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1. Introduction


This article studies the interplay between valuations and certain field invari-
ants related to quadratic forms, with a special focus on phenomena that occur
over (formally) real fields. The invariants considered include the u-invariant, the
length, the stability index, and two further invariants related to the vanishing of
certain ideals in the Witt ring of a field. One of our aims is to systematize the
presentation of the usage of valuations to obtain lower bounds on these invariants.


We assume that the reader is familiar with the basic theory of quadratic forms
over fields, for which we refer to [20]. By a ‘form’ or a ‘quadratic form’ we mean
a regular quadratic form. We identify quadratic forms up to isometry and use
the equality sign to indicate that two quadratic forms are isometric.


Let K always be a field of characteristic different from 2. We denote by K×


the multiplicative group of K, by K×2 the subgroup of nonzero squares in K, and
by


∑
K2 the subgroup of nonzero sums of squares in K. By the Artin-Schreier


Criterion (cf. [20, Chap. VIII, Sect. 1]) K admits a field ordering if and only if
−1 /∈ ∑


K2; in this case the field K is called (formally) real, otherwise nonreal.
By N we denote the natural numbers including 0. For n ∈ N and a1, . . . , an ∈ K×,
we write 〈〈a1, . . . , an〉〉 for the quadratic form 〈1,−a1〉⊗· · ·⊗〈1,−an〉 over K and
call this an n-fold Pfister form. Given a form ϕ over K, we denote by DK(ϕ)
the set of nonzero elements of K represented by ϕ and, for n ∈ N, by n× ϕ the
n-fold sum ϕ ⊥ . . . ⊥ ϕ. If ϕ = 〈a1, . . . , an〉 for a1, . . . , an ∈ K×, we simply
write DK〈a1, . . . , an〉 for DK(ϕ). If DK(ϕ) ⊆


∑
K2, then ϕ is said to be totally


positive, and if DK(ϕ) =
∑
K2, then we say that ϕ is positive-universal. We say
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that ϕ is torsion if n × ϕ is hyperbolic for some integer n ≥ 1. We denote the
Witt equivalence class of the form ϕ by [ϕ].


We use the standard conventions for calculations involving ∞. For N ⊆ N we
denote by inf N the infimum and by supN the supremum of N , each taken in
N ∪ {∞}. In particular sup ∅ = 0, inf ∅ = ∞, and supN = ∞.


The length, the u-invariant and pythagoras number of K are defined by


ℓ(K) = inf


{
n ∈ N


∣∣∣∣
any totally positive form over K


of dimension n is positive-universal


}
,


u(K) = sup {dim(ϕ) | ϕ is an anisotropic torsion form over K} ,
p(K) = inf {n ∈ N | any element of


∑
K2 is a sum of n squares in K} .


Whenever K is nonreal, then every quadratic form over K is totally positive
and torsion so that ℓ(K) = u(K). For an overview on known results on these
invariants, we refer to [25, Chap. 8] and [20, Chap. XI, Sect. 6] for the u-invariant,
and further to [5] for the length.


The other invariants that we consider are intrinsically related to the powers of
the fundamental ideal and related torsion ideals in the Witt ring. We denote by
WK the Witt ring of K, by IK the fundamental ideal in WK, and by ItK the
torsion part of IK. Let n ≥ 1. We write InK = (IK)n and Int K = InK ∩ItK. If
K is nonreal, then Int K = (ItK)n = InK. In general, we have that (ItK)n ⊆ Int K.
For a real field K, one may want to compare the ideals (ItK)n and Int K, and
in particular the conditions that (ItK)n = 0 and that Int K = 0. To this aim it
is very useful to know that both ideals are generated by n-fold Pfister forms of
a particular shape. It is easy to see that the ideal InK is generated as a group
by the Witt equivalence classes of n-fold Pfister forms over K and that (ItK)n is
generated as a group by the classes [b〈〈a1, . . . , an〉〉] with a1, . . . , an ∈ ∑


K2 and
b ∈ K×. Trivially, the ideal ItK · In−1K is generated as a group by the classes of
scaled n-fold Pfister forms [b〈〈a1, . . . , an〉〉] with a1 ∈


∑
K2 and b, a2, . . . , an ∈ K×.


We thus have canonical generators for Int K, in view of the following deep theorem.


1.1. Theorem (Marshall-Orlov-Vishik-Voevodsky). For every n ≥ 1 one has


Int K = ItK · In−1K .


In [21, Cor. 1] this was shown under the assumption that in the Milnor ring
k∗K the annihilator of a symbol is generated by elements of degree one, which
was proved in [24, (3.3)].


We now define two field invariants α and β:


α(K) = sup {n ∈ N | Int K 6= 0}
β(K) = sup {n ∈ N | (ItK)n 6= 0}


If K is nonreal then ItK = IK and so α(K) = β(K) = sup {n ∈ N | InK 6= 0}.
The choice of the letters α and β alludes to the Properties (An) and (Bn) intro-
duced in [13]. With the terminology and notation of [13], in view of the above
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statements on ideal generators we have the following:


α(K) + 1 = inf {n ∈ N | K satisfies (An)}
β(K) + 1 = inf {n ∈ N | K satisfies (Bn)}


The equality relating α and (An) relies on (1.1), whereas the equality relating
β and (Bn) is far more elementary; see also [5, Sect. 2]. Furthermore, one has
α(K) = ν(K)− 1 for the ν-invariant introduced in [13].


The following statement summarizes the relations that are known among the
invariants introduced so far.


1.2. Proposition. We have α(K) ≥ β(K) ≥ 0 and ℓ(K) ≥ p(K) ≥ 1. If


p(K) > 1, then u(K) ≥ 2α(K), ℓ(K) ≥ 2β(K)−1+1, and p(K) ≤ 2β(K). Moreover,


p(K) = 1 if and only if ℓ(K) = 1 if and only if α(K) = 0 if and only if β(K) = 0,
and in this case u(K) is either 0 or 1 depending on whether K is real or nonreal.


Proof: The inequalities in the first sentence are trivial. The inequalities in the
second sentence are immediate from [5, (2.7.a)], [5, (4.7.b)], and [5, (2.7.b)],
respectively. The equivalences in the last sentence are clear from [5, (4.1)],
whereas the statement on the u-invariant is obtained from the proof of [20,
Chap. XI, (6.26)]. �


Note that, if p(K) = ℓ(K) = 2n−1 + 1 for some n ≥ 1, then it follows from
(1.2) that β(K) = n; examples with n ≤ 3 are known, see [5, (7.3) and (7.4)].


We further consider the (reduced) stability index, introduced in [9]. This in-
variant is interesting for the study of real fields and has various characterizations.
In Section 4 we revisit some crucial results from [9] on the stability index and
explain how to derive these results from our study of real valuations in Section 3
and from Bröcker’s ‘Fan Trivialization Theorem’ from [10], cited in (4.3) below.
In contrast to [9] we do not use henselizations. In particular, in (4.5) we obtain
a consequence of Bröcker’s ‘Global Stability Formula’ [9, (3.19)] in a way that
is appropriate for our applications, such as (6.8) below. In (4.1) we give the
characterization of the stability index of K as


(1.3) st(K) = inf {r ∈ N | Ir+1K = 2IrK + Ir+1
t K} ,


which can be considered as a definition for the rest of the introduction.
The following theorem, pointed out in [18, Prop. 1] as a consequence of earlier


results, relates the stability index to the invariant α.


1.4. Theorem (Elman-Lam-Krüskemper). We have


α(K(
√
−1)) = max {α(K), st(K)} .


For an exposition of the elementary but technical proof, see [11, Sect. 35.B] or [6].
In Section 5 we consider the situation of a valued field and use the residue


homomorphism relating the Witt rings of the field and the corresponding residue
field, and we provide lower bounds for the invariants under discussion. In the
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last two sections we apply these bounds to determine the invariants for special
types of fields. In Section 6 we discuss the situation of a rational function field.
With (6.8) below we obtain a proof of the following statement.


1.5. Theorem. Let F = K(X). Then α(F ) = β(F ) = α(F (
√
−1)). Moreover,


if K is real, then α(F ) = sup {n ∈ N | (ItF )n 6= Int F}.
In Section 7 we consider special extensions of a real closed field R. For a


finitely generated field extension F/R of transcendence degree n, we see in (7.2)
that α(F ) = β(F ) = n, and further st(F ) = n when F is real. Considering a
field that is obtained from a real closed field by an iteration of power series field
extensions and further one rational function field extension, we have a situation
where all invariants under discussion here can be determined.


1.6. Theorem. Let R be a real closed field, m,n ∈ N with m ≤ n, and


F = R((t1)) . . . ((tm−1))(tm)((tm+1)) . . . ((tn)) .


Then p(F ) = 2, β(F ) = m, ℓ(F ) = 2m, st(F ) = α(F ) = α(F (
√
−1)) = n, and


u(F ) = u(F (
√
−1)) = 2n.


The proof of (1.6) will be achieved in (7.3). From (1.6) we see in particular
that there is no general upper bound on α(K) in terms of β(K).


2. Fans and pythagorean fields


A preordering of K is a subset T ⊆ K that K2 ⊆ T , T + T ⊆ T , T · T ⊆ T ,
and −1 /∈ T ; if in addition T ∪ −T = K, then T is called an ordering of K. The
set of all orderings of K is denoted by XK . For a preordering T of K we write
T× = T \ {0}, which is a subgroup of K×, and XT = {P ∈ XK | T ⊆ P}. We
use the notation ±S = S ∪ −S for S ⊆ K.


Fans were introduced by Becker and Köpping in [8]; see also [19, Chap. 5].
They are characterized by the following proposition.


2.1. Proposition. Let T be a preordering of K. The following are equivalent:


(i) For any subgroup H of K× of index 2 containing T× and with −1 /∈ H, the


set H ∪ {0} is an ordering of K.


(ii) For any subgroup H of K× containing T× and with −1 /∈ H, the set H∪{0}
is a preordering of K.


(iii) For any a ∈ K× \ ±T we have T + aT = T ∪ aT .
Moreover, if n ∈ N is such that [K× : T×] = 2n, then n ≤ |XT | ≤ 2n−1, and the


equality |XT | = 2n−1 is equivalent to any of the conditions (i)–(iii).


Proof: See [8, Satz 20] or [19, (5.1) and (5.5)]. �


A fan in K is a preordering T of K for which the equivalent conditions (i)–(iii)
in (2.1) hold. For a fan T we put deg T = dimF2


(K×/±T×) = dimF2
(K×/T×)−1


and call this the degree of T . The orderings of K are the fans of degree 0. Any
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preordering T of K with [K× : T×] = 4 is a fan of degree 1. Fans of degree 0 or
1 are called trivial. Any preodering containing a fan is itself a fan. In particular,
if there exists a fan of degree n in K, then there exist fans of degree m in K for
all natural numbers m ≤ n.


The field K is called pythagorean if
∑
K2 = K×2 (that is, p(K) = 1), and


euclidean if the set of squares K2 is an ordering of K.


2.2. Proposition. Assume that K is real. Then every real quadratic extension


of K is pythagorean if and only if K2 is a fan in K.


Proof: See [19, (5.16)]. �


By a 2-extension we mean an algebraic extension L/K such that, for any α ∈ L
there exists r ∈ N and intermediate fields K0, . . . , Kr such that K0 = K, α ∈ Kr,
and Ki/Ki−1 is a quadratic extension for i = 1, . . . , r. It follows from [19, (5.19)]
that if K2 is a fan in K then L2 is a fan in L for any real 2-extension L/K. We
will need a special case of this fact, contained in the following statement.


2.3. Proposition. If K is nonreal with two square classes, then any finite 2-
extension of K has two square classes. If K is real pythagorean with four square


classes, then any finite real 2-extension is pythagorean with four square classes


and any finite nonreal 2-extension has two square classes.


Proof: For quadratic extensions the statement follows from the square class
exact sequence in [20, Chap. VII, (3.8)]. This generalizes immediately to finite
2-extensions. �


2.4. Proposition. Let L/K be a finite extension and P an ordering of K. The


number of extensions of P to an ordering of L is bounded by [L : K] and the two


numbers are congruent modulo 2.


Proof: Let R denote the real closure of K with respect to P . Fix an irreducible
polynomial f ∈ K[X ] such that L is K-isomorphic to K[X ]/(f). The extensions
of P to an ordering of L are given by the roots of f in R (cf. [26, (3.12)]). As
[L : K] is the number of roots of f in the algebraically closed field R(


√
−1)


and as the roots in R(
√
−1) \ R are pairwise conjugate under the nontrivial


automorphism of R(
√
−1)/R, the statement follows. �


2.5. Corollary. Let L/K be a finite extension of odd degree such that every


real quadratic extension of L is pythagorean. Then every ordering of K extends


uniquely to L.


Proof: Let P be an ordering of K. Let T be the preordering of L generated by
P . By (2.4) XT is finite of odd cardinality. By the hypothesis and (2.2), L2 is a
fan in L. Then also T is a fan in L. Hence, |XT | is a power of 2, by (2.1). We
conclude that |XT | = 1. �
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The field K is said to be hereditarily pythagorean, respectively, hereditarily


euclidean, if K is real and if every finite real extension of K is pythagorean,
respectively, euclidean.


2.6. Theorem (Becker). Any uniquely ordered hereditarily pythagorean field is


hereditarily euclidean.


Proof: Assume that K is hereditarily pythagorean and uniquely ordered. Given
a finite real extension M/K, let N/K denote the normal closure of M(


√
−1)/K


and L the fixed field of a 2-Sylow subgroup of the Galois group of N/K. Then
[L : K] is odd, so L is real pythagorean and by (2.5) uniquely ordered. Hence,
L is euclidean. As N/L is a nonreal 2-extension, it follows that N = L(


√
−1).


Hence, N is quadratically closed, and as N/M(
√
−1) is a finite extension, it


follows by [20, Chap. VIII, (5.11)] that M(
√
−1) is quadratically closed, thus M


is euclidean by [20, Chap. VIII, (1.7)]. �


3. Real valuations


We collect some facts about ordered abelian groups and valuations. More
details can be found in [15]. For any ring R we denote by R× the multiplicative
group of invertible elements in R. Given a valuation v on K, we write Ov for the
corresponding valuation ring, mv for its maximal ideal, κv for the residue field
Ov/mv, and Γv for the value group, which is naturally isomorphic to K×/O×


v .
We say that a valuation is real or nonreal, respectively, if the residue field


has this property. We say that a valuation is dyadic if its residue field has
characteristic two. We will only be interested in non-dyadic valuations. Real
valuations are non-dyadic.


3.1. Proposition. A valuation v on K is real if and only if for any r ≥ 1 and


x1, . . . , xr ∈ K the equality v(x21 + · · ·+ x2r) = 2min{v(x1), . . . , v(xr)} holds.


Proof: This is easy to show. �


Let v be a valuation on K and ∆ a convex subgroup of the value group
Γv. Composing v with the quotient map Γv −→ Γv/∆, we obtain a valuation
v′ : K −→ (Γv/∆)∪{∞} with Ov ⊆ Ov′ , called a coarsening of v. Moreover, there
is a unique valuation v : κv′ −→ ∆∪{∞} such that v(x+mv′) = v(x) for x ∈ O×


v′ .
The corresponding valuation ring of κv′ = Ov′/mv′ is Ov = (Ov+mv′)/mv′ . More-
over, the places (residue maps) corresponding to v, v′, and v are compatible in
the sense that, identifying κv = Ov/mv with κv = ((Ov + mv′)/mv′)/(mv/mv′),
the residue map Ov −→ κv factors naturally over Ov. See also [15, p. 45].


Given a valuation v on K, we denote by Σv the subset of Γv of elements of the
form ±v(x) with 0 6= x = x21 + · · ·+ x2r for some r ≥ 1 and x1, . . . , xr ∈ Ov with
v(x1) = 0. We set rk2(v) = dimF2


(Γv/2Γv) and call this the 2-rank of v. Hence,
rk2(v) = 0 if and only if Γv = 2Γv, that is, if and only if Γ is 2-divisible. We set
nrk2(v) = dimF2


v(
∑
K2)/2Γv and call this the nonreal 2-rank of v.
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3.2. Proposition. Let v be a non-dyadic valuation on K. Then Σv is a convex


subgroup of K and v(
∑
K2) = Σv + 2Γv. Let v′ : K −→ (Γv/Σv) ∪ {∞} denote


the induced coarsening of v, the residue field κv′, and v : κv′ :−→ Σv ∪ {∞} the


valuation induced by v on κv′. Then nrk2(v) = rk2(v), and if K is real, then v′


is a real valuation. Moreover, v is real if and only if K is real and Σv = 0.


Proof: Let S be the set of all x ∈ K× of the form x = x21+· · ·+x2r with r ≥ 1 and
x1, . . . , xr ∈ Ov such that v(x1) = 0. Note that S is closed under multiplication
and contains 1. Hence, Σ+


v = v(S) is closed under addition and contains 0. For
x ∈ S and t ∈ K with 0 < v(t) < v(x) we have x′ = (x1 + t)2 + x22 + · · ·+ x2r ∈ S
and v(x′) = v(t). This shows that Σ+


v is a convex subset of Γv. We conclude that
Σv = Σ+


v ∪−Σ+
v is a convex subgroup of Γv. It is clear that v(


∑
K2) = Σv +2Γv.


As Σv is convex in Γv, we have Σv ∩ 2Γv = 2Σv, and therefore


v(
∑
K2)/2Γv = (Σv + 2Γv)/2Γv


∼= Σv/2Σv .


As Σv is the value group of v, this shows that nrk2(v) = rk2(v).
Obviously, if v is real, then K is real and Σv = 0 by (3.1). Assume now


that K is real. Then for r ≥ 1 and x1, . . . , xr ∈ K we have v(x21 + · · · + x2r) ≡
2min{v(x1), . . . , v(xr)} mod Σv, thus v


′(x21+· · ·+x2r) = 2min{v′(x1), . . . , v′(xr)}.
Hence, v′ is a real valuation by (3.1). In particular, if Σv = 0, then v is real. �


3.3. Example. Let v be a Z-valuation on K. Then v(
∑
K2) = 2Z if v is real,


and v(
∑
K2) = Z otherwise.


In general we have 2Γv ⊆ v(
∑
K2) ⊆ Γv. If K is real then v(


∑
K2) = 2Γv. If


v is nonreal, however, any of the inclusions may be or not be strict. For example,
there is a valuation on K = R(X, Y ) with residue field C and value group Γv


equal to Z×Z with the lexicographic order and where 2Γv ( v(
∑
K2) ( Γv. By


contrast, in (5.3) below we give an example where K = R, κv is nonreal and Γv


is divisible, implying that v(
∑
K2) = Γv = 2Γv.


The following is a slight strengthening of [9, (3.2)].


3.4. Lemma. Let Γ be a torsion free abelian group and ∆ ⊆ Γ a subgroup such


that Γ/∆ is a torsion group. Then for n ≥ 1, we have |Γ/nΓ| ≤ |∆/n∆|, with
equality holding if Γ/∆ is finite.


Proof: Let n ≥ 1. Note that |Γ/nΓ| · |nΓ/n∆| = |Γ/n∆| = |Γ/∆| · |∆/n∆|.
Assume first that Γ/∆ is finite. Then the natural surjection Γ/∆ −→ nΓ/n∆
induced by multiplication by n is an isomorphism as Γ is torsion free, hence
|Γ/∆| = |nΓ/n∆| and thus |Γ/nΓ| = |∆/n∆|.


In the general case, for any r ∈ N with r ≤ |Γ/nΓ|, the subgroup Γ′ of Γ
generated by ∆ and representatives of r distinct classes in Γ/nΓ is such that
Γ′/∆ is finite, which implies that r ≤ |Γ′/nΓ′| = |∆/n∆| by the previous case.
Therefore we have |Γ/nΓ| ≤ |∆/n∆| in general. �
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To see that the inequality in (3.4) may be strict when Γ/∆ is not finite, one
may take Γ = Q and ∆ = Z.


For a field extension L/K we denote by td(L/K) the transcendence degree.


3.5. Proposition. Let L/K be field extension and v a valuation of L. Then


rk2(v) ≤ rk2(v|K) + td(L/K) .


Proof: By (3.4) we have rk2(v) ≤ rk2(v|K) whenever v(L×)/v(K×) is torsion.
Assume that v(L×)/v(K×) is not torsion. Then there exists x ∈ L× such that
nv(x) /∈ v(K×) for any n ∈ N. Then x is transcendental over K by [15, (3.2.4)].
For K ′ = K(x) we thus have td(L/K ′) = td(L/K) − 1. Furthermore v(K ′×) is
generated by v(K×) and v(x), so that rk2(v|K ′) = rk2(v) + 1.


If td(L/K) < ∞, we may thus conclude the claimed inequality by induction
on td(L/K), whereas it trivially holds if td(L/K) = ∞. �


4. Stability index, valuations, and fans


We define the stability index of K as


st(K) = sup {deg T | T fan in K} .
Note that st(K) = 0 if and only if K is either nonreal or uniquely ordered.


It follows from [10, (2.11)] that this definition of the stability index is equivalent
to the original definition in [9] and therefore to the definition given in (1.3).


4.1.Theorem (Bröcker). We have st(K) = inf{r ∈ N | Ir+1K = 2IrK+Ir+1
t K}.


Proof: The original proof in [10, (2.11)] involves valuations. A proof independent
of valuation theory is contained in [22, Sect. 6]. �


In the remainder of this section we discuss the characterization of the stability
index in terms of valuations, relying on Bröcker’s ‘Fan Trivialization Theorem’
from [10] cited in (4.3) below, and we retrieve some crucial results from [9].


The following is implicit in [9, (3.3) and (3.18)].


4.2. Proposition. Let v be a real valuation on K. Then st(K) ≥ rk2(v)+st(κv).


Proof: Let T be a preordering of κv. Let T̃ = {t ∈ O×


v | t + mv ∈ T×} and


S = (K×2 · T̃ )∪ {0}. Then S is a preordering of K and S× ∩O×


v = T̃ . It follows


that [K×2O×


v : S×] = [S×O×


v : S×] = [O×


v : T̃ ] = [κ×v : T×] and therefore


[K× : S×] = [K× : K×2O×


v ] · [K×2O×


v : S×] = [Γv : 2Γv] · [κ×v : T×] .


Furthermore, if T is a fan, then so is S. From this, the claim follows. �


A preordering T of K and a valuation v on K are said to be compatible with
each other if 1+mv ⊆ T ; this is equivalent to saying that {x | x ∈ O×


v ∩T×}∪{0}
is a preordering of κv, then denoted by T v and called the preordering induced by


T ; note that in this case we have [K× : T×] = [κ×v : T
×


] · [Γv : v(T
×)]. Note that
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our notion of ‘compatibility’ corresponds to ‘full compatibility’ in the terminology
of [19, Sect. 3].


If a fan T in K is compatible with a valuation v on K, then T v is a fan in κv,


and as [K× : T×] = [κ×v : T
×


] · [Γv : v(T
×)], it follows that deg T −deg T ≤ rk2(v).


4.3.Theorem (Bröcker). Every fan T in K is compatible with some real valuation


v on K such that the induced fan T in κv is trivial.


Proof: See [10, (2.7)] for the original proof. A constructive proof is given in [16,
Sect. 1]. See [23, Sect. 3.6] for another treatment. �


4.4. Corollary. Assume that K is real and st(K) <∞. Then there exists a real


valuation v on K such that st(κv) = st(K)− rk2(v) ≤ 1.


Proof: Let T be a fan of K with deg T = st(K). By (4.3) T is compatible
with a valuation v on K such that the induced fan T in κv is trivial. With (4.2)
we obtain that deg T = st(K) ≥ st(κv) + rk2(v) ≥ deg T + rk2(v) ≥ deg T and
therefore st(κv) = st(K)− rk2(v) = deg T − rk2(v) = deg T ≤ 1. �


We come to a characterization of the stability index in terms of valuations. It
can also be derived from Bröcker’s ‘Global Stability Formula’ [9, (3.19)], which
characterizes the stability index of a field in terms of henselizations.


4.5. Theorem (Bröcker). Assume that K is real. Let N be the set of natural


numbers n with the property that any real valuation v on K satisfies rk2(v) ≤ n
and, furthermore, rk2(v) = n only if κv is uniquely ordered. Then st(K) = inf N .


Proof: For a real valuation v on K we have rk2(v) ≤ st(K) − st(κv) by (4.2),
so that either rk2(v) = st(K) and κv is uniquely ordered, or rk2(v) ≤ st(K)− 1.
Hence, either st(K) = ∞ or st(K) ∈ N , showing that inf N ≤ st(K) in any case.
Suppose now that inf N < st(K). Then there exists n ∈ N and a fan T in K with
deg(T ) = n+1. By (4.3) T is compatible with a real valuation v on K such that
the induced fan T in κv is trivial. Then rk2(v) ≥ deg T − deg T ≥ n. Moreover,
if κv is uniquely ordered, then deg T = 0, so that rk2(v) ≥ deg T = n + 1. This
contradicts the fact that n ∈ N . �


As an illustration of the applicability of (4.5) we recover [9, (4.8)]:


4.6. Corollary (Bröcker). For any field extension L/K one has


st(L) ≤ st(K) + td(L/K) + 1 .


Proof: By (3.5) we have rk2(v) ≤ rk2(v|K) + td(L/K) holds for any valuation v
on L. In view of this, the statement follows from (4.5). �


Assuming that st(K) = n, it follows from (4.5) that K carries a real valuation
v with rk2(v) ∈ {n − 1, n}. However, for r ∈ {n − 1, n} we can not say that a
real valuation v on K with rk2(v) = r will exist, as the following results show.
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4.7. Example. Let r ∈ N and K = Q(
√
2)((t1)) . . . ((tr)). Then we have rk2(v) ≤ r


for any real valuation v on K. However,
∑
K2 ∪ {0} is a fan of degree r + 1 in


K, in particular st(K) = r + 1. See also (7.1) for another argument.


Given an ordered group G and a field k we denote by k((G)) the field of formal
power series as defined in [15, (3.5.6)], whose elements are formal sums x =∑


γ∈G xγ t
γ with (xγ) ∈ kG whose support {γ ∈ G | xγ 6= 0} is well-ordered, with


field operations defined in the obvious way. The elements of k((G)) whose support
is contained in the nonnegative part of G form a valuation ring denoted k[[G]],
which is henselian.


We are grateful to A. Prestel for providing us with the following observation.


4.8. Proposition. Let G be an archimedian ordered group and K = R((G)).
Then R[[G]] is the only nontrivial valuation ring of K with a real residue field. In


particular, st(K) = dimF2
G/2G.


Proof: As G is archimedian ordered, it contains no nontrivial convex subgroup,
and therefore the valuation ring R[[G]] of K is maximal by [15, (2.3.2)]. Let w be
a nontrivial real valuation on K. By [15, (2.2.5)] the valuation ring Ow is convex
with respect to some ordering P of K. Since R[[G]] is a henselian valuation ring,
it is also convex with respect to P , by [15, (4.3.6)]. Hence, the valuation ring of
K obtained as the convex closure of Z with respect to P is contained in Ow and
in R[[G]]. It follows by [15, Sect. 2.3] that the two valuation rings Ow and R[[G]]
of K are dependent and therefore comparable. Since R[[G]] is a maximal proper
subring of K we thus have Ow ⊆ R[[G]]. Hence, w induces a valuation w̃ on the
residue field R of R[[G]]. As w̃ has the same residue field as w, it is also a real
valuation. However, R carries no nontrivial real valuation by [15, (2.2.6)]. Hence
w̃ is trivial and thus Ow = R[[G]].


This shows that R[[G]] is the unique nontrivial valuation ring of K with a real
residue field. Let v be the valuation corresponding to R[[G]] with value group
G. As its residue field R is uniquely ordered, we obtain that st(K) = rk2(v) =
dimF2


G/2G by (4.5). �


By an appropriate choice of G in (4.8), we obtain for any n ∈ N a field K
carrying a unique nontrivial real valuation v and such that st(K) = rk2(v) = n.


5. Residue homomorphisms


Let v in the sequel denote a non-dyadic valuation on K. By [17, (3.1)], there
is a unique group homomorphism


∂v : WK −→Wκv


such that ∂v〈ut2〉 = 〈u〉 for any t, u ∈ K× with v(u) = 0, and ∂v〈y〉 = 0 for
any y ∈ K× with v(y) /∈ 2Γv. Given a form ϕ over K, we write ∂v(ϕ) instead
of ∂v([ϕ]). We say that ϕ is v-balanced if ϕ = 〈x1, . . . , xm〉 with m ∈ N and
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x1, . . . , xm ∈ K× such that v(xi) 6≡ v(xj) mod 2Γv for 1 ≤ i < j ≤ m; this does
not depend on the diagonalization, and we have m = dim(ϕ) ≤ 2rk2(v).


In the sequel, let r, n ∈ N. There exists a v-balanced n-fold Pfister form over
K if and only if n ≤ rk2(v). Moreover, there exists a v-balanced totally positive
n-fold Pfister form over K if and only if n ≤ nrk2(v). Furthermore, any n-fold
Pfister form over K is of the shape 〈〈a1, . . . , an〉〉 with a1, . . . , an ∈ K× such that
ai ∈ O×


v for rk2(v) < i ≤ n.


5.1. Lemma. Let a1, . . . , an ∈ O×


v be such that 〈a1, . . . , an〉 over κv is anisotropic.
Then ϕ⊗ 〈a1, . . . , an〉 is anisotropic for any v-balanced form ϕ over K.


Proof: Let ψ = 〈a1, . . . , an〉. By the hypothesis, ψ is anisotropic over K and
v(DK(ψ)) = 2Γv. Write ϕ = 〈b1, . . . , br〉 with r ∈ N and b1, . . . , br ∈ K×.
As v(DK(biψ)) = v(bi) + 2Γv for i = 1, . . . , r and v(bi) 6≡ v(bj) mod 2Γv for
1 ≤ i < j ≤ r, it follows that ϕ⊗ ψ = b1ψ ⊥ . . . ⊥ brψ is anisotropic over K. �


For x ∈ R we use the notation ⌊x⌋ = max {z ∈ Z | z ≤ x}.
5.2. Theorem. We have u(K) ≥ 2rk2(v)+1 · ⌊u(κv)


2
⌋ and ℓ(K) ≥ 2nrk2(v) · ℓ(κv).


Moreover, u(K) ≥ 2rk2(v) ·u(κv) except possibly when K is real, u(κv) is odd, and
nrk2(v) = 0.


Proof: Let κ = κv and O = Ov. Let ρ be an anisotropic torsion form of
even dimension over κ. Then ρ is Witt equivalent to a sum of torsion binary
forms over κ, which can be written as b1〈1,−s1〉 ⊥ · · · ⊥ bn〈1,−sn〉 with n ≥ 0,
b1, . . . , bn ∈ O× and s1, . . . , sn ∈ O× ∩ ∑


K2. Let ϕ be the anisotropic part
of the form b1〈1,−s1〉 ⊥ · · · ⊥ bn〈1,−sn〉 over K. Note that ϕ is a torsion
form and that dim(ϕ) ≥ dim(ρ), as ρ is the anisotropic representative of the
class ∂v,1(ϕ) in Wκ. For any r ≤ rk2(v) there is a v-balanced r-fold Pfister
form π over K, and then ψ = π ⊗ ϕ is an anisotropic torsion form over K with


dim(ψ) = 2r dim(ϕ) ≥ 2r dim(ρ). This shows that u(K) ≥ 2rk2(v) · 2 · ⌊u(κ)
2
⌋.


If u(κ) is even, then 2 · ⌊u(κ)
2
⌋ = u(κ). Assume now that either K is nonreal or


nrk2(v) > 0. We choose a v-balanced torsion r-fold Pfister form π as follows. If
K is nonreal, any v-balanced r-fold Pfister form over K is torsion. If nrk2(v) > 0,
then 2Γ ( v(


∑
K2), so we choose a1 ∈


∑
K2 and a2, . . . , ar ∈ K× such that the


classes of v(a1), . . . , v(ar) in Γ/2Γ are F2-independent, and put π = 〈〈a1, . . . , ar〉〉.
Now, for an arbitrary anisotropic form ϕ over κ, we choose b1, . . . , bn ∈ O× such
that ϕ = 〈b1, . . . , bn〉, and then π⊗〈b1, . . . , bn〉 is an anisotropic torsion form over
K. Therefore, the assumption implies that u(K) ≥ 2rk2(v) · u(κ).


Consider n, r ∈ N with n ≤ ℓ(κ) and r ≤ nrk2(v). There is a v-balanced totally
positive r-fold Pfister form π = 〈1〉 ⊥ π′ over K and b1, . . . , bn ∈ ∑


K2 ∩ O×


such that 〈b1, . . . , bn−1,−bn〉 over κ is anisotropic. If κ is real, then the form
π′⊗〈b1, . . . , bn〉 ⊥ 〈b1, . . . , bn−1〉 over K is totally positive and does not represent
bn. If κ is nonreal, there exists b ∈ ∑


K2 ∩ O× such that b = −bn, and then the
form π′ ⊗ 〈b1, . . . , bn−1, b〉 ⊥ 〈b1, . . . , bn−1〉 over K is totally positive and does not
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represent bn. In either case we conclude that ℓ(K) ≥ 2rn. As this holds for all
n ≤ ℓ(κ) and r ≤ nrk2(v), we have ℓ(K) ≥ 2nrk2(v) · ℓ(κ). �


The ‘integral part function’ cannot be omitted in the lower bound for the u-
invariant in (5.2), as the next example shows.


5.3. Example. Let K be a real closed field and v be any extension of a p-adic
valuation of Q to K for an odd prime number p. Then the residue field κv is
algebraically closed, so u(κv) = 1. On the other hand, K is real pythagorean,
so u(K) = 0. The value group Γv is divisible, so rk2(v) = 0. Hence, we have


u(K) = 2rk2(v) · 2 · ⌊u(κv)
2


⌋ < 2rk2(v) · u(κv) in this situation.


5.4. Proposition. Assume that v is real. Then ∂v(ItK)n = (Itκv)
n.


Proof: As κv is real, we have v(
∑
K2) = v(K×2). Hence (ItK)n is generated as a


group by the elements [c〈〈a1, . . . , an〉〉] with c ∈ K× and a1, . . . , an ∈ O×


v ∩∑
K2.


This yields the statement. �


5.5. Proposition. Let n, r ∈ N with n ≥ 1. Let π be a v-balanced r-fold Pfister


form over K.


(a) We have Inκv = ∂v([π] · InK) ⊆ ∂v(I
n+rK).


(b) We have Int κv = ∂v([π] · Int K) ⊆ ∂v(I
n+r
t K).


(c) If π is totally positive, then (Itκv)
n = ∂v([π] · (ItK)n) ⊆ ∂v((ItK)n+r).


Proof: The ideal Inκv is additively generated by the elements [a0〈〈a1, . . . , an〉〉]
where a0, . . . , an ∈ O×


v . Similarly, (Itκv)
n is additively generated by the elements


[a0〈〈a1, . . . , an〉〉] where a0 ∈ O×


v and a1, . . . , an ∈ O×


v ∩ ∑
K2. Finally by (1.1),


Int κv is additively generated by the elements [a0〈〈a1, . . . , an〉〉] with a1 ∈
∑
K2∩O×


v


and a0, a2, . . . , an ∈ O×


v . Using these generators, the statements easily follow. �


5.6. Corollary. We have β(K) ≥ nrk2(v) + β(κv).


Proof: For any r ≤ nrk2(v) there exists a totally positive v-balanced r-fold
Pfister form π over K. Hence, the statement follows from part (c) of (5.5). �


5.7. Corollary. Let r = rk2(v) < ∞. Then ∂v(I
n+rK) = Inκv for n ≥ 0 and


∂v(I
n+r
t K) = Int κv for n ≥ 1.


Proof: As In+rK is additively generated by the elements [a0〈〈a1, . . . , an+r〉〉]
with a0, . . . , ar ∈ K× and ar+1, . . . , an+r ∈ O×


v , it is clear that ∂v(I
n+rK) ⊆ Inκv.


Since ∂v is a homomorphism it follows that ∂v(I
n+r
t K) ⊆ Int κv. The converse


inclusions follow from parts (a) and (b) of (5.5) applied to an arbitrary v-balanced
r-fold Pfister form π over K. �


5.8. Proposition. Assume that v is real and κv is not pythagorean. Then we


have α(K) ≥ rk2(v) + α(κv). Moreover, if rk2(v) > 0, then (ItK)m ( Imt K for


any m ∈ N with 2 ≤ m ≤ α(κv) + rk2(v).
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Proof: By the hypotheses we have α(κv) > 0. Consider r ∈ N with r ≤ rk2(v)
and choose a v-balanced r-fold Pfister form π over K. Applying part (b) of (5.5),
it follows that Int κv ⊆ ∂v(I


n+r
t K) for any n ≥ 1. Therefore α(K) ≥ α(κv) + r.


This shows the first part of the statement.
To prove the second part, suppose m = n + r where 1 ≤ n ≤ α(κv) and


1 ≤ r ≤ rk2(v). Then Imt κv ( Int κv, by (1.1) and the Arason-Pfister Hauptsatz
[20, Chap. X, (5.1)]. Using (5.4) we obtain that


∂v(ItK)m = (Itκv)
m ⊆ Imt κv ( Int κv ⊆ ∂v(I


m
t K) ,


showing that (ItK)m ( Imt K. �


Note that (5.8) and the second part of (5.7) depend on the deep result (1.1).


6. Rational function fields


We study the special case of a rational function field K(X).


6.1. Proposition. For F = K(X) we have the following inequalities:


u(F ) ≥ 2 · sup {u(L) | L/K finite extension}
ℓ(F ) ≥ 2 · sup {u(L) | L/K finite nonreal extension} .


Proof: Let L/K be a finite extension. Let L0 denote the separable closure of
K inside L. As L/L0 is purely inseparable, the natural map WL0 −→WL is an
isomorphism by [20, Chap. VII, (2.6)] and because L× = L×


0 L
×2. In particular


u(L) = u(L0). As L0/K is a finite separable extension, L0 is the residue field of a
Z-valuation v on F . Using that nrk2(v) = 1 if L is nonreal by (3.3), the estimates
now follow from (5.2). �


6.2. Remark. For any finite real extension L/K we obtain that ℓ(K(X)) ≥ ℓ(L),
but this does not seem to be as useful as the second estimate in (6.1).


The following general facts will be needed in the comparison of the invariants
α and β and the stability index for a rational function field in (7.2) below.


6.3. Lemma. Any form that is Witt equivalent to a difference of two totally


positive forms is isometric to a difference of two totally positive forms.


Proof: If ϕ1 and ϕ2 are totally positive forms over K and ϕ1 ⊥ −ϕ2 is isotropic,
then there exists an element a ∈ DK(ϕ1) ∩ DK(ϕ2), and writing ϕi = ψi ⊥ 〈a〉
for i = 1, 2, also ψ1 and ψ2 are totally positive and [ϕ1 ⊥ −ϕ2] = [ψ1 ⊥ −ψ2].
This reduction argument readily yields the result. �


6.4. Lemma. Assume that IK · (ItK)n = 0. Then (ItK)n is generated as a group


by the differences of totally positive n-fold Pfister forms over K. Moreover, any


form in (ItK)n is isometric to a difference of two totally positive forms.
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Proof: By [4, (4.2)], we have in general that (ItK)n is generated as a group
by the elements [a(π1 ⊥ −π2)] with a ∈ K× and totally positive n-fold Pfister
forms π1 and π2 over K. Assuming that IK · (ItK)n = 0, we further have that
[a(π1 ⊥ −π2)] = [π1 ⊥ −π2]. This shows the first part, and the second part then
follows with (6.3). �


6.5. Lemma. Assume that I2tK = (ItK)2 and I3tK = 0. Then any torsion binary


form over K represents an element of
∑
K2.


Proof: Since I3tK = 0, we have in particular IK · (ItK)2 = 0. Hence, (6.4)
implies that for any a ∈ K× and r ∈ ∑


K2 we have 〈〈a, r〉〉 = 〈〈s, t〉〉 for some
s, t ∈ ∑


K2, and thus a〈1,−r〉 represents an element of DK〈s, t〉 ⊆
∑
K2. �


6.6. Lemma. Assume that there exists a ∈ K× \ ±∑
K2 such that a ∈ ±∑


L2


for any proper finite extension L/K. Then K is hereditarily pythagorean with


four square classes, any finite extension of K is a 2-extension, and I3tK(X) = 0.


Proof: It is immediate from the assumption that K is real and has no proper
finite extension of odd degree. Thus every finite extension of K is a 2-extension.
For b ∈ K× \ (−∑


K2 ∪ a
∑
K2 ∪ −a∑K2), there exist orderings P and Q


on K with a, b ∈ P and −a, b ∈ Q, and since both extend to K(
√
b) we have


a /∈ ±∑
K(


√
b)


2
; in view of the assumption, this is only possible if K(


√
b) = K.


This argument shows that
∑
K2 = K×2 and K× = ±K×2 ∪ ±aK×2.


By (2.3) we conclude that any finite real extension of K is pythagorean with
four square classes and any finite nonreal extension of K has two square classes.
In particular K is hereditarily pythagorean. Since I2t L = 0 for any field L that is
either pythagorean or nonreal with two square classes, Milnor’s Exact Sequence
[20, Chap. IX, Sect. 3] yields that I3tK(X) = 0. �


6.7. Theorem. Let K be a real field and a ∈ K× \ ±∑
K2. Then


〈〈a, 1 +X2〉〉 ∈ I2tK(X) \ (ItK(X))2.


Proof: Obivously, 〈〈a, 1 + X2〉〉 is a torsion 2-fold Pfister form and thus lies
in I2tK(X). To show that 〈〈a, 1 + X2〉〉 does not belong to (ItK(X))2, we may
enlarge K while maintaining that a /∈ ±∑


K2. Applying Zorn’s Lemma, we may
therefore reduce to the situation where a /∈ ±∑


K2, whereas a ∈ ±∑
L2 for any


proper finite extension L/K. Then (6.6) implies that I3t F = 0 for F = K(X)
and that K is hereditarily pythagorean, in particular


∑
F 2 = DF 〈1, 1〉, by [7,


Chap. III, Theorem 4] or [20, p. 397].
Suppose now on the contrary that 〈〈a, 1 + X2〉〉 ∈ (ItF )


2. Then (6.4) ap-
plied with n = 2 yields that 〈〈a, 1 + X2〉〉 is a difference of two totally posi-
tive forms over F . It follows that 〈〈a, 1 + X2〉〉 = 〈〈s, t〉〉 for some s, t ∈ ∑


F 2.
Then DF 〈a,−a(1 +X2)〉∩DF 〈s, t〉 6= ∅, whence a ∈ DF 〈1,−(1 +X2)〉 ·DF 〈s, t〉.
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Since DF 〈s, t〉 ⊆
∑
F 2 = DF 〈1, 1〉, we conclude that a is a sum of 2 squares in


F (
√
−(1 +X2)). In other words, the 2-fold Pfister form 〈〈−1, a〉〉 becomes hyper-


bolic over F (
√
−(1 +X2)). Note that F (


√
−(1 +X2)) is K-isomorphic to the


function field of the projective quadric given by the form 〈1, 1, 1〉 over K. Using
[20, Chap. X, (4.9)] it follows that the form 〈〈−1, a〉〉 over K is either hyperbolic
or contains 〈1, 1, 1〉 as a subform. This implies that a ∈ ±∑


K2, contradicting
the hypothesis. �


The following theorem extends and generalizes the well-known characterization
of hereditarily euclidean fields via the rational function field.


6.8.Theorem. Assume that K is real and let F = K(X). For n ≥ 1 the following


are equivalent:


(i) In+1F (
√
−1) = 0;


(ii) In+1
t F = 0;


(iii) (ItF )
n+1 = 0;


(iv) In+1
t F = (ItF )


n+1;


(v) Int L = 0 and st(L) < n for every finite real field extension L/K;


(vi) InM = 0 for every finite field extension M/K(
√
−1).


For n = 1 any of these conditions holds if and only if K is hereditarily euclidean.


Proof: Regardless of the specific nature of the field F , we have (i) ⇒ (ii) by
(1.4), and both (ii) ⇒ (iii) and (ii) ⇒ (iv) are obvious. Milnor’s Exact Sequence
[20, Chap. IX, (3.1)] yields (i) ⇔ (vi).


For any finite nonreal extensionM/K, asM is the residue field of a Z-valuation
on F = K(X), we have β(M) ≤ β(F )− 1 by (5.6). This shows (iii) ⇒ (vi).


Consider now a finite extension M/K(
√
−1). Let N/K be the normal clo-


sure of M/K and let L/K be a maximal real extension contained in N/K.
Then L(


√
−1) ⊆ N . Assuming that Int L = 0 and st(L) < n, we obtain that


InL(
√
−1) = 0 by (1.4). Since N/L(


√
−1) is a 2-extension and N/M is normal,


by [13, (4.5) and (4.12)] this implies that InN = 0 and InM = 0. This shows
(v) ⇒ (vi).


It remains to show (iv) ⇒ (v). Assume that In+1
t F = (ItF )


n+1. For any finite
real extension L/K, as L is the residue field of a Z-valuation on F , it follows by
(5.8) applied with m = n + 1 that α(L) < n, hence Int L = 0.


Assume first that n = 1. Then K is hereditarily pythagorean. AsK is uniquely
ordered by (6.7) it follows that K is hereditarily euclidean by (2.6). Hence, L is
uniquely ordered and thus st(L) = 0.


Let now n > 1. Consider a real valuation v on K. Let ṽ denote the extension
of v to a valuation on F = K(X) determined by the equation


ṽ(a0 + a1X + · · ·+ arX
r) = max {v(a0), . . . , v(ar)}


for r ∈ N and a0, . . . , ar ∈ K. Note that κṽ = κv(X) and Γṽ = Γv, in particular
rk2(ṽ) = rk2(v). Hence ∂ṽ(I


n+1
t F ) = ∂ṽ(ItF )


n+1 = (Itκv(X))n+1 ⊆ I2t κv(X) in
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view of the assumption and (5.4). It follows that rk2(v) ≤ n − 1, as otherwise
there would exist a ṽ-balanced n-fold Pfister form π over F and then


[〈1,−(1 +X2)〉] = ∂ṽ(π ⊗ 〈1,−(1 +X2)〉) ∈ I2t κv(X),


which is impossible. Moreover, if rk2(v) = n− 1, then


I2t κv(X) = ∂ṽ(I
n+1
t F ) = ∂ṽ(ItF )


n+1 = (Itκv(X))n+1 ⊆ (Itκv(X))2


by (5.7) and (5.4), and the implication proven already for n = 1 yields that κv is
hereditarily euclidean.


Let L/K be a finite real extension. The residue field of a valuation on L is a
finite extension of the residue field of its restriction to K. Hence, by the previous,
for any real valuation w on L, one has rk2(w) ≤ n − 1 and, if rk2(w) = n − 1,
then the residue field κw is euclidean. By (4.5) this shows that st(L) < n. �


6.9. Remark. In [4, (4.5)] we asked whether any real field F with I2t F = (ItF )
2


has Property (S1) introduced in [14], namely that every torsion binary form over
F represents a totally positive element. In the case where F = K(X), we see from
(6.8) and [4, (3.8)] that both are equivalent with K being hereditarily euclidean.


7. Function fields and power series fields


The following statement describes the behavior of our field invariants under a
power series extension.


7.1. Proposition. Let K be a real field and L = K((X)). For n ≥ 1, one has


InL = InK + 〈1, X〉 · In−1K, Int L = Int K + 〈1, X〉 · In−1
t K, and (ItL)


n = (ItK)n.
Furthermore, st(L) = st(K) + 1, α(L) = α(K) + 1, β(L) = β(K), ℓ(L) = ℓ(K),
u(L) = 2u(K), and p(L) = p(K).


Proof: This follows from Springer’s Theorem on quadratic forms over a complete
discrete valued field [20, Chap. VI, Sect. 1]. The formula for the stability index
is obtained from (4.1), using the stated equalities of ideals in WL. �


Let R in the sequel denote a real closed field.


7.2. Theorem. Let F/R be a finitely generated extension and n = td(F/R).


(a) We have α(F ) = β(F ) = n.
(b) If F is real, then st(F ) = n.
(c) If n = 1, then u(F ) = ℓ(F ) = 2.
(d) If n ≥ 2, then 2n ≤ ℓ(F ) ≤ 2n(2n−1 − 1) + 2 and 2n ≤ u(F ) ≤ 2n+2 − 2n− 6.


Proof: We may assume that n > 0. We fix a valuation on F with value group Z
and whose residue field a finite extension of R(


√
−1)(t1, . . . , tn−1). Combining it


with a valuation on the residue field with value group Zn−1, we obtain a valuation
v on F with nrk2(v) = n. Therefore u(F ) ≥ 2n and ℓ(F ) ≥ 2n by (5.2), and
further n ≤ β(F ) ≤ α(F ) ≤ α(F (


√
−1)) by (5.6) and (1.4). If F is real, then
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by [9, (4.5)] F further carries a valuation w with residue field R and value group
Zn, and it follows that n = rk2(w) ≤ st(F ) ≤ α(F (


√
−1)) by (1.4).


As R(
√
−1) is algebraically closed, it follows using [25, Chap. 5, (1.4)] that


F (
√
−1) is a Cn-field in the terminology of Tsen-Lang Theory, in particular


u(F (
√
−1)) ≤ 2n. This implies that α(F (


√
−1)) ≤ n, which finishes proving


(a) and (b). In particular, if n = 1, then α(F ) = β(F ) = 1, which is equivalent
to saying that u(F ) = ℓ(F ) = 2, showing (c). Finally, by [5, (6.1)] and [3], the
upper bounds in part (d) follow from the fact that u(F (


√
−1)) ≤ 2n. �


7.3. Theorem. Let m,n ∈ N with m ≤ n and


F = R((t1)) . . . ((tm−1))(tm)((tm+1)) . . . ((tn)) .


Then p(F ) = 2, β(F ) = m, ℓ(F ) = 2m, st(F ) = α(F ) = α(F (
√
−1)) = n, and


u(F ) = u(F (
√
−1)) = 2n.


Proof: Using (7.1) we immediately reduce to the case where m = n and thus
F = R((t1)) . . . ((tn−1))(tn). Then F is a rational function field in one variable
over the field K = R((t1)) . . . ((tn−1)), which is hereditarily pythagorean. Hence,
p(F ) = 2 by [7, Chap. III, Theorem 4] or [20, p. 397]. By (1.5) we have that
st(F ) ≤ α(F ) = β(F ) = α(F (


√
−1)).


Since C = R(
√
−1) is algebraically closed, it follows by [25, Chap. 5, (1.4)


and (2.2)] that F (
√
−1) = C((t1)) . . . ((tn−1))(tn) is a Cn-field in the terminology of


Tsen-Lang Theory. In particular, u(F (
√
−1)) ≤ 2n and thus α(F (


√
−1)) ≤ n. As


p(F ) = 2, using [2, (3.5)] and [5, (6.3)] we obtain that u(F ) ≤ u(F (
√
−1)) ≤ 2n


and ℓ(F ) ≤ u(F (
√
−1)) ≤ 2n.


Let v be the K-valuation on F = K(tn) associated to the polynomial t2n + 1.
Since κv = C((t1)) . . . ((tn−1)) we have u(κv) = ℓ(κv) = 2n−1, hence u(F ) ≥ 2n


and ℓ(F ) ≥ 2n by (5.2). Hence, ℓ(F ) = u(F ) = u(F (
√
−1)) = 2n. Furthermore,


as F carries a real valuation with value group Zn, we have st(F ) ≥ n by (4.2).
Therefore st(F ) = α(F ) = β(F ) = α(F (


√
−1)) = n. �
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[18] M. Krüskemper. On annihilators in graded Witt rings and in Milnor’s K-theory. W. B.


Jacob (ed.) et al., Recent advances in real algebraic geometry and quadratic forms. Proceed-
ings of the RAGSQUAD year, Berkeley, CA, USA, 1990-1991. Providence, RI: American
Mathematical Society. Contemp. Math. 155 (1994): 307–320.


[19] T.Y. Lam. Orderings, valuations and quadratic forms. CBMS Regional Conference Series
in Math., Vol. 52. Amer. Math. Soc., Providence, RI, 1983.


[20] T.Y. Lam. Introduction to quadratic forms over fields. Graduate Studies in Mathematics,
67, Amer. Math. Soc., Providence, RI, 2005.


[21] M. Marshall. Some local global principles for formally real fields. Can. J. Math. 29 (1977):
606–614.


[22] M. Marshall. The Witt ring of a space of orderings. Trans. Amer. Math. Soc. 258 (1980):
505–521.


[23] M. Marshall. Spaces of orderings and abstract real spectra. Lecture Notes in Mathematics,
1636. Springer-Verlag, Berlin, 1996.


[24] D. Orlov, A. Vishik, and V. Voevodsky. An exact sequence for KM


∗
/2 with applications to


quadratic forms. (Ann. of Math. 165 (2007): 1–13.
[25] A. Pfister. Quadratic Forms with Applications to Algebraic Geometry and Topology. LMS


Lecture Notes Series, 217. Cambridge University Press. Cambridge, 1995.
[26] A. Prestel. Lectures on Formally Real Fields. Lecture Notes in Mathematics, 1093,


Springer-Verlag, Berlin, 1984.


Universität Konstanz, Zukunftskolleg / FB Mathematik und Statistik, 78457
Konstanz, Germany.


E-mail address : becher@maths.ucd.ie


Department of Mathematics, University of Kentucky, Lexington, KY 40506-
0027, USA.


E-mail address : leep@email.uky.edu






