fascinating
link between these two discrete invariants, totally unrelated at the first sight: one
observes that the p-exceptional degrees of V. Kac for Chow groups [15] play the
same role as the maximal Tits indexes for K0 [22].


The paper is organized as follows: In the first two sections we introduce the no-
tion of an equivariant pretheory and provide several examples including equivariant
cycle (co)homology. In Section 4 we generalize the result of Karpenko-Merkurjev
to an arbitrary equivariant pretheory. In the last section we provide applications
to equivariant oriented cohomology theories (Chow groups, Grothendieck’s K0 and
algebraic cobordism of Levine-Morel). Appendix is devoted to the construction of
a spectral sequence for cycle homology which generalizes the long exact localization
sequence.


1.1 (Notations). Unless otherwise indicated, all schemes/varieties are defined over
the base field k. By a scheme over a field k (k-scheme) we mean a reduced separated
Noetherian scheme over k. By a variety over a field k (k-variety) we mean a quasi-
projective scheme over k (note that it has to be of finite type over k). If l/k is
a field extension and X is a k-scheme, we define Xl = X ×Speck Spec l to be the
respective base change. By pt we denote Spec k.


By an algebraic group we mean an affine smooth group scheme over k. By a
subgroup we always understand a closed algebraic subgroup. By an action of an
algebraic group G on a scheme X we mean a morphism G×SpeckX → X of schemes
over k (all group actions are assumed to be on the left), subject to the usual axioms,
see [23, Def. 0.3]. By a G-scheme we mean a scheme X endowed with an action of
an algebraic group G.


We denote by G-Smk the category of smooth G-varieties over k with equivariant
G-morphisms. A localization of a smooth variety over k is called essentially smooth.
We denote by G-Essk the category of essentially smooth G-schemes over k with G-
equivariant flat morphisms. We denote by Ab the category of abelian groups.


2. Equivariant pretheories.


In the present section we introduce the notion of a (graded) equivariant pretheory
and provide several examples.


Let G be an algebraic group over a field k. Consider a contravariant functor
from the category of smooth G-varieties over k to the category of abelian groups


hG : G-Smk −→ Ab, X 7→ hG(X).


Given X , Y ∈ G-Essk and a G-equivariant map f : X → Y the induced functorial
map hG(Y )→ hG(X) is called a pull-back and is denoted by f∗


G.


2.1. Definition. The functor hG : G-Smk → Ab is called a G-equivariant pretheory
over k if it satisfies the following two axioms:


H. (homotopy invariance) For a G-equivariant map p : Ank → pt (where G acts
trivially on pt) the induced pull-back


p∗G : hG(pt) −→ hG(A
n
k )


is an isomorphism.
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L. (localization) For a smooth G-variety X and a G-equivariant open embed-
ding ι : U →֒ X the induced pull-back


ι∗G : hG(X) −→ hG(U)


is surjective.


Let U be a G-scheme over k such that U is the localization of a smooth irreducible
G-variety X with respect to G-equivariant open embeddings fij : Uj → Ui, Ui ⊂ X ,
i.e. U = lim


←−fij
Ui. Observe that U is essentially smooth over k.


Let h̄G(U) denote the induced colimit lim
−→(fij)∗G


hG(Ui). Note that the canonical


maps hG(Ui)→ h̄G(U) are surjective by the localization property (L).


2.2. Definition. We call hG an essential G-equivariant pretheory if hG can be
extended to the category G-Essk of essentially smooth G-schemes over k with G-
equivariant flat morphisms, i.e.


hG : G-Essk −→ Ab,


such that the following additional axiom holds:


C. Given U as above, the map induced by flat pull-backs hG(Ui)→ hG(U)


h̄G(U)→ hG(U)


is surjectve.


Note that (C) holds if and only if the induced pull-back hG(Ui) → hG(U) is
surjective for some i.


2.3. Example (Equivariant K-theory). We recall definitions and basic properties
of equivariantK-groups as defined by Thomason [27], see also the survey article [21]
of Merkurjev.


Let G be an algebraic group over k and let X be a smooth G-variety. Then the
category P(G,X) of locally free G-modules on X (in the sense of Mumford [23,
I, §3]) is an exact category. Following Thomason [27] one defines the i-th G-
equivariant K-group Ki(G,X) as Quillen’s i-th K-group of the exact category
P(G,X).


Let hG(X) = K0(G,X). Then according to [21, Thm. 2,7 and Lem. 4.1] it
satisfies localization and homotopy invariance, and by [9, 52.F] it satisfies (C).
Hence, it provides an example of an essential G-equivariant pretheory.


2.4. Example (Equivariant cobordism). This theory has been recently defined by
Heller and Malagón-López [14].


Assume that char(k) = 0. Consider the ring Ω∗(X) of algebraic cobordism of
a smooth k-variety X as defined by Levine and Morel [19]. Since Ωi(X) does not
vanish for i big enough (as Chow groups do) one can not copy word by word the
definition of equivariant Chow groups given by Edidin and Graham [8], see also
Section 3.


Instead Heller and Malagón-López consider [14] (what they call) good systems of
representations. These are families of pairs (Vi, Ui)i∈N of vector spaces with Ui ⊆ Vi
endowed with an action of an algebraic group G such that


(i) G acts freely on Ui and Ui → Ui/G is a G-torsor,
(ii) Vi+1 = Vi ⊕Wi for some k-subspace Wi, such that Ui ⊕Wi ⊆ Ui+1,
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(iii) sup dimVi =∞, and
(iv) codimVi


(Vi\Ui) < codimVi+1(Vi+1\Ui+1), where we consider Vi as an affine
space over k.


Observe that assumption (i) ensures that the quotient X ×G U := (X ×k U)/G is
a quasi-projective variety over k (see [8, Prop. 23]). Moreover, it is smooth over k
by the descent, since X ×k U → X ×G U is faithfully flat.


Let G be connected. Then the n-th equivariant cobordism group of a smooth
G-variety X is defined by


ΩGn (X) := lim
←−
i


Ωn−dimG+dimUi
(X ×G Ui) .


This is well defined, see [14, Cor. 3.4], and the functor


hG : X 7−→
⊕


n∈Z


ΩGn (X)


satisfies the localization and homotopy invariance axioms by [loc.cit. Thm. 4.2 and
Cor. 4.6]. Hence, it provides an example of a G-equivariant pretheory.


A further example is the equivariant Chow-theory of Edidin and Graham [8].
We consider this later (see Example 3.16) when we take a closer look at equivariant
cycle (co)homology.


There is also a graded version of a G-equivariant pretheory


2.5. Definition. A pair of varieties (X,U) is called a G-pair if X ∈ G-Smk and
U ⊆ X is a G-equivariant open subvariety. Consider the category of G-pairs over
k with G-equivarant morphisms of pairs.


A contravariant functor


(X,U) 7−→ h
∗
G(X,U)


from the category ofG-pairs to graded abelian groups is called a graded G-equivariant
pretheory if it satisfies (H) homotopy invariance, and for any G-pair (X,U) there
is a long exact localization sequence


. . . // hiG(X)
ι∗G // hiG(U)


∂ // hi+1
G (X,U) // . . . ,


where ι : U →֒ X is the corresponding G-equivariant open embedding, and we have
set h


∗
G(Y ) := h


∗
G(Y, Y ). It is called a graded essential G-equivariant pretheory if


given an inverse limit (X ,U) = lim
←−i


(Xi, Ui) of G-equivariant open embeddings of


pairs, there is the induced surjection


lim
−→
i


h
∗
G(Xi, Ui) −→ h


∗
G(X ,U).


3. Equivariant cycle (co)homology


In this section we generalize the equivariant Chow groups of Edidin and Graham [8].
This theory has been considered for the cycle module Galois cohomology by Guil-
lot [13]. We will use freely Rost’s [26] theory of cycle modules for which we refer
also to the book [9] of Elman, Karpenko and Merkurjev, as well as to the article
of Déglise [5] where several important properties of the generalized “intersection”
product in cycle cohomology are proven (defined in [26, Sect. 14]).
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Since Rost’s theory for algebraic spaces is not yet developed we have to restrict
ourseives to quasi-projective schemes, i.e. to varieties. This assumption guarantees
that certain quotients by groups actions which we consider here do exist.


3.1 (Equivariant cycle homology). To fix notations we recall briefly the defini-
tion of cycle homology. A cycle module over the field k is a (covariant) functor M∗


from the category of field extensions of k to the category of graded abelian groups
subject to several axioms, see [26, Sects. 1,2]. The prototype of such a functor is
Milnor K-theory KM∗ , and by the very definition M∗(E) =


⊕
i∈Z


Mi(E) is a graded


KM∗ (E)-module for all field extensions E ⊇ k.


Given a k-variety X (not necessarily smooth) and a cycle module M∗ over k
Rost [26] has defined a complex, the so called cycle complex (generalizing a con-
struction of Kato [17] for Milnor K-theory):


. . . //
⊕


x∈X(2)


Mn+2(k(x)) d2 //
⊕


x∈X(1)


Mn+1(k(x)) d1 //
⊕


x∈X(0)


Mn(k(x)),


where X(i) ⊆ X denotes the set of points of dimension i in X . We denote this
complex C


•
(X,Mn) and consider it as a homological complex with the direct sum⊕


x∈X(i)


Mn+i(k(x)) in degree i.


The i-th cycle homology group Hi(X,Mn) of Mn over X is then defined as
Hi(C•


(X,Mn)). Note that there is a natural isomorphism Hi(X,K
M
−i) ≃ CHi(X)


for all i ≥ 0, where we have set KM−i ≡ 0 for i < 0.


To introduce the equivariant cycle homology we adapt the definition of equi-
variant Chow groups due to Edidin and Graham [8], see also Guillot [13] and
Totaro [28].


Let G be an algebraic group over k of dimension s and X a G-variety. To define
the i-th cycle homology group with coefficients in the cycle module M∗ we chose
a linear representation V of G, such that there is an open subscheme U →֒ V
with codimV (V \ U) ≥ c = dimX on which G acts freely. By shrinking U we can
moreover assume that U −→ U/G is a principal bundle. The later assumption
assures that X ×G U := (X ×k U)/G exists in the category of k-varieties, see [8,
Prop. 23] (recall that we assume that X is quasi-projective, see 1.1). We call the
pair (U, V ) an (X,G)-admissible pair for the G-variety X . Note that for a finite
number of G-varieties there always exist a pair (U, V ) which is admissible for all of
them.


3.2. Definition. Let G be an algebraic group over k. Then the i-th G-equivariant
cycle homology group with values in the cycle module M∗ over k is defined as


HGi (X,M∗) := Hi+l−s(X ×
G U,M∗−(l−s)) ,


where s = dimG and (U, V ) is a (X,G)-admissible pair with dimV = l and
codimV V \ U ≥ dimX .


It remains to check that this definition does not depend on the choice of the
(X,G)-admissible pair (U, V ). Since Hj(Y,M∗) = 0 for any k-variety Y if j > dimY
this can be proven as for equivariant Chow groups using (the so called) Bogomolov’s
double filtration argument, see [8] or [28]. We recall briefly the details:
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Let U1 ⊂ V1 be another (X,G)-admissible pair with l1 = dimV1. Then there
exists an open subvariety W of V1 ⊕ V , which contains U1⊕ V and V1 ⊕U as open
subvarieties, and such that G acts onW with principal bundle quotientW/G. Then
the quotient X ×GW exists in the category of varieties.


We use the following fact from [8, Prop. 2 and Lem. 1], which is not hard to
verify if U −→ U/G is a trivial G-torsor and follows in general by descent from
the “trivial” case.


3.3. Lemma. Let G,U, V and X be as above and f : X → Y be a G-morphism.
Denote f ×G idU : X ×G U → Y ×G U the induced morphism.


Consider the following properties P of f : vector bundle, flat, smooth, proper,
regular immersion, open or closed immersion. Then if f as property P implies that
also f ×G idU has property P.


3.4. We also need the following fact. Let


X ′
f ′


//


g′


��


Y ′


g


��
X


f // Y


be a cartesian square of G-varieties and (U, V ) a pair which is admissible for all
varieties in the square. Then there is a natural and unique morphism


X ′ ×G U −→ X ×G U ×Y×GU Y ′ ×G U ,


which is an isomorphism if U −→ U/G is a trivial G-torsor. Hence by descent, see
e.g. [10, Thm. 2.55 and Lem. 4.44], it is an isomorphism in general.


The morphism


idX ×
GpU : X ×G (V1 ⊕ U) −→ X ×G U ,


where pU : V1 ⊕ U −→ U is the projection, and the inclusion


idX ×
GιU : X ×G (V1 ⊕ U) −→ X ×GW ,


where ιU : W →֒ V1 ⊕ U , induce homomorphisms


Hi+l1+l−s(X ×
GW,Mn−l1−l+s)


(idX ×GιU )∗


++XXXXXXXXXXXXXXXXXXXXXX


Hi+l1+l−s(X ×
G (V1 ⊕ U),Mn−l1−l+s) .


Hi+l−s(X ×
G U,Mn−l+s)


(idX ×GpU )∗


33ffffffffffffffffffffff


Both maps are isomorphisms. The first since the dimension of the closed comple-
ment of X ×G (V1 ⊕ U) in X ×GW is smaller than i + l1 + l − s, and the second
by homotopy invariance (recall that idX ×GpU is a vector bundle by Lemma 3.3).
Similarly we have an isomorphism


Hi+l1+l−s(X ×
GW,Mn−l1−l+s)


≃
−−→ Hi+l1−s(X ×


G U1,Mn−l1+s) ,


and hence both pairs define natural isomorphic groups.
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3.5 (Pull-backs and push-forwards). Let now f : X −→ Y be a morphism of G-
varieties, and (U, V ) and (U1, V1) two (X,G)- and (Y,G)-admissible pairs as above.
We set d = dimX − dimY . Then we have by the functorial properties of push-
forward and pull-back maps in cycle homology (using Lemma 3.3 to see that the
maps in question are defined) two commutative diagrams:


(i) If f is flat of constant relative dimension or Y is a smooth k-variety then


H∗+l−s(Y ×
G U,Mn−l+s)


(f×GidU )∗ //


≃


H∗+d+l−s(X ×
G U,Mn−l−d+s)


≃


H∗+l1−s(Y ×
G U1,Mn−l+s)


(f×GidU1 )
∗


// H∗+d+l1−s
(X ×G U1,Mn−l1−d+s)


is a commutative diagram whose column arrows are natural isomorphisms, and


(ii) If f is proper there is another commutative diagram


H∗+l−s(X ×
G U,Mn−l+s)


(f×GidU )∗ //


≃


H∗+l−s(X ×
G U,Mn−l+s)


≃


H∗+l1−s(X ×
G U1,Mn−l1+s)


(f×GidU1 )∗ // H∗+l1−s(X ×
G U1,Mn−l1+s) ,


whose column arrows are again natural isomorphisms.


Let now f : X → Y be a morphism of G-varieties and (U, V ) a (G,X)- and
(G, Y )-admissible pair.


(i) If either f is flat of constant relative dimension or Y is smooth, we define
the pull-back morphism


f∗
G : HGi (Y,Mn) −→ HGi+d(X,Mn+d)


as


(f ×G idU )
∗ : Hi+l−s(Y ×


G U,Mn−l+s) −→ Hi+l−s+d(X,Mn+l−s−d) ,


where d = dimX − dimY .


(ii) If f is proper, we define the push-forward morphism


fG∗ : HGi (XMn) −→ HGi (Y,Mn)


as


(f ×G idU )∗ : Hi(X,Mn) −→ Hi(Y,Mn) .


With these definitions G-equivariant cycle homology is a contravariant functor
on the category of smooth and G-varieties and also covariant for proper morphisms.
Moreover, if


X ′
g′ //


f ′


��


X


f


��
Y ′


g // Y


is a cartesian square with f proper and g flat of constant relative dimension or all
varieties in the diagram are smooth over k then we have


f ′
G∗ ◦ g


∗
G = g′∗G ◦ fG∗ .
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3.6 (Axioms). There is the localization sequence


. . . ιG∗ // HGi (X,Mn)
j∗G // HGi (X \ Z,Mn)


∂ // HGi−1(Z,Mn)
ιG∗ // . . .


for a closed G-embedding ι : Z →֒ X with open G-equivariant complement j : X \
Z →֒ X which follows from the localization sequence in ordinary cycle homology.
And if π : E −→ X is a G-vector bundle of rank r, i.e. a G-linear bundle, then


π ×G idU : E ×G U −→ X ×G U


is a vector bundle, see [8, Lem. 1], and therefore the pull-back


π∗ : HGi (X,Mn) −→ HGi+r(E,Mn−r)


is an isomorphism by homotopy invariance of cycle homology. Finally, HGi (X,Mn)
can be extended to G-Essk and satisfies (C) by [9, 52.F] or [26, p.320].


3.7. Example. If f : X → Y = X/G is a G-torsor then we have a natural isomor-
phism


Hi−s(Y,Mn+s) ≃ HGi (X,Mn)


where s = dimX − dim Y = dimG, for all i ∈ N and n ∈ Z. This can be seen as
follows, cf. [13, Expl. 2.3.2]:


We choose a (X,G)-admissible pair (U, V ). Let l = dim V . Then the closed
complement of X ×G U = (X ×k U)/G in (X ×k V )/G has dimension less than
i+ l − s and therefore we have by the localization sequence an isomorphism


Hi+l−s((X ×k V )/G,Mn−(l−s))
j∗


−−→ Hi+l−s(X ×
G U,Mn−(l−s)) = HGi (X,Mn) ,


where j : (X ×k U)/G →֒ (X ×k V )/G is the corresponding open immersion (note
that the target of j exists in the category of varieties since by assumptionX → X/G
is a G-torsor). By [8, Lem. 1] we know that (X×k V )/G→ X/G is a vector bundle
of rank l and so by homotopy invariance we have


Hi+l−s((X ×k V )/G,Mn−(l−s)) ≃ Hi−s(X/G,Mn+s) .


3.8 (Restriction map). If G1 ⊆ G is a closed subgroup and X a G-variety over
k, we can choose a (X,G)- and (X,G1)-admissible pair (U, V ). Then we have a
morphism of k-varieties (X×kU)/G1 → (X×kU)/G which induces (via pull-back)
a homomorphism of equivariant cycle homology groups


resGG1
: HGi (X,Mn) −→ HG1


i (X,Mn)


for any cycle module M∗ called restriction homomorphism. In particular if G1 is
the trivial group we have a (forgetful) morphism HGi (X,Mn) −→ Hi(X,Mn) from
G-equivariant cycle homology to ordinary cycle homology.


3.9 (The first Chern class). Let π : L→ X be a G-equivariant line bundle with zero
section σ : X → L. Then σ is a G-equivariant closed embedding and so induces a
morphism σ×G idU : X×GU → L×GU which is the zero section of the line bundle
(see Lemma 3.3)


π ×G idU : L×G U −→ X ×G U .


The first Chern class (or also called Euler class) of L is then defined as the operator


c1(L)
G := (π∗


G)
−1 ◦ σG∗ : HG∗ (X,M∗) −→ HG∗−1(X,M∗+1) .
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This map commutes with push-forwards and pull-backs. More precisely, assume
we have a cartesian square of G-equivariant morphisms, where L and L′ are G-
equivariant line bundles over X and X ′, respectively:


L′
f ′


//


π′


��


L


π


��
X ′


f // X .


Denote by σ and σ′ the zero sections of L and L′, respectively. These are also
G-equivariant morphisms and so we get a cartesian square


L′
G


f ′


G //


π′


G


		


LG


πG


		
X ′
G


fG //


σ′


G


II


XG ,


σG


II


where we have set YG := Y ×G U for any G-variety Y , gG := g ×G idU for all G-
equivariant morphisms g : Y ′ −→ Y , and assumed that the pair (U, V ) is admissible
for all varieties in question. A straightforward computation using this diagram,
see [9, Prop. 53.3] for the analogous result in ordinary cycle homology, shows


cG1 (L
′) ◦ f∗


G = f∗
G ◦ cG1 (L) if f is flat, and


cG1 (L) ◦ fG∗ = fG∗ ◦ cG1 (L
′) if f is proper.


3.10. Remark. (i) The Chern class homomorphism


cG1 (L) : HGi (X,K
M
−i) = CHGi (X) −→ CHGi−1(X) = HGi−1(X,K


M
−i+1)


coincides with the first Chern class defined in Edidin and Graham [8, Sect. 2.4].


(ii) As for ordinary cycle homology in [9] one can use the Euler class of a
vector bundle to prove the projective bundle theorem and then use this to define
the higher Chern classes in G-equivariant cycle homology. We leave this to the
interested reader.


3.11 (An equivariant spectral sequence). We provide now a version of Merkur-
jev’s [21] equivariant K-theory spectral sequence for equivariant cycle homology.


Let T be a k-split torus of rank m, and χ : T → Gm a character. The algebraic
group T acts via χ on the affine line A1


k defining a T -equivariant line bundle A
1
k → pt


which we denote by L(χ) (trivial action of T on the base point pt). If p : X → pt is
a T -scheme we denote the pull-back p∗L(χ) by LX(χ). This is also a T -equivariant
vector bundle.


Let X be a G-variety, where G is an algebraic group over k, and T ⊆ G a
split torus of rank m. Let χ1, . . . , χm be a basis of the character group T ∗ =
Hom(T,Gm), and let T act on the affine space Amk = Spec k[x1, . . . , xm] by


t · (a1, . . . , am) 7−→ (χ1(t) · a1, . . . , χm(t) · am) , (1)


and on AmX = X ×k Amk diagonally. Let Zi ⊂ Amk be the hyperplan defined by
xi = 0 for i = 1, . . . ,m. Then X ×k Zi are T -subvarieties of AmX and therefore, see
Lemma 3.3, we have closed subschemes


(X ×k Z1)×
G U , . . . , (X ×k Zm)×G U
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of AX ×G U , where (U, V ) is a (AmX , T )-admissible pair. Since U → U/T is a
T -torsor (by assumption) we have


⋂


j 6∈I


(X ×k Zj)×
G U = (X ×k ZI)×


G U


for all I ∈ {1, . . . ,m}, where ZI =
⋂
j 6∈I


Zj. From Example A.7 we get then a


convergent spectral sequence


Ẽp,q1 =
⊕


|I|=p


HT−q−m(X ×k ZI ,Mn) =⇒ HT−p−q(X ×k T,Mn) (2)


for all cycle modules M∗.


By Example 3.7 we have HT−p−q(X ×k T,Mn) ≃ H−p−q−m(X,Mn+m) and since


ZI = A
|I|
k = Spec k[xi, i ∈ I] →֒ Amk


is a T -equivariant vector bundle over the base the pull-back


π∗
I T : HT−q−m−|I|(X,Mn+|I|) −→ HT−q−m(X ×k ZI ,Mn)


is an isomorphism, where πI : X×kZI → X is the projection. Replacing q by q+m
the spectral sequence takes therefore the following form


Ep,q1 =
⊕


|I|=p


HT−q−p(X,Mn+p) =⇒ H−p−q(X,Mn+m) . (3)


We compute the differential


dp,q1 :
⊕


|I|=p


HT−q−p(X,Mn+p) −→
⊕


|J|=p+1


HT−q−p−1(X,Mn+p+1) .


If J 6⊇ I the the IJ-component of dp,q1 is zero. If J ⊃ I let J = {i1, . . . , ip+1} and
I = J \{ir} for some 1 ≤ r ≤ p+1. Then by Example A.7 the IJ-component of the


differential d̃p,q1 of the spectral sequence (2) is equal (−1)r−1-times the push-forward
along the closed embedding (see Lemma 3.3)


ιIJ ×
T idU : (X ×k ZI)×


T U →֒ (X ×k ZJ)×
T U ,


where ιIJ is the closed immersion X ×k ZI →֒ X ×k ZJ . Using the above identifi-
cation we have then a commutative diagram


Ep,q1 = HT−q−p(X,Mn+p)
π∗


I T


≃
//


dp,q1


��


HT−q(X ×k ZI ,Mn)


(−1)r−1ιIJ,T ∗


��
Ep+1,q


1 = HT−q−p−1(X,Mn+p+1)
π∗


J T


≃
// HT−q(X ×k ZJ ,Mn) ,


and therefore


(−1)r−1dp,q1 (x) = (π∗
J T )


−1
[
ιIJ,T ∗


(
π∗
I T (x)


)]


= (π∗
J T )


−1
[
ιIJ,T ∗


(
ITX×ZI


∩
(
(πJ ×


T idU ) ◦ (ιIJ ×
T idU )


∗(x)
))]


=
[
(π∗
J T )


−1(ιIJ,T ∗(I
T
X×ZI


))
]
∩ x


= c1(LX(χr)) ∩ x


for all x ∈ HT−q−p(X,Mn+p). The last equation since ιIJ is the zero section of the
pull-back of LX(χ) along the projection X ×k ZI → X .
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3.12 (Equivariant cycle cohomology). From now on all varieties are assumed
to be smooth. Given a smooth equidimensional variety X we define its i-th cycle
cohomology group as


Hi(X,Mn) := HdimX−i(X,Mn−dimX) .


A pairing
KMi (E) × Mj(E) −→ Mi+j(E)


induces the so called intersection product of cycle cohomology groups


Hi(X,KMm ) × Hj(X,Mn) −→ Hi+j(X,Mm+n) , (α, x) 7−→ α ∩ x ,


see [26, Sect. 14]. This generalizes the usual intersection product of Chow groups
as defined for instance in the book [11] of Fulton.


3.13. Definition. It follows by descent (since U −→ U/G is a principal bundle)
that X ×G U is an equidimensional smooth variety, too. Hence we can define


HiG(X,Mn) := HGdimX−i(X,Mn−dimX) = Hi(X ×G U,Mn)


and call it the i-th G-equivariant cycle cohomology group of X with values in M∗.


The pairing of H∗(X ×G U,KM∗ ) with H∗(X ×G U,M∗) induces a pairing


HiG(X,K
M
m ) × HjG(X,Mn) −→ Hi+jG (X,Mm+n) , (α, x) 7−→ α ∩ x .


Since the pull-back of ordinary cycle cohomology groups respects the product, we
can use Bogomolov’s double filtration argument to check that this definition does
not depend (up to natural isomorphism) on the choice of an (X,G)-admissible pair.


It follows from the properties of the ordinary “intersection” product in cycle
cohomology that H∗


G(X,K
M
∗ ) becomes a skew-commutative ring with this product,


i.e.


α ∩ β = (−1)(i+m)·(j+n) · β ∩ α


for all α ∈ HiG(X,K
M
m ) and β ∈ HjG(X,K


M
n ), cf. [9, Prop. 56.4]. We denote the


neutral element of this multiplication by IGX . This is the rational equivalence class


of X ×G U in H0
G(X,K


M
0 ) = H0(X ×G U,KM0 ).


3.14 (Projection formulas). From the properties of the ordinary intersection product
shown in [5, Prop. 5.9] we obtain the following:


Let f : X −→ Y be a morphism of equidimensional smooth G-varieties. Then


(i) f∗
G(β ∪ y) = f∗


G(β) ∩ f
∗
G(y), and


(ii) if f is proper the equations (projection formulas)


fG∗(α ∩ f
∗
G(y)) = fG∗(α) ∩ y and fG∗(f


∗
G(β) ∩ x) = β ∩ fG∗(x)


for all α ∈ HiG(X,K
M
m ), β ∈ HiG(Y,K


M
m ), x ∈ HjG(X,Mn), and y ∈ HjG(Y,Mn).


We denote by c1(L) also the element c1(L)(I
G
X) ∈ CH1


G(X). With this notation
we have by the projection formula


c1(L)(x) = c1(L) ∩ x


for all x ∈ HiG(X,Mn) and all i ∈ N and n ∈ Z if the variety X is smooth k.


This section can be summarized by the following (see 3.13 and 3.6)


3.15. Theorem. The functor X 7→ H∗
G(X,M∗) provides an example of a graded


essential G-equivariant pretheory.







12 STEFAN GILLE AND KIRILL ZAINOULLINE


3.16. Example (Equivariant Chow groups). We have


HGi (X,K
M
−i) = CHGi (X) ,


where CHG∗ denotes the G-equivariant Chow-theory of Edidin and Graham [8].


Since Hj(Y,K
M
−i) = 0 for j ≤ i− 1 we know by the localization sequence that for


a G-equivariant open embedding ι : W →֒ X the pull-back


ι∗G : CHGi (X) −→ CHGi (W )


is surjective. Identifying CHiG(X) with CHGdimX−i(X) we obtain that the functor


hG : X 7−→ CH∗
G(X) =


⊕


i∈Z


CHiG(X)


provides an example of an essential G-equivariant pretheory.


4. Torsors and equivariant maps


In the present section we generalize the result of Karpenko and Merkurjev [16,
Thm. 6.4] to an arbitrary equivariant pretheory. Our arguments follow closely the
exposition of [16, §6].


Let S = GL(V ) be the group of automorphisms of a finite dimensional k-vector
space V . Let H be an algebraic subgroup of S. Consider S as a (left) H-variety.


Let hH be a H-equivariant pretheory over k. Following the proof of [16, Prop.
6.2] we embed S into the affine space Endk(V ) as a S-equivariant (and, hence,
H-equivariant) open subset.


Let φ : S → pt denote the structure map. The induced pull-back φ∗H factors as
the composite of pull-backs


hH(pt)
≃
−→ hH(End(V )) ։ hH(S),


where the first map is an isomorphism by homotopy invariance and the second map
is surjective by the localization property. This proves that


4.1. Lemma. The induced pull-back φ∗H is surjective.


Let µs : S → S denote the right multiplication by s ∈ S(k). Since φ ◦ µs = ϕ as
morphisms over k and µs is H-equivariant, we have (µs)


∗
H ◦ φ


∗
H = φ∗H . Since φ∗H is


surjective by Lemma 4.1, this proves that


4.2. Lemma. The induced pull-back (µs)
∗
H : hH(S)→ hH(S) is the identity.


Let G be an algebraic subgroup of S such thatH ⊆ G ⊆ S so that G is considered
as a (left) H-variety. Let E be a (left) G-variety over k and let ηE : SpecK → E
denote its generic point, where K = k(E).


Consider the G-equivariant (and, hence, H-equivariant) map


ψE : GK = G×Speck SpecK
(id,ηE)
−→ G×Speck E −→ E


which takes the identity of G to the generic point of E. Suppose that there is a
G-equivariant map ρ : E → S over k. Then there is a commutative diagram of
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H-equivariant maps


GK
ψE //


i


��


E
ρ // S


SK
µρ(ηE ) // SK


p


OO


where the map i is the embedding, p is the projection SK = S×Speck SpecK → S
to the first factor and the bottom horizontal map is the multiplication by ρ(ηE).


By the diagram the pull-back of the composite (ψE)
∗
H ◦ρ


∗
H = (ρ◦ψE)∗H coincides


with the pull back (p◦µρ(ηE) ◦ i)
∗
H . Here the map (ψE)


∗
H : hH(E)→ h̄H(GK) is the


canonical map to the colimit. By Lemma 4.2 the latter coincides with the pull-back
i∗H ◦ p


∗
H , hence, proving the following


4.3. Lemma. Let E be a G-variety together with a G-equivariant map ρ : E → S.
Then we have


(ψE)
∗
H ◦ ρ


∗
H = i∗H ◦ p


∗
H : hH(S)→ h̄H(GK).


We are now in position to prove the main result of this section


4.4. Theorem. Let H ⊂ G be algebraic groups and let hH(−) be a H-equivariant
pretheory. Then for any G-torsor E with K = k(E) we have


Im(ϕ∗
H) ⊆ Im((ψE)


∗
H) in h̄H(GK),


where ϕ : GK → pt is the structure map.


Proof. By Lemma 4.1 we have


Im(ϕ∗
H) = Im(i∗H ◦ p


∗
H ◦ φ


∗
H) = Im(i∗H ◦ p


∗
H).


Theorem then follows from Lemma 4.3 and the fact that there exists a finite di-
mensional k-vector space V and a G-equivariant map E −→ S = GL(V ), see [16,
Prop. 6.4]. �


4.5.Definition. LetH ⊂ G be algebraic groups over k and hH(−) be an equivariant
pretheory with values in the category of commutative rings. To each G-torsor E
we associate a commutative ring


E 7→ h̄H(GK)⊗hH(E) h̄H(HK),


where h̄H(GK) is the hH(E)-module via (ψE)
∗
H and h̄H(HK) is the hH(E)-module


via the composite hH(E)
(ψE)∗H→ h̄H(GK)→ h̄H(HK) with the last map induced by


the embedding H ⊂ G.


This ring will be denoted by ĥH(E) and will play the central role in the last
section of this paper. In particular, it will be shown that for known examples of
equivariant pretheories it is always a quotient of the cohomology ring h(G) of G.


4.6.Corollary. Let H ⊂ G be algebraic groups over k and let hH(−) be an essential
H-equivariant pretheory. Then there exists a field extension l/k and a G-torsor E
over l with L = l(E) such that


Im(ϕ∗
Hl


) = Im((ψE)
∗
Hl
) in h̄Hl


(GL)
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Proof. We fix an embedding G −→ S = GL(V ) for some finite dimensional k-
vector space V . The quotient S −→ G\S (for the right action of G on S) is a (left)
G-torsor. Let l be its function field and consider the cartesian square


E
ρ //


��


S


��
Spec l // G\S .


Since S −→ G\S is a G-torsor the map E −→ Spec l is a G-torsor, too. The
l-scheme E is a localization of S and, therefore, by (C) and localization property
(L) the pull-back ρ∗H : hH(S) → h̄H(E) → hH(E) is surjective. This implies that
the pull-back ρ∗Hl


: hHl
(Sl)→ hHl


(E) is surjective. It remains to apply the proof of
Theorem 4.4 over l and to observe that Im(ϕ∗


Hl
) = Im((ψE)


∗
Hl
◦ρ∗Hl


) = Im((ψE)
∗
Hl
).
�


4.7. Definition. A G-torsor E over k which satisfies the equality of Corollary 4.6
will be called a generic torsor with respect to the pretheory hH(−). Note that in
the proof we provided an example of a G-torsor which is generic over some field
extension for all equivariant pretheories.


4.8. Example. Observe that for a generic G-torsor E over k we have


ĥH(E) = h̄H(GK)⊗hH(pt) h̄H(HK),


where h̄H(GK) is an hH(pt)-module via ϕ∗
H , and for the trivial G-torsor G we have


ĥH(E) = h̄H(GK)⊗hH(G) h̄H(HK).


5. Equivariant oriented cohomology


In the present section we apply Theorem 4.4 to the case of a B-equivariant
oriented cohomology, where B is a Borel subgroup of a split semisimple linear
algebraic group.


Let G be a split semisimple linear algebraic group of rank n over a field k and let
T be a split maximal torus of G. Similarly to 3.11 consider the action (1) of T on
the affine space Ank with weights χ1, . . . , χn together with an action of T on G by
left multiplication. Then T embeds into Ank = Spec k[x1, . . . , xn] as the complement
of the coordinates hyperplanes Zi, i = 1, . . . , n. Let V = Ank×


T G be the associated
vector bundle overG/T (see [3, p.22]). By definition V = LG/T (χ1)⊕. . .⊕LG/T (χn)


and G = T ×T G embeds into V as the complement of the union of zero-sections


Vj =
⊕


j 6=i


LG/T (χi) = Zj ×
T G , i = 1, . . . , n .


Note that ej : Vj →֒ V is a smooth subvariety for every j.


Let now h(−) be an oriented cohomology theory in the sense of [19], i.e. a con-
travariant functor from the category of smooth varieties over k to the category
of graded commutative rings satisfying certain axioms. In particular, if X is a
k-variety with an open subvariety ι : U →֒ X there is an exacts sequence


h(Z)
j∗ // h(X)


ι∗ // h(U) // 0
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where j : Z = X \ U →֒ X is the closed complement of U , and there is also a first
Chern class which we denote by ch1.


Having such a theory h(−) we get from this localization sequence (by induction)
an exact sequence


n⊕


j=1


h(Vj)
⊕j(ej)∗
−→ h(V )→ h(G)→ 0


By the properties of the first Chern class we have


(ej)∗(1Vj
) = ch1(LV (χj))


which implies that the image of ⊕j(ej)∗ is an ideal generated by the first Chern
classes ch1(LV (χj)), j = 1, . . . , n.


Let B be a Borel subgroup of G containing T and let G/B be the variety of Borel
subgroups. By [1, Thm.10.6 of Ch.III] the composite of projections V → G/T →
G/B is a chain of affine bundles. Therefore, by the homotopy invariance there is


an isomorphism h(G/B)
≃
→ h(V ) compatible with the Chern classes and we obtain


the following


5.1. Proposition. There is an isomorphism of rings


h(G) ≃ h(G/B)/
(
ch1(LG/B(χ1)), . . . , c


h
1(LG/B(χn))


)
,


where χ1, . . . , χn is a basis of the character group T ∗.


Let hB(−) be an B-equivariant pretheory to the category of commutative rings
such that


(i) hB(E) = h(E/B) for every G-torsor E, where h(−) is an oriented cohomol-
ogy in the sense of [19].


(ii) h̄B(BK) = h(pt) and h̄B(GK) ≃ h(G/B).


Then the ring ĥB(E) = h̄B(GK)⊗hB(E) h̄B(BK) introduced in Definition 4.5 can
be identified with a quotient of h̄B(GK) ≃ h(G/B) modulo the ideal generated by
non-constant elements from the image of the restriction (ψE)


∗
B : h(E/B)→ h(G/B).


Consider now the map ϕ∗
B : hB(pt) −→ h̄B(GK) ≃ h(G/B). By Theorem 4.4


Im(ϕ∗
B) ⊆ Im((ψE)


∗
B), hence, ĥB(E) can be identified with a quotient of the factor


ring h(G/B)/I, where I denotes the ideal generated by elements from the image of
ϕ∗
B which are in the kernel of the augmentation.


Then by Proposition 5.1 and Corollary 4.6 we obtain the following


5.2. Corollary. Assume that the image of ϕ∗
B is generated by the Chern classes


ch1(LG/B(χi)) of line bundles associated to the characters χi ∈ T ∗ (i = 1 . . . n).


Then ĥB(E) is a quotient of h(G/B)/I ≃ h(G). Moreover, if hB(−) is essential
and E is generic, then


ĥB(E) ≃ h(G).


5.3. Example (Chow groups and the J-invariant). Consider the equivariant Chow


groups hB(−) = CHB(−). Let E be a G-torsor. The ring hB(pt) can be identified
with the symmetric algebra S(T ∗) and the map


ϕ∗
B : S(T ∗) = hB(pt) −→ h̄B(GK) = CH(G/B)


coincides with the characteristic map for Chow groups studied in [6]. So its image
is generated by the first Chern classes c1(LG/B(χi)) of the respective line bundles.
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The map (ψE)
∗
B coincides with the restriction map


res: CH(E/B) −→ CH(G/B),


where E/B is the twisted form of G/B by means of E and the map


S(T ∗) = hB(pt) −→ hB(BK) = CH(pt) = Z


is the augmentation map. If E is generic, then we have


ĥB(E) ≃ CH(G/B)⊗S(T∗) Z ≃ CH(G).


where the last isomorphism follows by Corollary 5.2. For an arbitrary G-torsor E
the ring


ĥB(E) = CH(G/B)⊗Im(res) Z


is a quotient ring of CH(G/B) modulo the ideal generated by non-constant elements
from the image of the restriction CH(E/B)→ CH(G/B).


Observe that the characteristic map ϕ∗
B is not surjective in general. However,


its image is a subgroup of finite index in CH(G/B) measured by the torsion index
τ of G. This implies that for a G-torsor E we have


ĥB(E) ⊗Z Q ≃ Q.


If p | τ , then there is an isomorphism


ĥB(E)⊗Z Z/p ≃
Z/p [x1, . . . , xr]


(xp
j1


1 , . . . , xp
jr


r )
,


where (j1, . . . , jr) is the J-invariant of G twisted by E as defined in [25]. Observe
that ji ≤ ki, i = 1 . . . r, where ki are defined via the p-exceptional degrees introduced
by Kac [15], and for a generic torsor E we have equalities ji = ki for each i.


5.4. Example (Grothendieck’s K0 and indexes of the Tits algebras). Consider the
equivariant K0-groups hB(−) = K0(B,−). Let E be a G-torsor. The ring hB(pt)
can be identified with the integral group ring Z[T ∗] and with the representation
ring RepT of T , i.e.


hB(pt) = Z[T ∗] = RepT.


The map


ϕ∗
B : Z[T ∗] = hB(pt) −→ h̄B(GK) ≃ K0(G/B)


coincides with the characteristic map c for K0 studied in [6] and again its image is
generated by the first Chern classes.


As before the map (ψE)
∗
B coincides with the restriction map


res: K0(E/B) −→ K0(G/B),


and applying 4.4 we obtain the following K0-analogue of the Karpenko-Merkurjev
result:


5.5. Corollary. Let E be a G-torsor over k and let E/B be a twisted form of G/B
by E. Then


(i) c(Z[T ∗]) ⊆ res(K0(E/B));


(ii) there exists a G-torsor E over some field extension of k such that


c(Z[T ∗]) = res(K0(E/B)).
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According to a result of Panin [24] the image of the restriction map is given by
the sublattice


{iw,E · gw}w∈W ,


where W is the Weyl group of G, {gw}w∈W is the Steinberg basis of K0(G/B) and
{iw,E} are indexes of the respective Tits algebras.


Corollary 5.5 implies that there exists a maximal set of indexes {mw}w∈W such
that


• iw,E ≤ mw for every w ∈ W and every torsor E;


• there exists E such that iw,E = mw for every w ∈W ;


• the image of the characteristic map ϕ∗
B(Z[T


∗]) coincides with the sublattice
{mw · gw}w∈W , hence, providing a way to compute mw.


The indexesmw are called themaximal Tits indexes. They have been extensively
studied by Merkurjev [20] and Merkurjev, Panin and Wadsworth [22]. They are
closely related to the dimensions of irreducible representations of G. Comparing
with the case of Chow groups one observes that the maximal Tits indexes in K0


play the same role as the p-exceptional degrees in Chow groups.


Since the map Z[T ∗] = hB(pt) −→ h̄B(BK) = K0(pt) = Z is the augmentation
map, for a generic torsor E we have


ĥB(E) = K0(G/B)⊗Z[T∗] Z ≃ K0(G),


where the last isomorphism follows by Corollary 5.2. Hence, for an arbitrary G-
torsor E


ĥB(E) = K0(G/B)⊗Im(res) Z


is the quotient ring of K0(G/B) modulo the ideal generated by elements from
the image of the restriction K0(E/B) → K0(G/B) which are in the kernel of the
augmentation.


5.6. Example (Equivariant algebraic cobordism). Consider the equivariant alge-


braic cobordism hB(−) = ΩB(−). Let E be a G-torsor. The completion hB(pt)
∧ of


hB(pt) at the augmentation ideal, (the kernel of hB(pt)→ hB(B)) can be identified
with the formal group ring L[[T ∗]]U introduced in [2, Def. 2.4 and 2.7], where L is
the Lazard ring and U denotes the universal formal group law.


The map


ϕ∗
B : L[[T ∗]]U = hB(pt)


∧ −→ h̄B(GK) = Ω(G/B)


coincides with the characteristic map of [2, Def. 10.2] and its image is generated by
the first Chern classes.


The map (ψE)
∗
B coincides with the restriction map


res: Ω(E/B) −→ Ω(G/B),


where E/B is the twisted form of G/B by means of E and the map L[[T ∗]]U =
hB(pt)


∧ −→ hB(BK) = Ω(pt) = L is the augmentation map. By Corollary 5.2 for
an arbitrary G-torsor E we have


ĥB(E) = Ω(G/B)⊗Im(res) L.


is a quotient of the ring Ω(G/B) modulo the image of the restriction Ω(E/B) →
Ω(G/B) from the kernel of the augmentation.
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Appendix A. A spectral sequence


Let X be a k-scheme, Z1, . . . , Zm closed subschemes of X (with reduced structure),
and M∗ a cycle module over k. We construct in this section a spectral sequence


which converges to the cycle homology of M∗ over the open complement of
m⋃
i=1


Zi


in X generalizing the long exact localization sequence (the case m = 1). A reader
familiar with Levine [18, Sect. 1] will notice an analogy with Levine’s construction of
a similar spectral sequence for Quillen K-theory which should have an explanation
in the theory of model categories.


Let m be a positive integer and m the set of subsets of {1, 2, . . . ,m} ⊂ N. We set
further 0 = ∅. We consider m as a category with Morm(I, J) = {∅} (one element
set) if I ⊆ J and ∅ otherwise.


A.1. Definition. A m-cube of complexes is a functor


K∗ : m −→ Kb(Ab) I 7−→ KI


from m into the category of bounded (homological) complexes of abelian groups. If
I ⊆ J we denote rKIJ the induced morphism KI −→ KJ , and set rKIJ = 0 if I 6⊆ J .
We observe that rKJL · r


K
IJ = rKIL if I ⊆ J ⊆ K since I 7→ KI is a functor.


A morphism of m-cubes is a natural transformation.


For brevity of notation we define if l = |J | = |I|+ 1 a morphism ǫKIJ as follows:
If I 6⊂ J we set ǫKIJ = 0 and if J = {i1 < i2 < . . . < il} and I = J \ {id} for some
1 ≤ d ≤ l we set ǫKIJ = (−1)d−1 · rKIJ . The signs are chosen, such that the matrix
product (


ǫJL
)
|J|=p+1,|L|=p+2


·
(
ǫIJ


)
|I|=p,|J|=p+1


(4)


is zero.


With am-cube of complexes K∗ we can associate two (m−1)-cubes of complexes


(as long as m ≥ 2). First we have the (m− 1)-cubes of complexes K̃∗ which is the
restriction of K∗ to m− 1, and second we have K ′


∗. The latter is defined as the
composition of m− 1 −→ m, J 7−→ J ∪ {m}, with K∗, i.e.


K ′
∗ : m− 1 −→ Db(Ab) J 7−→ KJ∪{m} .


A.2. Example. Let X be a k-scheme with closed subschemes Z1, . . . , Zm, and M∗


a cycle module. We set ZI :=
⋂
j 6∈I


Zj for all I in m. We have than an m-cube of


complexes


K∗ : C
•
(X,Z1, . . . , Zm,Mn, ∗) : I 7−→ C


•
(ZI ,Mn) ,


where for I ⊆ J the morphism rCIJ is the push-forward along the inclusion of closed
subschemes


⋂
j 6∈I


Zj →֒
⋂
j 6∈J


Zj . Then we have


K ′
∗ = C


•
(X,Z1, . . . , Zm−1,Mn, ∗)


and


K̃∗ = C
•
(Zm, Z1 ∩ Zm . . . , Zm−1 ∩ Zm,Mn, ∗) .


Note also that K∅ = C
•
(
m⋂
i=1


Zi,Mn) and K{1,...,m} = C
•
(X,Mn).
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A.3 (The functors cf≥i). Recall first the cone of a morphism of complexes f : K
•
−→


L
•
. This is the complex cone f which is given in degree i+ 1 and i by:


. . . // Ki ⊕ Li+1








dKi fi


0 −dLi+1








// Ki−1 ⊕ Li // . . . .


We have then a (so called) exact triangle K
•


f
−→ L


•
−→ cone f −→ K


•
[1] (with


obvious morphisms on the right).


We define inductively a functor cf≥i form the category of m-cubes of complexes


to Kb(Ab) for all i ∈ Z. Let K∗ be such a m-cube. Then we set cf≥iK∗ = 0 if
i ≥ m+ 1 and


cf≥mK∗ := K{1,...,m} .


We have then the morphism of complexes


ΘKm :=


m∑


i=1


ǫI{1,...,m} :
⊕


|I|=m−1


KI −→ K{1,...,m} = cf≥mK∗


and define cf≥m−1K∗ to be the cone of this morphism.


The composition


⊕


|I|=m−2


KI


(
ǫIJ


)
I,J


−−−−−−→
⊕


|J|=m−1


KJ
ΘK


m−−−→ K{1,...,m}


is the zero morphism, see (4), and therefore induces a morphism of complexes


ΘKm−1 :
⊕


|I|=m−2


KI [1] −→ cf≥m−1K∗ = coneΘKm .


We set then cf≥m−2 := coneΘKm−1. Let now p ≤ m − 3. Then by (descending)
induction we have a morphism of complexes


ΘKp+2 :
⊕


|L|=p+1


KL[m− p− 2] −→ cf≥p+2K∗


such that we have ΘKp+2 ·
(
ǫJL[m− p− 2]


)
|J|=p,|L|=p+1


= 0. Therefore there exists


ΘKp+1 :
⊕


|J|=p


KJ [m− p− 1] −→ cf≥p+1K∗ = coneΘKp+2 ,


such that the following diagram commutes:


⊕
|J|=p


KJ [m− p− 2]


(ǫJL[m−p−2])J,L


��


ΘK
p+1[−1]


wwoo
o
o
o
o
o
o
o
o
o
o
o


cf≥p+1[−1] //
⊕


|L|=p+1


KL[m− p− 2] ΘK
p+2 // cf≥p+2K∗ .
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More precisely, the morphism of complexes ΘKp+1[p+ 1−m] is in degree t given by


⊕
|J|=p


KJ t








(
(ǫJL)JL


)
t


0








//
⊕


|L|=p+1


KL t ⊕ cf≥p+2[p+ 1−m]t = cf≥p+1[p+ 1−m]t .


Therefore we have by (4) that ΘKp+1 · (ǫIJ [m − p − 1])I,J = 0 which finishes the
induction step and the definition of cf≥pK∗ for p ≥ 0.


If p ≤ 0 we set cf≥pK∗ := cf≥0K∗.


A.4 (An exact triangle). By construction we have then for all 0 ≤ p ≤ m a
commutative diagram


⊕


|I| = p− 2
m 6∈ I


KI∪{m}[m− p]
//


Θ
K′


p−1


��


⊕


|J|=p−1


KJ [m− p] //


Θ
K
p


��


⊕


|L| = p− 1
m 6∈ I


KL[m− p]


Θ
K̃
p


��
cf≥p−1 K


′
∗


// cf≥p K∗ // (cf≥p K̃∗)[1] ,


whose lower row is an exact triangle and whose upper row is a short split exact
sequence of complexes (with obvious morphisms) for all p ≥ −1.


Shifting the diagram of the lemma for p = m−1 to the left we get a commutative
diagram in the bounded derived category of complexes of abelian groups:


⊕


|I| = m − 2
m 6∈ I


KI
0 //


Θ
K̃
m−1


��


⊕


|J|=m−2


KJ [1] //


Θ
K
m−1


��


⊕


|L| = m− 3
m 6∈ I


KL∪{m}[1]


Θ
K′


m−2


��
K{1,...,m−1}


Θ // cf≥m−2 K
′
∗


// cf≥m−1 K∗ ,


where the arrow


Θ: K{1,...,m−1} = cf≥m−1 K̃∗ −→


cf≥m−2 K
′
∗ = cone


(


⊕


|J | = m− 2
m 6∈ J


KJ


Θ
K′


m−1
−−−−−→ K{1,...,m}


)


is induced by ǫ{1,...m−1}{1,...m} : K{1,...m−1} −→ K{1,...m}.


A.5. Definition. The cofiber of the m-cube of complexes K∗ is the complex


cfK∗ := cf≥0K∗ .


The assignment K∗ 7→ cfK∗ is a covariant functor from the category of m-cubes of
complexes to Kb(Ab).
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A.6 (The spectral sequence). By the very definition of the complexes cf≥pK∗


we have exact triangles


cf≥p+1K∗ −→ cf≥pK∗ −→
⊕


|I|=p


KI [m− p]


for any m-cube of complexes K∗ and all p ≥ 0. The associated long exact homology
sequences constitute an exact couple and so we get a convergent spectral sequence
of cohomological type


Ep,q1 (K∗) := H−p−q


( ⊕


|I|=p


KI [m− p]
)


=⇒ H−p−q(cfK∗) .


(Note that the complexes KI and so also cf≥pK∗ are all bounded.) By construction
the IJ-component H−p−q(KI [m − p]) −→ H−p−q(KJ [m − p]) of the differential


dp,q1 : Ep,q1 (K∗) −→ Ep+1,q
1 (K∗) is equal H−p−q(ǫIJ [m− p]).


A.7. Example. Let X,Z1, . . . , Zm, K∗, and M∗ be as in example A.2. We set


Wl :=
l⋃


j=1


Zj for 1 ≤ l ≤ m and C
•
(Y ) := C


•
(Y,Mn) for any finite type k-scheme Y .


The pull-back along the open immersion X \Wm →֒ X induces a morphism of
complexes cf≥mK∗ = C


•
(X) −→ C


•
(X \Wm). The composition of the morphism


with ΘKm is zero given a morphism of complexes cf≥m−1K∗ −→ C
•
(X \ Wm).


Composing this morphism with ΘKm−1 is again zero and hence induce a morphism
from cf≥m−2K∗ to C


•
(X \Wm). Proceeding further we finally get a morphism of


complexes
γ : cfK∗ −→ C


•
(X \Wm) .


Similarly we have morphisms of complexes γ̃ : cf K̃∗ −→ C
•
(Zm \ Wm−1) and


γ′ : cfK ′
∗ −→ C


•
(X \Wm−1). We claim that this is a quasi-isomorphism. This


is obvious for m = 1. Let m ≥ 2. Then by A.4 we have a commutative diagram
whose rows are exact triangles


cf K̃∗
//


γ̃


��


cfK ′
∗


//


γ′


��


cfK∗


γ


��
C


•
(Zm \Wm−1)


ι∗ // C
•
(X \Wm−1)


j∗ // C
•
(X \Wm) ,


where ι : Zm\Wm−1 →֒ X\Wm−1 and j : X\Wm−1 →֒ X\Wm are to the respective
subschemes corresponding open respectively closed immersions. The claim follows
from this diagram by induction.


Hence we have a convergent spectral sequence


Ep,q1 (X,Z1, . . . , Zm,Mn) :=
⊕


|I|=p


H−q−m(ZI ,Mn) =⇒ H−p−q(U,Mn) ,


where U = X \
m⋃
i=1


Zi. The IJ-component of the differential is equal 0 if I 6⊂ J


and equal (−1)d−1 times the push-forward along the closed immersion ZI →֒ ZJ if
J = {i1 < . . . < il} and I = J \ {id}.


A.8. Remark. This spectral sequence applies also to Voevodsky’s [29] motivic
cohomology of a homotopy invariant Nisnevich sheaf with transfers F . By Déglise’s


Thèse [4] one can associate to such a sheaf a cycle module F̂∗, such that there is a
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natural isomorphism HiNis(X,F) ≃ Hi(X, F̂0) for all i ∈ N. (Vice versa, if M∗ is a


cycle module then X 7→ Hi(X,Mn) is a homotopy invariant Nisnevich sheaf with
transfers.)


A.9. Example. Let X be a topological space with closed subspaces Z1, . . . , Zm.
As in the book [7] of Dold we denote by SX and S(X,A) the singular and relative
singular complex of X and the pair (X,A) with A ⊆ X a closed subset, respec-
tively. Let H∗(X) and H∗(X,A) be the homology groups of these complexes, i.e.
the (relative) singular homology of the space X and the pair (X,A), respectively.


We set (as above) ZI :=
⋂
j 6∈I


Zj for subsets I ⊆ {1, . . . ,m}, and denote by ιIJ


the embedding ZI →֒ ZJ if I ⊆ J .


The map I 7→ SZI is then a m-cube of complexes and we get by the same
reasoning as in Example A.7 a convergent spectral sequence of cohomological type


Ep,q1 (X,Z1, . . . , Zm) :=
⊕


|I|=p


H−q−m(ZI) =⇒ H−p−q(X,


m⋃


i=1


Zi) ,


where the IJ-component of the differential dp,q1 : Ep,q1 −→ Ep+1,q
1 is zero if I 6⊂ J


and equal (−1)r−1 ·H−q−m(ιIJ ) if J = {i1, . . . , ip, ip+1} and I = J \ {ir} for some
1 ≤ r ≤ p+ 1.
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