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1. Introduction


Let K be a field. We say that K is real if −1 is not a sum of squares in K, and
nonreal otherwise. The pythagoras number of K, denoted p(K), is defined as the
smallest positive integer n such that every sum of squares in K is equal to a sum
of n squares; if no such integer exists we set p(K) = ∞. If p(K) = 1 we say that
K is pythagorean. If K is real and every finite extension of K is pythagorean,
we say that K is hereditarily pythagorean. Note that any field of characteristic 2
is pythagorean. In the sequel we assume that the characteristic of K is different
from 2.


It is very difficult in general to determine the pythagoras number of a given
field; we refer to [P, Chap. 7] for an overview on known results.


We consider a function field in one variable F/K (i.e. a finitely generated
field extension of transcendence degree one) where K is relatively algebraically
closed in F . We refer to [S, Chap. I] for the basic theory of function fields in one
variable, including the definition of the genus.


The problem to relate p(F ) and p(K) is widely open in general. In particular,
it is not known whether p(F ) can be bounded in terms of p(K). It follows from
[Lam, Chap. VIII, 5.7] that p(F ) ≥ 2. In this article, we study the situation
where p(F ) = 2. Note that if −1 is a square in K then p(F ) = 2. Hence, the
following result, which we will obtain in [3.2], yields a full characterization of
function fields of genus zero with pythagoras number two.


Theorem A. Assume that −1 is not a square in K and that F/K has genus


zero. Then p(F ) = 2 if and only if K is hereditarily pythagorean and, in case F
is nonreal, uniquely ordered.
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In the case where F is the rational function field over a real field K this is
a known result due to Becker [B, Chap. III, Thm. 4]. When F is an arbitrary
function field of genus zero, Tikhonov and Yanchevskĭı [TY, Thm. 2 & Thm. 3]
showed one implication, namely that p(F ) = 2 is implied by the stated conditions
on K. We show the reverse implication.


Without restriction on the genus of F/K, the question was raised in [BV, 4.4]
whether p(F ) = 2 implies that K is hereditarily pythagorean. A partial positive
answer to this question was obtained in [BV, 4.3] in the case where F/K has a
divisor of odd degree.


A plane curve over K given by an equation 1 = aXn+bY m where n,m ∈ N are
prime to the characteristic of K and a, b ∈ K× is called a Cassels-Catalan curve.
Such affine curves are smooth and geometrically irreducible. The Cassels-Catalan
curves in the case n = m = 2 correspond exactly to the affine parts of regular
conics, whence their function fields are exactly the function fields of genus zero,
by [Liu, 7.4.1] and [S, Chap. V, 3.3]. The following second main result yields new
cases where [BV, 4.4] has a positive answer.


Theorem B. Assume that K is not hereditarily pythagorean and that −1 is not


a square in K. Assume that F is the function field of a Cassels–Catalan curve


over K. Then p(F ) ≥ 3.


The proof is given in Section 4. The strategy is to find a point on the curve
having a nonreal residue field in which −1 is not a square. As we will see in
[3.1], this allows to relate a minimal representation of −1 as a sums of squares
in the residue field to a sum of squares in F that is not a sum of two squares.
In general, finding such a point on a Cassels-Catalan curve is technical. In the
special case n = m = 2, that is for regular conics, the following statement gives
a more conceptual argument for the existence of such a point.


Theorem C. Assume that K is infinite. Let L/K be a finite separable extension


and V a geometrically integral variety over K such that VL is unirational. Then


there exists a regular point P ∈ V such that K(P ) ∼=K L.


We prove this result in Section 2. We do not know whether a similar statement
also holds when K is finite.


2. Points on geometrically rational varieties


The main goal of this section is to obtain a proof of Theorem C. A key idea
was contributed by Adrian Wadsworth.


An integral variety over a field is called unirational, if there exists a dominant
morphism from an open subscheme of an affine space to the variety, and moreover
rational if this morphism has an inverse that is defined on an open subscheme of
the variety.


Let V be a K-vector space of dimension n <∞. We call a map V → K a K-


polynomial function if it is given by the evaluation of a polynomial in n variables
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over K, after identifying V with Kn by the choice of an arbitrary basis for V .
We call the zero locus H(g) of a nonzero K-polynomial function g : V → K a K-


hyperplane, and we call the coarsest topology in V in which every K-hyperplane is
closed, the K-Zariski topology. The K-Zariski topology on K itself is the cofinite
topology.


Given a K-hyperplane H(g) ⊂ V and another finite dimensional vector space
W , a map ϕ : V \H(g) → W is said to be K-regular if there exists r ∈ N and a
K-polynomial function f : W → K, such that the map V \H(g) → K given by
v 7→ (f ◦ ϕ)(v) · g(v)r extends to a K-polynomial function on V .


Given two K-regular maps ϕ : V1 \ H1 → V2 and ψ : V2 \ H2 → V3 with
ϕ−1(H2) ∪H1 6= V1, the composition ψ ◦ ϕ is defined as a K-regular map on the
complement of the hyperplane ϕ−1(H2) ∪H1 in V1.


2.1. Lemma. Let L/K be a finite field extension. Then multL : L × L → L,
(x, y) 7→ xy and invL : L \ {0} → L, x 7→ 1


x
are K-regular maps.


Proof. We identify L with a K-subalgebra of EndK(L), via the algebra homomor-
phism that assigns to a ∈ L the left-multiplication x 7→ ax. The multiplication
on EndK(L) is a K-regular map EndK(L) × EndK(L) → EndK(L), as can be
seen by identifying EndK(L) with a matrix algebra over K. Hence, its restriction
multL : L × L → L to L is also a K-regular map. The subset of noninvertible
elements of EndK(L) is a K-hyperplane given by a determinant polynomial. This
hyperplane restricts to the single point set {0} in L. The inversion map on the
invertible elements is a K-regular map on EndK(L) by Cramer’s Rule. Restrict-
ing the map to L \ {0}, we obtain that invL : L \ {0} → L is also a K-regular
map. �


For f ∈ K(t), choose g, h ∈ K[t] relatively prime such that f = g


h
. We write


f : K 99K K for the regular map K \H(h) → K defined by x 7→ g(x)
h(x)


.


2.2. Corollary. Let L/K be a finite extension and f ∈ L(t). The L-regular map


f : L 99K L is a K-regular map.


Proof. First, we show this in the case where f ∈ L[t]. Let s = [L : K] and fix an
arbitrary K-basis (ℓ1, . . . , ℓs) of L. Write f = f0 + f1t + · · · + fdt


d with d ∈ N


and f0, . . . , fd ∈ L. For z ∈ L write z = r1ℓ1 + · · · + rsℓs with r1, . . . rs ∈ K.
We can consider f(z) = f(r1ℓ1 + · · ·+ rsℓs) as a polynomial function over L in


s variables evaluated at (r1, . . . , rs). We can choose f̃1, . . . , f̃s ∈ K[X1, . . . , Xs]


such that f(r1ℓ1 + · · · + rsℓs) = f̃1(r1, . . . , rs)ℓ1 + · · · + f̃s(r1, . . . , rs)ℓs. Hence


the map L → L , z 7→ f(z) is given by the polynomials f̃1, . . . , f̃s over K. Now
assume that f ∈ L(t). Let g, h ∈ L[t] be relatively prime such that f = g


h
. Then


the map L \H(h) → L given by z 7→ f(z) is given by the following composition
of K-regular maps.


f : L \H(h)
(g,h)−→ L× (L \H(h))


id×invL−→ L× L
multL−→ L,
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where (g, h)(x) = (g(x), h(x)) and id× inv(x, y) 7→ (x, y−1). This composition of
K-regular maps is defined. �


2.3. Lemma. Let L/K be a finite field extension. For every f ∈ L(t) there exist


g ∈ L[t] and h ∈ K[t] such that f = g


h
.


Proof. Choosing α1, . . . , αn ∈ L such that L = K[α1, . . . , αn], we have that L(t) =
K[α1, . . . , αn](t) = K(t)[α1, . . . , αn]. �


2.4. Proposition. Assume that K is infinite. Let L/K be a proper finite exten-


sion that is not purely inseparable. Let f ∈ L(t) such that f(z) ∈ K for every


z ∈ L where f(z) is defined. Then f ∈ K.


Proof. We first show that f ∈ K(t). By [2.3], there exists g ∈ L[t] and h ∈ K[t]
such that f = g


h
. Write g = g0 + g1t + · · ·+ gdt


d with d ∈ N and g0, . . . , gd ∈ L.
Evaluating this polynomial in d+1 distinct elements α0, . . . , αd ∈ K \H(h) yields
that














1 α0 · · · αd
0


1 α1 · · · αd
1


...
...


...
1 αd · · · αd


d














·














g0
g1
...
gd














=














f(α0)h(α0)
f(α1)h(α1)


...
f(αd)h(αd)














∈ Kd+1.


Since the matrix on the left is invertible, we have that g0, . . . , gd ∈ K. Hence
g ∈ K[t] and thus f ∈ K(t).


In order to show that f ∈ K, we fix an element β ∈ L\K that is separable over
K. Let σ be a K-automorphism of the algebraic closure of L such that σ(β) 6= β.
Since f(z) ∈ K for all z ∈ L\h−1({0}), it follows that g(r0+r1β)h(r0+r1σ(β)) =
g(r0 + r1σ(β))h(r0 + r1β) for any r0, r1 ∈ K. Since K is infinite, we obtain the
polynomial identity g(X + Y β)h(X + Y σ(β)) = g(X + Y σ(β))h(X + Y β) in the
variables X and Y . Since the matrix


(


1 β
1 σ(β)


)


is invertible, we conclude by a linear change of variables the polynomial identity
g(X)h(Y ) = g(Y )h(X). Hence f = g


h
∈ K. �


2.5. Proposition. Assume that K is an infinite field. Let L/K be a finite sep-


arable extension. Let f ∈ L(t) \ L. Then there exists α ∈ L such that f(α) is


defined and K(f(α)) ∼=K L.


Proof. By [2.2], the L-regular map f : L 99K L is K-regular. Note that the
K-open subset in L on which this regular map is defined is K-irreducible. As
f is continuous, the image of the map f : L 99K L is irreducible. Assume that
the image of f : L 99K L does not contain a primitive element of L/K, then it is
contained in the finite union of the maximal proper subfields of L that contain K.
The latter is a finite union of K-vector subspaces of L. None of those maximal
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proper subfields is contained in the union of the others, hence they are the K-
irreducible components of this finite union. Thus the image of f : L 99K L is
contained in one maximal proper subfield E of L containing K. By [2.4], we
obtain that f ∈ E, which contradicts the assumption that f /∈ L. �


2.6. Remark. If K is a finite field of characteristic p and L/K a proper finite
extension, then the image of the nonconstant map L → L, x 7→ xp is a proper
subfield of L.


The following is the main result of this section. For the used concepts from
algebraic geometry we refer to [H, Chap. II].


2.7.Theorem. Assume that K is infinite. Let L/K be a finite separable extension


and V be a geometrically integral variety over K such that VL is unirational. Then


the set of regular points P ∈ V such K(P ) ∼=K L is K-Zariski dense in V .


Proof. Let n ∈ N and U ∈ A
n
L an open L-subvariety and U → VL a dominant


morphism. By [H, Chap. II, 8.16], the subset of regular points on V is open
dense. Hence, by the dominance of the morphism U → VL, we can assume V to
be regular affine. Let V →֒ Am


K be a closed immersion for some m ∈ N.
We choose a projection A


m
K → A


1
K such that the composition V →֒ A


m
K → A


1
K


is not constant. Furthermore, we choose a closed immersion A1
L →֒ An


L such that
preimage W of U with respect to this immersion is nonempty and such that W
is not mapped to a single point in A1


L. Considering the commutative diagram


W
�


�


// U // VL
�


�


//


��


Am
L


��


// A1
L


ϕL


��


V
�


�


// Am
K


// A1
K


whose vertical arrows are the base-change morphisms, we see that it is sufficient
to find a rational point P ∈ W that is mapped to a closed point in A


1
K with


residue field L. Equivalently, it is sufficient to find a rational point P ∈ W whose
image in Spec(L[Y ]) = A1


L corresponds to a maximal ideal generated by a linear
polynomial Y −β, where β ∈ L is such that L = K(β), since the preimage of this
maximal ideal under the dual homomorphism to the base change ϕL will be the
maximal ideal in Spec(K[Y ]) = A1


K generated by the minimal polynomial for β
over K.


By shrinking W if necessary, we can assume that W = Spec(L[X ]h), that is,
W is a principal open subscheme of A1


L = Spec(L[X ]) given by the localization
of L[X ] after the multiplicative set {hi | i ∈ N0} for some h ∈ L[X ]. The
nonconstant map W → A1


L corresponds to a L-algebra homomorphism


ψ : L[Y ] → L[X ]h


with ψ(Y ) /∈ L. Say ψ(Y ) = g


hr for some r ∈ N and g ∈ L[X ]. For arbitrary


α ∈ L such that h(α) 6= 0, consider a maximal ideal in L[X ]h containing
g


hr − g(α)
h(α)


.
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Its inverse image in L[Y ] is obviously the maximal ideal generated by Y − g(α)
h(α)


. By


[2.5], there exists α ∈ L with h(α) 6= 0 and L = K( g(α)
h(α)


). This shows the existence


of a regular point P ∈ V with K(P ) ∼=K L. Let V ′ denote the complement in
V of the closure of the set of regular points P ∈ V with K(P ) ∼=K L. If V ′ is
nonempty then V ′


L is unirational and we obtain a contradiction to the first part
applied to V ′. Hence, the set of regular points P ∈ V with K(P ) ∼=K L is dense
in V . �


A weak version of Nishimura’s Lemma [N] states that the existence of a ra-
tional point is invariant under birational equivalence between smooth projective
irreducible varieties (also over finite fields). If it could be shown that the same is
true for the existence of a closed point with prescribed residue field, then we could
extend [2.7] to cover finite fields as well, at least with the additional assumption
that the variety is smooth and projective.


3. Sums of squares in function fields of conics


In this section, we will prove Theorem A. The following observation will also
play a role in the proof of Theorem B.


3.1.Proposition. Assume thatK carries a valuation with value group Z and with


nonreal residue field κ of characteristic different from 2. Let s be the smallest


positive integer such that −1 is a sum of s squares in κ. Then p(K) > s.


Proof. Let v denote the valuation. By the choice of s, there exist x0, . . . , xs ∈ K
with v(x0) = . . . = v(xs) = 0 and v(x20 + . . . + x2s) > 0. If v(x20 + . . . + x2s) > 1
we replace x0 by x0 + t for any t ∈ K with v(t) = 1. Hence, we may assume
that v(x20 + . . . + x2s) = 1. We claim that x20 + . . . + x2s is not a sum of s
squares in K. Suppose on the contrary that there exist y1, . . . , ys ∈ K with
y21 + . . . + y2s = x20 + . . . + x2s. We can assume that v(y1) ≤ v(y2) ≤ . . . ≤ v(ys).
Then v(1 + (y−1


1 y2)
2 + . . .+ (y−1


1 ys)
2) > 0, and we obtain a representation of −1


as a sum of s−1 squares in κ, contradicting the choice of s. �


We recall from [GS, 1.3.2 & 1.3.5] that every regular conic over a field of char-
acteristic different from 2 is a generic splitting variety for a quaternion algebra,
that is, the base field extensions that split the quaternion algebra are exactly
those over which the conic becomes rational.


3.2. Theorem. Assume that K is not hereditarily pythagorean and that −1 is


not a square in K. Let F be the function field of a regular conic over K. Then


p(F ) ≥ 3.


Proof. We shall first observe that there exists a finite separable nonreal extension
K ′′ of K such that −1 is a sum of two squares in K ′′. In the case where K is
real, let K ′ denote a finite real extension of K that is not pythagorean. In the
case where K is nonreal, set K ′ = K. In both cases, there exists a sum of two
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squares σ in K ′ that is not a square, and we set K ′′ = K ′(
√−σ), which is a finite


separable extension of K.
Now consider any maximal algebraic field extension M/K ′′ in which −1 is not


a square. By [Lam, Chap. III, 2.8], every quaternion algebra over M is split,
whereby every conic over M is rational. The conic of the statement already splits
over some finite nonreal extension L/K contained in M . Note that −1 is not a
square in L. In the case where K is real, it is clear that L/K is separable, hence
there exists a point on the conic with residue field L by [2.7]. In the case where
K is nonreal, there exists a point on the conic whose residue field L′ is a subfield
of L and contains K. Hence, L is nonreal and −1 is not a square in L. In both
cases [3.1] yields p(F ) > 2. �


We say that K is euclidean if it is pythagorean and uniquely ordered. We say
that K is hereditarily euclidean if K is real and every finite real extension of K
is euclidean.


3.3. Corollary. Assume that −1 is not a square in K. Let F/K be a function


field in one variable of genus zero.


(a) Assume that F is real. Then p(F ) = 2 if and only if K is hereditarily


pythagorean.


(b) Assume that F is nonreal. Then p(F ) = 2 if and only if K is hereditarily


euclidean.


Proof. A real function field of genus zero over a hereditarily pythagorean field has
pythagoras number 2, e.g. by [BV, 4.10]. The converse implication follows with
[3.2]. This shows (a). Now assume that K is hereditarily euclidean. Then every
function field in one variable has pythagoras number 2, by [BV, 4.6]. Assume
conversely that p(F ) = 2 for a nonreal function field of genus zero. It follows by
[3.2] that K is hereditarily pythagorean. Hence, F is isomorphic to the function
field of the conic X2+Y 2+Z2 = 0. By [BV, 4.7], it follows that K is hereditarily
euclidean. This shows (b). �


By [B, Chap. III, Lemma 5], a uniquely ordered hereditarily pythagorean field
is already hereditarily euclidean. Hence, [3.3] yields Theorem A.


4. Sums of squares in function fields of cassels–catalan curves


In this section we prove Theorem B. We denote by K×2 the set of nonzero
squares in a field K, and by ±K×2 we denote the set K×2∪−K×2. The algebraic
closure of K is denoted Kalg.


4.1. Proposition. Assume that K is infinite. Let L be a finite separable non-


pythagorean extension of K. Then there exists ξ ∈ L such that L = K(ξ2) and


ξ2 + 1 /∈ L×2. Moreover, there exists σ ∈ ∑


L2 \ L×2 such that L = K(σ) and


σ + 1 /∈ L×2.
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Proof. Fix z ∈ L with z2 + 1 /∈ L×2. For arbitrary ν ∈ L×, consider the terms


α = ν2


z2
, β = ν2 + z2, γ = (z2+1)2


ν2
+ z2, δ = (z2+1)2


z2ν2
and ǫ = z2+1


ν2
. These terms


are rational functions in ν over L. Let G = {x ∈ L | K(x) = L}. This is a K-
Zariski open subset of L as it is the complement of the finitely many subspaces
of L that correspond to the finitely many intermediate extensions of L/K. By
[2.5] the preimage of G under any rational function from L(t) \ L is nonempty.
Moreover, G is K-open in L. As the intersection of finitely many nonempty K-
open subsets of L is nonempty, there exists ν ∈ L×, such that α, β, γ, δ, ǫ ∈ G.
Note that ǫ, 1


ǫ
∈ ∑


L2 \ L×2. If ǫ + 1 /∈ L×2 we set σ = ǫ. Otherwise we have
1+ǫ
ǫ


= 1
ǫ
+ 1 /∈ L×2 and set σ = 1


ǫ
.


Note also that α ∈ L×2 and if α + 1 /∈ L×2, choose ξ = ν
z
. Assume now that


α + 1 ∈ L×2. Then β ∈ L×2. If β + 1 /∈ L×2 choose ξ ∈ L such that ξ2 = β.
Assume now that β + 1 ∈ L×2. Then ν2 + z2 + 1 ∈ L×2 and ν2 + z2 ∈ L×2. It


follows that (z2+1)2


ν2
+z2+1 /∈ L×2 since z2+1 /∈ L×2. Remember that δ = (z2+1)2


z2ν2
.


If δ + 1 /∈ L×2, choose ξ = z2+1
zν


. Otherwise, if δ + 1 ∈ L×2, then γ ∈ L×2 and
γ + 1 /∈ L×2 and we choose ξ ∈ L such that ξ2 = γ in this last case. �


4.2. Lemma. Let u ∈ K× \ ±K×2 and r ≥ 1. Let γ ∈ Kalg be such that γ2
r


= u.
Then K× ∩K(γ)×2 = K×2 ∪ uK×2.


Proof. As −u /∈ K×2, and thus −u /∈ 4K×4, the polynomial T 2r− u is irreducible
by [La, Chap. VI, 9.1]. Write d = γ2, L = K(d) and M = K(γ). Note that


M/L is a quadratic extension. As T 2r−1− u is the minimal polynomial of d over
K, the norm of d with respect to L/K is ±u. As u /∈ ±K×2, it follows that
K× ∩ dL×2 = ∅. As L× ∩M×2 = L×2 ∪ dL×2, we have that


K× ∩M×2 = K× ∩ (L×2 ∪ dL×2) = K× ∩ L×2.


The statement thus follows by induction on r. �


4.3. Corollary. Suppose −1 /∈ K×2. Let u ∈ K× \ ±K×2 and n ∈ N. There


exists x ∈ Kalg with xn = u and K× ∩K(x)×2 ⊆ K×2 ∪ uK×2.


Proof. If n is odd, we can choose x ∈ Kalg with xn = u such that [K(x) : K] is
odd, whereby K× ∩ K(x)×2 ⊆ K×2. Assume now that n is even. If u /∈ K×2,
then we write n = 2rm with m odd and r ≥ 1, and apply [4.2] together with the
previous case. �


4.4. Corollary. Suppose −1 /∈ K×2. Let v ∈ K× \ −K×2 and m ∈ N. There


exists y ∈ Kalg such that ym = v and −1 /∈ K(y)×2.


Proof. Let r ∈ N be maximal such that 2r|m and v ∈ K×2r . Let u ∈ K be such
that u2


r


= v. We write m = n2r. If n is odd, then we can choose y ∈ Kalg such
that ym = v and [K(y) : K] is odd, and it follows trivially that −1 /∈ K(y)×2.


Assume that n is even. Then u /∈ K×2 by the maximality of r. Furthermore,
we claim that u /∈ −K×2. If r = 0 we have that u = v /∈ ±K×2. If r > 0 then
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u /∈ −K×2 by the maximality of r and the fact that (−u)2r = v. Using [4.3], we
choose y ∈ Kalg such that yn = u and K×∩K(y)×2 ⊆ K×2∪uK×2. Then ym = v
and −1 /∈ K(y)×2, since u /∈ −K×2. �


4.5. Proposition. Suppose −1 /∈ K×2. Let u ∈ K× \ ±K×2 and v ∈ K× \
(−K×2 ∪−uK×2). Let n,m ≥ 1. Then there exists a finite extension M/K such


that −1 /∈ M×2, with x, y ∈ M such that xn = u and ym = v, and such that


M = K(x, y).


Proof. We choose x ∈ Kalg such that xn = u and K× ∩K(x)×2 ⊆ K×2 ∪ uK×2.
Then −1,−v /∈ K(x)×2. By [4.4] there exists y ∈ Kalg such that ym = v and
−1 /∈ K(x, y)×2. Set M = K(x, y). �


4.6. Corollary. Let L/K be a finite field extension such that L is real and not


pythagorean. Let a, b ∈ K such that a, b ∈ L×2 ∪ −L×2. For integers n,m ≥ 1,
there exists a finite extension M/L, such that −1 /∈ M×2, and with x, y ∈ M
such that 1 = axn + bym and M = K(x, y). Moreover, if n or m is even, we can


choose M to be nonreal.


Proof. By [4.1] there exists ξ ∈ L with ξ2+1 ∈ ∑


L×2 \L×2 and L = K(ξ2), and
further σ ∈ ∑


L×2 \ L×2 with L = K(σ) and σ + 1 ∈ ∑


L×2 \ L×2.
In the case where a, b ∈ L×2, set u = − 1


aσ
and v = 1


b
(1+ 1


σ
). Then u /∈ ±L×2 and


−v /∈ L×2 ∪ uL×2, as −uv = 1
ab


σ+1
σ2 . Moreover, 1 = au+ bv.


In the case where −a,−b ∈ L×2, set u = ξ2+1
a


and v = −ξ2


b
. Then u /∈ ±L×2 and


−v /∈ L×2 ∪ uL×2. Moreover, 1 = au+ bv.
In the case where −a, b ∈ L×2 set u = σ+1


a
and v = −σ


b
. Then u /∈ ±L×2 and


−v /∈ L×2 ∪ uL×2. Moreover, 1 = au+ bv.
In the case where a,−b ∈ L×2 set u = −σ


a
and v = σ+1


b
. Then u /∈ ±L×2 and


−v /∈ L×2 ∪ uL×2. Moreover, 1 = au+ bv.
In each case, by [4.5], there exist x, y ∈ Lalg such that xn = u and ym = v


and
√
−1 /∈ L(x, y). Moreover, since u ∈ L(x, y) and K(u) = L, it follows that


L(x, y) = K(x, y). Obviously 1 = axn + bym as 1 = au + bv. Set M = L(x, y).
Now suppose that n or m is even. By symmetry, we can assume that n is even.
Then xn = u is both a square in M and, by the choices of u in each case, a
negative sum of squares in M . Thus M is not real. �


4.7. Theorem. Assume that K is not hereditarily pythagorean and that −1 is


not a square in K. Let F be the function field of a Cassels–Catalan curve over


K. Then p(F ) ≥ 3.


Proof. Assume that F is the function field of the curve 1 = aXn + bY m for some
a, b ∈ K× and n,m ≥ 1 prime to the characteristic of K. Assume first that K
is nonreal. If −a is not a square in K, choose x ∈ Kalg such that xn = 1


a
and√


−1 /∈ K(x) as in [4.4]. Then P = (x, 0) is a point on the curve and −1 is not
a square in K(P ). If −b is not a square in K we can proceed analogous. So we
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assume that both −a and −b are not squares in K. Choose z ∈ K such that
z2 + 1 is not a square in K. Choose again x ∈ Kalg such that xn = z2


−a
and −1


is not a square in K(x). Then 1
b
is not a square in K(x) and we also find some


y ∈ Kalg such that ym = −1
b


and that −1 is not a square in K(x, y), as in [4.5].
Again P is a point on the curve for which −1 is not a square in K(P ). In either
case, we obtain that p(F ) ≥ 3 by [3.1] in the case where K is not real.


Now we assume that K is real. Let us first consider the case where n is odd.
Then F is clearly an odd degree extension of the rational function field K(X).
Then 3 ≤ p(K(X)) ≤ p(F ) by Springer’s Theorem [Lam, Chap. VII, 2.7] and
[3.3]. Hence we assume that n is even. Suppose there exists a finite real extension
L/K that is not pythagorean. We can assume that a or −a, as well as one of
b or −b is a square in L, since we can replace L by one of the four extensions
L(


√±a)(
√
±b) if necessary; note that none of those extensions is pythagorean,


by [Lam, Chap. VIII, 5.7], and at least one of them is real. By [4.6] there exists a
point P on the curve such that K(P ) is nonreal and −1 is not a square in K(P ).
Again, [3.1] yields that p(F ) ≥ 3. �
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