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Introduction

Consider a crystallographic root system Φ together with its Weyl groupW acting
on the weight lattice Λ of Φ. Let Z[Λ]W and S∗(Λ)W be the W -invariant subrings
of the integral group ring Z[Λ] and the symmetric algebra S∗(Λ). A celebrated
theorem of Chevalley says that Z[Λ]W is a polynomial ring over Z in classes of
fundamental representations ρ1, . . . , ρn and S∗(Λ)W ⊗ Q is a polynomial ring over
Q in basic polynomial invariants q1, . . . , qn, where n = rank(Φ).

In the present paper we establish and investigate the relationship between ρi’s
and qi’s. To do this we introduce an equivariant analogue of the Chern class map φi

that provides an isomorphism between the truncated rings Z[Λ]/Ijm and S∗(Λ)/Ija
modulo powers of the respective augmentation ideals. This allows us to express
basic polynomial invariants in terms of fundamental representations and vice versa,
hence relating the geometry of the variety of Borel subgroupsX with representation
theory of the respective Lie algebra g.

A multiple of φi restricted to the respective cohomology (K0 and CH∗) of X
gives the classical Chern class map ci : K0(X) → CHi(X). This geomeric interpre-
tation provides a powerful tool to compute the annihilators of the torsion of the
Grothendieck γ-filtration on K0 of twisted forms of X as well as a tool to estimate
the torsion part of its Chow groups in small codimensions.

The paper is organized as follows. In the first section we introduce the I-adic
filtrations on Z[Λ] and S∗(Λ) together with an isomorphism φi on their truncations.
Then we study the subrings of invariants and introduce the key notion of an expo-
nent τi of a W -action on a free abelian group Λ. Roughly speaking, the integers τi
measure how far is the ring S∗(Λ)W (with integer coefficients) from being a poly-
nomial ring in qi’s. In section 5 we compute all the exponents up to degree 4 and
show that they all coincide with the Dynkin index of the Lie algebra g. In section
6 we apply the obtained results to estimate the torsion in Grothendieck γ-filtration
of some twisted flag varieties. In section 7 we compute the second exponent τ2 for
a non-crystallographic group H2.
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1. Two filtrations

Consider the two covariant functors S∗(−) and Z[−] from the category of abelian
groups to the category of commutative rings

S∗(−) : Λ 7→ S∗(Λ) and Z[−] : Λ 7→ Z[Λ]

given by taking the symmetric algebra of an abelian group Λ and the integral group
ring of Λ respectively. The ith graded component Si(Λ) is additively generated by
monomials λ1λ2 . . . λi with λj ∈ Λ and the ring Z[Λ] is additively generated by
exponents eλ, λ ∈ Λ.

The trivial group homomorphism induces the ring homomorphisms

ǫa : S
∗(Λ) → Z and ǫm : Z[Λ] → Z

called the augmentation maps. By definition ǫa sends every element of positive
degree to 0 and ǫm sends every eλ to 1. Let Ia and Im denote the kernels of ǫa and
ǫm respectively. Observe that Ia = S>0(Λ) consists of elements of positive degree
and Im is generated by differences (1− e−λ), λ ∈ Λ. Consider the respective I-adic
filtrations:

S∗(Λ) = I0a ⊇ Ia ⊇ I2a ⊇ . . . and Z[Λ] = I0m ⊇ Im ⊇ I2m ⊇ . . .

and let

gr∗a(Λ) =
⊕

i≥0

Iia/I
i+1
a and gr∗m(Λ) =

⊕

i≥0

Iim/Ii+1
m

denote the associated graded rings. Observe that gr∗a(Λ) = S∗(Λ).

1.1. Example. If Λ ≃ Z, then the ring S∗(Λ) can be identified with the poly-
nomial ring in one variable Z[ω], where ω is a generator of Λ and the ring Z[Λ]
can be identified with the Laurent polynomial ring Z[x, x−1] where x = eω. The
augmentations ǫa and ǫm are given by

ǫa : ω 7→ 0 and ǫm : x 7→ 1.

We have Ia = (ω) and Im is additively generated by differences (1− xn), n ∈ Z.

Note that the rings Z[ω] and Z[x, x−1] are not isomorphic, however they become
isomorphic after the truncation. Namely for every i ≥ 0 there is ring isomorphism

φi : Z[x, x
−1]/Ii+1

m

≃→ Z[ω]/Ii+1
a

defined by φi : x 7→ (1 − ω)−1 = 1 + ω + . . . + ωi with the inverse defined by
φ−1
i : ω 7→ 1− x−1. It is useful to keep the following picture in mind

Z[x, x−1]

���� ''O

O

O

O

O

O

O

O

O

O

O

Z[ω]

����

oo

Z[x, x−1]/Ii+1
m

φi

≃
// Z[ω]/Ii+1

a

observing that the inverse φ−1
i can be lifted to the map Z[ω] → Z[x, x−1] but φi

can’t.

The example can be generalized as follows:
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1.2. Lemma. [GaZ, 2.1] Assume that Λ is a free abelian group of finite rank n. The
rings Z[Λ] and S∗(Λ) become isomorphic after truncation. Namely, if {ω1, . . . , ωn}
is a Z-basis of Λ, then for every i ≥ 0 there is a ring isomorphism

φi : Z[Λ]/I
i+1
m

≃→ S∗(Λ)/Ii+1
a

defined by φi(1) = 1 and

φi(e
∑n

j=1
ajωj ) =

n
∏

j=1

(1− ωj)
−aj

with the inverse defined by φ−1
i (ωj) = 1− e−ωj .

Note that the map φi preserves the I-adic filtrations. Indeed, by definition
φi(I

j
m) ⊆ Ija for every 0 ≤ j ≤ i. Moreover, we have the following

1.3. Lemma. The isomorphism φi restricted to the subsequent quotients Iim/Ii+1
m

doesn’t depend on the choice of a basis of Λ. Hence, there is an induced canonical
isomorphism of graded rings

φ∗ = ⊕i≥0φi : gr∗m(Λ)
≃−→ gr∗a(Λ) = S∗(Λ).

Proof. Indeed, in this case we can define the inverse φ−1
i : Iia/I

i+1
a → Iim/Ii+1

m by

φ−1
i (λ1λ2 . . . λi) = (1− e−λ1)(1− e−λ2) . . . (1− e−λi).

It is well-defined since (1− e−λ−λ′

) = (1− e−λ) + (1− e−λ′

) modulo I2m. �

Consider the composite of the map φi with the projections

φ(i) : Z[Λ] → Z[Λ]/Ii+1
m

φi−→ S∗(Λ)/Ii+1
a → Si(Λ).

The map φ(i), and therefore φi, can be computed on generators eλ, λ ∈ Λ as follows:

Let f(z) =
∏

j(1 − ωjz)
−aj , where λ =

∑

j ajωj . Then

φ(i)(e
∑

j ajωj ) =
1

i!

dif(z)

dzi

∣

∣

∣

z=0

To compute the derivatives of f(z) we observe that f ′(z) = f(z)g(z), where g(z) =
∑

j ajωj(1 − ωjz)
−1 and di g(z)

d zi =
∑

j

i! ajω
i+1

j

(1−ωjz)i+1 . Hence, starting with g0 = 1 we

obtain the following recursive formulas

di f(z)

d zi
= f(z) · gi(z), where gi(z) = g(z)gi−1(z) + g′i−1(z).

1.4. Example. For small values of i we obtain

i i! · φ(i)(eλ) =
1 λ
2 λ2 + λ(2)
3 λ3 + 3λ(2)λ+ 2λ(3)
4 λ4 + 6λ(4) + 6λ(2)λ2 + 8λ(3)λ+ 3λ(2)2

where given a presentation λ =
∑n

j=1 aj,λωj , aj,λ ∈ Z in terms of the basis

{ω1, ω2, . . . .ωn}, the character λ(m), m ≥ 1 is defined by

λ(m) =

n
∑

j=1

aj,λω
m
j .
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2. Invariants and exponents

Let W be a finite group which acts on a free abelian group Λ of finite rank by
Z-linear automorphisms. Consider the induced action of W on Z[Λ] and S∗(Λ).
Observe that it is compatible with the I-adic filtrations, i.e. W (Iim) ⊆ Iim and
W (Iia) ⊆ Iia for every i ≥ 0.

Note that the isomorphisms φi and φ−1
i are not necessarily W -equivariant. How-

ever, by Lemma 1.3 their restrictions to the subsequent quotients Iim/Ii+1
m and

Iia/I
i+1
a = Si(Λ) are W -equivariant and we have

(Iim/Ii+1
m )W ≃ (Iia/I

i+1
a )W .

Let IWm denote the ideal of Z[Λ] generated by W -invariant elements from the
augmentation ideal Im, i.e., by elements from Z[Λ]W ∩Im. Similarly, let IWa denote
the ideal of S∗(Λ) generated by W -invariant elements from Ia, i.e., by elements
from S∗(Λ)W ∩ Ia.

For each χ ∈ Λ let ρ(χ) =
∑

λ∈W (χ) e
λ denote the sum over all elements of the

W -orbit of χ. Every element in IWm can be written as a finite linear combination
with integer coefficients of the elements ρ̂(χ) = ρ(χ)− ǫm(ρ(χ)), χ ∈ Λ. Therefore,
the ideal IWm is generated by the elements ρ̂(χ), i.e.,

IWm = 〈ρ̂(χ) | χ ∈ Λ〉.
The image of IWm by means of the composite

Z[Λ] → Z[Λ]/Ii+1
m

φi−→ S∗(Λ)/Ii+1
a .

is an ideal in S∗(Λ)/Ii+1
a generated by the elements φi(ρ̂(χ)), χ ∈ Λ. Therefore,

the image of IWm in Si(Λ) is the ith homogeneous component of the ideal generated
by φ(j)(ρ̂(χ)), where 1 ≤ j ≤ i, χ ∈ Λ, i.e.

φ(i)(IWm ) = 〈f · φ(j)(ρ̂(χ)) | 1 ≤ j ≤ i, f ∈ Si−j(Λ), χ ∈ Λ〉Z .
We are ready now to introduce the central notion of the present paper:

2.1. Definition. We say that an action of W on Λ has finite exponent in degree i
if there exists a non-zero integer Ni such that

Ni · (IWa )(i) ⊆ φ(i)(IWm ),

where (IWa )(i) = IWa ∩ Si(Λ). In this case the g.c.d. of all such Nis will be called
the i-th exponent of the W -action and will be denoted by τi.

Observe that if φ(i)(IWm ) is a subgroup of finite index in (IWa )(i), then τi is simply
the exponent of φ(i)(IWm ) in (IWa )(i). Note also that by the very definition τ0 = 1
and τi | τi+1 for every i ≥ 0.

3. Essential actions

In the present section we study W -actions that have no W -invariant linear forms,
i.e. we assume that ΛW = 0. In the theory of reflection groups such actions are
called essential (see [B, V, §3.7] or [H]). Note that this immediately implies that
τ1 = 1.

3.1. Lemma. For every χ ∈ Λ and m ∈ N+ we have
∑

λ∈W (χ) λ(m) = 0.
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Proof. Let ω1, ω2, . . . .ωn be a Z-basis of Λ. For m ∈ N+ we have

∑

λ∈W (χ)

λ(m) =
∑

λ∈W (χ)

(

n
∑

j=1

aj,λω
m
j

)

=
n
∑

j=1

(

∑

λ∈W (χ)

aj,λ
)

ωm
j .

In particular, for m = 1 we obtain

∑

λ∈W (χ)

λ =

n
∑

j=1

(

∑

λ∈W (χ)

aj,λ
)

ωi.

Since ΛW = 0, we have
∑

λ∈W (χ) λ = 0. Since ωj , 1 ≤ j ≤ n are Z-free, we have
∑

λ∈W (χ) aj,λ = 0 for all 1 ≤ j ≤ n. �

3.2. Corollary. For every χ ∈ Λ we have

φ(2)(ρ(χ)) = 1
2

∑

λ∈W (χ)

λ2.

In particular, the quadratic form φ(2)(ρ(χ)) is W -invariant, i.e.

φ(2)(ρ(χ)) ∈ S2(Λ)W .

Proof. By the formula for φ(2) in Example 1.4 and by Lemma 3.1 we obtain that

φ(2)
(

∑

λ∈W (χ)

eλ
)

= 1
2

∑

λ∈W (χ)

(λ2 + λ(2)) = 1
2

∑

λ∈W (χ)

λ2. �

3.3. Corollary. If S2(Λ)W = 〈q〉 for some q, then φ(2)(IWm ) is a subgroup of finite
index in (IWa )(2).

Proof. The image of the ideal IWm is generated by φ(1)(ρ(χ)) and φ(2)(ρ(χ)). Since
ΛW = 0, φ(1)(ρ(χ)) =

∑

λ∈W (χ) λ = 0 and by Corollary 3.2, φ(2)(IWm ) is generated

only by the W -invariant quadratic forms φ(2)(ρ(χ)). For every χ ∈ Λ let

φ(2)(ρ(χ)) = Nχ · q, Nχ ∈ N. (1)

Then the subgroup φ(2)(IWm ) is a subgroup of (IWa )(2) of exponent

τ2 = gcd
χ∈Λ

Nχ. �

We now investigate the invariants of degree 3 and 4.

3.4. Lemma. For every χ ∈ Λ we have

φ(3)(ρ(χ)) = 1
6

∑

λ∈W (χ)

(λ3 + 3λ(2)λ).

Proof. By the formula for φ(3) in Example 1.4 and by Lemma 3.1 we obtain that

φ(3)(ρ(χ)) = 1
6

∑

λ∈W (χ)

(λ3 + 3λ(2)λ+ 2λ(3)) = 1
6

∑

λ∈W (χ)

(λ3 + 3λ(2)λ). �

3.5. Lemma. For every χ ∈ Λ we have

φ(4)(ρ(χ)) = 1
24

∑

λ∈W (χ)

[λ4 + 6λ(2)λ2 + 8λ(3)λ+ 3λ(2)2].

Proof. It follows from Example 1.4 and Lemma 3.1. �
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4. The Dynkin index

In the present section we show that the action of the Weyl group W of a crys-
tallographic root system Φ on the weight lattice Λ has finite exponent in degree 2
which coincides with the Dynkin index of the respective Lie algebra.

Let W be the Weyl group of a crystallographic root system Φ and let Λ be its
weight lattice as defined in [H, §2.9]. Let {ω1, . . . , ωn} be a basis of Λ consisting of
fundamental weights (here n is the rank of Φ).

The Weyl group W acts on λ ∈ Λ by means of simple reflections

sj(λ) = λ− 〈α∨
j , λ〉 · αj , j = 1 . . . n

where α∨
j is the j-th simple coroot and 〈−,−〉 is the usual pairing. Note that

〈α∨
j , ωi〉 = δij , where δij is the Kronecker symbol.

The subring of invariants Z[Λ]W is the representation ring of the respective Lie
algebra g. By a theorem of Chevalley it is the polynomial ring in fundamental
representations ρ(ωj) ∈ Z[Λ]W , i.e.

Z[Λ]W ≃ Z[ρ(ω1), . . . , ρ(ωn)].

Observe that the dimension of the fundamental representation ρ(ωj) equals to the
number of elements in the orbit that is ǫm(ρ(ωj)).

Therefore, the ideal IWm is generated by the elements ρ̂(ωj), j = 1 . . . n and

its image φ(i)(IWm ) is the i-th homogeneous component of the ideal generated by
φ(j)(ρ(ωl)), 1 ≤ j ≤ i, l = 1 . . . n.

4.1. Lemma. We have ΛW = 0 and hence also

φ(1)(Z[Λ]W ) = φ(1)(IWm ) = 0.

Proof. Let η ∈ ΛW . Since η = sαj
(η) = η−〈η, α∨

j 〉αj we have 〈η, α∨

j 〉 =
2(αj ,η)
(αj ,αj)

= 0

for all simple roots αj which implies that η = 0. �

4.2. Lemma. We have S2(Λ)W = 〈q〉.
Proof. By [GN, Prop. 4] there exists an integer valued W -invariant quadratic form
on Λ which has value 1 on short coroots. As the group S2(Λ)W is identical to the
group of all integral W -invariant quadratic forms on T∗ ⊗R, the result follows. �

4.3. Corollary. The image φ(2)(IWm ) is a subgroup of (IWa )(2) of finite index.

Proof. This follows from Corollary 3.3 and Lemma 4.1. �

We recall briefly the notion of indices of representations introduced by Dynkin
[D, §2] (See also [BR]).

Let f : g → g′ be a morphism between Lie algebras. Then there exists a unique
number jf ∈ C, called the Dynkin index of f , satisfying

(f(x), f(y)) = jf (x, y),

for all x, y ∈ g, where (–,–) is the Killing form on g and g′ normalized such that
(α, α) = 2 for any long root α. In particular, if f : g → sl(V ) is a linear represen-
tation, jf is a positive integer, called the Dynkin index of the linear representation
f , defined by

tr(f(x), f(y)) = jf (x, y).
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The Dynkin index of g is defined to be the greatest common divisor of all the
Dynkin indices of all linear representations of g. By [D, (2.24) and (2.25)], the
Dynkin index of g is the greatest common divisor of the Dynkin index of its fun-
damental representations. Moreover, all the Dynkin indices of the fundamental
representations were calculated in [D, Table 5].

Using the sl2-representation theory, the Dynkin index of a linear representation
f : g → sl(V ) can be described as follows. Let α be a long root. For the formal
character ch(V ) =

∑

λ nλe
λ, one has (see [LS, Lemma 2.4] or [KNR, 5.1 and

Lemma 5.2])

jf =
1

2

∑

λ

〈λ, α∨〉2. (2)

4.4. Theorem. The integers N(ωj) for the j-th fundamental weight as defined in
(1) coincide with the Dynkin index of the fundamental representation with highest
weight ωj. In particular, the second exponent τ2 coincides with the Dynkin index of
g.

Proof. To find the precise value of τ2 we use the explicit formula for φ(2), that is

φ(2)(ρ(χ)) = 1
2

∑

λ∈W (χ)

λ2.

We know that τ2 is the greatest common divisor of the integers Nj = Nωj
using

the notation of the proof of Corollary 3.3, where ωj is the j-th fundamental weight
of g. As the Dynkin index is the greatest common divisor of the Dynkin indices of
the fundamental representations ωj, it suffices to show that Nj coincides with the

Dynkin index of the representation Vj corresponding to ωj. We can view φ(2)(ρ(χ))
for χ = ωj as a function on the lattice hZ = Span

Z
{α∨ | α ∈ Φ long}. Since Vj

has character ch(Vj) =
∑

λ∈W (ωj)
eλ, by (2) the Dynkin index of the representation

Vj is 1
2

∑

λ∈W (ωj)
〈λ, α∨〉2, where α is any long root in Φ. Thus, φ(2)(ρ(ωj)) is the

constant function with value Nj . �

We note that a different proof of Theorem 4.4 was given in [GaZ, §2].

5. Exponents of degrees 3 and 4

In the present section we show that τ2 = τ3 = τ4 for all crystallographic root
systems

Let S = {λ1, . . . , λr} be a finite set of weights. We denote by −S the set of
opposite weights {−λ1, . . . ,−λr}, by S+ the set of sums {λi + λj}i<j , by S− the
set of differences {λi−λj}i<j and by S± the disjoint union S+ ∐S−. By definition
we have |S+| = |S−| =

(

r
2

)

.
Using the fact that (λ + λ′)(m) = λ(m) + λ′(m) for every λ, λ′ ∈ Λ and m ≥ 0

we obtain the following lemma which will be extensively used in the computations

5.1. Lemma. (i) For every integer m1,m2, x, y ≥ 0 and a finite subset S ⊂ Λ we
have

∑

λ∈S∐−S

λ(m1)
xλ(m2)

y = (1 + (−1)x+y)
∑

λ∈S

λ(m1)
xλ(m2)

y.

In particular,
∑

λ∈S∐−S λ(2)λ2 = 0.
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(ii) For every subset S ⊂ Λ with |S| = r and for every m1,m2 ≥ 0 we have
∑

λ∈S+

λ(m1)λ(m2) = (r − 1)
∑

λ∈S

λ(m1)λ(m2) +
∑

i6=j

λi(m1)λj(m2) and

∑

λ∈S−

λ(m1)λ(m2) = (r − 1)
∑

λ∈S

λ(m1)λ(m2)−
∑

i6=j

λi(m1)λj(m2).

In particular, this implies that
∑

λ∈S±
λ(m1)λ(m2) = 2(r − 1)

∑

λ∈S λ(m1)λ(m2).

An-case. Let Φ be of type An for n ≥ 3. We denote the canonical basis of Rn+1

by ei with 1 ≤ i ≤ n + 1. According to [H, §3.5 and §3.12] the basic polynomial
invariants of the W -action on Λ (algebraically independent homogeneous generators
of S∗(Λ)W as a Q-algebra) are given by the symmetric power sums

qi := ei1 + · · ·+ ein+1, 2 ≤ i ≤ n+ 1.

Let si denote the ith elementary symmetric function in e1, . . . , en+1. Using the
classical identities

q1 = s1, qi = s1qi−1 − s2qi−2 + . . .+ (−1)isi−1q1 + (−1)i+1i · si, 1 < i < n+ 1

and the fact that s1 = 0, we obtain that

q2/2 = −s2, q3/3 = s3, and q4/2 = s22 − 2s4.

generate (with integral coefficients) the ideal IWa up to degree 4.

The fundamental weights of Φ can be expressed as follows

ω1 = e1, ω2 = e1 + e2, . . . , ωn−1 = e1 + . . .+ en−1, ωn = −en+1,

where e1 + e2 + . . .+ en+1 = 0. The orbits of ω1, ω1 + ωn, ωn and ω2, ωn−1 under
the action of the Weyl group W = Sn+1 are given by

W (ω1) = {e1, . . . , en+1} = −W (ωn), W (ω1 + ωn) = {ei − ej}i6=j and

W (ω2) = {ei + ej}i<j = −W (ωn−1).

Therefore, W (ω1 + ωn) = S− ∐−S− and W (ω2) = S+, where S = W (ω1).

Applying Lemma 3.5 and Lemma 5.1 we obtain that

φ(4)(ρ(ω1) + ρ(ωn)) =
1
12

∑

λ∈S

(λ4 + 8λ(3)λ+ 3λ(2)2) and

φ(4)(ρ(ω1 + ωn) + ρ(ω2) + ρ(ωn−1)) =
1
24

∑

λ∈S±∐−S±

(λ4 + 8λ(3)λ+ 3λ(2)2) =

= 1
24

∑

λ∈S±∐−S±

λ4 + n
6

∑

λ∈S

(8λ(3)λ+ 3λ(2)2).

Then the difference

φ(4)(ρ(ω1 + ωn) + ρ(ω2) + ρ(ωn−1))− 2n · φ(4)(ρ(ω1) + ρ(ωn)) =

= 1
24

∑

λ∈S±∐−S±

λ4 − n
6

∑

λ∈S

λ4 = (3)

is a symmetric function in e1, . . . , en+1 and, therefore, it can be always written as
a polynomial in qis. Indeed, since

∑

λ∈S±∐−S±

λ4 = 2
∑

i<j

((ei + ej)
4 + (ei − ej)

4) = 4n
∑

λ∈S

λ4 + 24
∑

i<j

e2i e
2
j ,
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the difference (3) equals

=
∑

i<j

e2i e
2
j = (q22 − q4)/2.

5.2. Lemma. For a root system of type An, n ≥ 2, we have τ2 = τ3 = τ4 = 1.

Proof. It is enough to show that the generators q2/2, q3/3 and q4/2 are in the ideal
generated by the image of φ(i), i ≤ 4.

By Corollary 3.2 we have φ(2)(ρ(ω1)) =
1
2

∑

λ∈S λ2 = q2/2. By Lemma 3.4 we

have q3/3 = φ(3)(ρ(ω1))−φ(3)(ρ(ωn)) (see also [GaZ, §1C]). If Φ is of type A2, then
s4 = 0 and, hence, q4 = q22/2. If Φ is of type An, n ≥ 3, then by (3) the generator
q4/2 belongs to the ideal generated by the images of φ(2) and φ(4). �

5.3. Lemma. For any crystallographic root system Φ the third exponent τ3 of the
W -action coincides with τ2 (the Dynkin index).

Proof. If Φ is of type An, this follows from Lemma 5.2; for the other types there are
no basic polynomial invariants of degree 3 [H, §3.7 Table 1]. Therefore, τ3 = τ2. �

Bn, Cn and Dn cases. Let Φ be of type Bn or Cn for n ≥ 2 or of type Dn for
n ≥ 4. We denote the canonical basis of Rn by ei with 1 ≤ i ≤ n. By [H, §3.5
and §3.12] the basic polynomial invariants of the W -action on Λ are given by even
power sums

q2i := e2i1 + · · ·+ e2in , 1 ≤ i ≤ n.

The first two fundamental weights of Φ are given by ω1 = e1, ω2 = e1 + e2 and
their W -orbits are

W (ω1) = {±e1, . . . ,±en} and W (ω2) = {±ei ± ej}i<j .

Hence W (ω1) = S ∐−S and W (ω2) = S± ∐−S±, where S = {e1, . . . , en}.
Applying Lemma 3.5 and Lemma 5.1 we obtain that

φ(4)(ρ(ω1)) =
1
12

∑

λ∈S

λ4 + 1
12

∑

λ∈S

(8λ(3)λ+ 3λ(2)2) and

φ(4)(ρ(ω2)) =
1
24

∑

λ∈S±∐−S±

λ4 + n−1
6

∑

λ∈S

(8λ(3)λ+ 3λ(2)2).

Then similar to the An-case we obtain

φ(4)(ρ(ω2))− 2(n− 1)φ(4)(ρ(ω1)) = (q22 − q4)/2, (4)

where qi = ei1 + . . .+ ein.

5.4. Lemma. For a root system of type Bn or Cn, n ≥ 2 or Dn, n ≥ 4 we have
τ4 = τ2.

Proof. It is enough to show that q4/2 is in the ideal generated by the image of φ(2)

and φ(4).
By Corollary 3.2 we have φ(2)(ρ(ω1)) =

∑

λ∈S λ2 = q2. Therefore, by (4)

q4/2 = (q2/2) · φ(2)(ρ(ω1))− φ(4)(ρ(ω2)) + 2(n− 1)φ(4)(ρ(ω1))

and the proof is finished. �

5.5. Theorem. For any crystallographic root system Φ we have τ2 = τ3 = τ4.
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Proof. The equality τ2 = τ3 is proven in Lemma 5.3. If Φ is of type An, τ4 = 1 fol-
lows from Lemma 5.2. If Φ is of type Bn, Cn orDn, τ4 = τ2 follows from Lemma 5.4.
For all other types τ4 = τ2 since there are no basic polynomial invariants of degree
3 and 4 (see [H, §3.7 Table 1]). �

6. Torsion in the Grothendieck γ-filtration

The goal of the present section is to provide geometric interpretation (see (6))
of the map φi and the exponents τi.

Let G be a simple simply-connected Chevalley group over a field k. We fix a
maximal split torus T of G and a Borel subgroup B ⊃ T . Let Λ be the group of
characters of T . Since G is simply-connected, Λ coincides with the weight lattice
of G.

Let X denote the variety of Borel subgroups of G (conjugate to B). Consider
the Chow ring CH∗(X) of algebraic cycles modulo rational equivalence and the
Grothendieck ring K0(X). Following [De74, §1] to every character λ ∈ Λ we may
associate the line bundle L(λ) over X . It induces the ring homomorphisms (called
the characteristic maps)

ca : S
∗(Λ) → CH∗(X) and cm : Z[Λ] ։ K0(X)

by sending λ 7→ c1(L(λ)) and eλ 7→ [L(λ)] respectively. Note that the map ca is an
isomorphism in codimension one, hence, giving

ca : S
1(Λ) = Λ

≃→ Pic(X) = CH1(X)

and the map cm is surjective. Let W be the Weyl group and let IWa and IWm denote
the respective W -invariant ideals. Then according to [De73, §4 Cor.2,§9] and [CPZ,
§6]

ker cm = IWm (5)

and ker ca is generated by elements of S∗(Λ) such that their multiples are in IWa .

Consider the Grothendieck γ-filtration on K0(X) (see [GaZ, §1]). Its ith term is
an ideal generated by products

γi(X) := 〈(1 − [L∨
1 ])(1 − [L∨

2 ]) · . . . · (1− [L∨
i ])〉,

where L1,L2, . . . ,Li are line bundles over X . Consider the ith subsequent quo-
tient γi(X)/γi+1(X). The usual Chern class ci induces a group homomorphism
ci : γ

i(X)/γi+1(X) → CHi(X).

6.1. Proposition. For every i ≥ 0 there is a commutative diagram of group homo-
morphisms

Iim/Ii+1
m

(−1)i−1(i−1)!·φi
//

cm

����

Si(Λ)

ca

��

γi(X)/γi+1(X)
ci // CHi(X)

(6)

Proof. Indeed, the γ-filtration on K0(X) is the image of the Im-adic filtration on
Z[Λ], i.e. γi(X) = cm(Iim) for every i ≥ 0. The Proposition then follows from the
identity

ci

(

(1− [L∨
1 ])(1 − [L∨

2 ]) . . . (1− [L∨
i ])

)

= (−1)i−1(i − 1)! · c1(L1)c1(L2) . . . c1(Li),
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where L1,L2, . . . ,Li are line bundles over X and L∨
i denotes the dual of Li. �

6.2. Remark. Note that Z[Λ] can be identitfied with the T -equivariant K0 of a
point pt = Spec k and S∗(Λ) with the T -equivariant CH of a point (see [GiZ]).
The maps ca and cm then can be identified with the pull-backs KT (pt) → KT (G)
and CHT (pt) → CHT (G) induced by the structure map G → pt.

In view of these identifications the map φi can be viewed as an equivariant
analogue of the Chern class map ci.

Consider the diagram (6) with Q-coefficients. In this case the Chern class map
ci will become an isomorphism (by the Riemann-Roch theorem), the characteristic
map ca will turn into a surjection and the map (−1)i−1(i − 1)! · φi will be an
isomorphism as well. In view of (5) we obtain an isomorphism

φ(i) ⊗Q : IWm ∩ Iim/IWm ∩ Ii+1
m ⊗Q −→ (IWa )(i) ⊗Q

on the kernels of cm and ca. By the very definition of the exponents τi this implies
that

6.3. Corollary. The action of the Weyl group of a crystallograhic root system has
finite exponent τi for every i.

We are now ready to prove the main result of this section

6.4. Theorem. The integer τi · (i− 1)! annihilates the torsion of the ith subsequent
quotient γi(X)/γi+1(X) of the γ-filtration on K0(X) for i = 3, 4.

6.5. Remark. Note that by [SGA, Exposé XIV, 4.5] for groups of types An and
Cn the quotients γi(X)/γi+1(X) have no torsion.

Proof. Assume that α is a torsion element in γi(X)/γi+1(X). Then ci(α) = 0 since
CHi(G/B) has no torsion. Let α̃ be a preimage of α via cm in Iim/Ii+1

m ⊆ Z[Λ]/Ii+1
m .

By the same analysis as in [GaZ, §1B, §1C] one can show that ker(ca)
(i) = (IWa )(i)

for i ≤ 4. By (6) we obtain that

(i− 1)!φi(α̃) ∈ (IWa )(i)

By definition of the index τi we have

τi · (i− 1)!φi(α̃) = φi(β), where β ∈ IWm /Ii+1
m ∩ IWm .

Applying φ−1
i to the both sides we obtain

τi · (i− 1)! · α̃ = β ∈ IWm /Ii+1
m ∩ IWm

Applying cm to the both sides and observing that IWm = ker cm we obtain that
τi · (i − 1)! · α = 0. �

Let ξX be a twisted form of the variety X by means of a cocycle ξ ∈ Z1(k,G).
By [P, Thm. 2.2.(2)] the restriction map K0(ξX) → K0(X) (here we identify
K0(X) with the K0(X ×k k̄) over the algebraic closure k̄) is an isomorphism. Since
the characteristic classes commute with restrictions, this induces an isomorphism
between the γ-filtrations, i.e. γi(ξX) ≃ γi(X) for every i ≥ 0, and between the
respective quotients

γi(ξX)/γi+1(ξX) ≃ γi(X)/γi+1(X) for every i ≥ 0.

In view of this fact Theorem 6.4 imply that
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6.6. Corollary. Let G be a split simple simply connected group of type Bn (n ≥ 3)
or Dn (n ≥ 4). Then for every ξ ∈ Z1(k,G) the torsion in γ4(ξX)/γ5(ξX) is
annihilated by 12.

Consider the topological filtration on K0(Y ) given by the ideals

τ i(Y ) := 〈[OV ] | V →֒ Y, codimV Y ≥ i〉.
It is known (see [GaZ, §2]) that γi(Y ) ⊆ τ i(Y ) for every i ≥ 0.

6.7.Corollary. In the notation of Corollary 6.6 assume in addition that the induced
map

γ4(ξX)/γ5(ξX) → τ4(ξX)/τ5(ξX)

is surjective. Then the 2-torsion of CH4(ξX) is annihilated by 8.

Proof. By the Riemann-Roch theorem [F, Ex.15.3.6], the composition

CH4(ξX) ։ τ4(ξX)/τ5(ξX)
c4→ CH4(ξX)

is the multiplication by (−1)4−1(4 − 1)! = −6, where the first map is surjective.
Hence, the torsion subgroup of CH4(ξX) is annihilated by 72 and so the result
follows. �

7. ‘The Dynkin index’ in the H2 case

Note that the notion of an exponent τi can be defined over a unique factorisation
domain in the same way. As an example we compute the second exponent τ2 for the
action of the Weyl group of of the non-crystallographic root systemH2 over the base

ring Z[ 1+
√
5

2 ], hence, giving rise to an interesting question about its geometric/Lie
algebra interpretation.

7.1. Theorem. For the non-crystallographic root system H2 := I2(5), the second

exponent τ2 is
√
5.

Proof. We follow the notations in [CMP]. In the root system H2, the Weyl group
W is the dihedral group of order 10 and M is the Z[τ ]-lattice generated by two

simple roots α1 and α2, where τ = (1 +
√
5)/2. Observe that Z[τ ] is an Euclidean

domain.

The dual basis {ω1, ω2} is defined by
{

ω1 = 1
3−τ

(2α1 + τα2)

ω2 = 1
3−τ

(τα1 + 2α2)
or

{

α1 = 2ω1 − τω2

α2 = −τω1 + 2ω2

One computes the orbits of ω1 and ω2 as follows:

W (ω1) = {ω1,−ω2,−ω1 + τω2,−τω1 + ω2, τω1 − τω2},
W (ω2) = −W (ω1).

As the action of W on M is essential, by Corollary 3.2, we have

φ(2)(ρ(ω2)) = φ(2)(ρ(ω1)) =
1

2
(ω2

1 + ω2
2 + (ω1 − τω2)

2 + (τω1 − ω2)
2 + (τω1 − τω2)

2)

= (1 + τ2)ω2
1 + (1 + τ2)ω2

2 − (2τ + τ2)ω1ω2. (7)

Since φ(2)(ρ(ω2)) is W -invariant by Corollary 3.2, we have

τ2 = gcd(1 + τ2, 2τ + τ2) = gcd(2 + τ, 2τ − 1).
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But 2τ − 1 =
√
5 is a prime in Z[τ ], and we have 2 + τ = (2τ − 1)τ proving that

τ2 =
√
5. �
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