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Abstract. This paper gives a new upper bound for the essential dimension and the
essential 2-dimension of the split simply connected group of type E7 over a field of
characteristic not 2 or 3. In particular, ed(E7) ≤ 29, and ed(E7; 2) ≤ 27.

The essential dimension of an algebraic group G is a numerical invariant which
measures the complexity of its G-torsors. The essential dimensions of the exceptional
algebraic groups remain largely open (see [Re10] for a recent survey). For example,
even if the base field is the complex numbers we only know that 9 ≤ ed(E8) ≤ 231
([CS06], [Le04]).

We will say that a G-variety X is generically free if there is an open subset U ⊂ X(k̄)
on which G(k̄) acts with trivial stabilizers, where k̄ is an algebraic closure of the
base field k. We will define the essential dimension of G to be the minimum value
of dim(X) − dim(G), where X is a generically free G-variety and there exists a G-
equivariant dominant map V 99K X (also called a compression), such that V is a
generically free linear representation of G.

We assume throughout this paper that the characteristic of the base field k is not 2.
Let En denote the split simply connected group of that type. We have the lower bound
7 ≤ ed(E7) from [CS06] (for characteristic zero, see [RY00]), and over the complex
numbers, we know that three copies of E7’s faithful 56 dimensional representation V56

is generically free [Po86, 13], and so is V56 × P(V56) × P(V56). Therefore ed(E7) ≤
(56+ 55+55)− 133 = 33, which is the best known upper bound. In this paper we will
improve this bound, and only assume the base field has characteristic not 2 or 3.

For a prime p, we are also interested in the “localized” notion of essential p-dimension,
which is often easier to compute. For primes p not equal to 2 or 3, we know ed(E7; p) =
0. Also, ed(E7; 3) = 3 ([GR09] or [Ga09]). For p = 2 we have 7 ≤ ed(E7; 2) ≤ 33
([RY00], [CS06], [Mac11]). In this paper we improve the upper bound.

We will take the subgroup E6 ⋊ µ4 ⊂ E7 as defined in [Ga01, 3.5]. For every field
extension l/k, inclusion induces a surjectionH1(l, E6⋊µ4) → H1(l, E7) (see also [Ga09,
12.13]); in other words, we can reduce the structure of E7-torsors. In particular, this
implies

ed(E7) ≤ ed(E6 ⋊ µ4) and ed(E7; 2) ≤ ed(E6 ⋊ µ4; 2).

The new upper bounds will be achieved by using these inequalities. As always, we have
ed(E7; 2) ≤ ed(E7), but we do not know if this inequality is strict.

Consider E7’s fundamental faithful representation of dimension 56 (also known as
its minuscule representation). As an E6 representation it decomposes as k⊕k⊕V ⊕V ∗,
where V and V ∗ are E6’s two fundamental representations of dimension 27 (also known
as its minuscule representations), and k denotes a one-dimensional trivial representa-
tion. Let w ∈ µ4 be defined as in [Ga01, 3.5], sending an element (α1, α2, v1, v2) to
(iα2, iα1, iv2, iv1), where i is a square root of −1. Conjugation by w is an outer auto-
morphism of E6, it preserves a split maximal torus T ⊂ E6, and it fixes a subgroup
isomorphic to F4 [Ga01, 2.4 and 3.5]. So V ⊕V ∗ is faithful and irreducible as an E6⋊µ4

representation, and also as an NE6
(T ) ⋊ µ4 representation. Also notice that w2 is in
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the centre of E7. We will denote the set of T -weights of V ⊕ V ∗ as Λ, which consists
of all weights in T̂ of length 4/3.

1. Essential dimension

Definition 1.1. [PV89, 7] Let k be an algebraically closed field, and let G be an
algebraic group acting on an irreducible variety X over k. We say that H ⊂ G is a
stabilizer in general position (SGP) if there is a dense open subset U ⊂ X such that
StabG(x) is conjugate to H for every x ∈ U .

Lemma 1.2 (Popov). Let X and Y be irreducible G-varieties. Assume H1 is an SGP
for the G actions on X, and H2 is an SGP for the H1 action on Y . Then H2 is an
SGP for the G action on X × Y .

Proof. Assume StabG(x) = g−1H1g and StabH1
(y) = h−1H2h. Then StabG(x, y) =

StabStabG(x)(y) = Stabg−1H1g(y) = gh1H2hg
−1. �

There is a series of subgroups as follows.

{1} ⊂ SL2 ⊂ SL3 ⊂ G2 ⊂ Spin7 ⊂ Spin8 ⊂ F4 ⊂ E6 ⊂ E7.

We will abuse notation slightly and use the above symbols to refer to specific subgroups
of these types, as described in the proofs of Propositions 1.3 and 1.4.

Several of the results in the following two propositions may be found in [Bo11, 1.5]
for the complex numbers, and the arguments there are analogous to the ones used here.
For the rest of this section we will assume the characteristic of k is not 2 or 3.

Proposition 1.3. Assume that k = k̄.

(1) F4 is an SGP of the E6 action on V ,
(2) Spin8 is an SGP of the F4 action on V (or V ∗),
(3) Spin8 is an SGP of the E6 ⋊ µ4 action on V ⊕ V ∗,
(4) Spin8×µ6 is an SGP of the E6 ⋊ µ4 action on P(V ⊕ V ∗).

Proof. Recall the E6 ⋊µ4 action on the 54 dimensional faithful representation V ⊕ V ∗

described above. As in [Ga01, 3.5], each of V and V ∗ come equipped with isomorphic
Jordan algebra structures, which include a cubic form called the norm. E6 preserves
both of those cubic forms, but as E6 representations V and V ∗ are not isomorphic.
The subgroup of E6 which fixes the identity element e in V (equivalently, in V ∗), is
the automorphism group of the Jordan algebra structure, and is of type F4 (see also
[SV00, 5.9.4 and Section 7]). The subgroup of F4 which fixes a chosen triple (e1, e2, e3)
of pairwise orthogonal primitive idempotents in V , is isomorphic to Spin8 [Ja68, p.378].

(1) Two elements with non-zero norms in V are in the same E6-orbit iff their norms
are equal ([Ja68, Chap. IX.6, exer. 6], or [SV00, Proof of Thm. 7.3.2]).

(2) The subgroup F4 ⊂ E6 is the group of automorphisms of the Jordan algebra
structure on V (which is the same as that on V ∗). By Jacobson [Ja68, p.381], any
element can be “diagonalized”, in other words, the F4-orbit of any element non-trivially
intersects the subspace spanned by e1, e2, and e3. If y is in that subspace and its ei
coefficients are all distinct (an open condition), then StabF4

(w) ∼= Spin8.
(3) We have e ∈ V , and choose y ∈ V ∗ as above, such that the norm of y is not a

fourth root of unity. Then (e, y) can be considered to be in general position; by Lemma
1.2, we see that Spin8 is the SGP of E6 on V ⊕V ∗. For any g ∈ E6, and i = 1, 2, 3, the
assumption on the norm of y, together with the fact that E6 is norm preserving, tells
us that gwi(e, y) 6= (e, y). The result follows.
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(4) For e and y as above, consider the element [e, y] ∈ P(V ⊕ V ∗). Notice that
StabF4

([e, y]) ⊂ NF4
(StabF4

(e, y)) = Spin8 ⋊S3. Here the symmetric group S3 per-
mutes the diagonal coefficients of ei in the Jordan algebra V (and V ∗). Since the ei
coefficients of y are distinct, we see StabF4

([e, y]) = Spin8. Also StabE6
([e]) = F4 × µ3

[Ga01, 3.4] (see also [Ga09, 9.12]), so StabE6
([e, y]) = Spin8×µ3. Finally, if g ∈ E6 such

that gw fixes [e, y], then y would have to be a scalar multiple of e, which is not the
case. Therefore StabE6⋊µ4

([e, y]) = Spin8×µ6, where µ6 is the product of the centres
of E6 and E7. �

Spin8 has three inequivalent 8 dimensional irreducible representations. We will choose
one and call it the vector representation, and denote it by Σ. Then the other two,
O

+,O−, will be called the half-spin representations. Also, O will denote the 8 dimen-
sional spin representation of Spin7.

Proposition 1.4. Assume k = k̄.

(1) Spin7 is an SGP of the Spin8 action on Σ,
(2) G2 is an SGP of the Spin7 action on O,
(3) SL3 is an SGP of the G2 action on O,
(4) SL2 is an SGP of the SL3 action on O,
(5) SL2 acts generically freely on O.

Proof. (1) The stabilizer of a point with non-zero norm in the vector representation is
a subgroup of Spin8 isomorphic to Spin7. This is the copy of Spin7 ⊂ Spin8 that we
will use below.

(2) As Spin7 representations,O
+ andO

− are isomorphic to O. The claim follows from
[Ig70, Prop. 4]; here G2 is the automorphism group of an octonion algebra structure
on O.

(3) As G2 representations, Σ and O are isomorphic. In the 7-dimensional space of
elements orthogonal to the identity (also called pure octonions), G2 acts transitively on
norm one elements, and the stabilizer of such an element x1 is SL3 (see also [KMRT,
§36 Exer. 6]).

(4) SL3 acts transitively on norm one elements orthogonal to both the identity and
x1. The stabilizer of such an element x2 is SL2 (see also [KMRT, §36 Exer. 7]).

(5) SL2 acts transitively on norm one elements orthogonal to all of 1, x1, x2, and
x1x2. The stabilizer of such an element x3 is trivial, because an automorphism of the
octonions is determined by its action on the “basic triple” (x1, x2, x3), and therefore
SL2 acts generically freely on O. �

Remark 1.5. As noted in [Ig70, Prop. 1], if H is an SGP of Spin8 acting on the
half-spin representation O

+, then H is isomorphic (but not conjugate) to Spin7 by
a triality automorphism. And the Spin8 representation Σ restricted to H is the spin
representation (rather than the vector Spin7-representation).

Theorem 1.6. ed(E7) ≤ 29.

Proof. From the introduction, we know that ed(E7) ≤ ed(E6 ⋊ µ4). Consider the
rational map

(V ⊕ V ∗)2 99K W := V ⊕ V ∗ × P(V ⊕ V ∗).

It is dominant and E6 ⋊ µ4-equivariant. To show the upper bound on essential dimen-
sion, we just need to show that W is generically free, and for this we may assume that
k = k̄.

By Lemma 1.2 and Proposition 1.3, we see that an SGP of the E6 ⋊ µ4 action on
W is equal to an SGP of the Spin8 action on V ⊕ V ∗. As a Spin8 representation this
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decomposes as the sum of six trivial representations, together with two copies each of
Σ,O+, and O

−. Therefore, by combining Lemma 1.2 with Proposition 1.4, we see the
SGP of this Spin8 action is trivial, and hence the action of E6⋊µ4 on W is generically
free. Therefore ed(E7) ≤ ed(E6 ⋊ µ4) ≤ 54 + 53− 78 = 29. �

2. Essential 2-dimension

Lemma 2.1. [MR09, Lemma 3.3] Assume we have algebraic groups 1 → T → N →
F → 1, such that T is a split torus, and F is finite. Let V be a faithful N -representation
which decomposes into a sum of one-dimensional weight spaces for T , and let Λ be the
associated set of weights. Consider the N -invariant open subset U = (A1−0)Λ ⊂ A

Λ =
V .

(1) If f ∈ F acts non-trivially on ker(Z[Λ] → T̂ ), then f acts non-trivially U/T .
(2) N/T acts faithfully on U/T if and only if N acts generically freely on V .

Proof. For the first statement, assume f acts trivially on U/T and choose an arbitrary

Σcλλ ∈ ker(Z[Λ] → T̂ ). Choose an isomorphism between the varieties U ∼= (Gm)Λ,
inducing a multiplicative structure on U (which is not necessarily compatible with the
action of N). Consider the functions U → k∗ defined in terms of the λ-coordinates uλ
of an arbitrary u ∈ U , as

φ1(u) =
∏

λ∈Λ

(uλ)
cλ , φ2(u) =

∏

λ∈Λ

(uf ·λ)
cλ .

These functions are invariant under the action of T on U . Now choose nf ∈ N in the
preimage of f . Since nf acts linearly on V , there are constants bλ and c such that

φ1(u) = φ1(nf · u) =
∏
(bλuf ·λ)

cλ = cφ2(u). Since u ∈ (Gm)Λ was arbitrary, the only
way φ1 and φ2 can be constant multiples of each other is if cλ = f · cλ for every λ ∈ Λ;
in other words, f fixes Σcλλ.

For the second statement, assume N/T acts faithfully on U/T . For each non-trivial
f ∈ N/T , choose a representative nf ∈ N . The action of f on U/T is non-trivial, and
therefore there is an open dense set Uf ⊂ U on which nf t has no fixed points for any
t ∈ T . The finite intersection ∩Uf is open and dense in U , and N acts with trivial
stabilizers on it. In other words, N acts generically freely on U , and hence on V . For
the converse, we just need to notice that a faithful representation of a finite group is
always generically free. �

Remark 2.2. The above Lemma was proved in [MR09] when the exact sequence is split,
in which case the converse of the first statement is also true; the standard representation
of NSL2

(T ) is a counter-example to the converse of the first statement.

Theorem 2.3. ed(E7; 2) ≤ 27.

Proof. This upper bound will be proved using the following sequence of inequalities:

ed(E7; 2) ≤ ed(E6 ⋊ µ4; 2) ≤ ed(NE6
(T )⋊ µ4; 2) ≤ 33 − 6 = 27.

Since conjugation by µ4 preserves T ([Ga01, 2.4]), we have NE6⋊µ4
(T ) = NE6

(T )⋊µ4.
Now the middle inequality follows from [Se02, III.4.3, Lemma 6].

Choose a Sylow 2-subgroup W (2) ⊂ W (E6), and let N2 ⊂ NE6
(T ) ⋊ µ4 be the

preimage of F := W (2)
⋊ µ4. Let σ be the square of a generator of µ4; it is the non-

trivial element in the centre of E7. One can verify the following facts using a computer
algebra program such as Magma.

• The F orbits of Λ are of size 2, 4, 16 and 32.
• The weights in the largest orbit Λ32 additively generate the weight lattice
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• The kernel of the F action on ker(Z[Λ32] → T̂ ) is 〈σ〉.

So the subspace V32 ⊂ V ⊕ V ∗ generated by the weight spaces of Λ32 is an irre-
ducible N2-representation of dimension 32. Let V1 be the one-dimensional non-trivial
representation of µ4, which we also consider as an N2 representation via projection to
µ4. We claim that N2 acts generically freely on V32 × V1.

For U ⊂ V32 × V1 as in the above Lemma, the third point implies that the F action
on U/T has kernel contained in 〈σ〉. But σ acts non-trivially on V1, and hence on
U/T , since T acts trivially on V1. So F acts faithfully on U/T , and hence by Lemma
2.1, the N2 action on V32 × V1 is generically free. Now we have the upper bound
ed(NE6

(T )⋊ µ4; 2) ≤ 33− 6 = 27, and the result follows. �
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