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Abstract

Let q be a quadratic form over a field K of characteristic different from
2. We investigate the properties of the smallest positive integer n such
that −1 is a sums of n values represented by q in several situations. We
relate this invariant (which is called the q-level of K) to other invariants
of K such as the level, the u-invariant and the Pythagoras number of
K. The problem of determining the numbers which can be realized as a
q-level for particular q or K is studied. We also observe that the q-level
naturally emerges when one tries to obtain a lower bound for the index
of the subgroup of non-zero values represented by a Pfister form q. We
highlight necessary and/or sufficient conditions for the q-level to be finite.
Throughout the paper, special emphasis is given to the case where q is a
Pfister form.
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1 Introduction

A celebrated theorem of E. Artin and O. Schreier states that a field K has an
ordering if and only if −1 cannot be written as a sum of squares in K. In this
case, the field K is called formally real. In the situation where K is not formally
real, one may wonder how many squares are actually needed to write −1 as a
sum of squares in K. This leads to the following definition:

Definition 1.1. The level s(K) of a field K is defined by

s(K) = min{n | ∃x1, · · · , xn ∈ K, −1 = x21 + · · ·+ x2n}

if −1 is a sum of squares in K, otherwise one defines s(K) = +∞.

A question raised by B. L. van der Waerden in the 1930s asks for the integers
that can occur as the level of a field K (cf. [20]). H. Kneser obtained a partial
answer to this question in 1934 by showing that the possible values for the level
are 1, 2, 4, 8 or the multiples of 16 (cf. [12]). In 1965, A. Pfister developed
the theory of multiplicative forms which furnished a complete answer to this

1



question: if finite, the level of a field is always a power of 2 and every prescribed
2-power can be realized as the level of a field, see [23].

The level of a ring R with unity which can be defined in the same manner as
for commutative fields, has been studied at least since the early 20th century.
See the survey paper [20] which provides a historical overview of different notions
of the level as well as an extensive bibliography. The sublevel s(R) of a ring R
has also been defined in the following way:

s(R) = min{n | ∃x1, · · · , xn+1 ∈ R \ {0}, 0 = x21 + · · ·+ x2n+1}

if 0 is a sum of nonzero squares in R and s(R) = +∞ otherwise. The question
of how the level and the sublevel are related to each other is a natural matter of
interest. It is clear from the definition that s(R) 6 s(R) and that s(R) = s(R)
in the case of commutative fields. In [17] and [19], D. W. Lewis constructed
quaternion division algebras with s = s = 2k and with s = s+1 = 2k + 1 for
all k ∈ N. In [10], D. W. Hoffmann showed that s(R) 6 s(R) 6 s(R) + 1 if R
is a quaternion or an octonion division algebra. However, the general problem
of determining the numbers attainable as the levels and sublevels of quaternion
and division algebras - and thus of other specific rings - remains widely open
although several results have been obtained: see for example [13], [9] or [22].

In this paper, we intend to study a natural generalization of the level of a
field together with its associate notion of sublevel:

Definition 1.2. Let (V, q) be a quadratic form over a field K.
(1) The level of K with respect to q (or the q-level for short) denoted by sq(K)
is defined by

sq(K) = min{n | ∃v1, · · · , vn ∈ V, −1 = q(v1) + · · ·+ q(vn)},

if such an n exists and by sq(K) = +∞ otherwise.
(2) The sublevel of K with respect to q is denoted by sq(K) and defined by

sq(K) = min{n | ∃v1, · · · , vn+1 ∈ V \ {0}, 0 = q(v1) + · · ·+ q(vn+1)},

if such an n exists and by sq(K) = +∞ otherwise.

Under this setting, the (usual) level of K corresponds to the level of K with
respect to the quadratic formX2 overK. More generally, the length (see §2) of a
non-zero element a ∈ K coincides with the q-level of K where q is the quadratic
form −aX2 over K. Studying the level of K with respect to one-dimensional
quadratic forms over K is thus nothing but investigating the length of any
element of K.

To our best knowledge, the notion of q-level has not been explicitly defined
- at least in the general case of a quadratic form - but it appears implicitly in
many places and it is closely related to some other invariants appearing in the
literature.

It is already relevant to point out that q-levels are related to some hermitian
levels studied by D. W. Lewis (see [18] and [20]). For a ring R with an identity
and a non trivial involution σ, recall that the hermitian level of R is defined
as the least integer n such that −1 is a sum of n hermitian squares in R, i.e.,
elements of the form σ(x1)x1 + · · · + σ(xn)xn where x1, · · · , xn ∈ R. The
hermitian level of (R, σ) is denoted by s(R, σ). If L/K (resp. Q) is a quadratic
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extension with L = K(
√
a) (resp. a K-quaternion algebra (a, b)K) and if − is

the canonical involution of L (resp. of Q), it is easy to see that s(L,−) = sq(K)
(resp. s(Q,−) = sq(K)) where q = 〈1,−a〉 (resp. q = 〈1,−a,−b, ab〉) is the
norm form of L/K (resp. of Q). Note that in both cases the hermitian level is
a power of two (see [18, Prop. 1.5]) and the quadratic form q is a Pfister form
over K. More generally, we observe that sq(K) is always a 2-power or infinite
whenever q is a Pfister form (see Proposition 4.3).

To give an example where we can relate the level of a ring with a q-level,
consider the Clifford algebra D of a nondegenerate quadratic form q over a field
K. We obviously have s(D) 6 sq(K); in particular if D is the quaternion algebra
(a, b)K , generated by the elements i and j subject to the relations i2 = a ∈ K×,
j2 = b ∈ K× and ij = −ji, then we have s(D) 6 sq(K) where q = 〈a, b〉.

The essential trait of the concept of the q-sublevel is already present in the
literature. In [2], K. J. Becher studies an invariant wi(q) which is called the weak
isotropy index of q. One has sq(K) = wi(q) − 1. In this work, the q-sublevel is
used as an auxiliary tool in some places.

A substantial part of this paper is devoted to investigating

– the properties of sq(K), i.e., the q-level of a field K,
– the relations of sq(K) with other invariants of K such as the (usual)
level, the u-invariant, the Pythagoras number,
–the relations between sq(K) and sq(K),
– the calculation of sq(K) for particular q or K,
– the behavior of sq(·) under field extensions,
– for a given n, the possible values of sq(K) that are attained when q runs
over all quadratic forms of dimension n over K,
– for a given q, the possible values of sqK′

(K ′) when K ′/K runs over all
field extensions of K.
– criteria for the finiteness or infiniteness of sq(K) for particular q or K.

When q is a Pfister form there are several strong analogies between the properties
of sq(K) and that of s(K). However this does not mean that when q is a Pfister
form, every result on s(K) can be generalized to sq(K), see §4.3, Remark 4.11.

The paper is structured as follows. In the next section, we collect some
definitions and preliminary observations about the q-level of a field and define
the q-length of a ∈ K and the Pythagoras q-number of K which are respective
generalizations of the length of a and of the Pythagoras number of K.

Section 3 is devoted to the study of the q-level for an arbitrary quadratic form
q. We give upper bounds for the q-level in terms of some familiar invariants (e.g.,
the usual level, the Pythagoras number and the u-invariant). We also determine
the relations between the q-level and the q-sublevel of a field. Then we study
the behavior of the q-level and the q-length of an element with respect to purely
transcendental field extensions; this leads to a generalization of a theorem due
to Cassels, see Theorem 3.7. One of the applications of this generalization is
the construction of elements with prescribed q-length (see Corollaries 3.8 and
3.9).

Next we prove some results about the integers which belong to the set
{sq(K)| dim q = n}, see §3.3.1. After that, we show the following result:

Let q be a quadratic form with dim q 6 3 such that sq(K) = +∞, then
(1) If dim q = 1 or 2 then for any k ∈ N there is a field extension K ′/K
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such that sq(K
′) = 2k.

(2) If dim q = 3 then for any k ∈ N there exist field extensions K ′/K

and K ′′/K such that sq(K
′) = 22k+2

3 and sq(K
′′) = 22k+1+1

3 .

These results are proved in Corollary 3.14: for this, the key ingredient is Hoff-
mann’s separation Theorem (see Theorem 3.12). We make explicit calculations
of q-levels for familiar fields, whenever possible, see §3.4

Section 4 concentrates on the particular case of Pfister forms. We prove that
the q-level and the q-sublevel coincide whenever q is an anisotropic group form,
see Proposition 4.1. We next prove that (see Proposition 4.3 and Theorem 4.4):

If ϕ is a Pfister form over K, then sϕ(K) is a 2-power or infinite. Moreover
{sϕ(K ′) : K ′/K field extension} = {1, 2, · · · , 2i, · · · , sϕ(K)}.

Then, we investigate the behavior of the q-level with respect to quadratic field
extensions: it is described in Proposition 4.10. We next show that for the case of
Pfister forms the q-level, q-length and Pythagoras q-number share many similar
properties with their usual counterparts (see Proposition 4.12 and Proposition
4.19).

A sharp lower bound for the cardinality of the group K×/K×2

in terms of
the level of K was found by A. Pfister who proved that if K is a field whose

level is 2n then | K×

K×
2 | > 2n(n+1)/2 (see [24, Satz 18 (d)]). The examples K = Fq,

q ≡ 3 mod 4 or K = Q2 show that this inequality is best possible for n 6 2.
Recall that an element a of K× is said to be represented by q if there exists
v ∈ V such that q(v) = a. Denote by DK(q) the set of values represented
by q. In the case where q is a Pfister form, DK(q) is a subgroup of K× ([14,

Proposition X.2.5]) which contains K×2

, hence it is a natural thing to wonder
if one may obtain a lower bound for the cardinality of the group K×/DK(q) in
terms of the q-level of K. In fact we obtain the following result (see Theorem
4.14):

If q is a Pfister form over a field K whose q-level is 2n then |K×/DK(q)| >
2n(n+1)/2 and this lower bound is sharp.

We also draw some direct consequences of this lower bound. We then study
the behavior of the Pythagoras q-number with respect to field extensions L/K
of finite degree in Proposition 4.22: in fact pq(L) is smaller than [L : K]pq(K)
thus generalizing a classical result due to Pfister.

In Section 5, we investigate possible characterizations of the finiteness of
the q-level. In the case of Pfister forms, a complete characterization can be
given (see Proposition 5.1): this also leads to an analogue of Artin-Schreier’s
characterization of the existence of an ordering in this framework. In the general
case, we easily observe that if sq(K) is finite then q is not totally positive. It
turns out that when dim q = 1 or 2 the converse is always true (see Proposition
5.6) but this is not the case anymore if dim q = 3. We also characterize all fields
K for which for every q, the finiteness of sq(K) implies that q is not totally
positive (see Theorem 5.9).

Finally, in Section 6, we assemble a few open questions in relation with some
of the topics covered in this paper.
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2 Preliminaries

In this paper, the characteristic of the base field K will always supposed to be
different from 2 and all quadratic forms are implicitly supposed to be nonde-
generate. The notation 〈a1, · · · , an〉 will refer to the diagonal quadratic form
a1X1

2 + · · ·+ anXn
2. Every quadratic form q over K can be diagonalized, that

is q is isometric to a diagonal quadratic form 〈a1, · · · , an〉 which we denote by
q ≃ 〈a1, · · · , an〉. For a quadratic form q and an scalar a ∈ K×, a ·q denotes the
form q scaled by a. We will denote by W (K) the Witt ring of K and by I(K)
its fundamental ideal. Its nth power is denoted by In(K) and is additively gen-
erated by the (n-fold) Pfister forms 〈〈a1, · · · , an〉〉 := 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉.
A quadratic form π over K is a Pfister neighbor if there exists a Pfister form
ϕ and a ∈ K× such that 2 dim(π) > dim(ϕ) and a · π is a subform of ϕ. In
this case, it is known that π is isotropic if and only if ϕ is isotropic if and only
if ϕ is hyperbolic. For a positive integer n and a quadratic form q, we use the
notations

σn = n× 〈1〉 and σn,q = n× q.

We also denote N0 = N \ {0}.
The length of an element a ∈ K× denoted by ℓ(a) is the smallest integer n

such that a is a sum of n squares; if such an n does not exist, we put ℓ(a) = +∞.
Note that s(K) = ℓ(−1). Following [26, Ch. 6, p.75], we denote by ΣK• the set
of all elements in K× which can be written as a sum of squares in K.

The Pythagoras number of K is defined to be

p(K) = sup{ℓ(a) | a ∈ ΣK•} ∈ N0 ∪ {+∞}.
Recall that K is non formally real if and only if K× = ΣK•; in that case, p(K)
is always finite. To see this, if we put s = s(K) then the form σs+1 is isotropic,
hence universal and p(K) 6 s + 1. As −1 is not a sum of s − 1 squares, we
obtain that p(K) ∈ {s(K), s(K) + 1}. If K is formally real, p(K) can either be
finite or infinite. D. W. Hoffmann has shown that each integer can in fact be
realized as the Pythagoras number of a certain (formally real) field: see [7] or [8,
Theorem 5.5]. For further details about the level and the Pythagoras number,
the reader may also consult [26, Ch. 3, Ch. 7] or [15].

The u-invariant of K, which is denoted by u(K), is defined to be max(dim q)
where q ranges over all anisotropic quadratic forms over K if such a maximum
exists, and we define u(K) = +∞ otherwise. Note that u(K) is also the mini-
mal integer n for which all quadratic forms of dimension strictly greater than n
(resp. greater or equal than n) are isotropic (resp. universal) over K.

Let (V, q) be a quadratic form over K. We define the q-length of an element
of K and the Pythagoras q-number of K as follows.

Definition 2.1. (1) The q-length of an element a ∈ K× denoted by ℓq(a) is
defined by

ℓq(a) = min{n | ∃(v1, · · · , vn) ∈ V n, a = q(v1) + · · ·+ q(vn)}
if such an n exists and by ℓq(a) = +∞ otherwise.
(2) Let ΣqK

• be the set of all elements x in K× for which there exists an integer
n such that the form σn,q represents x. The Pythagoras q-number is defined by

pq(K) = sup{ℓq(a) | a ∈ ΣqK
•},
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if such an n exists and by pq(K) = +∞ otherwise.

As s〈1〉(K) = s(K), ℓ〈1〉(a) = ℓ(a) and p〈1〉(K) = p(K), the q-level, the
q-length of a and the Pythagoras q-number can be regarded as respective gen-
eralizations of the level, the length of a and the Pythagoras number. Note also
that sq(K) = 1 if and only if q represents −1, the number sq(K) only depends
on the isometry class of q, s〈a〉(K) = ℓ(−a) and sq(K) = ℓq(−1).

Remarks 2.2. (1) For all a ∈ K×, we have pa·q(K) = pq(K), since we obviously
have ℓa·q(b) = ℓq(a

−1b) for all b ∈ K.
(2) For every positive integer n, we can easily check that ℓn×q(a) = ⌈ 1

nℓq(a)⌉
and pn×q(a) = ⌈ 1

npq(a)⌉ .
(3) If a ∈ K× and L/K is a field extension of odd degree then ℓq(a) = ℓqL(a).

In the sequel it is convenient to introduce the following notations. If K is a
field and n is a positive integer greater or equal than 1, we put

L(n,K) = {sq(K) | q is a quadratic form of dimension n over K}

and we set L(K) =
⋃

n∈N\{0} L(n,K). If q is a quadratic form over K, let

Lq(K) = {sqK′
(K ′) | K ′/K field extension}.

3 General results

3.1 Comparison of the q-level with some other invariants

In the following lemma, we list some properties concerning the q-level of a field.

Lemma 3.1. Let K be a field and q be a quadratic form over K.
(1) We have 1 6 sq(K) 6 s(K) + 1.
(2) We have 1 6 sq(K) 6 inf{s〈a〉(K) : a ∈ DK(q)} = inf{ℓ(−a) : a ∈ DK(q)}.
More generally, if q′ is a subform of q, then sq(K) 6 sq′(K).
(3) If L/K is a field extension then sq(K) > sqL(L).
(4) If L/K is a field extension whose degree is odd then sq(K) = sqL(L).

(5) For every positive integer n we have sn×q(K) =
⌈

sq(K)
n

⌉

.

(6) If q is isotropic then sq(K) = 0 and sq(K) = 1.
(7) If q is anisotropic then sq(K) 6 sq(K) + 1.
(8) If q is anisotropic and if 1 ∈ DK(q), then sq(K) 6 sq(K) 6 sq(K) + 1.

Proof. To prove (1), we may assume that s(K) = n < +∞. In this case, the
quadratic form σn+1 is isotropic so the quadratic form σn+1,q is isotropic, hence
universal. In particular, σn+1,q represents −1. This proves (1).

For statement (2), it suffices to prove the second property. If σn,q′ represents
−1 for a certain n, then it is also the case for σn,q, hence (2).

The statement (3) is trivial, (4) follows from a theorem of T. A. Springer
(see [26, Ch. 6, 1.12]) and (5) follows from 2.2 (2).

The assertion (6) is obvious. For (7), if sq(K) = +∞ then we obviously have
sq(K) = +∞ so we may assume that s = sq(K) < +∞. Then σs−1,q is not
isotropic as it would represent −1 otherwise, thus contradicting the minimality
of s. This means that s− 1 6 sq(K) and (7) follows.

To prove (8), we only have to show that sq(K) 6 sq(K) with s = sq(K) <
+∞. For this, it suffices to remark that 〈1〉 ⊥ σs,q is a subform of σs+1,q.
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Remarks 3.2. (1) The upper bound sq(K) 6 s(K)+1 given in 3.1 (1) is sharp.
If K = Q(i) and q = 〈2〉, we easily see that s(K) = 1 and sq(K) = ℓ(−2) = 2.
(2) In the second statement of 3.1 (2), it is possible to have sq′(K) = sq(K)
for a proper subform q′ of q. For instance consider the forms q′ = 〈−3〉 and
q = 〈−3, X〉 over Q(X), we have sq(Q(X)) = sq′(Q(X)) = 3.
(3) When sq(K) < +∞ the above result shows that sq(K) < +∞ but the
converse is false as the following simple example shows: if K = R, q = 〈−1〉
then sq(K) = +∞ and sq(K) = 1.
(4) Note that the assertion (8) of the previous lemma is analogous to Hoffmann’s
result mentioned in the Introduction relating the level and the sublevel of a
quaternion or of an octonion division algebra.
(5) For an example which shows that both values in the assertion (8) of the
previous lemma occur see Remark 4.2.

The purpose of the following proposition is to give upper bounds for the
q-level of a field K in terms of some classical invariants of K.

Proposition 3.3. Let K be a field and let q be a quadratic form over K.
(1) If sq(K) < +∞ then sq(K) 6 p(K) (see also Proposition 4.12 (2)).

(2) If K is not formally real, we have sq(K) 6

⌈

u(K)

dim(q)

⌉

6 u(K).

Proof. To prove (1), one may assume that p = p(K) < +∞. Let q = 〈a1, · · · , an〉
be a diagonalization of q. By assumption, there exists an integer m and vec-
tors v1, · · · , vm such that −1 = q(v1) + · · · + q(vm). It follows that −1 =
a1Σ1+ · · ·+anΣn where Σ1, · · · ,Σn ∈ ΣK• are sums of at most m squares. By
the definition of the Pythagoras number, each Σi can be written as a sum of at
most p squares. This fact readily implies that sq(K) 6 p(K). An alternative
proof can also be obtained Corollary 2.5 of [2] and Lemme 3.1 (7).

(2) One may assume that u(K) < +∞. Then every quadratic form q of
dimension greater or equal than u(K) is universal. It follows that if n×dim(q) >
u(K) then sq(K) 6 n, hence the result.

Remark 3.4. In the previous proposition, the bound given in (1) is sharp for
any non formally real field K as Proposition 3.10 shows. We now show that

the inequality sq(K) 6

⌈

u(K)
dim(q)

⌉

is sharp for any prescribed dimension. Let n

be a positive integer and choose m such that n < 2m. Let F be a field such
that s(F ) = u(F ) = 2m (it is even possible to construct a field F such that

s(F ) = u(F ) = p(F ) = 2m, see [8, §5.2]). If we put r =
⌈

u(F )
n

⌉

then

u(F )

n
6 r <

u(F )

n
+ 1

so rn > u(F ) which implies that sσn
(F ) 6 r. Moreover (r− 1)n < u(F ) = s(F )

so σ(r−1)n+1 is anisotropic which shows that sσn
(F ) = r as claimed.

Corollary 3.5. Let K be a field.
(1) If q is a quadratic form over K, we have Lq(K) ⊆ {1, · · · , sq(K)}.
(2) If n > 1 is an integer then L(n,K) ⊆ {1, · · · , hn} ∪ {+∞} where hn =

min(p(K),
⌈

u(K)
n

⌉

). In particular, if K is non formally real and n > u(K) then

L(n,K) = {1}.
Proof. This follows from Lemma 3.1 (3) and Proposition 3.3.
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3.2 On a theorem of Cassels

The following two results generalize two classical theorems concerning quadratic
forms under transcendental field extensions in the framework of q-levels.

Proposition 3.6. Let q be a quadratic form over K and let K ′/K be a purely
transcendental field extension of K. Then sq(K) = sq(K

′) = sq(K((t))).

Proof. By Lemma 3.1 (3), we have sq(K) > sq(K
′), hence we may assume that

sq(K
′) = n < +∞. The quadratic form σn,q represents −1 over K ′ and by

Cassels-Pfister’s Theorem (see [14, Theorem IX.1.3]), σn,q already represents
−1 over K, hence the first equality. The second equality is proved similarly.

A theorem due to J. W. S. Cassels asserts that if K is formally real, the
polynomial P = 1+X2

1+· · ·+X2
n is not a sum of n squares in L = K(X1, · · · , Xn)

(see [14, Corollary IX.2.4]). Note that this is equivalent to ℓ(P ) = n+1 over L.
In the same vein we obtain the following result:

Theorem 3.7. For m > 1 and n > 0, let q = 〈a1, · · · , am〉 be a quadratic

form over a field K and set L = K(X
(i)
j , i = 1, · · · , n, j = 1, · · · ,m). If σn,q is

anisotropic, then

ℓqL(a1 +
∑

i,j

aj(X
(i)
j )2) = n+ 1.

In particular, this is the case if sq(K) = +∞.

Proof. If n = 0, we have to prove that ℓq(a1) = 1, which is obvious since a1 is

represented by q. Assume now that n > 1, and set a = a1 +
∑

i,j

aj(X
(i)
j )2.

Since a1 is represented by q, and thus by qL, we have ℓqL(a) 6 n+1. Assume
that ℓqL(a) < n+ 1, so that a is represented by σn,qL . Since σn,q is anisotropic
over K by assumption, any subform q′ of σn,q is also anisotropic over K. This
implies that q′L is anisotropic over L, since L/K is purely transcendental. Con-
sequently, q′M is anisotropic over M for any subfield M of L, and any subform
q′ of σn,q. A repeated application of a theorem due to Cassels (cf. [29, Theorem

3.4, p.150]) then shows that a1+a1(X
(1)
1 )2 is represented by 〈a1〉 over K(X

(1)
1 ).

This implies that 1 + (X
(1)
1 )2 is a square in K(X

(1)
1 ), hence a contradiction.

Let us prove the last part of the proposition. If sq(K) = +∞ but σn,q is
isotropic for n > 1 then σn,q is universal, hence represents −1, so sq(K) 6 n,
and we have a contradiction. Now apply the first part to conclude.

Corollary 3.8. With the same hypotheses as in 3.7, we have

ℓqL(
∑

i,j

aj(X
(i)
j )2) = n.

Proof. As p(X) =
∑

i,j aj(X
(i)
j )2 is represented by σn,q we have ℓqL(p(X)) 6 n.

If ℓqL(p(X)) < n then p(X) is represented by σn−1,q. Since a1 is represented
by q, it follows that ℓqL(a1 + p(X)) < n+1 which contradicts the conclusion of
Theorem 3.7.

Corollary 3.9. Let q be a quadratic form over a field K such that for ev-
ery n the form σn,q is anisotropic (in other words q is supposed to be strongly
anisotropic). Then one can find elements with prescribed q-length in a suitable
purely transcendental extension of K.
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3.3 Values of the q-level

3.3.1 Values of the q-level when dimension of q is given

Proposition 3.10. If K is non formally real field then L(1,K) = L(K) =
{1, · · · , p(K)}. If K is formally real then L(1,K) = L(K) = {1, · · · , p(K)} ∪
{+∞}
Proof. As L(1,K) ⊆ L(K), the direct inclusions come from Proposition 3.3 (1)
in both cases. It remains to show that the sets on the right-hand sides are
included in L(1,K).

For this, we distinguish between the cases p(K) < +∞ and p(K) = +∞.
Note that +∞ = s〈1〉(K) ∈ L(1,K) in the formally real case.

If p = p(K) < +∞, there exists a ∈ ΣK• such that ℓ(a) = p. Write
a = x21 + · · ·+ x2p where xi ∈ K. For 1 6 i 6 ℓ(a) put βi = x21 + · · ·+ x2i . Then
ℓ(βi) = i = s〈−βi〉(K), hence the result.

Suppose now that p(K) = +∞ and let n be a fixed integer. By definition
of the Pythagoras number, there exists a ∈ ΣK• such that q = ℓ(a) > n.
Put a = x21 + · · · + x2q where xi ∈ K. If we choose b = x21 + · · · + x2n then
ℓ(b) = n = s〈−b〉(K) and this concludes the proof.

Whereas the knowledge of the possible q-levels over a field K is equivalent
to the knowledge of the Pythagoras number of K, the previous result does not
give an explicit way to find a quadratic form q with prescribed q-level in general.

We obtain the following immediate consequences:

Corollary 3.11. (1) There exists a field K such that for every integer n, there
exists a quadratic form q over K with sq(K) = n.
(2) If n > 1 is an integer then {1, · · · , ln} ⊆ L(n,K) where ln = ⌊p(K)/n⌋. In
particular, if p(K) = +∞ then L(n,K) = N0 ∪ {+∞} for any n > 1.

Proof. (1) By Proposition 3.10, it suffices to findK with p(K) = +∞. Following
the proof of [8, Theorem 5.5], put K = F (X1, X2, · · · ) with an infinite number of
variables Xi over a formally real field F . If n ∈ N0, put Pn = 1+X2

1 + · · ·+X2
n.

Then ℓ(Pn) = n+1 over F (X1, · · · , Xn) (by Cassels’ theorem mentioned above)
and K (as K/F is purely transcendental). Thus p(K) = +∞. An alternative
proof can be given using Theorem 3.7.

(2) It suffices to prove the first assertion. If we fix 1 6 i 6 ln then n × i 6
p(K). By Proposition 3.10, there exists a form qi = 〈ai〉 with sqi(K) = n × i.
By Lemma 3.1 (5), the form σn,qi ∈ L(n,K) has level i, hence the result.

3.3.2 Values of the q-level when q is fixed and the base field changes

We now focus on the proof of Corollary 3.14, mentioned in the Introduction, for
which the crucial ingredient is the following result due to D. W. Hoffmann in
[6, Theorem 1].

Theorem 3.12 (Hoffmann’s Separation Theorem). Let q and q′ be anisotropic
quadratic forms over K such that dim(q) 6 2n < dim(q′). Then q is anisotropic
over K(q′), the function field of the projective quadric defined by q′ = 0.

The key fact for us is the second assertion of the following proposition. The
first assertion is a direct consequence of Corollary 3.11 (1) but can also be proved
independently using Hoffmann’s result.
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Proposition 3.13. Let n be a positive integer and K be a formally real field.
(1) There exist a field extension K ′/K and a quadratic form q over K ′ such
that sq(K

′) = n.
(2) Let q be a quadratic form over K with sq(K) = +∞. If there exists a
positive integer k such that 1 + (n − 1) dim q 6 2k < 1 + n dim q then there
exists a field extension K ′/K such that sq(K

′) = n. In fact one can choose
K ′ = K(〈1〉 ⊥ σn,q).

Proof. For (1), we can suppose that n > 1. Let m and r be two integers such
that

2r − 1

n
< m 6

2r − 1

n− 1
.

These two integers do exist: in fact, it suffices to choose m and r satisfying

r >
ln(n2 − n+ 1)

ln(2)
which implies that

2r − 1

n− 1
− 2r − 1

n
=

2r − 1

n(n− 1)
> 1.

For j > 1, let ϕj = 〈1〉 ⊥ σj,q where q is the anisotropic quadratic form q =
σm. The quadratic forms ϕn and ϕn−1 are anisotropic over K. If K ′ = K(ϕn)
then, by Theorem 3.12 and by the choice of m and r, (ϕn−1)K′ is anisotropic,
hence sq(K

′) > n. As (ϕn)K′ is isotropic, we obtain sq(K
′) = n, hence (1). For

(2), the fact that sq(K) = +∞ implies similarly that sq(K
′) = n for K ′ = K(ψn)

where ψn = 〈1〉 ⊥ σn,q.

Corollary 3.14. Let q be a quadratic form of dimension at most 3 such that
sq(K) = +∞.
(1) If q has dimension 1 or 2 then 2k ∈ Lq(K) for any k ∈ N.

(2) If q has dimension 3 then 22k+2
3 , 22k+1+1

3 ∈ Lq(K) for any k ∈ N.

Proof. (1) Consider the form ϕ2k = 〈1〉 ⊥ σ2k,q. As dim q = 1 or 2, we have
1 + (2k − 1) dim q 6 2k+dim q−1 < 1 + 2k dim q. By Proposition 3.13 (2), we
obtain sq(K

′) = 2k where K ′ = K(ϕ2k).

(2) If n = 22k+2
3 , we have 1+(n−1) dim q 6 22k < 1+(n−1) dim q, therefore

the existence of K ′ follows from Proposition 3.13 (2). The proof of the second
assertion is similar and is left to the reader.

Corollary 3.15. Let K be a field and let n be a nonnegative integer.
(1) If s(K) = +∞ then there exists a field extension K ′/K with s(K ′) = 2n.
(2) If a ∈ K and ℓ(a) = +∞ over K then there exists a field extension K ′/K
such that ℓ(a) = 2n over K ′.

One may wonder if ℓK(a) = +∞ implies that for every field extension L/K,
ℓL(a) is always infinite or a power of two.

3.4 Values of the q-level for some specific fields

We now make explicit calculations of q-levels in many familiar fields. Note that
s〈−1〉(K) = 1 for any field K and that s〈1〉(K) = +∞ when K is formally real.
The results 3.10, 3.5 (2) and 3.11 (2) are used without further mention.
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3.4.1 Non formally real fields

Algebraically closed fields: in such a field K, L(n,K) = Lq(K) = {1} for
any n and q.

Finite fields: if K is a finite field, L(K) = {1, 2}. As u(K) = 2, we have
L(n,K) = Lq(K) = {1} for n > 2, dim(q) > 2. Moreover, the quadratic form
q = 〈a〉 has q-level 1 if and only if −a is a square, otherwise it has q-level 2.

Non dyadic local fields: in such a field K with residue field K, denote by
U the group of units and choose a uniformizer π. Any quadratic form q can
be written ∂1(q)⊥π∂2(q) where ∂1(q) = 〈u1, · · · , ur〉, ∂2(q) = 〈ur+1, · · ·un〉 for
ui ∈ U , i = 1, · · · , n. The forms ∂1(q) and ∂2(q) are respectively called the first
and second residue forms of q. By a Theorem of T. A. Springer, q is anisotropic
over K if and only if ∂1(q) and ∂2(q) are anisotropic overK (see [14, Proposition
VI.1.9]). This reduces the calculation of q-levels over K to calculations of some
levels over K.

Now, p(K) = min(s(K) + 1, 4) (see [26, Ch. 7, Examples 1.4 (1)]), hence
L(K) = {1, 2} (resp. {1, 2, 3}) if |K| ≡ 1 mod 4 (resp. |K| ≡ 3 mod 4).

Take u ∈ U with u /∈ K
2

and put q = 〈−u〉. Then 〈1,−u〉 is anisotropic
but 〈1,−u,−u〉 is isotropic by Springer’s Theorem, hence sq(K) = 2. If |K| ≡ 3
mod 4, take q′ = 〈π〉. As −1 is not a square in K, Springer’s Theorem shows
that sq′(K) > 2, hence sq′(K) = 3.

Dyadic local fields: we have p(K) = min(s(K) + 1, 4) and s(K) = 1, 2
or 4. If K = Q2, we have s(K) = 4 (see [14, Examples XI.2.4]), hence
L(Q2) = {1, 2, 3, 4}. We have s〈−2〉(Q2) = 2, s〈2〉(Q2) = 3 and s〈1〉(Q2) = 4.

The fields Ln = K(X1, · · · , Xn) and Mn = K((X1)) · · · ((Xn)): if s(K) = 2m

then p(Ln) = p(Mn) = 2m + 1 ([26, Ch. 7, Proposition 1.5]), hence L(Ln) =
L(Mn) = {1, · · · , 2m + 1}. Recall that p(K) ∈ {2m, 2m + 1}.

Each value in {1, · · · , p(K)} is attained as a q-level over K and sq(K) =
sq(Ln) = sq(Mn) by Proposition 3.6. If p(K) = s(K) = 2m, let q = 〈Xn〉 over
Ln. As Mn is a local field with residue field K((X1)) · · · ((Xn−1)) of level 2m

and uniformizer Xn, we have sq(Ln) = sq(Mn) = 2m+1 by Springer’s theorem.

Non formally real global fields: if K is a number field, we have p(K) =
min(s(K) + 1, 4) by Hasse-Minkowski principle (see [26, Examples 1.4 (2)]) and
s(K) = 1, 2 or 4 ([14, Theorem XI.1.4]). For example, if K = Q(

√
−7) then

s〈−5〉(K) = 2, s〈−6〉(K) = 3 and p(K) = s(K) = s〈1〉(K) = 4.

3.4.2 Formally real fields

Real closed fields: over such a field, a quadratic form q has q-level +∞ if and
only if q is positive definite, otherwise it has q-level one.

Formally real global fields: we have p(K) = 4 (resp. p(K) = 3) if K has
a dyadic place P such that [KP : Q] is odd (resp. otherwise) by [26, Ch. 7,
Examples 1.4 (3)].
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In particular, L(Q) = {1, 2, 3, 4}. By Hasse-Minkowski principle, any indef-
inite quadratic form q of dimension > 5 is isotropic hence has q-level one, see
[14, Ch. VI.3]. Any positive definite quadratic form q has an infinite q-level. A
quadratic form q that is not positive definite has a finite q-level. For example
s〈−5〉(Q) = 2, s〈−6〉(Q) = 3 and s〈−7〉(Q) = 4 as 6 (resp. 7) is a sum of three
squares (resp. four squares) but not a sum of two squares (resp. three squares)
in Q.

The field R(X1, · · · , Xn): its Pythagoras number is 2 if n = 1, is 4 if n = 2
and is in the interval [n+ 2; 2n] for n > 3 (the two last results are due to J. W.
S. Cassels, W. J Ellison and A. Pfister, see [3] or [14, Examples XI.5.9 (4)]).

If n = 1, we thus have L(R(X)) = {1, 2}. By a Theorem due to E. Witt, we
know that any totally indefinite quadratic form over R(X) of dimension > 3 is
isotropic hence has q level one. Consider q = 〈−(1 +X2)〉. As 1 +X2 is not a
square in R(X), q does not represent −1. But 〈1〉 ⊥ 2 · q is totally indefinite as
1 is totally positive whereas −(1 +X2) is totally negative, hence it is isotropic.
This proves that sq(R(X)) = 2.

The field Q(X1, · · · , Xn): its Pythagoras number is 5 if n = 1 (by a result
due to Y. Pourchet, see [27]). For n > 2, we only know that p(Q(X1, X2)) 6 8,
p(Q(X1, X2, X3)) 6 16 and p(Q(X1, · · · , Xn)) 6 2n+2. The first two results are
due to J.-L. Colliot-Thélène and U. Jannsen in [4] and the last one is due to J.
K. Arason.

If n = 1, the study done for Q together with Proposition 3.6 show that
s〈−5〉(Q(X)) = 2, s〈−6〉(Q(X)) = 3 and s〈−7〉(Q(X)) = 4. By a result of Y.
Pourchet (see [27, Proposition 10]), for d ∈ Z, the polynomial X2 + d is a sum
of exactly five squares of Q[X ] if and only if s(Q(

√
−d)) = 4 which in turn

is equivalent to d > 0 and d ≡ −1(mod 8) (see [14, Remark XI.2.10]). For
q = 〈−(X2 + 7)〉, this readily implies that sq(Q(X)) = 5.

3.4.3 Appendix

Suppose that K is a non formally real field. In all the above examples in which
the values of s(K), u(K) and p(K) are known, we have p(K) = min(s(K) +
1, u(K)). We always have p(K) 6 min(s(K) + 1, u(K)) but there is no equality
in general.

To see this, we use the construction of fields with prescribed even u-invariant
due to A. S. Merkurjev (see [21] or [8, Section 5]).

Theorem 3.16 (Merkurjev). Let m be an even number and E be a field. There
exists a non formally real field F over E such that u(F ) = m and I3(F ) = 0.

Putm = 2n+2. The proof of Merkurjev’s result is based upon a construction
of an infinite tower of fields Fi. More precisely F0 = E(X1, Y1 · · · , Xn, Yn) and
if Fi is constructed then Fi+1 is the free compositum over Fi of all function fields
Fi(ψ) where ψ ranges over (1) all quadratic forms in I3(Fi) (2) all quadratic
forms of dimension 2n+ 3 over Fi. Then F = ∪∞

i=0Fi is the desired field.
Choose a field E with s(E) = 4. Then there exists a field F over E such

that u(F ) = 2n+ 2 and I3(F ) = 0. If we consider the 2-fold anisotropic Pfister
form ϕ = 〈1, 1, 1, 1〉 over E, the form ϕ stays anisotropic over any Fi of the
tower as it cannot become hyperbolic over the function field of a quadratic form
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of dimension strictly greater than 4 by [14, Theorem X.4.5], hence s(F ) = 4.
Now, choose n = 2 so that min(s(F ) + 1, u(F )) = 5. Let x ∈ K× and consider
the quadratic form ϕ⊥〈−x〉: it is isotropic since it is the Pfister neighbor of
〈〈−1,−1, x〉〉 which is hyperbolic as I3(F ) = 0. As s(F ) = 4, this means that ϕ
is anisotropic over F , hence every x ∈ K× is a sum of at most 4 squares in K.
Now, −1 is a sum of 4 squares and is not a sum of three squares which shows
that p(F ) = 4 < min(s(F ) + 1, u(F )) = 5.

4 The case of Pfister forms

4.1 On the equality of q-level and q-sublevel

In §3 we presented some results concerning the relations between the q-level
and the q-sublevel of a field K. Here we consider a case where these invariants
coincide. For this purpose and for the sequel, it seems also relevant to recall
the notions of multiplicative, round and group forms. Let q be a quadratic form
over K. The form q is said to be:
-multiplicative if q(X) · q(Y ) ∈ DK(X,Y )(q) where X = (x1, · · · , xn) and Y =
(y1, · · · , yn) are sets of independent indeterminates over K and n = dim(q);
-round if DK(q) = GK(q) where GK(q) = {a ∈ K× | a · q ≃ q} is the group of
similarity factors of q;
-a group form if DK(q) is a subgroup of K×.
Any Pfister form is multiplicative and any multiplicative form is a round form
(and a fortiori a group form)1. We now come to the problem of relating the
q-level and the q-sublevel of a field.

Proposition 4.1. Let (V, q) be a quadratic form over K. If q is an anisotropic
group form over K then we have sq(K) = sq(K).

Proof. One may assume that sq(K) = s < +∞. Then, there exists v1, · · · , vs+1 ∈
V \ {0} such that

∑s+1
i=1 q(vi) = 0. As q is anisotropic, we deduce that

s
∑

i=1

q(vi)

q(vn+1)
= −1.

As q is a group form,
q(vi)

q(vn+1)
∈ DK(q) which implies that sq(K) 6 s. The

result now follows from Lemma 3.1 (8).

Remark 4.2. In general, we have sq(K) 6= sq(K) even if q represents 1 (or is

a Pfister neighbor). Take K to be a local field with |K| ≡ 3 mod 4 and let π
be an uniformizer of K. If q = 〈1, π, π〉 then sq(K) = 2 and sq(K) = 1. >From
this example, we easily derive that both values can occur in the assertion (8) of
Lemme 3.1.

1More precisely, the relation between these notions can be made explicit by a characteriza-
tion due to Pfister: an anisotropic quadratic form over K is a Pfister form if and only if it is
multiplicative if and only it is round over any field extension of K if and only if it is a group
form over any field extension of K (see [14, Theorem X.2.8] and [29, Theorem 4.4, p.153]).
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4.2 Values of the q-level: the case of Pfister forms

Proposition 4.3. Let ϕ be a round form over a field K. Then sϕ(K) is either
infinite or a power of two.

Proof. One may assume that s = sϕ(K) <∞. Suppose that 2n 6 s < 2n+1. As
1 ∈ DK(ϕ), it follows that 〈1〉⊥σs,ϕ is a subform of σ2n+1,ϕ. The form σ2n+1,ϕ

is thus isotropic which implies that there exists x ∈ DK(σ2n,ϕ) ∩DK(σ2n,−ϕ).
By the Round Form Theorem due to Witt (see [14, Theorem X.1.14]), the
form σ2n,ϕ is round which implies that −x · x ∈ DK(σ2n,ϕ). We conclude that
−1 ∈ DK(σ2n,ϕ) and sϕ(K) 6 2n hence the result.

Theorem 4.4. If ϕ is a Pfister form over K, then sϕ(K) is a 2-power or
infinite. Moreover Lϕ(K) = {1, 2, · · · , 2i, · · · , sϕ(K)}.

Proof. The direct inclusion follows from Proposition 4.3 together with Lemma
3.1 (3). To prove the converse, first note that the two numbers 1 and sϕ(K)
are respectively attained, as the ϕ-level, over K(ϕ) and K. Let n > 0 be such
that 2n < sϕ(K). For an integer k, put ϕk = σ2k,ϕ. Then ϕk is a Pfister
form for any k. Put K ′ = K(ϕn+1). As 2n < sϕ(K), ϕn is not hyperbolic
over K, the Cassels-Pfister subform Theorem shows that (ϕn)K′ is anisotropic
which implies that sϕ(K

′) > 2n−1. Also sϕ(K
′) is a 2-power by the previous

proposition. Moreover, the form ψn = 〈1〉 ⊥ ϕn is a Pfister neighbor of ϕn+1.
As ϕn+1 is hyperbolic over K ′, ψn is isotropic over K ′ so sϕ(K

′) = 2n, hence
the result.

Remark 4.5. In view of Proposition 4.3, it is natural to ask if the above theorem
is still true when ϕ is only supposed to be a round form. Our impression is that
the answer is less likely to be affirmative as a form that is round over a field K
does not necessarily stay round over L for a field extension L/K and a form that
is not round over K can give rise to a round form by passing to a particular field
extension. To see this, consider the form q = 〈1, 1, 1〉. Then GK(q) = (K×)2

(by using the discriminant) and thus q is round over R. But q is neither round
over Q nor over R(T ) as T 2 + 1 ∈ DR(T )(q) \GR(T )(q).

Corollary 4.6. Let ϕ be a n-fold Pfister form over K and q be a subform of ϕ
such that dim(q) > 2n−1. Then sϕ(K) 6 sq(K) 6 2 sϕ(K).

Proof. If sϕ(K) = +∞, we have sq(K) = +∞ by Lemma 3.1 (2) so suppose that
sϕ(K) < +∞. By Proposition 4.3 we have sϕ(K) = 2r where r is an integer
and we obtain sϕ(K) = 2r 6 sq(K) by Lemma 3.1 (2). If n = 1, q = ϕ and the
result is clear. Suppose n > 2. By the definition of the ϕ-level the quadratic
form 〈1〉 ⊥ σ2r ,ϕ is isotropic. This form is a Pfister neighbor of σ2r+1,ϕ which is
thus hyperbolic. Finally, σ2r+1,q is isotropic being a Pfister neighbor of σ2r+1,ϕ.
Hence −1 is represented by σ2r+1,q and thus sq(K) 6 2r+1 = 2 sϕ(K).

Example 4.7. The upper bound given in Corollary 4.6 is sharp. Let p 6= 2 be
a prime number and K = Qp. If ϕ is the unique 4-dimensional anisotropic form
over K and q is the pure subform of ϕ, we have sq(K) = 2 and sϕ(K) = 1.
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4.3 Behavior under quadratic extensions

We now investigate the behavior of the q-level under quadratic extensions in the
case of Pfister forms.

Lemma 4.8. Let K be a field, (V, ϕ) a Pfister form over K and let L = K(
√
d)

be a quadratic field extension of K. Then we have ℓϕ(−d) 6 2s where s = sϕ(L).

Proof. By hypothesis, there exist 2s vectors v1, w1, · · · , vs, ws in V such that

−1 = ϕ(v1 ⊗ 1 + w1 ⊗
√
d) + · · ·+ ϕ(vs ⊗ 1 + ws ⊗

√
d). (1)

Denote by bϕ the bilinear form associated to ϕ. Then for v, w ∈ V we have

ϕ(v⊗1+w⊗
√
d) = ϕ(v)+dϕ(w)+2bϕ(v, w)

√
d. >From equation (1) we obtain

the following equation

−1 = (ϕ(v1) + · · ·+ ϕ(vs)) + d(ϕ(w1) + · · ·+ dϕ(ws)), (2)

Thus −d(ϕ(w1) + · · ·+ ϕ(ws))
2 is equal to

(ϕ(v1) + · · ·+ ϕ(vs))(ϕ(w1) + · · ·+ ϕ(ws)) + (ϕ(w1) + · · ·+ ϕ(ws)). (3)

As σs,ϕ is a Pfister form, it is multiplicative, hence the first term of the expres-
sion (3) is represented by σs,ϕ. The expression (3) can therefore be represented
by the form σ2s,ϕ, hence the result.

Example 4.9. Note that the bound obtained in the previous lemma is optimal.
Take K = Q, d = −3 and L = Q(

√
d) = Q(

√
−3). Let ϕ = 〈1, 1〉. As −1 =

(1+
√
−3

2 )2+(1−
√
−3

2 )2, the element −1 is represented by ϕ, hence sϕ(L) = 1. As
−d = 3 is represented by σ2,ϕ but it is not represented by ϕ we have ℓϕ(3) = 2.

Proposition 4.10. Let ϕ be a Pfister form over a field K. Let d ∈ K be an
element such that ℓϕ(−d) = n. If L = K(

√
d), we have sϕ(L) = 2k or 2k−1

where k is determined by 2k 6 n < 2k+1.

Proof. As ℓϕ(−d) = n, there exist vectors v1, · · · , vn such that −d = ϕ(v1) +
· · ·+ ϕ(vn). We thus have

−1 = ϕ(v1 ⊗
1√
d
) + · · ·+ ϕ(vn ⊗ 1√

d
),

so sϕ(L) 6 n and sϕ(L) 6 2k by Proposition 4.3. It suffices to prove that the
case sϕ(L) 6 2k−2 cannot occur. If sϕ(L) 6 2k−2 the previous lemma implies
that ℓϕ(−d) 6 2k−1 < n, which is a contradiction.

Remark 4.11. In Proposition 4.10, if ϕ = 〈1〉 the possibility sϕ(K) = 2k−1 is
ruled out, see [29, Ch. 4, Thm. 4.3] or [15, Prop. 3.3]. In general, both values 2k

and 2k−1 can happen as we now show. For instance, by taking K = Q, d = −3
and ϕ = 〈1, 1〉 we obtain n = ℓϕ(3) = 2 and so k = 1. In this case sϕ(L) = 1 =
2k−1. Now take d = −1 and ϕ = 〈1〉. We obtain n = ℓϕ(1) = ℓ(1) = 1 and so
k = 0. In this case we have sϕ(L) = s(Q(i)) = 1 = 2k.
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4.4 Values represented by a Pfister form

Recall that if ϕ is a Pfister form over K, the set DK(ϕ) of non-zero values
represented by ϕ is a subgroup ofK×. We first state some useful facts concerning
sϕ(K) and pϕ(K). The proof is adapted from [24, Satz 18].

Proposition 4.12. Let (V, ϕ) be a Pfister form over K with sϕ(K) < +∞.
Then:
(1) For every a ∈ K, there exists an integer n such that a ∈ DK(σn,ϕ).
(2) We have pϕ(K) ∈ {sϕ(K), sϕ(K) + 1}.
(3) If t = pϕ(K) then DK(σt,ϕ) = K×.
(4) If K is non formally real and sϕ(K) < pϕ(K) then 2 sϕ(K) dim(ϕ) 6 u(K).

Proof. In the proof, we will use the notations s = sϕ(K) and p = pϕ(K).
(1) Note that a = (a+1

2 )2 + (−1)(a−1
2 )2 and that the Pfister form σs,ϕ rep-

resents −1. As Pfister forms are multiplicative (see [14, Theorem X.2.8]), σs,ϕ
represents (−1)(a−1

2 )2, hence σs+1,ϕ represents (a+1
2 )2 + (−1)(a−1

2 )2 = a.
(2) comes from the fact that s = ℓϕ(−1) 6 p and from (1) as σs+1,ϕ is

universal and (3) is a consequence of (1).
(4) One may assume that u(K) < +∞. As s < p, the quadratic form σs,ϕ

is not universal (otherwise, we would have s = p). So there exists an element
−a ∈ K× which is not represented by this form. Define ψ = 〈1, a〉 ⊗ σs,ϕ. We
claim that ψ is anisotropic. If it is isotropic, as σs,ϕ is anisotropic, there exist
elements b, c ∈ K× both represented by σs,ϕ such that b = −ac. As σs,ϕ is
multiplicative, it represents bc hence −a which is a contradiction. The form ψ
is thus anisotropic with dimension 2s× dim(ϕ), hence the result.

Remark 4.13. If K = Q, q = 〈−5〉 then by subsection 3.4, sq(K) = 2 and
pq(K) = 4 (as ℓq(−35) = 4, p(Q) = 4 and DQ(σn,q) = −5Q+ if n > 4). Hence
statements (1), (2), (3) in Proposition 4.12 are not valid if ϕ is not a Pfister
form. Consider a field F with u(F ) = s(F ) = 4 (given by the construction in
§3.4.3 for example) and take q = 〈−1,−1,−1〉. Then sq(F ) = 1, pq(F ) = 2 (as
q does not represent 1 but σ2,q is universal) and 2 sq(F ) dim(q) > u(F ) = 4,
hence statement (4) is also false in general.

Theorem 4.14. Let ϕ be a Pfister form over a field K whose ϕ-level is 2n.
Then |K×/DK(ϕ)| > 2n(n+1)/2.

Proof. To prove this result, we adapt Pfister’s proof of the fact that |K×/K×2 | >
2n(n+1)/2 whenever s(K) = 2n. In the sequel, we set Gj := DK(σj,ϕ) ⊂ K× for
any integer j and write s for sϕ(K). We have:

− 1 = ϕ(e1) + · · ·+ ϕ(es) (4)

Note that the conclusion is clear if n = 0 and is true if n = 1 (in this case,
−1 /∈ DK(ϕ), hence |K×/DK(ϕ)| > 2). One may assume that n > 2. Let
j = 2i where 0 6 i < n. We claim that the elements a1 = ϕ(e1) + · · ·+ ϕ(e2j),
a2 = ϕ(e2j+1)+ · · ·+ϕ(e4j), · · · are pairwise non congruent modulo Gj . Indeed,
if we would have ϕ(e2j+1)+ · · ·+ϕ(e4j) = c(ϕ(e1)+ · · ·+ϕ(e2j)) for some c ∈ Gj

then we would obtain ϕ(e1) + · · ·+ϕ(e4j) = (1+ c)(ϕ(e1) + · · ·+ϕ(e2j)) ∈ G2j

which would contradict the minimality of s in (4), hence the claim.
The elements a1, a2, · · · are not in Gj (otherwise, this would also contradict

the minimality in (4)), hence there are at least 1+ s
2j = 1+ 2n−i−1 elements in
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G2j/Gj (the n
2j elements ai together with the element 1). Now, G2j/Gj injects in

K×/DK(ϕ). If G2j/Gj has infinite order, there is nothing to prove. Otherwise,
G2j/Gj is a 2-group and what we have done above shows that [G2j : Gj ] > 2n−i.
We have the following sequence of inclusions

DK(ϕ) = G1 ⊂ G2 ⊂ · · · ⊂ G2n−1 ⊂ G2n ⊂ K×.

We thus obtain |K×/DK(ϕ)| > |G2n/G1| and

|G2n/G1| = |G2n/G2n−1 | × · · · × |G2/G1| >
n−1
∏

i=0

2n−i = 2
n(n+1)

2 .

Remarks 4.15. (1) The lower bound indicated in Theorem 4.14 is attained as
we see by taking K = Qp, p 6= 2 and ϕ the unique 4-dimensional anisotropic
form over K since |K×/DK(ϕ)| = 1 and sϕ(K) = 1.
(2) For a field K of level 2n, we have already pointed out that the lower bound

| K×

K×2 | > 2n(n+1)/2 is best possible for n 6 2. For higher n, however, a result

due to D. Z. Djoković and refined by D. B. Leep shows that | K×

K×2 | > 22
n+2−n,

see [5] and [1, Remark 5.2]. In the case where n = 3 and n = 4, this bound
has in turn been refined by K. J. Becher: if s(K) = 8 (resp. s(K) = 16) then

| K×

K×2 | > 512 (resp. 215) (see [1, Theorem 5.3]).

Corollary 4.16. Let K be a field with level 2n and t = 2m > 0. Consider the
subgroup G = {a21 + · · · + a2t 6= 0 | ai ∈ K} ⊂ K×. If t > s(K) then we have
G = K×. If t 6 s(K) then we have |K×/G| > 2k(k+1)/2 where k = n−m.

Proof. Consider the Pfister form ϕ = σt. We have G = DK(ϕ). If t > s(K),
ϕ is isotropic, hence G = K×. If t 6 s(K) then by Lemma 3.1 (5), we have

sϕ(K) =
⌈

s(K)
t

⌉

= 2n−m = 2k and the result follows from Theorem 4.14.

Corollary 4.17. Let L = K(
√
d) be a quadratic extension of K where d ∈

K× \K×2

and ϕ = 〈1,−d〉. If sϕ(K) = 2n then |K×/NL/K(L×)| > 2n(n+1)/2.

Proof. As NL/K(L×) = DK(ϕ), the result follows from Theorem 4.14.

Remark 4.18. It is relevant to mention the following formula obtained by D.
W. Lewis in [16, Cor. after Prop. 3]: if L/K is a quadratic field extension,

|L×/L×2||K×/NL/K(L×)| = 1

2
|K×/K×2|2.

The below result has first been proved by A. Pfister for the form ϕ = 〈1〉 in
[23]. Our reformulation is taken from [1].

Proposition 4.19. Let ϕ be a Pfister form over a field K.
(1) For every x, y ∈ K× we have ℓϕ(xy) 6 ℓϕ(x) + ℓϕ(y)− 1.
(2) For every x ∈ K× we have sϕ(K) 6 ℓϕ(x) + ℓϕ(−x)− 1.

Proof. First note that (2) is a consequence of (1) as sϕ(K) = ℓϕ(−x2). Pfister’s
original proof of (1) in the case ϕ = 〈1〉 can be used more or less verbatim to
prove (1) in general so this proof is left to the reader.
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Remark 4.20. The two bounds given in the previous proposition are sharp for
any Pfister form ϕ: choose x = 1, y = −1 so that ℓϕ(1) = 1 and ℓϕ(−1) = sϕ(K).

The first inequality does not hold in general. In the formally real case, choose
ϕ = 〈−1〉 and x = y = −1: then ℓϕ(−1) = 1 but ℓϕ((−1)× (−1)) = +∞. In the
non formally real case, take K = Qp (p odd) and choose x = u where u is a unit

such that u /∈ K
2

and y = π where π is a uniformizer. Choose ϕ = 〈u, π〉 over
K. Then ℓϕ(u) = ℓϕ(π) = 1. Now ℓϕ(uπ) = 1 if and only if the quadratic form
〈−u,−π, uπ〉 is isotropic. As this latter form is a Pfister neighbor of 〈〈u, π〉〉
which is anisotropic, it follows that ℓϕ(uπ) = 2 > ℓϕ(u) + ℓϕ(π) − 1 = 1.

4.5 Pythagoras q-number and field extensions

If (V, ϕ) is a Pfister form over a fieldK then for every x, y ∈ V there exists z ∈ V
such that ϕ(x) · ϕ(y) = ϕ(z). As Pfister observed, z can be chosen in such a
way that its first component is of the form bϕ(x, y) where bϕ is the bilinear form
associated to ϕ, see [26, Ch. 2, Cor. 2.3] or [25, Satz 1]. For the case where ϕ =
σ2r (r > 0), this implies in particular that for every x1, · · · , x2r , y1, · · · , y2r ∈ K
there exists an identity like

(x21 + · · ·+ x22r ) · (y21 + · · ·+ y22r) = (x1y1 + · · ·+ x2ry2r)
2 + z22 + · · ·+ z22r ,

where z2, · · · , z2r are suitable elements of K.
The following result was proved for the form ϕ = 〈1〉 in [26, Ch. 7, 1.12].

Proposition 4.21. Let (V, ϕ) be a Pfister form over a field K. Suppose that
sϕ(K) = +∞. Let f(x) ∈ K[x] be such that ℓϕ|K(x)

(f(x)) < +∞. Then
deg(f(x)) = 2n is even and ℓϕ|K(x)

(f(x)) 6 pϕ(K)(n+ 1).

Proof. If pϕ(K) = +∞ the result is trivial. Assume now that pϕ(K) < +∞ and
consider the smallest positive integer m such that f(x) is represented by σm,ϕ

over K(x). Using the first representation Theorem of Cassels-Pfister (see [14,
Theorem IX.1.3]) we obtain that f(x) is represented by σm,ϕ over K[x]. This
implies that the degree of f(x) can not be odd, otherwise σm,ϕ would be isotropic
over K which contradicts the hypothesis sϕ(K) = +∞. So the degree of f(x)
is even and we may suppose that deg(f(x)) = 2n. We proceed by induction on
n. If n = 0, then f(x) = c ∈ K is a constant polynomial. As f(x) = c is a
represented by σm,ϕ over K(x), it is represented by σm,ϕ over K by Substitution
Principle (see [26, Ch. 1, 3.1]). It follows that ℓK(x)(f(x)) 6 pϕ(K), hence
the result. Suppose now that n > 1. Take f(x) = a2nx

2n + · · · + a0 where
a2n, · · · , a0 ∈ K. As f(x) is represented by σm,ϕ over K(x) it follows that a2n

is represented by σm,ϕ over K. Thus the polynomial f(x)
a2n

is also represented by

σm,ϕ over K[x]. Let k be a positive integer such that m 6 2k. The polynomial
f(x)
a2n

is also represented by σ2k,ϕ. It follows that

f(x)

a2n
= g1(x) + · · ·+ g2k(x) (5)

where the polynomials g1(x), · · · , g2k(x) are represented by the form ϕ over
K[x]. Let v1(x), · · · , v2k(x) ∈ V [x] be the elements such that ϕ(vi(x)) = gi(x)
for every i = 1, · · · , 2k. By comparing the leading coefficients of the equation
(5) we obtain a relation

1 = b1 + · · ·+ b2k (6)

18



where b1, · · · , b2k ∈ K are represented by ϕ. Let w1, · · · , w2k ∈ V be the
elements such that ϕ(wi) = bi for every i = 1, · · · , 2k. By multiplying the
relations of the equations (5) and (6) and taking into account the preliminary
observation before the statement of this result we obtain:

f(x)

a2n
= s(x) + r(x) (7)

where s(x) = (bϕ(v1(x), w1)+ · · ·+ bϕ(v2k(x), w2k ))
2 and r(x) is represented by

σm,ϕ over K[x]. Note that s(x) is a monic polynomial with the same degree as
f(x). It follows that r(x) is a polynomial whose degree satisfies deg(r(x)) < 2n.
As r(x) is represented by σm,ϕ, the degree of r(x) should be even, other-
wise σm,ϕ would be isotropic over K which is a contradiction. We then have
deg(r(x)) 6 2n− 2. The relation (7) implies that f(x) = a2n s(x)+ a2nr(x). As
a2n is represented by σm,ϕ overK, a2nr(x) is also represented by σm,ϕ overK[x].
By the induction hypothesis we obtain ℓϕ|K[x](a2nr(x)) 6 pϕ(K)(n). We obvi-
ously have ℓϕ|K[x](a2n s(x)) = ℓϕ(a2n) 6 pϕ(K). We so obtain ℓϕ|K[x]

(f(x)) 6
pϕ(K)(n) + pϕ(K) = pϕ(K)(n+ 1).

Proposition 4.22. (1) (Pfister) Let K be a real field and let L/K be a field
extension of finite degree. Then p(L) 6 p(K)[L : K].
(2) Let L/K be a field extension of finite degree. Let ϕ be a Pfister form over
K. Suppose that sϕ(K) < +∞. Then pϕ(L) 6 pϕ(K)[L : K].

Proof. The statement (1) is proved in [26, Ch. 7, 1.13]. It is clear that (1) is
a particular case of (2) by taking ϕ = 〈1〉. To prove (2), it suffices to prove
the result for the case where L = K(α) is a simple extension. Let V be the
underlying vector space of ϕ. Suppose that [L : K] = n. If pϕ(K) = +∞ the
conclusion is trivial. Assume that pϕ(K) < +∞. Let β ∈ L be an element such
that r := ℓϕ|L(β) < +∞. In order to prove the result we have to show that
r 6 pϕ(K)[L : K]. Every element of the vector space V ⊗K L can be written as
v0⊗1+v1⊗α+· · ·+vn−1⊗αn−1 where vi ∈ V for every i = 1, · · · , n. There exist
w1, · · · , wr ∈ V ⊗L such that β = ϕ(w1)+ · · ·+ϕ(wr). Let wj =

∑n−1
i=0 vij ⊗ αi

where vij ∈ V and j = 1, · · · , r. Put wj(x) =
∑n−1

i=0 vij ⊗ xi ∈ V [x] = V ⊗K

K[x]. We so have wj = wj(α) for every j = 1, · · · , r. Consider the polynomial
f(x) = ϕ(w1(x)) + · · · + ϕ(wr(x)). The degree of f(x) is even and satisfies
deg(f(x)) 6 2(n−1). According to Proposition 4.21, we have ℓϕ|K[x]

6 pϕ(K)n.
By substituting x := α, we obtain ℓϕ(β) 6 pϕ(K)n.

Remark 4.23. Note that Proposition 4.12, Theorem 4.14 and Proposition 4.19
stay true if we only suppose that the considered form is round but it seems
that Theorem 4.4, Lemma 4.8 and Proposition 4.10 are not true under this
weaker hypothesis (as the class of round forms is not stable by field extension,
see Remark 4.5) although we do not have any counterexample. Finally, we do
not know if Proposition 4.21 and Proposition 4.22 are true for round forms.

5 Some results on the finiteness of the q-level

5.1 The case of Pfister forms

The purpose of this subsection is to characterize the finiteness of the q-level
of a Pfister form q in terms of usual notions in quadratic form theory. In the
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following result, we denote ΣqK = ΣqK
• ∪ {0}.

Proposition 5.1. Let q be a Pfister form over a formally real field K. Then
the following are equivalent:
(1) sq(K) = +∞.
(2) ΣqK is a preordering of K.
(3) There exists an ordering P of K containing the preordering ΣqK.
(4) sq(K) = +∞.
(5) q is not torsion.
(6) There exists an ordering P of K for which sgnP (q) = dim(q).

Proof. First note that we easily have (3) ⇒ (2) ⇒ (1) (as a preordering does not
contain −1) and (1) ⇐⇒ (4) by Proposition 4.1. Note also that (5) ⇐⇒ (6)
by Pfister’s local global principle and the fact that the signature of a Pfister
form q at any ordering is 0 or dim(q).

Suppose now that (1) holds. Then −1 /∈ ΣqK, ΣqK + ΣqK ⊂ ΣqK and
ΣqK · ΣqK ⊂ ΣqK as q is multiplicative. As q represents 1, we also have
ΣK ⊂ ΣqK which implies (2).

If (2) holds then there exists a maximal preordering P containing ΣqK by
Zorn’s lemma. A usual argument then shows that P is in fact an ordering of K
(that is P ∪ −P = K and P ∩−P = {0}) and (3) follows.

If q is torsion then there exists an integer l for which σ2l,q is hyperbolic,
hence sq(K) 6 2l and (1) ⇒ (5) holds. Suppose that sq(K) < +∞ and let m

be such that σm,q is isotropic. Take k such that 2k > m. Then 〈1〉 ⊥ σ2k,q is
isotropic and is a Pfister neighbor of σ2k+1,q which is thus hyperbolic and q is
torsion which shows that (5) ⇒ (4) and concludes the proof.

Remarks 5.2. (1) When q is a Pfister form, Proposition 4.12 (1) shows that
ΣqK = K if and only if sq(K) < +∞.
(2) The equivalences (1) ⇐⇒ (2) ⇐⇒ (3) in the above proposition generalizes
Artin-Schreier’s Theorem which says that s(K) is infinite if and only if ΣK is a
preordering of K if and only if K has an ordering.

5.2 The general case

Lemma 5.3. Let q be a quadratic form over a formally real field K. If there
exists an ordering P of K such that sgnP (q) = dim(q), then sq(K) is infinite.

Proof. In fact the condition sgnP (q) = dim(q) implies that q is positive definite
with respect to P , thus for every positive integer n, the form σn,q is also positive
definite and it does not represent −1.

Remark 5.4. If K = R((X))((Y )) and q = 〈X,Y,−XY 〉 then using a theorem
due to T. A. Springer (see [29, Ch. 6, 2.6]), sq(K) is infinite. On the other
hand for any ordering P of K, the signature is never 3, so the converse of 5.3
does not hold in general (although it holds for Pfister form by Proposition 5.1).
Nonetheless, in the case where dim q = 1 or 2, or over number fields, the converse
is true as the following propositions show.

Proposition 5.5. Let K be a number field and let q be a quadratic form over
K. Then sq(K) is infinite if and only if there exists an ordering P of K such
that sgnP (q) = dim(q).
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Proof. Regarding to Lemma 5.3, it is enough to show that if sq(K) is infinite,
then there exists an ordering P of K such that sgnP (q) = dim(q). If it is
not the case, then for every ordering P of K we have sgnP (q) < dim(q). Put
ϕ := 〈1〉 ⊥ σ4,q, we have sgnP (ϕ) < 1 + 4 dim(q). Furthermore, as ϕ is
not negative definite, we have sgnP (ϕ) > − dim(ϕ). The form ϕ is therefore a
totally indefinite form of dimension > 5 and it is isotropic by Hasse-Minkowski
theorem. Thus sq(K) 6 4, which yields a contradiction.

Proposition 5.6. (1) Consider the one-dimensional quadratic form q = 〈a〉
over a field K. Then sq(K) is infinite if and only if there exists an ordering P
of K such that sgnP (〈a〉) = 1.
(2) Consider the two-dimensional quadratic form q = 〈a, b〉 over a field K.
Then sq(K) is infinite if and only if there exists an ordering P of K such that
sgnP (q) = 2.

Proof. (1) In fact sq(K) is infinite if and only if −a is not a sum of squares if
and only if −a is not totally positive.

(2) If the conclusion does not hold then for every ordering P of K we have
sgnP (q) = 0 or sgnP (q) = −2, which means that the elements a and b are either
both negative or one of them is positive and the other one is negative. In both
cases the signature of the form 〈1, a, b, ab〉 with respect to P is zero. Pfister’s
local-global principle so implies that there exists a positive integer n such that
n×〈1, a, b, ab〉 is hyperbolic. We then obtain n×〈a, b〉 ≃ n×〈−1,−ab〉. The form
n×〈a, b〉 therefore represents −1, so sq(K) 6 n which yields a contradiction.

Recall that a quadratic form q over K is called weakly isotropic (resp. weakly
hyperbolic) when there exists a positive integer m such that σm,q is isotropic
(resp. hyperbolic). Of course, a form is weakly isotropic if and only if sq(K) <
+∞.

Corollary 5.7. Let q be a quadratic form over a field K such that ϕ = 〈1〉 ⊥ q
is weakly isotropic, then sq(K) <∞.

Proof. As ϕ is weakly isotropic, there exists a positive integer n such that σn,ϕ
is isotropic. There exists so an element a ∈ K× which is simultaneously repre-
sented by σn and σn,−q. The form σn,q represents therefore the totally negative
element −a. Lemma 3.1 (3) implies that sn×q(K) 6 s〈−a〉(K). Proposition 5.6
(1), implies that s〈−a〉(K) <∞. Lemma 3.1 (5) concludes the proof.

Remark 5.8. Recall that a field K satisfies the Strong Approximation Prop-
erty (SAP) if for any disjoint closed subsets A and B of the space ordering of
K (endowed with the Harrison topology), there exists a ∈ K× such that a is
positive (resp. negative) with respect to every ordering in A (resp. B). This
notion was introduced by M. Knebusch, A. Rosenberg and R. Ware [11]. A
characterization of the fields for which every totally indefinite form is weakly
isotropic was given by A. Prestel [28]. It turned out that these are exactly the
SAP-fields or equivalently the fields for which every quadratic form of the shape
〈1, a, b,−ab〉 is weakly isotropic. Formally real number fields and more gener-
ally every formally real algebraic extension of Q, every formally real algebraic
extension of R(X) and Q((t)) are examples of SAP-fields.

In the following result we characterize the fields for which the converse of
Lemma 5.3 holds.
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Theorem 5.9. Let K be a formally real field. The fields K for which for
every quadratic form q the relation sq(K) = ∞ would imply the existence of an
ordering P of K such that sgnP (q) = dim(q) are exactly the fields for which the
strong approximation property holds.

Proof. First suppose that K is a SAP-field. Let q be a quadratic form over
K with sq(K) = ∞. If there is no ordering P of K such that sgnP (q) =
dim(q), then q is not totally positive. It follows that the form ϕ = 〈1〉 ⊥ q
is totally indefinite. By Prestel’s theorem [28, Satz. 3.1], ϕ is weakly isotropic
and Corollary 5.7 yields a contradiction.

Conversely suppose that for every quadratic form q the relation sq(K) =
∞ implies that there exists an ordering P of K such that sgnP (q) = dim(q).
In order to prove that K is a SAP-field, it is enough to show that the form
〈1, a, b,−ab〉 is weakly isotropic. Consider the form q = 〈a, b,−ab〉. For any
ordering P of K, the elements a, b and −ab can not be simultaneously positive
with respect to P . It follows that there is no ordering P for which sgnP (q) =
dim(q), thus sq(K) < ∞. There exists so a positive integer n such that 〈1〉 ⊥
σn,q is isotropic. It follows that n× 〈1, a, b,−ab〉 is isotropic as well.

Lemma 5.10. Let K be a formally real field and let q be an n-dimensional
quadratic form over K. Then the following statement are equivalent:
(1) For any ordering P of K on has sgnP (q) 6 2− dim(q).
(2) The form ψ := n(n− 2)×〈1〉 ⊥ (2n− 2)× q ⊥ q⊗ q is weakly hyperbolic.

Proof. It is easy to verify that sgnP (ψ) = 0 if and only if sgnP (q) 6 2− dim(q).
The conclusion then follows from Pfister’s local-global principle.

Proposition 5.11. Let K be a formally real field and let q be a quadratic form
of dimension n > 2 over K. If for every ordering P of K on has sgnP (q) 6

2− dim(q) then sq(K) <∞.

Proof. Put ϕ1 := (2n− 2)× q and ϕ2 := n(n− 2)× 〈1〉 ⊥ q ⊗ q. According to
5.10, the form ϕ1 ⊥ ϕ2 is weakly hyperbolic. There exists so a positive integer
m such that m × (ϕ1 ⊥ ϕ2) is hyperbolic. As dim(ϕ1) = dim(ϕ2), we obtain
σm,ϕ1 ≃ σm,−ϕ2 , therefore m(2n − 2) × q ≃ m × 〈−1, · · · 〉, this implies that
sq(K) 6 m(2n− 2).

6 Some related questions

Our first question concerns the converse of Corollary 3.14.

Question 6.1. Let q be a quadratic form of dimension 1 or 2 (resp. 3) such
that sq(K) = +∞. Are all the elements of the set Lq(K) of the form 2k (resp.

of the form 22k+2
3 or 22k+1+1

3 ) where k ∈ N ?

The assertion of Proposition 4.1 gives a sufficient condition for the q-level and
the q-sublevel to coincide. This leads us to pose the following:

Question 6.2. Is it possible to characterize the quadratic forms q for which
sq(K) = sq(K) ?

In the following question, we ask whether or not Proposition 4.3 is best possible
in some sense.
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Question 6.3. Is it possible to find an example of a group form q such that
sq(K) is not a 2-power ?

Finally, in relation with Proposition 5.11, it would be interesting to know an
answer to the following:

Question 6.4. Characterize all fields K such that the infiniteness of sq(K) for
every q is equivalent to the existence of an ordering P of K with sgnP (q) >
2− dim(q).
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