SIGNATURES OF HERMITIAN FORMS AND THE KNEBUSCH TRACE
FORMULA

VINCENT ASTIER AND THOMAS UNGER

AsstrAcT. Sighatures of quadratic forms have been generalized toitian forms
over algebras with involution. In the literature this is @oria Morita theory, which
causes sign ambiguities in certain cases. In this paperrraitien version of the
Knebusch Trace Formula is established and used as a maitotasolve these am-
biguities.

1. INTRODUCTION

In this paper we study signatures of hermitian forms ovetraésimple algebras
with involution of any kind, defined over formally real field¥hese generalize the
classical signatures of quadratic forms.

Following [3] we do this via extension to real closures anditécequivalence. This
leads to the notion oM-signature of hermitian forms in Section 3.2. We study its
properties, make a detailed analysis of the impact of cingodiferent real closures
and diferent Morita equivalences and show in particular that slganges can occur.
This motivates the search for a more intrinsic notion of atgre, where such sign
changes do not occur.

In Section 3.3 we define such a signature, khsignature, which only depends on
the choice of a tuple of hermitian forms, mimicking the fdeattin quadratic form
theory the form(1) always has positive signature. Thesignature generalizes the
definition of signature in [3] and is in particular well-dedohwhen the involution be-
comes hyperbolic after scalar extension to a real closutbeobase field, addressing
an issue with the definition proposed in [3].

Our main tool is a generalization of the Knebusch Trace FtartauM-signatures
of hermitian forms, which we establish in Section 5. In Sattfr we show that the
total H-signature of a hermitian form is a continuous map and ini&e& we prove
the Knebusch Trace Formula fbr-signatures.

2. PRELIMINARIES

2.1. Algebras with Involution. The general reference for this section is [11, Chap-
ter 1].
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Let F be a field of characteristic fierent from 2. AnF-algebra with involutions
a pair A, o) consisting of a finite-dimensional simpfealgebraA with centre a field
K = Z(A) and anF-linear involutiono : A — A. Eithero is of the first kind in which
caseK = F andolk = idk, or o is of the second kindn which caseK = F(\/a) isa
quadratic field extension &f ando|k is the nontrivial element in the Galois group of
K/F.

Consider thd--subspaces

Sym@A, o) ={ae A|o(a) = a} and Skewh, o) ={ae A|o(a) = —a}

of A. ThenA = Sym(A, o) & Skew(A, o). Assume thatr is of the first kind. Then
dimg(A) = n? for some positive integem. Furthermore o is eitherorthogonal
(or, of type+1) if dimg Sym@A, o) = m(m + 1)/2, or symplectic(or, of type-1) if
dim: Sym@A, o) = m(m - 1)/2. If o is of the second kind, then difpA) = 2n? for
some positive integan and dimg Sym(A, o) = dimg Skew(@, o) = . Involutions of
the second kind are also calladitary.

Let o andt be two involutions oA that have the same restriction Ko By the
Skolem-Noether theorem theyfidir by an inner automorphism:

T=Int(u)o o

for someu € A, uniquely determined up to a factor k¥, such that-(u) = uif o-and
7 are both orthogonal, both symplectic or both unitary aifd) = —u if one of o, 7 is
orthogonal and the other symplectic. Here iik) := uxu for x € A.

2.2. e-Hermitian Spaces and Forms. The general references for this section are [10,
Chapter I] and [20, Chapter 7], both for rings with involutiolreatments of the central
simple and division cases can also be found in [6] and [14heetively.

Let (A, o) be anF-algebra with involution. Let € {-1, 1}. An e-hermitian space
over (A, o) is a pair (M, h), whereM is a finitely generated righd-module (which is
automatically projective sinc&is semisimple) antd : M x M — Alis a sesquilinear
form such that(y, X) = eo(h(x, y)) for all x,y € M. We call (M, h) ahermitian space
whene = 1 and askew-hermitian spacghene = —1. If (A, o) is a field equipped with
the identity map, we saygkew) symmetric bilineaspace instead of (skew-) hermitian
space.

Consider the lefA-moduleM* = Homa(M, A) as a rightA-module via the involu-
tion 0. The formh induces arA-linear maph* : M — M*, x — h(x,-). We call (M, h)
nonsingulanf h* is an isomorphism. All spaces occurring in this paper ararassl to
be nonsingular. We often simply writeinstead of M, h) and speak of forminstead
of a space.

If A = D is a division algebra (so thd&fl ~ D" for some integen) such that
(D, 0,¢e) # (F,idg, -1), thenh can be diagonalized: there exist invertible elements
a,...,a, € SymD, o) such that, after a change of basis,

n
hxy) = > o(x)ay Yxye D"

i=1
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In this case we use the shorthand notation

h:<al7---’an>0"

which resembles the usual notation for diagonal quadratio$. If A is not a division
algebra we can certainly consider diagonal hermitian fatefed on freéd-modules
of finite rank, but some hermitian forms ove, ¢-) may not be diagonalizable.

Witt cancellation and Witt decomposition hold fethermitian spaces oveA(o).
Let W, (A, o) denote the Witt group of Witt classes &hermitian spaces oveA(o).
Whene = 1 we drop the subscript and simply wri&(A, o). We denote the usual
Witt ring of F by W(F). We find it convenient to identify forms oveA(o) with their
classes iW, (A, o).

Lemma 2.1. Let (A, o) be an F-algebra with involution.

(i) If ois of the first kind, then W(A, o) ~ W(A, ) for some involutiornr of opposite
type too.
(i) If o is of the second kind, then WA, o) ~ W(A, o).

Proof. (i) Let u € A* be such that-(u) = —u and definer := Int(u) o 0. Leth be a
skew-hermitian form overA, o). Thenuhis a hermitian form overA, 7). The one-to-
one correspondende— uh respects isometries, orthogonal sums and hyperbolicity
and so induces the indicated isomorphism.

(i) Let Z(A) = K = F(Vd) for somed € F*. Theno(Vd) = — Vd. The one-to-one
correspondence — Vdhinduces the indicated isomorphism. ]

2.3. Adjoint Involutions. The general reference for this section is [11, 4.A].

Let (A, o) be anF-algebra with involution. Let NI, h) be ane-hermitian space
over (A, o). The algebra EngM) is again central simple ovét sinceM is finitely
generated [11, 1.10]. The involutionaoin Endy(M), defined by

h(x, f(y)) = h(ad,(f)(X).y). Yx.y € M,¥f € End\(M)

is called theadjoint involutionof h. The involutionso- and ag¢| are of the same kind
ando(a) = ad\(@) for all @ € K. In case aglando are of the first kind we also have

type(ad) = ¢ type().
Furthermore, every involution on ER@) is of the form ag for somee-hermitian
form h over (A, o) and the correspondence betweepaadh is unique up to a multi-
plicative factor inF* in the sense that ad ad;, for everya € F*.

Let (A, o) be anF-algebra with involution. By a theorem of Wedderburn there
exists a division algebrB (unique up to isomorphism) with centz€A) and a finite-
dimensional rightD-vector spacé/ such thatA ~ Endy(V). ThusA =~ My (D) for
some positive integan. Furthermore there exists an involutidnon D of the same
kind aso and ansp-hermitian formgg over O, d) with gy € {-1, 1} such that 4, o)
and (Eng(V), ad,,) are isomorphic as algebras with involution. In matrix foadj, is
described as follows:

ad,,(X) = o' (X)®g", VX € Min(D),



4 VINCENT ASTIER AND THOMAS UNGER

whered'(X) = (9(x;))' for X = (x;) and®g € GLy(D) is the Gram matrix ofpo.
ThUSﬂt((DQ) = goDyg.

2.4. Hermitian Morita Theory. We refer to [2,81], [5], [6, Chapters 2-3], [10,
Chapter 1,§9], or [13] for more details.

Let (M, h) be ane-hermitian space oveA(o). One can show that the algebras
with involution (Endy(M), ad,) and @A, o) are Morita equivalent: for eveny € {—1, 1}
there is an equivalence between the categof€$Enda(M), ad,) and .7, (A, o) of
non-singularu-hermitian forms over (Eng{M), ad,) and non-singulaeu-hermitian
forms over A, o), respectively (where the morphisms are given by isomgtify)10,
Chapter I, Theorem 9.3.5]. This equivalence respects ig@@aeorthogonal sums and
hyperbolic forms. It induces a group isomorphism

W, (Endi(M), adh) =~ W, (A, o).

The Morita equivalence and the isomorphism are not canbnica

The algebras with involutionX, o) and O, ) are also Morita equivalent. An ex-
ample of such a Morita equivalence is obtained by compogiegfollowing three
non-canonical equivalences of categories, the last twolo€wwe will call scaling
andcollapsing For computational purposes we describe them in matrix fovkie
follow the approach of [17]:

scaling collapsing

Ho(A o) — Ho(M(D), ad,) —— Heoe(M(D), ') ——— He(D, 9). (1)
Scaling: Let (M, h) be ans-hermitian space oveM(D), ad,,). Scaling is given by
(M, h) — (M, ®5h).
Note thatd;* is only determined up to a scalar factorfi since ag, = ad,,, for any
A € F* and that replacing, by 1@ results in a dierent Morita equivalence.

Collapsing: Recall thatM,,(D) ~ Endy(D™) and that we always hawd ~ (DM ~
My m(D) for some integek. Leth: M x M — My (D) be ansqoe-hermitian form with
respect taj'. Then

h(x,y) = #()ByY, ¥X,y € M m(D),
whereB € M(D) satisfies?'(B) = £oeB, so thatB determines agqoe-hermitian form
b over O, ). Collapsing is then given by

(M, h) — (D, b).

3. SGNATURES OF HERMITIAN FORMS

3.1. Signatures of Forms: the Real Closed Caselet R be a real closed field; =
R(V-1) (which is algebraically closed) artd = (-1, 1)z Hamilton’s quaternion
division algebra oveR. We recall the definitions of signature for the various types
forms (all assumed to be nonsingular) oRReC, Rx RandH. We will use them in the
definition of theM-signature of a hermitian form oveA(o) in Section 3.2.
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() Letb be a symmetric bilinear (or quadratic) form o\r Thenb =~ (aq,..., a,)
for somen € N ande; € {-1, 1}. We let

n
signb := Z a;.
i=1
By Sylvester’s Law of Inertia, sighis well-defined.

(b) Letb be a skew-symmetric form ov& Thenb is hyperbolic and we let

signb := 0.
(c) Lethbe ahermitian form ovef, —), where V-1 = — V-1. Therh =~ (a1, ..., an)-
for somen € N ande; € {-1, 1}. By a theorem of Jacobson [Hs up to isometry

uniguely determined by the symmetric bilinear foogi= 2x (a4, . . ., a,) defined
overR. We let

signh := %signbh = sign(ay, . . ., ay).

(d) Leth be a hermitian form overR x R—~), where(x,y) = (y, X) is the exchange
involution. Thenh is a torsion form [19, p. 43] and we let

signh := 0.

(e) Leth be a hermitian form overH, -), where— denotes quaternion conjugation.
Thenh ~ (ay,...,a,)_ forsomen € N anda; € {1, 1}. By a theorem of Jacobson
[7], his up to isometry uniquely determined by the symmetric b#informby, :=
4x{a,...,qa, defined oveR. We let

signh := %signbh = signlay, . . ., an).

() Let h be a skew-hermitian form oveH(-), where— denotes quaternion conjuga-
tion. Thenhis a torsion form [20, Chapter 10, Theorem 3.7] and we let

signh := 0.

Remark 3.1. The signature maps defined in (a), (c) and (e) above giveaisaitjue
group isomorphisms

W(R) ~ Z, W(C,-) =~ Z, andW(H,-) ~ Z

such that sig(l) = 1, signl). = 1 and sigil). = 1, respectively. In addition, we
have the group isomorphisms

W1 (R idg) = 0, W_i(RX R—~) = W_4(H, -) =~ Z/2Z.
See also [8, Chapter I, 10.5] and [19, p. 43].
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3.2. The M-Signature of a Hermitian Form. Our approach in this section is inspired
by [3, §3.383.4]. We only consider hermitian forms oveX, ¢-), cf. Lemma 2.1.

Let F be a formally real field and le# o) be anF-algebra with involution. Con-
sider an orderindg® € Xg, the space of orderings &f. By areal closure of F at P
we mean a field embedding F — K, whereK is real closedy(P) ¢ K? andK is
algebraic over(F).

Let h be a hermitian form overX, o). Choose a real closure F — Fp of F atP,
and use it to extend scalars frdmto Fp:

W(A, o) — W(A®k Fp, o ®id), hi— h® Fp := (ida®1)*(),

where the tensor product is alongrhe extended algebra with involutioA®g Fp, c®
id) is Morita equivalent to afrp-algebra with involutionDp, J5), chosen as follows:

(i) If ois ofthefirstkindDp is equal to one ofp or Hp := (-1, —1)¢,. Furthermore,
we may choosel¥p, ¥p) = (Fp,idg,) in the first case anddp, ¥p) = (Hp, —) In
the second case by Morita theory (scaling).

(i) If o is of the second kind, recall th@(A) = K = F(Vd). Now if d <p 0, then
Dp is equal toFp( V-1), whereas ifd >p 0, thenDp is equal toFp x Fp and
A®¢ Fpis a direct product of two simple algebras. Furthermore, \&g ohoose
(Dp, 9p) = (Fp(V-1),-) in the first case anddp, ¥p) = (Fp x Fp,~) in the
second case, again by Morita theory (scaling).

Note thatdp is of the same kind as in each case.

The extended involutionr ®idg, is adjoint to arep-hermitian formgp over Op, ¥p)
whereep = —1 if one of o anddp is orthogonal and the other is symplectic, whereas
ep = 1if o anddp are of the same type, i.e. both orthogonal, symplectic damni

Now choose any Morita equivalence

M AR Fp, o ®id) — ., (Dp, 9p) )

with (Dp, 9p) € {(Fp,idr,), (Hp, -), (Fe( V=1), =), (Fp X Fp,~)}, which exists by the
analysis above. This Morita equivalence induces an isomsmg which we again
denote by,

M WAk Fp,o ®id) — W,,(Dp, 9p). (3)

Definition 3.2. Let P € Xr. Fix a real closure : F — Fp of F at P and a Morita
equivalence/ as above. Define thil-signature of h at,.#), denoted sigf h, as
follows:

sign” h := sign.# (h® Fp),
where sign# (h® Fp) can be computed as shown in Section 3.1.

This definition relies on two choices: firstly the choice & tkal closure: F — Fp
of F at P and secondly the choice of the Morita equivalenge Note that there is no
canonical choice for#. We now study the dependence of thkesignature on the
choice oft and. 7.



SIGNATURES OF HERMITIAN FORMS AND THE KNEBUSCH TRACE FORMWA 7

Lety : F — Ly andw, - F — L, be two real closures df at P, and let D4, %) and
&1 play the role of Dp, ¥p) andep, respectively, obtained above wheis replaced by
1. Let

«%1 . %(A@F Li,o® |d) — ,%ﬂgl(Dl,ﬁl)

be a fixed Morita equivalence. By the Artin-Schreier theoif@® Chapter 3,Theo-
rem 2.1] there is a unique isomorphigm L; — L, such thaj o ¢; = 1,. It extends
to an isomorphismig® p : (A®¢ L;,0 ®id) - (A®k Ly, o ® id). The isomorphism
p also extends canonically ©; € {L;, (-1, -1).,, Ll(\/—_l), L; x L1}. Consider the
L,-algebra with involution D,, %») = (o(D1),p o ¥ 0 p~1). We definep(.#1) to be

the Morita equivalence fromA®g L,, o ® id) to (D2, ), described by the following
diagram:

A L, o ®id) — 4, (D, 01)

lﬂ*

(D2, 92)

l (idep)”

Ak Ly, o ®id) — 27

Proposition 3.3(Change of Real Closure)Vith notation as above we have for every
he W(A, o),

sign.Z1(h® L;) = signo(.#1)(h® L),
in other words
sign”* h = sigrf*“V h.

Proof. The statement is trivially true wheny = -1, by cases (b), (d) and (f) in Sec-
tion 3.1, so we may assume that= 1. Consider the diagram

W(A®E Ly, o @id) —— 7~ W(Dy, 1)

W(A, o) (idep)* I Z

m A

W(A®¢ Ly, o ®id) p(i//l) W(D2, 9»)

The left triangle commutes by the definition@fThe square commutes by the defini-
tion of p(.#1). The right triangle commutes sinp&g(1),,) = (1), and by Remark 3.1.
The statement follows. m

Proposition 3.4 (Change of Morita Equivalence).et .#; and .#, be two diferent
Morita equivalences as i{2). Then there existé € {—1, 1} such that for every e
W(A, o),

sign” h = ¢ sign”2h.
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Proof. Note thate; = ¢,. The statement is trivially true when = -1, by cases (b),
(d) and (f) in Section 3.1, so we may assume that 1. The two diferent Morita
equivalences give rise to twoftkrent group isomorphisms

m :WA® Fp,oid) —Z  (i=1,2),

by (3) and Remark 3.1. The map o m,* is an automorphism dt and is therefore
equal to id or —id. n

Propositions 3.3 and 3.4 immediately imply

Corollary 3.5. Lett; : F - Ly andwy, : F — L, be two real closures of F at P
and let.#, and.#, be two diferent Morita equivalences as {2). Then there exists
6 € {—1, 1} such that for every & W(A, o),

sign” h = §sign’2 h.
The following result easily follows from the properties obkita equivalence:

Proposition 3.6.
(i) Let h be a hyperbolic form ovéA, o), then

sign”“h=0.
(i1) Let hy and b be hermitian forms ovelA, o), then
sign”(hy L hy) = sign” hy + sign” h,.
(iii) The M-signature af, .#), sign”, induces a homomorphism of additive groups
W(A, o) — Z.
(iv) Let h be a hermitian form ovéA, o) and g a quadratic form over F, then
sign”(q® h) = sign.q- sign” h,
wheresign, g denotes the usual signature of the quadratic form q at P.

Definition 3.7. Let h be a hermitian form overX, o). From Definition 3.2 and Sec-
tion 3.1 it follows that sigyf h is automatically zero whenevér belongs to the fol-
lowing subset oiXr, which we call set ohil-orderings

{P e Xg | Dp = Hp} if o~ is orthogonal
Nil[A o] :={{P € Xg | Dp = Fp} if o~ is symplectic,
{PeXg | Dp=FpxFp} if ois Unitary

where the square brackets indicate that Alitf] depends only on the Brauer class of
A and the type obr.
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3.3. The H-Signature of a Hermitian Form. It follows from Corollary 3.5 that
sign” is uniquely defined up to a choice of sign. We can arbitrafilgase the sign of
the signature of a form at each orderiAgSee for instance Remark 3.13 for a way to
change sign using Morita equivalence (scaling).

A more intrinsic definition is therefore desirable, in pautar when considering the
total signature map of a hermitian fory — Z since such arbitrary changes of sign
would prevent it from being continuous. We are thus led tongeéi signature that is
independent of the choice o&nd.7 .

Lemma 3.8.Let P € Xg \ Nil[A,o]. Lety; : F - Ly andw, : F — L, be two
real closures of F at P and lew; and.#, be two diferent Morita equivalences as in
(2). Let hy € W(A, o) be such thasign”* hy # 0 and letsy € {1, 1} be the sign of
sign’ho for k = 1,2. Then

61sign” h = 6, sign”> h,
for allh e W(A, o).

Proof. Let ¢ € {-1, 1} be as in Corollary 3.5. Then, we have for alE W(A, o) that
sign>h = §sign”*h and in particular that sigff hy = §sign”* hy. It follows that
61 = 66,. Thuss, sign” h = 66, sign”* h = 6, sign”2 h. -

We will show in Theorem 6.4 that there exists a finite tuple= (hy, ..., hs) of
diagonal hermitian forms of rank one ové;, ¢-) such that for every? € Xg \ Nil[ A, o]
there existsyy € H such that sigff hy # 0.

Definition 3.9. Leth € W(A, o) and letP € Xg. We define theH-signature of h at P
as follows: IfP e Nil[A, o], define sig h := 0. If P ¢ Nil[A o], leti € {1,...,s}
be the least integer such that sigh; # 0 (for any: and.#, cf. Corollary 3.5), let
6..» € (-1, 1} be the sign of sigfl h; and define

sigrf h:= 6,4 sign” h.

Lemma 3.8 shows that this definition is independent of theécehof: and.# (but
it does depend on the choiceld).

A choice of Morita equivalence which is convenient for corgtions of signatures
is given by (1) with @, o) replaced by A ® Fp,o ® id). We denote this Morita
equivalence by4” and now describe the induced isomorphisms of Witt groups:

scaling collapsin

W(A & Fp, 0 ® id) — = W(Mn(Dp). 8d,.) 22 W(Mo(Dp), 96) “r 2 W(Dp, 8)

h® Fp

Ep(h® Fp) ——— 0 (h® Fp) —— A (h® Fp),

(4)
whereh is a hermitian form overA, o), P € Xg \ Nil[ A, o] (so thatep = 1), &5 is the
group isomorphism induced by some fixed isomorphism

& 1 (A®k Fp, o ®id) — (Mn(Dp), ad,,),
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and®p is the Gram matrix of the formp. Observe that sigpe can be computed as in
Section 3.1.

Lemma 3.10.Let Pe Xg \ Nil[A, o], let. : F — Fp be areal closure of F and let/
andgp be as above. Thesign” (1), = signee.

Proof. We extend scalars frof to Fp viat, (1), +— (1), ®Fp = (1®1),iqg and push
(1® 1),iq through the sequence (4),

(1® Dosia F Ep((1® L)ysia) = (6p(1® 1)>acl,P = <|m>aclpp L cI)|;1<|m>aclpp = <CD|;1>19P"
(Note thatép(1® 1) = Iy, them x mridentity matrix inM,,(Dp) sinceép is an algebra
homomorphism.) By collapsing, the matdx;* now corresponds to a quadratic form

over Fp, a hermitian form overKp(V-1),-) or a hermitian form overHp,-). In
either casabz! is congruent tabp. Thus sign’ (1), = signge. ]

Remark 3.11. It follows from Lemma 3.10 that the signature defined in §3,3,
§3.4] is actually sigh with H = ((1),). It is now clear that this signature cannot be
computed when sigh(1), = 0, i.e. whero ® idg, ~ ad,, is hyperbolic. In contrast,

if we takeH = (hy, ..., hg), as described before Definition 3.9 we are able to compute
the signature in all cases. Note that we may chdgse (1), so that Definition 3.9
generalizes the definition of signature in §3.3,§3.4].

Example 3.12.Let (A, o) = (Ma(R), ad,), wherep = (1,-1,1,-1). Then signp = 0.
Consider the rank one hermitian forms

e )

over (A, o). Thensign’ h = —2, sign” h; = 0 and sigr’” h, = 4, where we suppressed
the index: sinceR is real closed. LeH; = (h;) andH = (hy, hy), then sigh* his not
defined, whereas siffth = —2. Observe that taking = (h,, —h,) instead would result
insign'h = 2.

Remark 3.13. Let a € A* be such thatr(a) = ea with £ € {-1,1}. The Morita
equivalencescaling by a

JAA, o) — A (A Int(@) o o), h— ah
induces an isomorphism
Lot WA, o) — W (A, Int(a) o o), h+— ah.

It is clear that
—1o:
sign” h = sign”*@ =% ah,

Consider the special case whare F*. Thuse = 1 and Int@) o o = . Assume
thata <p 0. Then

sign” za(h) = sign.# (ah® Fp) = sign.# (-h® Fp) = —sign” h,
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where the last equality follows from Proposition 3ii§( The same computation shows
that sigry Za(h) = —sigrfi h for any choice oM. Thus, scaling by changes the sign
of the signature, which is contrary to what is claimed in [3662].

Remark 3.14. For any choice oH, P and: as in Definition 3.9, there exists a Morita
equivalence#’ such that sigh = sign” h for anyh € W(A, o) (i.e. such that
sign”'h; > 0 with h; as in Definition 3.9). Indeed, for# as in Definition 3.9, it
sufices to take#’ = 6, 4. .

It remains to be shown that a tugteas described just before Definition 3.9 does ex-
ist. In order to reach this conclusion we first need to deveiope theory in Sections 4
and 5.

4. SGNATURES OF INVOLUTIONS
Let (A, o) be anF-algebra with involution. Consider thevolution trace form
T, : AXA— K, (X y) —> Trda(c(X)y),

where Trd, denotes the reduced traceAfIf o is of the first kind,T,, is a symmetric
bilinear form overK = F. If o is of the second kindT, is a hermitian form over
(K, olk). Let P € Xg. Thesignature of the involution- at Pis defined by

Signs o = +/signs T,

and is a nonnegative integer, since sidp is always a square; cf. Lewis and Tignol
[15] for involutions of the first kind and Quéguiner [18] fmwvolutions of the second
kind. We call the involutiornr positive at Fif sign, o # 0.

Example 4.1.

(i) Let (A, o) = (M(F), t), wheret denotes transposition. Th&p ~ n?x(1). Hence
signoo =nforall P e Xg.

(i) Let (A,o0) = ((a b)g, —), where— denotes quaternion conjugation. ThEp =~
(2) ® (1, —a, —b, ab). Hence sigpo = 2 for all P € X¢ such thata <p 0,b <p O
and sigp = O for all otherP € X.

(iii) Let (A, o) = (F(Vd),-), where— denotes conjugation. Théh, =~ (1),. We
have sigp(1), = %signp<1, —d), cf. [20, Chapter 10, Examples 1.6(iii))]. Hence
sign, o = 0 for all P € Xg such thad >p 0 and siggo = 1 for all P € Xg such
thatd <p 0.

Remark 4.2. Let (A, o) and B, 7) be twoF-algebras with involution.

(i) Consider the tensor produ&®¢ B, c®7). ThenT,g, ~ T,®T, and so sigp(c®
7) = (signs o)(signs 7) for all P € Xg.
(it) If (A,o) = (B, 7), thenT, ~ T, so that sigpo = sign. 7 for all P € X¢.

Remark 4.3. Pfister’s local-global principle holds for algebras withafution (A, o)
and also for hermitian formis over such algebras, [16].



12 VINCENT ASTIER AND THOMAS UNGER

Remark 4.4. The map sigwr is continuous fromXg (equipped with the Harrison
topology, see [12, Chapter VIII 6] for a definition) o (equipped with the discrete
topology). Indeed: define the may onZ by setting Vk = —1 if k is not a square
in Z. SinceZ is equipped with the discrete topology, this map is contusicSince
T, is a symmetric bilinear form or a hermitian form ové4, ¢-|«), the map sigi,,

is continuous fromXg to Z (by [12, VIII, Proposition 6.6] and [20, Chapter 10, Ex-
ample 1.6(iii)]). Thus, by composition, sign= +/signT,, is continuous fronXg to

Z.

Lemma4.5.Let Pe Xg. If P € Nil[ A, o], then
sign, o = signgp = 0.
Otherwise,
signs o = Ap [signgpl,
Where/lp =1if (Dp,ﬂp) = (Fp, ide) or (Dp,ﬂp) = (Fp( \/—_l), —) and Ap = 2 if
(Dp, 9p) = (Hp, -).

Proof. This is a reformulation of [15, Theorem 1] and part of its griww involutions
of the first kind and [18, Proposition 3] for involutions oftlsecond kind. ]

Lemma 4.6. Let(M, h) be a hermitian space ovéA, o), let Pe Xg, lett : F — Fp be
areal closure of F at P and le#Z be a Morita equivalence as {{2). If P € Nil[ A, o],
then

sign, ad, = sign” h = 0.
Otherwise,

sign, adh = Ap [sign” h,
with 1p as defined in Lemma 4.5. In particular,

sign” h = 0 & sign, ad, = 0.

Proof. Assume first thaP € Nil[A,o]. Then sigr” h = 0. Consider the adjoint
involution ag, on Eng(M). Sinceh is hermitian,o- and ag are of the same type.
FurthermoreA and End(M) are Brauer equivalent by [11, 1.10]. Thus Mlp] =
Nil[Enda(M), ad,]. By Lemma 4.5 we conclude that sigad, = 0.

Next, assume thd € Xr \ Nil[ A, o]. Without loss of generality we may replaée
by Fp. Consider a Morita equivalence

M FAA, o) — AD,9)

with (D, 9) = (F,id), (D,9) = (H,-) or (D,9) = (F(V-1),-). Let (N, b) be the her-
mitian space overf}, %) corresponding toNl, h) under.#’. Then sigr’ h = signb.
By [2, Remark 1.4.2] we have (Ep(M),ad,) ~ (Endb(N), ad,) so that signag =
signad. By [15, Theorem 1] and [18, Proposition 3] we have sign ada |signb|
with 2 = 1if (D, 9) = (F,id) or (D,9) = (F(V-1),-) anda = 2if (D,9) = (H, -).
We conclude that sign ad= 1|sign”’ h| = A|sign” h|, where the last equality follows
from Corollary 3.5. ]
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5. Tue KNEBUSCH TRACE FORMULA FOR M-SIGNATURES

We start with two preliminary sections in order not to ovaddhe proof of Theo-
rem 5.1 below.

5.1. Hermitian Forms over a Product of Rings with Involution. Let

(A o) = (A, 01) X -+ - X (A, 0y),

whereA, Ay, ..., A are rings andr, o4, ..., oy are involutions. We write an element
a € Aindiscriminately asd, ..., a)ora;+---+a withg € A fori = 1,...,t. Writing

1r = (e, ...,8), the elements,, ..., g are central idempotents, and the coordinates
of a € A are given by

A— A X XA, ar— (ae,...,aq).

Note thatge; = 0 whenever # j. We assume that(1) = 1 and thusr(e) = & for
i=1,...,t

Let M be anA-module and leh : M x M — A be a hermitian form overA, o).
Following [9, Proof of Lemma 1.9] we can write

t
M :UMQ, m= (me,...,mq),
i=1

where[]}_; Mg is the A-module with set of elementB]._, Mg, whose sum is de-
fined coordinate by coordinate and whose product is definefinpss, ..., meg)a =
(meay,...,mea)formg,...,m € M andac A

Defineh; = hiye. Thenhi(xe,ye) = o(e)h(x,y)e = h(x y)e&* = h(x,y)e and
h : Mg x Mg — A is a hermitian form over4;, o). We also have

—

h(xe, +---+xg,ye +---+ya) = > h(xg,ye)ee
£
t

h(xe,ye)a

[y

which provesthah =h; L ... L h.

5.2. Algebraic Extensions and Real ClosuresWe essentially follow [20, Chapter 3,
Lemma 2.6, Lemma 2.7, Theorem 4.4].

Let P € Xg and letFp denote a real closure &f at P. Let L be a finite extension
of F. Writing L = F[X]/(R) for someR € F[X] andR = R;---R as a product of
pairwise distinct irreducibles iRp[ X] with degR; = --- = degR, = 1 and dedR ,; =
--- = degR = 2, we obtain canonicd p-isomorphismd. ® Fp =~ Fp[X]/(R;---R)
and

L®r Fp— Fyx--- X Fy, (5)
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whereF; = Fp[X]/(R) is a real closed field for X i < r and is algebraically closed
forr+1<i<t Wewrite 1= (e,...,&)in Fy x--- X Fy and definawi(X) = w(X)g
for x € L ® Fp, the projection otu(x) on itsi-th coordinate.

Let : Fp —» L ® Fp be the canonical inclusion. Thew o : Fp — Fjis an
isomorphism of fields and dfp-modules for 1< i < r. In particular, for 1<i <'r,
Fi is naturally anFp-module of dimension one, and it is easily seen that,dr =
(wi o 1p) L. It follows that Tk, /5 IS an isomorphism of fields.

Lety; : L —» L®f Fp be the canonical inclusion. TheRot, : L - Fi(i=1,...,r)
denote the different embeddings of ordered fields corresponding to theiogeQ);
onL that extendP. In other words, ifQ, ..., Q;} are the diferent extensions d? to
L, then for every i <r, the map

L —>L® Fp—>F

is areal closure of atQ;. Since Tg, ¢, is an isomorphism of fields, it follows that the
map

. Tre,
L1 Wi i/Fp
L—=L& Fp—=F ——=Fp

is also a real closure af at Q;.

5.3. The Knebusch Trace Formula. Let (A, o) be anF-algebra with involution. Let
L/F be afinite extension. The trace Ji : L — F induces am\-linear homomorphism

TrA®F|_ = idA®Tr|_/|: AL — A
which induces a group homomaorphism (transfer map)
TraeeL - W(AGE Lo ®id) — W(A, o), (M,h) = (M, Trag. o h),

cf. [1, p. 362].

The following theorem is an extension of a result due to Kisehu8, Proposi-
tion 5.2], [20, Chapter 3, Theorem 4.5] Eealgebras with involution. The proof fol-
lows the general lines of Knebusch’s original proof.

Theorem 5.1.Let Pe Xr. Let L/F be a finite extension of ordered fields and let h be
a hermitian form ovefA ®¢ L, o ® id). Fix a real closure : F — Fp and a Morita
equivalence# as in(2). Then, with notation as in Section 5.2,

Signﬂ(TrZ&Lh) = Z sigrgi)iojio)(%) h.
i1

Proof. By definition of signature we have

sign” (Trg,h) = sign.2Z[(Trjg, ) ®F Fel. (6)
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Consider the commutative diagram

F
\L ®FFp l ®rFp
Trerp/Fp

Lo Fp ———Fp

Tre

It induces a commutative diagram

TrasL

A®ec L A

l ®FFp \L ®FFp
idA®TI'|_®|:P/|:P

A®rL® Fp —— A®c Fp

which in turn induces a commutative diagram of Witt groups

Tr*
W(A®: L, o ®id) et W(A, o)

l . . ([da®TrLg ) l .
W(A®: L & Fp,o®id®id) — """, W(A®¢ Fp, o ®id)

where the vertical arrows are the canonical restrictionsnd@pus
SIgN.AZ[(Tr pg, N) ®F Fp] = sign.Z[(ida ® Trier,/r) (N®F Fp)]. @)

With reference to Section 5.2 consider the diagram

id ~
A®r L@k Fp 222 A@ (F1X - X F) —= (A®F F1) x - X (A®F Fy)
\LidAQ@FTrL@Fp/Fp \LidA®Trle---thle lz}lid/@TrFi/Fp
id id
A®r Fp : A®r Fp : A®¢ Fp

where commutativity of the first square follows from the isophism (5) of Fp-
algebras, whereas commutativity of the second squareasifoom [4, p. 137]. We
pushh ® Fp through the induced commutative diagram of Witt groups:

ida®w)*
heFpr— oy, ML.. LK

| I

(ida ® Triera/re) (h® Fp) —— 9> S (ida ® Tre )" ()

where the image df’ equals the orthogonal sum L ... 1 h{ by Section 5.1. Thus

Slgn%[(ldA ® Tr|_®|:P/FP)*(h ®F Fp)] = Z Slgn%[(ldA ® TrFi/FP)*(hi,)] . (8)
i=1

We have to consider the following two cases:
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Case 1: Assume thatdi <r. Observe thalt = (ida ® (wi o ¢1))*(h). Then
sign.[(ida ® Tre, )" ()] = Sign.#[(ida® (Trrr,))" © (ida ® (w; © 12))* (N)].
The form (idh ® (wj o t1))*(h) is defined oveA ®¢ F;, and the commutative diagram

TrFi/FP FP

together with Proposition 3.3 gives

sign.Z[(ida ® (Tre /rp))" © (ida ® (wi © 1)) (M)]
= sign(w; © 10)(AZ)[(ida ® (wi © 12))"(N)]  (9)

Case 2: Assume that+ 1 < i < t. SinceF; is algebraically closed, it follows from
Morita theory that the Witt groupV(A ®¢ Fi, o ® id) is torsion and sdv is a torsion
form. Therefore (id ® Trg/e.)*(I7) is also a torsion form and thus has signature zero.

We conclude that equations (6)-(9) yield the Knebusch TFrarenula. ]

6. Existence oF ForMs wiTH NONZERO SIGNATURE

Theorem 6.1.Let (A, o) be an F-algebra with involution and let  Xg \ Nil[ A, o].
Fix a real closure. : F — Fp and a Morita equivalence# as in(2). There exists a
hermitian form h ove(A, o) such thaisign” h+0.

Proof. LetP € Xg \ Nil[A, o]. ThenA®g Fp ~ Mn(Dp) for somem € N, whereDp =
Fp, Hp or Fp(V-1) if o is orthogonal, symplectic or unitary, respectively. Inteac
case there exists a positive involutiomn M,,(Dp) (namely, transposition, conjugate
transposition and quaternion conjugate transpositispaetively, cf. Example 4.1).
By Lemma 4.6 the hermitian forgi), over M (Dp), 7) has nonzero signature since
is the adjoint involution of the fornl).. After scaling we obtain a rank one hermitian
form hy over (A®¢ Fp, o ®id) such that sign# (hy) # 0 by Proposition 3.4. The form
hy is already defined over a finite extensibrf ((F), contained inFp. Thus we can
considerhy as a form overA®¢ L, o ®id) and we have sign#Z (ho® Fp) # 0. In other
words, ifQ; is the orderind- N ng onlL, then for any real closurg : L — L; of L at
Q: and any Morita equivalence?; as in (2), but starting from¥{A®g L1, o ®id), we
have

Sigr‘;fl h() #0
by Corollary 3.5.
Let X = {Q € X. | P c Q}. By [20, Chapter 3, Lemma 2.7K is finite, say
X ={Q1,Q,,...,Q}. Thus there exist,, ..., a € L* such that
{Qi =H(a,....a)nX
Consider the Pfister forop:= (ay, ..., a) = (1, a)®---®(1, &). Thensigp, q = or-1
and signy, q = O for £ # 1. It follows that sig;fl(q@) ho) = sign,, q-sigr’(l/fl ho # 0 and
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sign{f“(q@ hg) = 0 for ¢ # 1, wherex, : L — L, is any real closure df at Q, and.#,
is any Morita equivalence as in (2), but starting frof{A ®¢ L., o ® id).

Now Try,_ (g ® ho) is a hermitian form overA, o). By the trace formula, Theo-
rem 5.1, we have

r
SIgN" Trag, (A® ho) = > sigr2t(q e ho) = sigrfs2 (g ® ho) # 0.

i=1
Takingh := Trj,_, (Q® ho) proves the theorem. ]

Corollary 6.2. Let (A, 01) and (Ay, 0,) be F-algebras with involution of the same
type. Assume that;Aand A are Brauer equivalent. Let B Xg, let: : F — Fp be
a real closure of F at P and le#, be any Morita equivalence as {2), but starting
from JAA, ® Fp, o, ®id) for £ = 1, 2. Then the following statements are equivalent:

1) sigr%‘l h = 0 for all hermitian forms h ove(A,, o1);

(i) sign”2h = 0 for all hermitian forms h ove(A,, o2);
(iii) sign. ¢ = Ofor all involutions® on A of the same type as;;
(iv) sign. @ = Ofor all involutions® on A, of the same type as;.

Proof. By Theorem 6.1, the first two statements are equivalet ®oNil[ Ay, 1] =
Nil[ Ag, 05]. Thus () < (ii).
(i) = (iii) Let¥ be as inf{ji). Thend = ad;,, andd = Int(a) oo, for some invertible
a € Sym(A,, o1). Thus, with notation as in Remark 3.13 and using Lemma 4db an
Proposition 3.4 we have for any Morita equivalengt

signp & = el sign” (1|
= Ap| sign” @D £1((1),)]
= Aplsign™ £ (1))
= Aplsign” @),
which is zero by the assumption.

(i1) = (iv): This is the same proof ag = (iii) after replacing Ay, o1) by (A, 02).

For the remainder of the proof we may assume without loss éigdity thatA; is
a division algebra and th#& ~ M,(A;) for somem € N.

(iii) = (iv): Let ¥ be any involution oM. By the assumption, sig(t ® ) = O,
wheret denotes the transpose involution. Siméea positive involution, it follows that
sign.¢ = 0, cf. Remark 4.2.

(iv) = (ii): The assumption implies that siﬁ’hh = 0 for every hermitian forni of

dimension 1 overA,, o), which implies {i) since all hermitian forms oveAg, o)
can be diagonalized. ]

Remark 6.3. Note that statementii() in Corollary 6.2 is equivalent to: sifﬁ h=0
for all diagonal hermitian formk of rank one over4y, o).

Theorem 6.4. Let (A, o) be an F-algebra with involution. There exists a finite set
H = {hy,..., hs} of diagonal hermitian forms of rank one ovek, o) such that for
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every Pe Xg \ Nil[ A, o], real closure : F — Fp and Morita equivalenceZ as in(2)
there exists ke H such thatsign® h # 0.

Proof. For everyP € Xg, choose a real closutg : F — Fp and a Morita equivalence
Mp as in (2). By Corollary 3.5 we may assume without loss of galitgrand for the
sake of simplicity that the mag is an inclusion. The algebra®r Fp is isomorphic
to a matrix algebra ovedp, whereDp € {Fp, Hp, Fp( \/—_1), Fpx Fp}. There is a finite
extensionLp of F, Lp ¢ Fp such thatA ®¢ Lp is isomorphic to a matrix algebra over
Ep, whereEp € {Lp, (-1, —1).., Le( V=1), Lp X Lp}, andP extends td_p. Let

Up ;= {Q € X | Q extends td_p}.
SinceP € Up we can write
X|: = U Up.

Pe XF

We know from [20, Chapter 3, Lemma 2.7, Theorem 2.8] thatigri (1)) is the
number of extensions @ to Lp. Thus,

Up = (Sign(TE, (1) " (1L......K).

wherek is the dimension of the quadratic form’[;l'/F<1>, and soUp is clopen inXp
(and in particular compact). Therefore, and sikgeis compact, there exists a finite
number of ordering®s, ..., P, in Xg such that

t
X|: = U Upi.
i=1

Now let P € {P4,...,P,} and letLp be as before. By Theorem 6.1 we have that
for everyQ e Up \ Nil[ A, o] there exists a hermitian forig over (A, o) such that

sigrifQ ho # 0. By Corollary 6.2 and Remark 6.3 we may assume ltihas diagonal
of rank one. Consider the total signature map

o Xe — Z, P+ sign” hq.
Then
Up\Nil[A =[] ugi@\(0)). (10)
QeUp\NIl[A]
Consider the continuous map

Ap: X, — Xe,R— RN F.

We haveQ € Up \ NIl A, o] if and only if some extensio’ of Q to Lp is in X, \
Nil[ A®¢ Lp, o-®id] (this follows from the fact that the ordered fields Q) and Lp, Q')
have a common real closure) if and onlyQfe A(X_, \ Nil[A®¢ Lp, o ®id]).

We observe thaX,, \ NillA®g Lp, o ® id] is clopen and compact since NN[®¢
Lp, o ®id] is eithere or the whole ofX, ., which follows from the fact thaf ®¢ Lp is

a matrix algebra over one tb, (-1, 1), ., Lp( V-1), Lp X Lp.
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Hence,
Up \ Nil[A, o] = A(XL, \ NifA®F Lp, o ®id])

is compact and thus closed. Thugs N Nil[ A, o] is open inUp. Using (10) we can
write

Up=(UenNi[AoDU [ ] ug'@\(0).

QeUp\Nil[A o]

Now ugH(Z \ {0}) = (signad,)*(Z \ {0}) by Lemma 4.6, which is open since signad
is continuous by Remark 4.4. Thus, sinde is compact, there exisp,,...,Q; €
Up \ Nil[ A, o] such that

Up = (Up NNIIA 0]) U|_JugH(Z \ (0}).
i=1

In other words, for ever®) € Up \ Nil[ A, o] one of sigmf‘/Q hg (i =1,...,t)is nonzero.
Now letHp = {hg,,...,hg}. LettingH = Ule Hp, finishes the proof. n

Corollary 6.5. Let(A, o) be an F-algebra with involution. The si&tl[ A, o] is clopen
in Xe.

Proof. By Theorem 6.4 we have N#, o] = N>{P € X¢ | sigr;f’P h, = 0}. The result
follows from Lemma 4.6 and Remark 4.4. [

At this stage we have established all results that are nefedletie definition of
the H-signature in Definion 3.9. In the final two sections we shoat the totalH-
signature of a hermitian form is continuous and we reforteutae Knebusch Trace
Formula in terms of thél-signature.

7. CoNTINUITY OF THE TOTAL H-SIGNATURE M AP OF A HERMITIAN FORM

Let h be a hermitian form overX, o). With reference to Definition 3.9 we denote
by sigr! h the totalH-signature map of:

Xg — Z, P+ sigrfi h.

Lemma 7.1.Let H = (hy, ..., hs) be as in Definition 3.9. There is a finite partition of
Xg into clopens

¢
Xe = Nil[A, o] U U Z,
i=1

such that forevery € {1,.. ., ¢} one of the total H-signature mapi;grﬁ hi,..., sigrﬁ he
is constant non-zero on.Z

Proof. Forr =1,...,s, let
Y, :={PeXe|sigih =0, i=1,...,r}.
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By Lemma 4.6 we have

Y, = Q{P € X¢ | signsad, = O}.

Thus eacty; is clopen.
We haveYy := Xr 2 Y12 -2 Ys1 2 Ys = Nil[ A, o] and therefore,

X = (Yo\ Yo) U(Y1\ Y2) U---U(Ys 1 \ Ys) UNII[A, o]

Letr € {0,...,s— 1} and considel; \ Y,,;. By the definition ofYy, ..., Ys the map
sigri* h,.1 i1s never 0 or¥, \ Y;,1. Furthermore, since the ranklaf ; is finite, sigﬁ' hri1
only takes a finite number of valugs .. ., kq,.

Now observe that there existsta {1, 2} such that

1
sign hy,, = b signad,

onY; \ Y;.1. This follows from Lemma 4.6 and Definition 3.9 fBre Y, \ Y,.1.
Therefore,

(S|gr{—| hr+1)_l(ki) N (Yr \ Yr+l) = (Sign adwl)_l(/lki) N (Yr \ Yr+1),

which is clopen by Remark 4.4. It follows th#t \ Y;,; is covered by finitely many
disjoint clopen sets on which the map sign,, has constant non-zero value. The
result follows since the setg \ Y;,; forr = 0,...,s— 1 form a partition ofXg \
Nil[ A, o]. n

Theorem 7.2.Let h be a hermitian form ovéA, o). The total H-signature of h,
signfh: X — Z, P+ sigrf h
is continuous.

Proof. We use the notation and the conclusion of Lemma 7.1. Sind&Nt| and
the setsZ, are clopen, it sfiices to show that (sighh)|, is continuous for every =
1,....¢.

Letie{l,...,¢},keZ\{0}andj € {1,..., s} be such thatsidﬁhj =k onZz. Let
ke Z. Then

((sigrt' h)lz) (k) = (P € Z | sigrf h = k}
= {P € Z | ksigrf h = kik}
= {P € Z | k sigrf h = ksigrf h;}
={P ez |sig(k xh L kxh) =0}
It follows from Lemma 4.6 that
(sigrt' )l) (k) = (P € Z | signy adkxnikon, = O},
which is clopen by Remark 4.4. ]
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8. Tue KNEBUSCH TRACE FORMULA FOR H-SIGNATURES

Theorem 8.1.Let H = (hy, ..., hs) be as in Definition 3.9. Let B Xg. Let L/F be a
finite extension of ordered fields and let h be a hermitian fouwer (A ®¢ L, o ® id).
Then, with H® L := (h;® L,...,hs® L), we have

sigr (Tri,. h) = Z sigrfie h.
PCQeXL

Proof. By Theorem 5.1 (and using its notation), we know that
r
sign” (Trag,h) = Z sigr{iet) p,
i=1

for any: and.#. Fix areal closure : F — Fp and choose a Morita equivalenc#
such that sigrf = sigrf (cf. Remark 3.14). We only have to check that §fgi¢*) =
sigrig®t fori=1,....r.

By definition of.#, there is & € {1, ..., s} such that sigf hj=0forl1<j<k-1
and sigr’’ h, > 0. To check that SiQﬁT‘L‘jg‘J)(%) = sigrgi@'- fori = 1,....r, it suffices to
check that sigff"?“)(h; @ L) = 0for j = 1,...,k - 1 and sigf’>?“)(h, ® L) > 0.

This follows frofﬁl the fact that -
sigrfe9t(h, ® L) = sign” h, for every 1< ¢ < s,
which we verify in the remainder of the proof.
By definition,
sigrf s (h, @ L) = sign@; o 10)(.2)[(ida ® (wi © u1))"(h, ® L)].

joL

Consider the commutative diagram

. FPLL®FFPL>H

- Lw
L——Le&Fp—/=F

Thus, by Proposition 3.3,
sign@i o 1o)(A)[(ida® (wi 0 11))"(h, ® L)] = signi o 10) (A )[(ida® (wi © 10 0 1))" ()]
Finally the commutative diagram

wjotgot |

together with Proposition 3.3 yields
sign@i o 10)(-/)[(ida ® (wi © 100 1))"(h)] = sign.#[(ida ® 1) ()] = sign” h;,
which concludes the proof. ]
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