COHOMOLOGICAL INVARIANTS OF ALGEBRAIC TORI
S. BLINSTEIN AND A. MERKURJEV

ABSTRACT. Let G be an algebraic group over a field F'. As defined by
Serre, a cohomological invariant of G of degree n with values in Q/Z(j) is a
functorial in K collection of maps of sets H'(K,G) — H™(K,Q/Z(j)) for
all field extensions K/F. We study the group of degree 3 invariants of an
algebraic torus with values in Q/Z(2). In particular, we compute the group
H3.(F(S),Q/Z(2)) of unramified cohomology of an algebraic torus S.

1. INTRODUCTION

Let G be a (linear) algebraic group. The notion of an invariant of G was
defined in [16] as follows. Fix a field F' (of arbitrary characteristic) and consider
the category Fieldsy of field extensions of F'. Consider the functor

Torsg : Fieldsp — Sets

taking a field K to the set H'(K,G) of isomorphism classes of G-torsors over
Spec K. Let
H : Fieldsp — Abelian Groups

be another functor. An H-invariant of GG is then a morphism of functors
1 : Torsq — H,

viewing H with values in Sets, i.e., a functorial in K collection of maps of sets
HY(K,G) — H(K) for all field extensions K/F. We denote the group of
H-invariants of G by Inv(G, H).

An invariant ¢ € Inv(G, H) is called normalized if i(I) = 0 for the triv-
ial G-torsor I. The normalized invariants form a subgroup Inv(G, H)uorm of
Inv(G, H) and there is a natural isomorphism

II]V(G, H) =~ H(F) % IHV(G, H)nornu

so it is sufficient to study normalized invariants.

Typically, H is a cohomological functor given by Galois cohomology groups
with values in a fixed Galois module. Of particular interest to us is the functor
H which takes a field K/F' to the Galois cohomology group H" (K, @/Z(j)),
where the coefficients Q/Z(j) are defined as follows. For a prime integer p
different from char(F'), the p-component Q,/Z,(j) of Q/Z(j) is the colimit
over n of the étale sheaves Mfﬁ , where i, is the sheaf of m'™ roots of unity. In
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the case p = char(F) > 0, Q,/Z,(j) is defined via logarithmic de Rham-Witt
differentials (see §3b).

We write Inv" (G, Q/Z(j)) for the group of cohomological invariants of G of
degree n with values in Q/7Z(7).

The second cohomology group H?(K,Q/Z(1)) is canonically isomorphic to
the Brauer group Br(K) of the field K. In §2c we prove (Theorem 2.4) that if
G is a connected group (reductive if F' is not perfect), then Inv(G, Br)porm =
Pic(G). The group Inv*(G,Q/Z(2)), . for a semisimple simply connected
group G has been studied by Rost (see [16]).

An essential object in the study of cohomological invariants is the notion
of a classifying torsor: a G-torsor E — X for some variety X over F' such
that every G-torsor over an infinite field K/ F' is isomorphic to the pull-back of
E — X along a K-point of X. If V is generically free representation of G with
a nonempty open subset U C V such that there is a G-torsor 7 : U — X, then
7 is classifying. The generic fiber of 7 is the generic torsor over Spec F(X).
Evaluation at the generic torsor yields a homomorphism

Inv”(G,Q/Z(j)) — H”(F(X),@/Z(j)),

and in §3 we show that the image of this map is contained in the subgroup
HY,. (X, H"(Q/Z(35))) of H"(F(X),Q/Z(j)), where H"(Q/Z(j)) is the Zariski
sheaf associated to the presheaf W +— H™(W,Q/Z(j)) of the étale cohomology
groups. In fact, the image is contained in the subgroup H, (X L HY(Q/Z(y )))bal
of balanced elements, i.e., elements that have the same images under the pull-
back homomorphisms with respect to the two projections (U x U)/G — X.
Moreover, the balanced elements precisely describe the image and we prove
(Theorem 3.3):

Theorem. Let G be an algebraic group over a field F. We assume that
G 1s connected if F is a finite field. Then there is a natural isomorphism

Inv" (G, Q/Z(j)) ~ HY (X, H"(Q/Z(1))) -

At this point it is convenient to make use of a construction due to Totaro
[33]: because the Chow groups are homotopy invariant, the groups CH"(X)
do not depend on the choice of the representation V' and the open set U C V
provided the codimension of V' \ U in V is large enough. This leads to the
notation CH"(BG), the Chow groups of the so-called classifying space BG,
although BG itself is not defined in this paper.

Unfortunately, the étale cohomology groups with values in Q,/Z,(j), where
p = char(F) > 0, are not homotopy invariant. In particular, we cannot use
Rost’s theory of cycle modules of Rost [31].

The main result of this paper is the exact sequence in Theorem 4.4 /giescribing
degree 3 cohomological invariants of an algebraic torus 1T". Writing 7, for the
character lattice of T over a separable closure of F' and T° for the dual torus,
we prove:
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Theorem. Let T be an algebraic torus a field F'. Then there is an exact
sequence

0 — CH*(BT )iors — H'(F, T°) —
v (T,Q/Z(2)) . — H°(F,S*(Twp))/ Dec — H(F,T°).
The homomorphism « is given by a(a)(b) = axUb for every a € HY(F,T°) and

be HYK,T) and every field extension K/F, where the cup-product is defined
in (4.5), and Dec is the subgroup of decomposable elements in the symmetric

square S*(Tiep) defined in Appendiz A-II.

norm

We prove that the torsion group CH?*(BT )i is finite of exponent 2 and
the last homomorphism in the sequence is also of exponent 2. Moreover, if
p is an odd prime, the group Inv® (T, Q,/ ZP(Q))norm, which is the p-primary
component of Inv? (T, Q/Z(Q))norm, splits canonically into the direct sum of
linear invariants (those that induce group homomorphisms from Torsy to
H3) and quadratic invariants, i.e., the invariants i such that the function
h(a,b) :=i(a+b)—i(a)—i(b) is bilinear and h(a, a) = 2i(a) for all a and b. Fur-
thermore, the groups of linear and quadratic invariants with values in Q,/Z,(2)
are canonically isomorphic to H'(F,T°){p} and H°(F, $*(T.s))/ Dec){p}, re-
spectively.

We also prove (Theorem 4.9) that the degree 3 invariants have control over
the structure of all invariants. In particular, the group Inv®(Tx, Q/Z(2))norm is
trivial for all K/F if and only if T" is universally special, i.e., T has no nontrivial
torsors over any field K /F, which in particular means 7' has no nonconstant
H-invariants for every functor H.

Our motivation for considering invariants of tori comes from their connection
with unramified cohomology (defined in §5). Specifically, this work began as
an investigation of a problem posed by Colliot-Thélene in [5, p. 39]: for n
prime to char(F) and i > 0, determine the unramified cohomology group
H(F(9), /ﬁ(z*”), where F'(S) is the function field of a torus S over F. The
connection is provided by Theorem 5.6 where we show that the unramified
cohomology of a torus S is calculated by the invariants of an auxiliary torus:

Theorem. Let S be a torus over F and let1 — T — P — S — 1 be a
flasque resolution of S, i.e., T is flasque and P is quasi-split. Then there is a
natural isomorphism

H3 (F(S),Q/Z(j)) = Inv™ (T, Q/Z(j)).

In the present paper, F' denotes a field of arbitrary characteristic, Fy., a
separable closure of F', and I' the absolute Galois group Gal(Fi,/F) of F.
The word “scheme” over a field F' means a separated scheme over F' and a
“variety” over F'is an integral scheme of finite type over F'. If X is a scheme
over F' and L/F is a field extension then we write X, for X X Spec L. When
L = Fi, we write simply Xgep.
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2. INVARIANTS OF ALGEBRAIC GROUPS

2a. Definitions and basic properties. Let G be a (smooth linear) algebraic
group over a field F'. Consider the functor

Torsg : Fieldsp — Sets

from the category of field extensions of F' to the category of sets taking a field
K to the set H'(K,G) := H'(Gal(Ksp/K), G(Kup)) of isomorphism classes
of G-torsors over Spec K.

Let H : Fieldsp — Abelian Groups be a functor. We also view H as a
functor with values in Sets. Following [16], we define an H -invariant of G as
a morphism of functors Torsg — H from the category Fieldsp to Sets. All
the H-invariants of G form the abelian group of invariants Inv(G, H).

An invariant i € Inv(G, H) is called constant if there is an element h €
H(F) such that i(I) = hg for every G-torsor I — Spec K, where hy is the
image of h under natural map H(F') — H(K). The constant invariants form
a subgroup Inv(G, H)const of Inv(G, H) isomorphic to H(F'). An invariant
i € Inv(G, H) is called normalized, if i(I) = 0 for the trivial G-torsor I. The
normalized invariants form a subgroup Inv(G, H)yorm of Inv(G, H) and we have
the decomposition

Inv(G, H) = Inv(G, H)const ® Inv(G, H ) porm =~ H(F) © Inv(G, H)norm,

so it suffices to determine the normalized invariants.

2b. Classifying torsors. Let GG be an algebraic group over a field F'. A G-
torsor £ — X over a variety X over F' is called classifying if for every field
extension K/F, with K infinite, and for every G-torsor I — Spec K, there is
a point x : Spec K — X such that the torsor [ is isomorphic to the fiber E(x)
of B — X over z, i.e., [ ~ FE(x) := z*(F) = Spec(K) xx E. The generic
fiber Eyen — Spec F(X) of a classifying torsor is called a generic G-torsor
(see [16, Part 1, §5.3]).

If V' is generically free representation of G with a nonempty open subset
U C V such that there is a G-torsor 7 : U — X, then 7 is classifying (see
[16, Part 1, §5.4]). We will write U/G for X and call 7 a standard classifying G-
torsor. Standard classifying G-torsors exist: we can embed G into U := GL,,
for some n as a closed subgroup. Then U is an open subset in the affine space
M,,(F) on which G acts linearly. Note that U(F) # 0.

We say that a G-variety Y is G-rational if there is an affine space V' with
a linear G-action such that Y and V have G-isomorphic nonempty open G-
invariant subvarieties. Note that if U — U/G is a standard classifying G-
torsor, then U is a G-rational variety.
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Let E — X be a classifying G-torsor and let H : Fieldsp — Abelian Groups
be a functor. Define the map

(2.1) 0:Inv(G, H) —>H(F(X))
' i — 1(Egen),

by sending an invariant to its value at the generic torsor Egyey.
Consider the following property of the functor H:

Property 2.1. The map H(K) — H(K((t))) is injective for any field exten-
sion K/F.

The following theorem, due to M. Rost, was proved in [16, Part II, Th. 3.3].
For completeness, we give a slightly modified proof in Appendix A-I.

Theorem 2.2. Let G be an algebraic group over F'. If a functor H : Fieldsp —
Abelian Groups has Property 2.1, then the map 0 s injective, i.e., every H-
invariant of G is determined by its value at the generic G-torsor.

2c. The Brauer group invariants. Let G be a connected algebraic group
over F. Every cohomological invariant of G of degree 1 is constant by [24,
Prop. 31.15]. In this section we study (degree 2) Br-invariants for the Brauer
group functor K —— Br(K'). We assume that G is reductive if F'is not perfect
as required by the auxiliary result [32, Prop. 6.10].

Lemma 2.3. For any field extension K/F such that F is algebraically closed
in K, the natural map Pic(G) — Pic(Gk) is an isomorphism.

Proof. We may assume that G is reductive by factoring out the unipotent
radical in the case that F is perfect. There is an exact sequence (see [8, Th.
1.2))

1 —C—G —G—1

with C' a group of multiplicative type and G’ a reductive group with Pic(G’) =
0 for any field extension L/F. Let T be the factor group of G’ by the semisimple
part. The result follows from the exact sequence [32, Prop. 6.10]

T(L) — C(L) —» Pic(GL) —» Pic(G}) =0

with L = F and K since the groups T'(F) and C(F) don’t change when F is
replaced by K. O

Since for any G-torsor £ — Spec(K) over a field extension K/F one has
[32, Prop. 6.10] the exact sequence

(2.2) Pic(E) — Pic(Gx) - Br(K) — Br(E),
we obtain the homomorphism
v : Pic(G) — Inv(G, Br)yorm

which takes an element « € Pic(G) to the invariant that sends a G-torsor E
over a field extension K/F to §(ak).
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Theorem 2.4. Let G be a connected algebraic group over F'. Assume that G
is reductive if F' is not perfect. Then the map v : Pic(G) — Inv(G, Br)pomm S
an 1somorphism.

Proof. Choose a standard classifying G-torsor U — U/G. Write K for the
function field F(U/G) and let Uge, be the generic G-torsor over K. Consider
the commutative diagram

PIC(G) — IHV<G, Br)norm

U

Pic(Ugen) —= Pic(Gg) Br(K) —— Br(K (Ugn)),

where the bottom sequence is (2.2) for the G-torsor Uge, — Spec(K) followed
by the injection Br(Ugen) — Br(K(Ugen)) (see [20, Ch. IV, Cor. 2.6]),
and the map 6 is evaluation at the generic torsor U, given in (2.1) and
is injective by Theorem 2.2. Since the generic torsor is split over K (Ugen),
Im(0) C Ker(i) = Im(6). By Lemma 2.3, j is an isomorphism, hence v is
surjective.

Note that Uge, is a localization of U, hence Pic(Ugen) = 0 as Pic(U) = 0. It
follows that v is injective.

An algebraic group G over a field F is called universally special if H* (K, G) =
{1} for every field extension K/F, i.e., all G-torsors over any field extension
of F' are trivial.

Corollary 2.5. If the group G is universally special, then Pic(G) = 0.

3. INVARIANTS WITH VALUES IN Q/Z(j)

In this section we find a description for the group of cohomological invariants
with values in Q/Z(j) by identifying the image of the embedding € in (2.1).

3a. Balanced elements. Let G be an algebraic group over a field F. We
assume that G is connected if F' is finite. Let E — X be a G-torsor such that
E(F) # (. We write p; and p, for the two projections £?/G := (Ex E)/G —
X.

Lemma 3.1. Let K/F be a field extension and xy,x2 € X(K). Then the G-
torsors E(x1) and E(xy) over K are isomorphic if and only if there is a point
y € (E?/G)(K) such that pi(y) = x1 and pa(y) = wa.

Proof. “=": By construction, we have G-equivariant morphisms f; : E(x;) —
E for i = 1,2. Choose an isomorphism h : E(z;) — E(xs) of G-torsors
over K. The morphism (fy, foh) : E(z;) — E? yields the required point
Spec K = E(1,)/G — E?/G.

“<”: The pull-back of E — X with respect to any projection E?/G — X
coincides with the G-torsor E* — E? /G, hence

E(x1) = 2{(E) = y'pi(E) = y"(E*) = y'p3(E) = 23(E) = E(z2). O
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Let H be a (contravariant) functor from the category of integral schemes
over F' and dominant morphisms to the category of abelian groups. We have
the two maps p} : H(X) — H(E?/G), i = 1,2. An element h € H(X)
is called balanced if pi(h) = pi(h). We write H(X)pa for the subgroup of
balanced elements in H(X). In other words, H(X ), = ho(H(E®/G)) in the
notation of Appendix A-IV.

We can view H as a (covariant) functor Fieldsp — Sets taking a field K
to H(K) := H(Spec K).

Lemma 3.2. Let h € H(X)pa be a balanced element, K/F a field extension
and I a G-torsor over Spec(K). Let x € X(K) be a point such that E(x) ~ I.
Then the element x*(h) in H(K) does not depend on the choice of x.

Proof. Let z1, x5 € X (K) be two points such that E(x;) ~ E(x3). By Lemma
3.1, there is a point y € (E?/G)(K) such that pi(y) = x; and po(y) = o.
Therefore
zi(h) =y" (pi(h)) = y" (p3(h)) = 3(h). m
It follows from Lemma 3.2 that if the torsor £ — X is classifying with
E(F) # 0, then every element h € H(X)pa determines an H-invariant i, of
G as follows. Let I be a G-torsor over a field extension K/F. We claim that
there is a point x € X (K) such that E(x) ~ I. If K is infinite, this follows
from the definition of the classifying G-torsor. If K is finite then all G-torsors
over K are trivial by [25], as G is connected. Since E(K) # (), we can take for
x the image in X (K) of any point in E(K). Defining i,(F) = 2*(h) € H(K),
we have a group homomorphism
H(X)bal —)IHV(G, H), hl—>’Lh

3b. Cohomology with values in Q/Z(j). For every integer j > 0, the
coefficients Q/Z(j) are defined as the direct sum over all prime integers p of
the objects Q,/Z,(j) in the derived category of sheaves of abelian groups on
the big étale site of Spec F', where

Qu/Zy(j) = COEm N?g
if p # char F', with p,» the sheaf of (p")th roots of unity, and
Q/Zy(j) = colim W, [~]]

if p = char F' > 0, with WnQ{Og the sheaf of logarithmic de Rham-Witt differ-
entials (see [23]).
We write H™(X,Q/Z(j)) for the étale cohomology of a scheme X with
values in Q/Z(7). Then
H™(X,Q/Z(j)){p} = co111im H™(X, uffif)
if p # char I’ and
H™(X,Q/Z(j)){p} = colim H™ (X, W, )

log
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if p = char FF > 0. In the latter case, the group Wanog(F ) is canonically
isomorphic to K (F)/p"K}'(F), where KM (F) is Milnor’s K-group of F (see
[1, Cor. 2.8]), hence by [21] and [16, Part II, Appendix A], H*(F, W, ) is

log
isomorphic to

Kj‘/[(F)/p"KjV[(F), if s =0;
H*(F, KM (Faep) [p" KM (Fp)) = { H*(F, K} (Fsep))pn, if s =1;
0, otherwise.

It follows that in the case p = char F' > 0, we have

KJZ‘V[<F>®(QP/ZI>>7 if m = j;
H™(F,Q/Z(j)){p} =  H*(F, KM (Fup)){p}, ifm=j+1;

0, otherwise.

The motivic complexes Z(j), for j = 0,1,2, of étale sheaves on a smooth
scheme X were defined in [26] and [27] by S. Lichtenbaum. We write H* (X, Z(j))
for the étale cohomology groups of X with values in Z(j).

The complex Z(0) is equal to the constant sheaf Z and Z(1) = G,, x[—1],
thus H"(X,Z(1)) = H"Y(X, Gy, x). In particular, H*(X,Z(1)) = Br(X),
the cohomological Brauer group of X. The complex Z(2) is concentrated in
degrees 1 and 2 and there is a product map Z(1) ®* Z(1) — 7Z(2).

The exact triangle in the derived category of étale sheaves

Z(j) — QO Z(j) — Q/Z(j) — Z(j)[1]
yields the connecting homomorphism
H'(X, Q/Z(j)) — H™(X,Z(7)),

which is an isomorphism if X = Spec(F') for a field F' and i > j [22, Lemme
1.1].

Write H"(Q/Z(j)) for the Zariski sheaf on a smooth scheme X associated
to the presheaf U — H"(U,Q/Z(j)) of étale cohomology groups.

Let G be an algebraic group over F. We assume that G is connected if F
is a finite field and write Inv" (G, Q/Z(])) for the group of degree n invariants
of G for the functor K — H"(K,Q/Z(j)). Note that Property 2.1 holds for
this functor by [16, Part 2, Prop. A.9].

Choose a classifying G-torsor E — X with E a G-rational variety such
that E(F) # (). Applying the construction given in §3a to the functor U
HY, (U, H(Q/Z(j))), we get a homomorphism

¢ Hzoo (X, HY(Q/Z())))  — Inv" (G, Q/Z(5)).

Theorem 3.3. Let G be an algebraic group over a field F'. We assume that G
is connected if F' is a finite field. Let E — X be a classifying G-torsor with
E a G-rational variety such that E(F) # 0. Then the homomorphism ¢ is an
1somorphism.
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Proof. Let Egen —> F(X) be the generic fiber of the classifying G-torsor
E — X. Note that since the pull-back of £ — X with respect to any of
the two projections £?/G — X coincides with the G-torsor E? — E?/G,
the pull-backs of the generic G-torsor E,e,, — Spec F/(X) with respect to the
two morphisms Spec F(E?/G) — Spec F(X) induced by the projections are
isomorphic. It follows that for every invariant i € Inv(G, H*(Q/Z(j))) we
have

D1 (i(Egen)) = (07 (Egen)) = i(p3(Egen)) = 15 (i(Egen))
in H*(F(E*/G),Q/Z(j)), ie., i(Egn) € H*(F(X),Q/Z(j)),, By Proposi-
tion A.9, 0,(h) = 0 for every point € X of codimension 1, hence
0(i) = i(Egen) € Hyor (X, H"(Q/Z())))
by Proposition A.10. By Theorem 2.2, 6 is injective and by construction, the
composition 6 o ¢ is the identity. It follows that ¢ is an isomorphism. U

Write ﬁgar (X, H™(Q/Z(j))) for the factor group of HY, (X, H"(Q/Z(j)))
by the natural image of H" (F,Q/Z(j)).

Corollary 3.4. The isomorphism ¢ yields an isomorphism
—0 n . ~ n .
H o (X, HNQ/Z()))) g — TV (G, Q/Z(5))

4. DEGREE 3 INVARIANTS OF ALGEBRAIC TORI

norm’

In this section we prove the main theorem that describes degree 3 invariants
of an algebraic torus with values in Q/Z(2).

4a. Algebraic tori. Let F be a field and I' = Gal(Fy.,/ F') the absolute Galois
group of F. An algebraic torus of dimension n over F' is an algebraic group
T such that T, is isomorphic to the product of n copies of the multiplicative
group G,, (see [11] or [35]). For an algebraic torus 7" over a field F', we write
iep for the I'-module of characters Hom(7Zep, G,,,). The group ﬁep isal-
lattice, i.e., a free abelian group of finite rank with a continuous I'-action. The
contravariant functor T' +—» iep is an anti-equivalence between the category of
algebraic tori and the category of I'-lattices: the torus 7" and the group T'(F')
can be reconstructed from the lattice iep by the formulas
T = Spec(Fup|Tiap))
T(F) = Homp(Tiep, F,) = (T2, ® F

T
sep sep sep) ’
S ~
where T3, = Hom(Tiep, Z).

We write T' for the character group Hom(T, G,,) = (ﬁep)F and T° for the
dual torus having character lattice i‘;p.
A torus T is called quasi-split if T' is isomorphic to the group of invertible
elements of an étale F-algebra, or equivalently, the I'-lattice YA’Sep is permuta-
tion, i.e., iep has a I'-invariant Z-basis. An invertible torus is a direct factor

of a quasi-split torus.
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A torus T is called flasque (respectively, coflasque) if H 1(L,j\;"ep) =0 (re-
spectively, H 1(L,j\ﬁsep) = 0) for every finite field extension L/K. A flasque
resolution of a torus S is an exact sequence of tori 1 — 7T — P — § — 1
with T flasque and P quasi-split. By [11, §4], or [35, §4.7], the torus T in the
flasque resolution is invertible if and only if S is a direct factor of a rational

torus.

4b. Products. Let T be a torus over F' and let f(z) denote the complex
Tiep ® Z(i) of étale sheaves over F' for ¢ = 0,1,2. Thus, T(0) = T, and

T(l) = (Tsep ® Fsip) [_1] = TO(Fsep)[_l]-
Let S and T' be algebraic tori over F' and let ¢ and 5 be nonnegative integers

with ¢ + 7 < 2. For any smooth variety X over F', we have the product map
(4.1)  (Seep ® Toep)™ ® HP(X,5°(3)) @ HI(X,T°(5)) — H"*9(X,Z(i + j))

taking a ® b® ¢ to a U b U ¢, via the canonical pairings between §sep and §§ep,
Tiep and Ty, and the product map Z(i) @" Z(j) — Z(i + j).

Recall that there is an isomorphism H"(F,Z(k)) ~ H" '(F,Q/Z(k)) for
n > k. In particular, we have the cup-product map

(42)  (Sup ® Top)" @ H'(F, S) @ H(F,T) — H*(F,Q/Z(2))

ifp+qg=2.
If S = T° is the dual torus, then (Ssp ® Tiep)' = Endr(T,) contains the
canonical element 17. We then have the product map

(4.3) HP(X,T(i)) ® HY(X, T°(j)) — H""(X,Z(i + j))
and in particular, the product maps

(4.4) HY(F,T.p) ® HY(F,T) — H*(F,Q/Z(1)) = Br(F),
(4.5) H'(F,T°) @ H'(F,T) — H*(F,Q/Z(2)),

(4.6) H?*(F,T°) @ H(F,T) — H*(F,Q/Z(2)),

taking a ® b to 1 Ua U b.

The Picard group of T is canonically isomorphic to H'(F, ﬁep) (35, §4.3].
The map v in Theorem 2.4 is given by the cup-product (4.4) with the class of
the T-torsor Uge, — Spec(K) in H'(K,T) (see [13, Prop. 2.9] or [3, Lemma
2.6]). Thus, we have proved the following corollary.

Corollary 4.1. Let T be a torus over F'. Then the map
HY(F, Taep) — Inv (T, Br)norm,

taking an element a to the invariant b — ax Ub forbe H (K, T) and K/F is
an 1somorphism.
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As T is a commutative group, the set H'(K,T) is an abelian group. An
invariant i € Inv(7T, H) for a functor H is called linear if ix : H(K,T) —
H(K) is a group homomorphism for every K/F. Clearly, every linear invariant
is normalized. By Corollary 4.1, every normalized Br-invariant of a torus is
linear. In the next section we will see that a normalized degree 3 invariant of
a torus need not be linear.

4c. Main theorem. Let T be a torus over F' and choose a standard classifying
T-torsor U — U/T such that the codimension of V' \ U in V is at least 3.
Such a torsor exits by [14, Lemma 9].

By [32, Prop. 6.10], there is an exact sequence

Fup UV JF, — Tap — Pic((U/T)sep) — Pic(Usep)-

The codimension assumption implies that the side terms are trivial, hence the
map ﬁep — PiC((U / T)Sep) is an isomorphism. It follows that the classifying
T-torsor U — U/T is universal in the sense of [7] (see Proposition B.1).
Write K, (F) for the (Quillen) K-groups of F' and I, for the Zariski sheaf
associated to the presheaf U + K.(U). Then the groups Hz, (U/G,K,) are
independent of the choice of the classifying torsor (cf., [14]). So we write
HY (BT, ’CQ) for this group (see Appendix A-IV). As T, is a split torus, by

thzearKiinneth formula (see Example A.5),
Ko (Fep), if n =0;
Hy (BTsep’ ICQ) = Pic«U/G)Sep) ® Fsip = iep ® Fsép =T°(Fyp), ifn=1;
CH2 ((U/G)Sep) = 52(Tsep)> ifn=2.

Applying the calculation of the K-cohomology groups to the standard clas-
sifying T-torsor U* — U?/G for every i > 0 instead of U — U/T, by
Proposition B.3, we have the exact sequence

(4.7)

0 — H\(F,T°) -5 H (U')G,Z(2)) — H (U G)eep, Z(2))" — H(F, T),
where I (U*/G,Z(2)) is the factor group of H*(U'/G, Z(2)) by H*(F,Z(2)),
the map « is given by a(a) = ¢*(a) U [U?] with ¢ : U"/G — Spec F' the struc-
ture morphism, [U?] the class of the T-torsor U* — U'/G in H'(U*/G,T),
and the cup-product is taken for the pairing (B.6).

Taking the sequences (4.7) for all i, we get the exact sequence of cosimplicial
groups

0 — H\(F,T°) <5 H (U/T,2(2)) — H (U*)T)sep, Z(2))" — H*(F, T°).

The first and the last cosimplicial groups in the sequence are constant, hence
by Lemma A.2, the sequence

(48) 0 — HY(F,T°) < H (U/T, Z(2)),,, —
H (U/T)sep, 2(2))y,, — HX(F,T°)

18 exact.
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The following theorem was proved in [23, Th. 1.1]:

Theorem 4.2. Let X be a smooth variety over F. Then there is an exact
sequence

0 — CH*(X) — HY(X,Z(2)) — HY,.(X,H*(Q/Z(2))) — 0.
By Theorem 4.2, there is an exact sequence of cosimplicial groups
0 —s CHA(U*/T) — H' (U*/T, Z(2)) — Hyy (U /T, H3(Q/Z(2))) — 0.

As the functor CH? is homotopy invariant, by Lemma A.4, the first group in
the sequence is constant. In view of Lemma A.2, and following the notation
for the K-cohomology, the sequence
(4.9)

0 — CH3(BT) — H (U/T,Z(2)),,, — Hyu(U/T, H(Q/Z(2))), , — O

is exact. By Corollary 3.4, the last group in the sequence is canonically iso-
morphic to Inv(7), H3(Q/Z(2)))norm.

As the torus T, is split, all the invariants of T, are trivial hence the
sequence (4.9) over Fy, yields an isomorphism

(4.10) H (U)T)seps Z(2)), , ~ CH?(BThep) = S*(Thep)-

bal ™

Combining (4.8), (4.9) and (4.10), we get the following diagram with an
exact row and column:

norm

0 — CHX(BT) — H (U/T, Z(2)), , — v’ (T, Q/Z(2)) ... —= 0.

H?(F, T
Write Dec = Dec(iep) for the subgroup of decomposable elements in S* (ﬁep)F
(see Appendix A-II).

Lemma 4.3. The image of the homomorphism CH?*(BT) — CH?*(BT,.,)" =
S*(Tiep)' in the diagram coincides with Dec.
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Proof. Consider the Grothendieck ring Ky(BT') of the category of T-equivariant
vector bundles over Spec(F), or equivalently, of the category of finite dimen-
sional representations of T'. If T is split, every representation of T is a di-
rect sum of one-dimensional representations. Therefore, there is an isomor-

.

phism between the group ring Z[T] of all formal finite sums ) _4a,e” and
Ky(BT), taking e* with x € T to the class of the 1-dimensional representation
given by z. In general, for every torus 7', we have Ko(BTyp) = Z[ﬁep] and
Ky(BT) = Z[iep]r = Ko(BTiep)" (see [28, §9]). The group Z[iep]r is gener-
ated by the sums Y ., €®, where 71,72, ...,7, are representatives of the left
cosets of an arbitrary open subgroup IV in I" and = € (ﬁep)rl.

The equivariant Chern classes were defined in [14, §2.4]. The first Chern

class ¢; : Ko(BTyp) — CH(BT.p) = iep takes e* to x. In the diagram

Z|Toep|" == FKo(BT) —— CH*(BT)
Z[iep] —— Ko(BTwep) — CH2<BTsep) - Sz(fsep)

the second Chern class maps ¢, are surjective by [15, Lemma C.3]. It follows
from the formula co(a + b) = ca2(a) + ¢1(a)c1(b) + c2(b) that the composition

Z|Tp]" = Ko(BT) — Ko(BTip) <= CH*(BToep) = S*(Teep) — S*(Tuep) /(1)

is a homomorphism and its image is generated by the elements (see Appendix

A-I)

(3 ) = 3 () (352) = Qer(a). 0
i=1 i<j
By the restriction-corestriction argument, the kernel of the homomorphism
CH*(BT) — CH?*(BTyp)" = S*(Tiep)" coincides with the torsion subgroup
CH?(BT)tors in CH?*(BT).
The following theorem describes degree 3 invariants of an algebraic torus
with values in Q/Z(2):

Theorem 4.4. Let T' be an algebraic torus a field F'. Then there is an exvact
sequence

0 — CH*(BT)ors — HY(F, T%)
Inv®(T,Q/Z(2)), . — S*(Tiep)"/ Dec — H*(F,T°).

The homomorphism « is given by a(a)(b) = ax Ub for every a € H'(F,T°)
and b € HY(K,T) and every field extension K/F, where the cup-product is
defined in (4.5).

nor

Proof. The exactness of the sequence follows from the diagram before Lemma
4.3. Tt remains to describe the map «. Take an a € H'(F,T") and consider
the invariant ¢ defined by i(b) = ax U b, where the cup-product is given by
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(4.5). We need to prove that i = a(a). Choose a standard classifying 7-
torsor U — U/T and set K = F(U/T). Let Uge, be the generic fiber of the
classifying torsor. By Theorem 2.2, it suffices to show that i(Ugen) = (@) (Ugen)
over K. This follows from the description of the map « in the exact sequence
(4.7). O

4d. Torsion in CH?*(BT). We investigate the group CH?*(BT )ios, the first
term of the exact sequence in Theorem 4.4.

Let S be an algebraic torus over F. Using the Gersten resolution, [30, Prop.
5.8] we identify the group H°(Siep, K2) with a subgroup in K (Fiep(S)). Set
ﬁO(Ssep, ICo) := H®(Ssep, K2)/Ka(Fyep). By [16, Part 2, §5.7], we have an exact
sequence

(4.11) 0 — Sep ® 5, — H' (Saeps K2) = A28y — 0

sep
of I'-modules, where )\({ex, ey}) =xAyforaz,ye §Sep.
Consider the I'-homomorphism
v /\2§Sep — HO(SSGP, o)

x Ay +— {e® e’} — {e¥,e"}.
We have A oy = 2 -1d, hence the connecting homomorphism
(4.12) 9 : H'(F, PSyp) — HYY(F, Sop @ FX)
satisfies 20 = 0.

Lemma 4.5. If S is an invertible torus, then sequence of I'-modules (4.11) is
split.
Proof. We can assume that S is quasi-split. Let {z1,xs,...,2,,} be a per-
mutation basis for Ssp. Then the elements x; A x; for ¢ < j form a Z-basis
for A*Sgep. The map /\2§Sep — HO(SSGP, ICo), taking z; A x; to {e*,e"} is a
splitting for ~. O

Let

1—T—P—Q—1

be a coflasque resolution of T', i.e., P is a quasi-split torus and () is a coflasque
torus (see [11]). The torus P is an open set in the affine space of a separable

F-algebra on which T acts linearly. Hence P — () is a standard classifying
T-torsor. By Theorem 2.2, the natural map

0 : Inv®(T,Q/Z(2)) — H*(F(Q),Q/Z(2))
is injective.
Consider the spectral sequence (B.11) for the variety X = Q. We have

H'(Qsep, K2) = 0 by [16, Part 2, Cor. 5.6]. In view of Proposition B.4, we
have an injective homomorphism

(4.13) B H2(F,H (Qup, Ka)) — T (Q,Z(2))
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such that the composition of § with the homomorphism

H*(F,Q°) — H*(F, H' (Quep, K))
is given by the cup-product with the class of the identity in H°(Q, Q).
Lemma 4.6. The group CH*(Q) is trivial.

Proof. By [28, Th. 9.1], the Grothendieck group Ky(Q) is generated by the
classes of the sheaves i,(P), where P is an invertible sheaf on X, L/F a
finite separable field extension and i : X; — X is the natural morphism. By
definition of a coflasque torus,

PIC(QL) = Hl(Lv Cjsep) = 0.
It follows that every invertible sheaf on @, is trivial, hence Ky(Q) = Z - 1.

Since the group CH?*(Q) is generated by the second Chern classes of vector
bundles on @ [15, Lemma C.3], CH*(Q) = 0. O

It follows from Proposition A.10, Theorem 4.2, and Lemma 4.6 that the
homomorphism

(414)  k:H(QZQ2) — H (FQ).2(2) = H (F(Q),Q/Z(2)
1S injective.
Cg)nsider the diagram

00— Q sep - H (Qsepa ICQ) - AQQsep —0

| | |

0 — Q°(Fiep) P°(Fyep) T°(Feep —= 0

where s is the composition of the natural map HO(Qsep, Ko) — HO(Psep, o)

and a splitting of P°(Fiep) — HO(Psep, KCs) (see Lemma 4.5).
We have the following diagram

HY(F,T°) —— Inv*(T, Q/Z(2))
/ J\al fe
HY(F, B (Quep, K2)) —= H'(F, RQuep) —— H(F,Q°) — =" (F(Q), Q/Z(2))

where o is the composition of the maps in (4.13) and (4.14):

H(F, Q") — H*(F, A" (Qup, ) = _4(c2 Z( ))
H'(F(Q).2(2) = H (F(Q), Q/Z(2)).

Note that the connecting map 0, is injective as Hl(F P°) = 0 since P° is a
quasi-split torus. As 20 = 0 in (4.12), we have 2t* = 0.

The commutativity of the triangle follows from the definition of t*. We claim
that the square in the diagram is anti-commutative. Note that 02(§) = [Pyen],
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where 0 : H(F,Q) — H'(F,T) is the connecting homomorphism, Py, is
the generic fiber of the morphism P — Q, and £ € H°(K, Q) is the generic
point of @ with K = F(Q). It follows from the description of the maps « and
S in (4.7) and (4.13), respectively, and Lemma A.1 that

o (01(a)) = di(a)x UE = (—ax) U (&) = (—ax) U [Pyen] = —0((a)).

for every a € H'(F,T°).
The maps [ and k are injective, hence the bottom sequence in the diagram
is exact. Thus, we have an exact sequence

H' (F,H (Quep, Ks)) — HY(F, 2 Quep) — Ker(a) — 0

and 2 - Ker(a) = 2 - Im(¢#*) = 0. Furthermore, Ker(a) ~ CH?(BT )0 and the
group H'(F, N*Qqep) is finite.
We have proved:

Theorem 4.7. Let1 — T — P — Q — 1 be a coflasque resolution of a
torus T'. Then there is an exact sequence

HY(F, B (Quep, K2)) — H'(F, A°Quep) — CH2(BT)yo0s — 0.
Moreover, CH?*(BT )iors is a finite group satisfying 2 - CH*(BT )iors = 0.

Corollary 4.8. If T° is a direct factor of a rational torus, or if T is split over
a cyclic field extension, then CH2<BT)tors =0, i.e., the map « in Theorem 4./
1S injective.

Proof. The exact sequence 1 — Q° — P° — T° — 1 is a flasque reso-
lution of T°. If T° is a direct factor of a rational torus, or if 71" is split over
a cyclic field extension, the torus ° ,and hence @), is invertible (see §4a and
[35, 84, Th. 3]). By Lemma 4.5, the sequence (4.11) for the torus @ is split,
hence the first map in Theorem 4.7 is surjective. U

4e. Special tori. Let T be an algebraic torus over a field F'. The tautological
invariant of the torus T° x T' is the normalized invariant taking a pair (a,b) €
HY(K,T°) x H'(K,T) to the cup-product a Ub € H?*(K,Q/Z(2)) defined in
(4.5).

The following theorem shows that if a torus 7" has only trivial degree 3
normalized invariants with values in Q/Z(2) universally, i.e., over all field ex-
tensions of F', then T has no non-constant invariants at all by the simple
reason: every T-torsor over a field is trivial. Note that it follows from Theo-
rem 2.4 that 7" has no degree 2 normalized invariants with values in Q/Z(1)
universally if and only if T" is coflasque.

Theorem 4.9. Let T be an algebraic torus over a field F'. Then the following
are equivalent:

(1) Inv®(Tk, Q/Z(Z))mrm = 0 for every field extension K of F.

(2) The tautological invariant of the torus T° x T is trivial.

(3) The torus T is invertible.
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(4) The torus T is universally special.

Proof. (1) = (2): Let K/F be a field extension and a« € H'(K,T°). By
assumption, the degree 3 normalized invariant i = a(a) with values in Q/Z(2),
defined by i(b) = a U b for every b € H'(K,T), is trivial. In other words, the
tautological invariant of the torus T° x T' is trivial.

(2) = (3): The image of the tautological invariant in the group SQ(T\o o

sep

iep)r / Dec is represented by the identity 1+ in the direct factor (f" <}§>ﬁel¢,)F =

Endp(iep) of SQ(i"ep @ ﬁep)r (see Appendix A-1I). The projectiorli of Dec on
the direct summand (ﬁ‘;p ® ﬁep)r is generated by the traces Tr(a ® b) for
all open subgroups I'' C I' and all a € (f;’ap)w and b € (iep)r,. Hence
17 = Tr(a; ® b;) for some open subgroups I'; C T, a; € (T°)" and b; € (T)".
If P, = Z[T'/T], then a; can be viewed as a I-homomorphism T'— P; and b;
can be viewed as a I'-homomorphism P, — T such that the composition

704 p el

where P = [] P;, is the identity. It follows that T is a direct summand of a
permutation I'-module P and hence T is invertible.

(3) = (4): Obvious as every invertible torus is universally special.

(4) = (1): Obvious. O

4f. Linear and quadratic invariants. Let T be a torus over F. By Theorem
4.4, we have a natural homomorphism to the group of linear invariants:

a: H'(F,T°) — Inv*(T, Q/Z(2))

Let S and T be algebraic tori over F'. For every field extension K/F, the
cup-product (4.2) yields a homomorphism

e (T2 — Inv® (T, Q/Z(2))

sep

lin”

defined by e(a)(b) = ax UbUD for a € (i%g)F and b€ H' (K, T).

We say that an invariant ¢ € Inv®(T,Q/Z(2)) is quadratic if the function
h(a,b) :=i(a +b) — i(a) — i(b) is bilinear and h(a,a) = 2i(a) for all a and b.
For example, the tautological invariant of the torus 7° x T" in §4e is quadratic.
We write Inv?(T, Q/ Z(Q))qua 4 for the subgroup of all quadratic invariants in

Inv®(T,Q/Z(2)). The image of ¢ is contained in Inv® (7, Q/Z(Q))quad.
Write D for the subgroup of (i%g)r generated by Dec(iep, fsep) (the latter
defined in Appendix A-II) and the image of 1 — 7, where 7 is the exchange

automorphism of (T57)".

Lemma 4.10. The composition of € with the map Inv® (T, Q/Z(2)) — S?(Tuep)"/ Dec

in Theorem 4.4 1is induced by the natural homomorphism i%’g — SZ(ﬁep).
Moreover, the map € vanishes on D.
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Proof. Let U — U/T =: X be a standard classifying T-torsor as in §4c.
Consider the commutative diagram

(T2 @ HY(X, T)°2 2 1 (X, 2(2)),, —— (T Q/Z(2)).,....

T2 @ HY (Xeep, T)®

9 prod —4
sep —H(

Xsep: 2(2))

i l

Tap © (Top)®* ® T — S*(Tuep)"/ Dec
where the product maps are given by (4.1), n identifies H'(Xsep, T) = i‘;p ®
Pic(Xgep) with T ® ﬁep and k is given by the pairing between the first and

sep

second factors. Write [U] for the class of the classifying torsor in H!'(X,T).
The image of [U] in H'(Xsep, Tsep) = Ty @ Toop = End(Tkep) is the identity

sep

17, - Hence for every a € (T\@Q)F, the image of a® [U]®[U] under the diagonal

sep

map in the diagram coincides with the canonical image of a in S? (ﬁep)F / Dec.
Clearly, eT = ¢, hence ¢ is trivial on the image of 1—7. Let I'' C I' be an open

subgroup and a,b € (ﬁep)rl = CHY(Xyep)" = CHY(X}), where L = (Fyp)".

Then Tr(a ® b) is the image of the trace map CH?*(X;) — CH?*(X) and

therefore, £(Tr(a ® b)) belongs to the image of an element from CH*(X) =

CH?(BT) in the sequence (4.9) and hence is trivial in Inv®(7,Q/Z(2)). O

Both compositions of the natural map (T22)"/D —s $2(Tk.,)"/ Dec with

sep

the map 52(ﬁep)r/ Dec — (f®2)F/D induced by ab — a ® b+ b ® a are

sep

multiplication by 2. Hence the kernel and the cokernel of (i%g)F/D —

52(12,313)F / Dec have exponent 2. It follows that 2 times the homomorphism

52(Toep)"/ Dec — H2(F,T°) from Theorem 4.4 is trivial.
Theorem 4.4 also yields:

Theorem 4.11. Let p be an odd prime and let T be an algebraic torus over
F. Then

Inv?(T,Q,/Zy(2)), .. =Inv*(T,Q,/Z,(2)),,. & Inv*(T,Q,/Zy(2))

~ HY(F,T°){p} and

quad

and there are natural isomorphisms Inv® (T, Q,/Z,(2))

v (T,Q,/Zy(2)). . = (S*(Tiep)"/ Dec) {p}.

quad —

lin

Example 4.12. Let X = {z1,%9,...,2,} be a set of n elements with the
natural action of the symmetric group S,. A continuous surjective group
homomorphism I' — S, yields a separable field extension L/F of degree n.
Consider the torus T' = Ry p(Gy 1)/ Gy, where Ry p is the Weil restriction
(see [35, Ch. 1, §3.12]). Note that the generic maximal torus of the group
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PGL,, is of this form (see §5b). The character lattice ﬁep is the kernel of the
augmentation homomorphism Z[X| — Z.

The dual torus 7 is the norm one torus R(Ll/)F
sion K/F, we have:
HY(K,T)=Br(KL/K), HY(K,T°) = K*/N(KL)*,
where KL := K ® L, N is the norm map for the extension KL/K and
Br(KL/K) = Ker(Br(K) — Br(K'L)). The pairing
K*/N(KL)* ® Br(KL/K) — H3(F, Q/Z(Q))
defines linear degree 3 invariants of both 7" and T°.

We claim that $%(T.p)"/Dec = 0 and S$*(T° )"/ Dec = 0, ie., T and T°

sep

(G ). For every field exten-

have no nontrivial quadratic degree 3 invariants. We have i‘;p = 7Z|X]/ZNx,

where Ny = " ;. The group S%(T2, )" is generated by S := 3

sep
S € Dec, we have SQ(i‘;p)F/ Dec = 0.

Let D =Y 27 and F := Qtr(x; —z2) = 25 — (n— 1) D, where the quadratic
map Qtr is defined in Appendix A-II. The group SQ(iGID)F is generated by
E if n is even and by E/2 if n is odd. A computation shows that nE/2 =
Qtr(nz; — Nx). It follows that the generator of 52(iep)F belongs to Dec, hence
52(Tiep)"/ Dec is trivial.

Note that as the torus T is rational, it follows from Theorem 4.4 and Corol-

lary 4.8 that Inv®(T°, Q/Z(2)) = Br(L/F).

nor

i<jxi'xf As

5. UNRAMIFIED INVARIANTS

Let K/F be a field extension and v a discrete valuation of K over F' with
valuation ring O,. We say that an element a € H" (K, Q/Z(])) is unramified
with respect to v if a belongs to the image of the map H" (OU,Q/Z(j)) —
H"(K,Q/Z(j)) (see [10]). We write H. (K, Q/Z(j)) for the subgroup of the
elements in H"(K,Q/Z(j)) that are unramified with respect to all discrete
valuations of K over F'. We have a natural homomorphism

(5.1) H"(F,Q/Z(j)) — H; (K, Q/Z(j)).
A dominant morphism of varieties Y — X yields a homomorphism
Hy (F(X), Q/Z(5)) — Hy (F(Y),Q/Z(5)).
Proposition 5.1. Let K/F be a purely transcendental field extension. Then

the homomorphism (5.1) is an isomorphism.

Proof. The statement is well known for the p-components if p # char F' (see, for
example, [10, Prop. 1.2]). It suffices to consider the case K = F(t) and prove
the surjectivity of (5.1). The coniveau spectral sequence for the projective line
P! (see Appendix (A.1)) yields an exact sequence

H"(P',Q/Z(j)) — H"(K,Q/Z(j)) — [] Hi™ (P',Q/Z()))

zePl
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and, therefore, a surjective homomorphism H™ (P', Q/Z(j)) — Hp (K, Q/Z(j)).
By the projective bundle theorem (classical if p # char(F') and [17, Th. 2.1.11]
if p = char(F') > 0), we have

H" (P, Q/Z(j)) = H"(F,Q/Z(j)) ® H**(F.Q/Z(j - D)1,

where ¢ is a generator of H?(P',Z(1)) = Pic(P') = Z. As t vanishes over the
generic point of P!, the result follows. O

Let G be an algebraic group over F. Choose a standard classifying G-
torsor U — U/G. An invariant i € Inv"(G,Q/Z(j)) is called unramified
if the image of ¢ under  : Inv"(G,Q/Z(j)) — H"(F(U/G),Q/Z(j)) is
unramified. This is independent of the choice of standard classifying torsor.
Indeed, if U' — U’/G is another standard classifying torsor G-torsor, then
(Ux V"G — U/G and (V x U')/G — U'/G are vector bundles. Hence
the field F((U x U')/G) is a purely transcendental extension of F(U/G) and
F(U'/@G) and by Proposition 5.1,

Hy (F(U/G),Q/Z(5)) = Hy (F(UXU')/G),Q/Z(;)) = Hy(F(U'/G), Q/Z(j)).

We write H.(F(BG),Q/Z(j)) for this common value and Inv], (G, Q/Z(j))
for the subgroup of unramified invariants. Similarly, we write Bry, (F (BG))

for the unramified Brauer group HZ.(F(BG),Q/Z(1)).

Proposition 5.2. The map Inv],(G,Q/Z(j)) — HIL(F(BG),Q/Z(j)) in-
duced by 0 is an isomorphism.

Proof. By Theorem 3.3, it suffices to show that H[.(F(U/G),Q/Z(j)) C
H"(F(U/G),Q/Z(j)),,- We follow Totaro’s approach (see [16, p. 99]). Con-
sider the open subscheme W of (U?/G) x Al of all triples (u,u/,t) such that
(2 —tu+ (t — 1)u' € U. We have the projection ¢ : W — U?/G, the
morphisms f : W — U/G defined by f(u,u’,t) = (2 —t)u + (t — 1)v’/, and
h; : U?/G — W defined by h;(u,u') = (u,u’,i) for i = 1 and 2. The compo-
sition f o h; is the projection p; : U*/G — U/G and q o h; is the identity of
U?/G.

Let w; be the generic point of the pre-image of ¢ with respect to the projec-
tion W — A! and write O; for the local ring of W at w;. The morphisms ¢, f,
and h; yield F-algebra homomorphisms F(U?/G) — O;, F(U/G) — O; and
O, — F(U/G). Note that by Proposition A.11, we have H.(F(W),Q/Z(j)) C
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H"(0;,Q/Z(j)). In the commutative diagram

H (F(U/G), Q/Z(j)) —— H2(F(W), Q/Z(j)) ~—=— H.(F(U2/G), Q/Z(5))

|

H™(F(U/G),Q/Z(})) H"(0,,Q/Z(j)) ~——— H"(F(U*/G), Q/Z(}))

x lh; /

" (F(U*/G),Q/Z(j))

the top right map ¢* is an isomorphism by Proposition 5.1 since the field
extension F(W)/F(U?/G) is purely transcendental. It follows that the re-
striction of p; on H.(F(U/G),Q/Z(j)) coincides with (¢*)~* o f* and hence
is independent of i. O

f*

Ha. Unramified invariants of tori.

Proposition 5.3. IfT is a flasque torus, then every invariant in Inv" (G, Q/Z(]))
1S unramified.

Proof. Consider an exact sequence of tori 1 — 17" — P — () — 1 with
P quasi-split. Choose a smooth projective compactification X of @ (see [6]).
As T is flasque, by [11, Prop. 9], there is a T-torsor E — X extending
the T-torsor P — (). The torsor F is classifying and T-rational. Choose an
invariant in Inv" (G, Q/Z(j)) and consider its image a in H"(F(X), Q/Z(j)), ,
(see Theorem 3.3). We show that a is unramified with respect to every discrete
valuation v on F(X) over F (cf., [5, Prop. 2.1.8]). By Proposition A.9, a is
unramified with respect to the discrete valuation associated to every point
xz € X of codimension 1, i.e., 9,(a) = 0.

As X is projective, the valuation ring O, of the valuation v dominates a
point x € X. It follows from Proposition A.11 that a belongs to the image of
H"(Ox,.,Q/Z(j)) — H"(F(X),Q/Z(j)). As the local ring Ox, is a subring
of Oy, a belongs to the image of H"(O.,, Q/Z(j)) — H™(F(X),Q/Z(j)) and
hence a is unramified with respect to v. O

Let T be a torus over F'. By [12, Lemma 0.6], there is an exact sequence
of toril — T — T" — P — 1 with T" flasque and P quasi-split. The
following theorem computes the unramified invariants of 7" in terms of the
invariants of T".

Theorem 5.4. There is a natural isomorphism
vy (T, Q/Z(j)) ~ v (T",Q/Z(5))-

Proof. Choose an exact sequence 1 — 7" — P’ — S — 1 with P’ a
quasi-split torus. Let S’ is the cokernel of the composition T — T" — P’.
We have an exact sequence 1 — P — 8" — S — 1. As P is quasi-split,
the latter exact sequence splits at the generic point of S and therefore, F'(.S”)
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is a purely transcendental field extension of F'(.S). It follows from Propositions
5.1, 5.2, and 5.3 that

vy, (T, Q/Z(j)) ~ Hp (F(S), Q/Z(j)) ~ HpL(F(S), Q/Z(5)) ~
v}, (T, Q/Z(5)) = wv"(T', Q/Z(5)). O

The following corollary is essentially equivalent to [12, Prop. 9.5] in the case
when F'is of zero characteristic.

Corollary 5.5. The isomorphism Inv(T, Br) —> Pic(T) = H'(F,T) identifies
Inv,, (T, Br) with the subgroup HY(F,T") of H'(F,T) of all elements that are
trivial when restricted to all cyclic subgroups of the decomposition group of T.

Proof. The description of H'(F,T") as a subgroup of H'(F, f) is given in [12,
Prop. 9.5], and this part of the proof is characteristic free. O

In view of Propositions 5.1 and 5.2 we can calculate the group of unramified
cohomology for the function field of an arbitrary torus in terms of the invariants
of a flasque torus:

Theorem 5.6. Let S be a torus over F' and let 1 — T — P — S — 1
be a flasque resolution of S, i.e., T is flasque and P is quasi-split. Then there
1s a natural isomorphism

Hy (F(8), Q/Z(j)) = Inv™ (T, Q/Z(3)).

Corollary 5.7. A torus S has no nonconstant unramified degree 3 cohomology
with values in Q/Z(2) universally, i.e., H3.(K(S),Q/Z(2)) = H*(K,Q/Z(2))
for any field extension K/F, if and only if S is a direct factor of a rational
torus.

Proof. If S is a direct factor of a rational torus, then S has no nonconstant
unramified cohomology by Proposition 5.1.

Conversely, let 1 — T — P — S — 1 be a flasque resolution of S.
By Theorem 5.6, Inv®(Tx,Q/Z(2)) = 0 for every K/F. It follows from
Theorem 4.9 that T is invertible and hence S is a factor of a rational torus

(see §4a). O

5b. The Brauer invariant for semisimple groups. The following theorem
was proved by Bogomolov [2, Lemma 5.7] in characteristic zero:

Theorem 5.8. Let G be a (connected) semisimple group over a field F'. Then
Inv,, (G, Br) = Inv(G, Br)eonst = Br(F) and Br,, (F(BG)) = Br(F).

Proof. Let G' — G be a simply connected cover of G and C' the kernel of
G' — G. By Theorem 2.4, we have

Inv(G, Br)porm = Pic(G) = C(F).

As the map 6(F) — é(Fsep) is injective, we can replace I’ by Fi, and
assume that the group G is split.
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Consider the variety 7 of maximal tori in G and the closed subscheme
X C G x T of all pairs (¢,T) with g € T. The generic fiber of the projection
X — T is the generic torus Ty, of G. Then Ty, is a maximal torus of G,
where K := F(T). We have an exact sequence

1 —Cx — 1T

gen

— Tyen — 1,

where T, is the generic torus of G'.

The restriction Inv(G, Br)yorm — Inv(Zgen, Br)norm can be identified with
the connecting homomorphism C —s H (K, fgen). Note that the decomposi-
tion group of Tyen coincides with the Weyl group W of G by [34, Th. 1], hence
HY(K, Tyn) ~ H (W, ).

Let w be a Coxeter element in W.! It is the product of reflections with
respect to all simple roots (in some order). By [20, Lemma, p. 76|, 1 is not
an eigenvalue of w on the space of weights T gen @ R. Let Wy be the cyclic
subgroup in W generated by w. It follows that the first term in the exact
sequence

(Tgen)""* — C — H (W, Tyen)
is trivial, i.e., the second map is injective. Hence every nonzero character y in
C restricts to a nonzero element in H LW, fgen). It follows that the image of
X in HY(W, fgen) is ramified by Theorem 5.5, hence so is Y. O

APPENDIX A. GENERALITIES

A-I. Proof of Theorem 2.2. Suppose that i(Eg,) = 0 for an H-invariant ¢
of G. Let K/F be a field extension and I — Spec K a G-torsor. We need to
show that i(/) = 0 in H(K).

Suppose first that K is infinite. Find a point z € X(K) such that I is
isomorphic to the pull-back of the classifying torsor with respect to x. Let 2’
be a rational point of X above 2 and write O for the local ring Ox, ,». The K-
algebra O is a regular local ring with residue field K. Therefore, the completion
O is isomorphic to K{[ty,ts,...,t,]] over K. Let L be the quotient field of 0,
a field extension of K (X). We have the following diagram of morphisms Wlth
a commutative square and three triangles:

Spec K

N

Spec L —— Spec O —= X

| |~

Spec K(X) —— SpecO

The pull-back of the classifying torsor £ — X via Spec K(X) — X is
(Egen)k(x)- The G-torsor [ is the pull-back of £ — X with respect to . Let

1We owe the idea to use the Coxeter element and the reference below to S. Garibaldi.
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E be the pull-back of E — X via Spec 0 —s X. ThereAfore, [ is the pull-back
of E. By a theorem of Grothendieck [19, Prop. 8.1], E is the pull-back of T

with respect to Spec O —» Spec(K). It follows that I, ~ (Egen)r, as torsors
over L. Hence the images of i(]) and i(Eyge,) in H(L) are equal and therefore,
i(I)p = 0. By Property 2.1, we have i(I) = 0.

If K is finite, we replace F' by F((t)) and K by K((t). By the first part
of the proof, i(I) belongs to the kernel of H(K) — H(K((t)) and hence is
trivial by Property 2.1 again.

A-II. Decomposable elements. Let I" be a profinite group and A a I'-lattice.
Write A' for the subgroup of I'-invariant elements in A. Let IV C I' be an open
subgroup and choose representatives 71, 7va, ..., 7, for the left cosets of I in
I'. We have the trace map Tr : A¥ — AU defined by Tr(a) = > va.

Let S?(A) be the symmetric square of A. Consider the quadratic trace map
Qtr : A — S%2(A)! defined by Qtr(a) = > icj(via)(ya). Write Dec(A)
for the subgroup of decomposable elements in S?(A)' generated by the square
(AT)? of AU and the elements Qtr(a) for all open subgroups I' C T' and all
ae A",

Let B be another I-lattice. We write Dec(A, B) for the subgroup of (A® B)Y
generated by elements of the form Tr(a ® b) for all open subgroups I C I" and
alla e A™, b e B".

There is a natural isomorphism

S*(A® B)~S*(A) @ (A® B) @ S*(B).
Moreover, the equality
Qtr(a +b) = Qtr(a) + (Tr(a) Tr(b) — Tr(ab)) + Qtr(b)
yields the decomposition
Dec(A @ B) ~ Dec(A) @ Dec(A, B) ® Dec(B).

A-III. Cup-products. Let 1 — T'— P — () — 1 be an exact sequence
of tori. We consider the connecting maps

O : Hp(F, f(z)) — fgrtl (Fv @(Z))

for the exact sequence 0 —> @Sep — ﬁsep — iep — 0 of character I'-
lattices and

0y HY(F,Q°(j) — H™! (P, T°(j)
for the dual sequence of lattices (see notation in §4b).
Lemma A.1. Let a € H?(F,T(i)) and b € H(F,Q°(j)) withi+j < 2. Then

(@) Ub = (=1)P"aUdy(b) in HPYI*Y(F,Z(i + j)), where the cup-product is
defined in (4.3).
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Proof. By [4, Ch. V, Prop. 4.1], the elements 0;(1r) and 02(1g) in
H' (F> ,‘Z/:soep ® @sep) = EXt%‘ (iepa @sep)
differ by a sign. Write 7 for the isomorphism induced by permutation of the
factors. By the standard properties of the cup-product, we have
O(a)Ub=1pU0(a)Ub
=01(17)UaUb
= (=1)"7(d:(1r) UbUa)
= (=P 7 (9:(1g) Ub U a)
= (=1)"*"'7 (1o U da(b) U a)
= (—=1)"" g Ua U dy(b)
= (—1)P"a U 0y(b). O
A-IV. Cosimplicial abelian groups. Let A® be a cosimplicial abelian group

40 .
AO—>A1:>>A2—>...
dl - —_—
and write h,(A®) for the homology groups of the associated complex of abelian
groups. In particular,

ho(A*) = Ker [(d° —d") : A — A'].

We say that the cosimplicial abelian group A® is constant if for every i, all
the coface maps d; : A" — A’ j =0,1,.. .4, are isomorphisms. In this case
all the d; are equal as d; = sj_l = d;41, where the s; are the codegeneracy
maps. For a constant cosimplicial abelian group A®, we have hy(A®) = A° and
hi(A®) =0 for all ¢ > 0. We will need the following straightforward statement.

Lemma A.2. Let 0 — A* — B* — C* — D* be an exact sequence of
costmplicial abelian groups with A® a constant cosimplicial group. Then the
sequence of groups 0 —s AY — ho(B®) — ho(C*) — ho(D*®) is ezact.

Let H be a contravariant functor from the category of schemes over F' to
the category of abelian groups. We say that H is homotopy invariant if for
every vector bundle £ — X over F', the induced map H(X) — H(FE) is an
isomorphism.

For an integer d > 0 consider the following property of the functor H:

Property A.3. For every closed subscheme Z of a scheme X with codimy(Z) >
d, the natural homomorphism H(X) — H(X \ Z) is an isomorphism.

Let GG be an algebraic group over a field F' and choose a standard classifying
G-torsor U — U/G. Let U' denote the product of 7 copies of U. We have
the G-torsors U" — U'/G.

Consider the cosimplicial abelian group A* = H(U*®/G) with A* = H(U"™' /G)
and coface maps A”"! — A’ induced by the projections U™ /G — U'/G.
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Lemma A.4. Let H be a homotopy invariant functor satisfying Property A.3
for some d. Let U — U/G be a standard classifying G-torsor and U’ an open
subset of a G-representation V.

1. If codimy/ (V' \ U') > d, then the natural homomorphism H(U/G) —
H((U x U")/G) is an isomorphism.

2. If codimy (V \ U) > d, then the cosimplicial group H(U®/G) is constant.

Proof. 1. The scheme (U x U')/G is an open subset of the vector bundle
(U x V") /G over U/G with complement of codimension at least d. The map in
question is the composition H(U/G) — H((U xV")/G) — H((U xU")/G)
and both maps in the composition are isomorphisms since H is homotopy
invariant and satisfies Property A.3.

2. By the first part of the lemma applied to the G-torsor U* — U'/G and U’ =
U, the map H(U'/G) — H(U"'/G) induced by a projection U /G —
U'/@G is an isomorphism. O

By Lemma A.4, if H is a homotopy invariant functor satisfying Property
A.3 for some d, then the group H(U/G) does not depend on the choice of
the representation V' and the open set U C V provided codimy (V \ U) > d.
Following [33], we denote this group by H(BG).

Example A.5. The split torus 7' = (G,,)" over F acts freely on the product
U of n copies of A"\ {0} with U/T ~ (P")", i.e., BT is “approximated” by
the varieties (P")" if “r >> 0.” We then have CH*(BT) = 5*(?), where S*
represents the symmetric algebra and T is the character group of T (see [14,
p. 607]). In particular, Pic(BT) = CH'(BT) = T. More generally, by the
Kiinneth formula [15, Prop. 3.7],

H;,.(BT,K,) ~ CH*(BT) ® K.(F) ~ $*(T) @ K.(F),

Zar

where K,,(F') is the Quillen K-group of F' and K, is the Zariski sheaf associated
to the presheaf U — K, (U).

A-V. Etale cohomology. Let A be a sheaf of abelian groups on the big étale
site over F'. For a scheme X and a closed subscheme Z C X we write H} (X, A)
for the étale cohomology group of X with support in Z and values in A [29,
Ch. III, §1]. Write X® for the set of points in X of codimension i. For a
point x € X set

H}(X,A) = cgéilljn HIT}mU(U’ A),

where the colimit is taken over all open subsets U C X containing z. If X is
a variety, write

0, : H*(F(X),A) — H;"Y(X, A)
for the residue homomorphisms arising from the coniveau spectral sequence |9,
1.2]

(A1) B = ] HZM(X,A) = H(X, A).

zeX ()
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Let f:Y — X be a dominant morphism of varieties over F, y € YU and
r = f(y). If v € XM there is a natural homomorphism [y Hy} (X, A) —
Hy (Y, A). The following lemma is straightforward.

Lemma A.6. Let f : Y — X be a dominant morphism of varieties over F,
yeYW and x = f(y).

(1) If = is the generic point of X, then the composition
H*(F(X), A) L5 H*(F(Y), A) 2 H*(Y, A)

is trivial.
(2) If v € XU the diagram

H*(F(X), A) —2> H:1(X, A)

f*l f;l

Oy
H*(F(Y),A) —= H;"'(Y, A).
15 commutative.

Lemma A.7. Let X be a geometrically irreducible variety, Z C X a closed
subvariety of codimension 1, and x the generic point of Z. Let P be a variety
over F' such that P(K) is dense in P for every field extension K/F with K
infinite, and let y be the generic point of Z x P in'Y = X x P. Then
the homomorphism f; : H3y(X,A) — Hy(Y,A) induced by the projection
f:Y — X is injective.

Proof. Assume first that the field F' is infinite. An element a@ € H}(X, A) is
represented by an element h € H} (U, A) for a nonempty open set U C X
containing z. If a belongs to the kernel of f; : H; (X, A) — H, (Y, A), then
there is an open subset W C U x P containing y such that h belongs to the
kernel of the composition

9: Hyy(U, A) — H(*ZmU)xP(U x P,A) — H(*pr)mW(Wa A).

As F is infinite, by the assumption on P, there is a rational point ¢ € P in the
image of the dominant composition (Z x P)NW — Z x P — P. We have
(Uxt)NW = U’ x t for an open subset U’ C U such that x € U’. Composing
g with the homomorphism H(y, pyy (W, A) — Hy,(U', A) induced by the
morphism (U, ZNU") — (W, (Z x P)NW), u — (u,t), we see that h belongs
to the kernel of the restriction homomorphism H} (U, A) — H},.,(U’, A),
hence the image of o in H}(X, A) is trivial.

Suppose now that F is a finite field. Choose a prime integer p and an infinite
algebraic pro-p-extension L/F. By the first part of the proof, the statement
holds for the variety X over L. By the restriction-corestriction argument,
Ker(f;) is a p-primary torsion group. Since this holds for every prime p, we

have Ker(f;) = 0. O
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Corollary A.8. Let E — X be a G-torsor over a geometrically irreducible
vartety X with E a G-rational variety and consider the first projection p :
E?/G — X. Let x € X and y € E*/G be points of codimension 1 such
that p(y) = x. Then the homomorphism p} : H3(X,A) — H;(E*/G,A) is
injective.

Proof. Choose a linear G-space V' and a nonempty G-variety U that is G-
isomorphic to open subschemes of E and V. We can replace the variety E?/G
by (E x U)/G, an open subscheme in the vector bundle (E x V')/G over X.
Shrinking X around x we may assume that the vector bundle is trivial, i.e.,
(E xU)/G is isomorphic to an open subscheme in X x V. The statement then
follows from Lemma A.7. O

Proposition A.9. In the conditions of Corollary A.8, leth € H* (F(X), A)
Then 0,(h) = 0 for every point x € X of codimension 1.

bal”

Proof. Let y € E?/G be the point of codimension 1 such that pi(y) = =z.
As po(y) is the generic point of X, by Lemma A.6(1), d,(h') = 0, where
W = pj(h) = p5(h) in H*(F(E?/G),A). 1t follows from Lemma A.6(2) that
Or(h) is in the kernel of (py); : H;(X, A) — Hy(E?/G, A) and hence is trivial
by Corollary A.8. U

The sheaf H*(Q/Z(j)) defined in §3 has a flasque resolution related to the
Cousin complex by [9, §2] (for the p-components with p # char F) and [18,
Th. 1.4] (for the p-component with p = char F' > 0):

0— H"(Q/Z(j)) — [] inHl (X, Q/Z(j)) —

zeX(0)

IT B (X Q/Z() — -+,

zeX ™)

where i, : Spec F'(z) — X are the canonical morphisms. In particular, we
have:

Proposition A.10. Let X be a smooth variety over F'. The sequence
X . « Ny O « .
0 — Hy, (X, 1 (Q/Z()))) — H*(F(X),Q/2()) = ][ H:(X.Q/Z(;)),
zeXx@)

where 0 =[] 0., is exact.

Proposition A.11. Let X be a smooth variety over F' and v € X. The
sequence

0 — H*(Ox., Q/Z(j))) — H*(F(X),Q/Z(j)) - [ Hz"(X,Q/Z())
z'eXx@)
x’em

15 exact.
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APPENDIX B. SPECTRAL SEQUENCES

B-1. Hochschild-Serre spectral sequence. Let
A% B S
be additive left exact functors between abelian categories with enough injective
objects. If W takes injective objects to V-acyclic ones, there is a spectral
sequence
EP? = RV (R'W(A)) = RPT(VW)(A)
for every complex A in A bounded from below.
We have exact triangles in the derived category of B:

(B.1) T<n BRW(A) — RW(A) — Top 1 RW(A) — 7, RW (A)[1],

(B.2) 7<,_1RW(A) — 7<,RW(A) — R"W(A)[-n| — 7<,.1 RW(A)[1].
The filtration on R"(VW)(A) is defined by
FIR"(VW)(A) = Im(R"V (7<(n—j RW (A)) — R"V(RW (A)) = R*(VW)(A)).
As 75,11 RW (A) is acyclic in degrees < n, the morphism
R (1<, RW (A)) — R"V(RW(A)) = R"(VW)(A)
is an isomorphism, in particular, FOR*(VIW)(A) = R*(VW)(A).
The edge homomorphism is defined as the composition
R"VW)(A) = R"V (1<, RW (A)) — R"V(R"W (A)[-n]) = V(R"W(A)).
Moreover, the kernel F''R"(VW)(A) of the edge homomorphism is isomorphic
to R"V (7<,—1RW(A)). We define the morphism d,, as the composition
dy: F*R"(VW)(A) — R"V(R"W(A)[-n+1]) = R'V(R"'W(A)) = B, .

B-II. First spectral sequence. Let X be a smooth variety over a field F.
We have the functors

Sheavesg (X) 2+ Sheavesg (F) s Ab,
where ¢, is the push-forward map for the structure morphism ¢ : X —
Spec(F) and V(M) = H(F, M).
Consider the Hochschild-Serre spectral sequence
(B.3) EST = HP(F, HY(Xgep, Z(2)) = H"" (X, Z(2)).
Set A(i) := Rq.(Z(i)) for i = 1 or 2. Then A(i) is the complex of étale sheaves
on F concentrated in degrees > 1. The j*® term FVH"(X, Z(i)) of the filtration
on H"(X,Z(i)) coincides with the image of the canonical homomorphism
1" (F, 70y M) — H"(F, A1) = H"(X,2(0)).

Let M be a I'-lattice viewed as an étale sheaf over . Note that there are
canonical isomorphisms

(B.4) H*(F,M° ® A(i)) = Ext} (M, A1) = Extk (¢" M, Z(i)),
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where M° := Hom(M, Z) is the dual lattice.
Consider also the following product map

Z(1)®"A(1) — Rq.(¢"Z(1)®"Z(1)) — Rq.(Z(1)®"Z(1)) — Rq.(Z(2)).

The complex Z(1) @ 7<oA(1) is trivial in degrees > 3, hence we have a com-
mutative diagram

prod

Z(l) ®L TSQA(].) —_— T§3Rq* (Z(Q)) = ngA(Q)

| l

rod
Z(1) @ A(1) —"~ Rq.(Z(2))
There are canonical morphisms from (B.2):

hg : TSQA(l)[z] — H2 (Xsepvz(]'))7

A(2).

hs : T<3A(1)[3] — H?’(Xsep,Z(Q)).
Counsider an element

§€ H'(F,M ® F}) = Extj(M°, Gy, ) = Exty (M°, Z(1)),

sep
and view ¢ as a morphism
d: M° — Z(1)[2]
in D (Sheavesy (F)).
The following diagram

®1 prod

Me° @ A(1)[2]

Z(1) @ A(1)[4] A(2)[4]
(1®i2)[2] T (1®i2)[4] T (is)[4] T
M° ® 725 A(1)[2) — 22—~ 7(1) @F 7o A(1)[4] T3 A(2)[4]

1®hsa l 1®hso l h3 l

®1 prod

M° @ H*(Xgop, Z(1)) — Z(1) @ H*(Xeep, Z(1)) 2] — H?(Xeep» Z(2)) [1],

prod

where iy : T<oA(1) — A(1) and i3 : 7<3A(2) — A(2) are natural morphisms,
1s commutative.
By (B.4), we have

H°(F,M° ® A(1)[2]) = Exth (M, A(1)) = Ext% (¢ M, Z(1)).
Furthermore, the diagram above yields a commutative square

Ext? ("M, Z(1)) —— 22~ P (X, Z2(2)

] .

Homy (M, H*(Xaep, Z(1)) —2> HY(F, H3 (X op, Z(2))).
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where dj is the edge map coming from the spectral sequence
(B.5) Ext?, (M, H(Xsep, Z(1))) = Exti(q* M, Z(1))

and j coincides with the composition

Homy (M, H*(Xuep, Z(1)) = H*(F, M° ® H*(Xeep, Z(1))) =5
HY(F,FY ® H*(Xeep, Z(1))) = H'(F, H? (Xoep, Z(2))),

sep

with p given by the product map.

Now suppose the group H? (Xsep, Z(l)), which is canonically isomorphic to
Pic(Xeep), is a lattice. Let M = Pic(Xgp) and consider the torus 7' over F
with iep = M. It follows that

§ € HY(F,T°) = H'(F, Top @ FX) = H*(F, Toep @ Z(1)),

sep
where T° is the dual torus. Note that § U 1), = §, where

1y € HY(F, M° @ H*(Xsep, Z(1))) = Endr(M)
is the identity.

The top map in the last diagram is given by the pairing
(B.6) HY (X, T°) @ H'(X,T) — F'H*(X,Z(2)),
(B.7) a®@br—aUb
defined as the cup-product in (4.3),

H2(X,T(1)) ® H*(X,T°(1)) — F'H*(X,Z(2)),
if we identify Ext% (¢*M,Z(1)) with H?(X, f"(l)) = HYX,T).

In this case, the homomorphism
(B.8) p: HY(F,T°) — H' (F, H? (Xsep,Z(Q)))
is given by the product homomorphism

T°(Faep) = FX @ Toep = FX @ Pic(Xgep) — H?(Xaep, Z(2)).

sep sep
A T-torsor E — X is called universal if the class of F in H'(X,T) =
Ext% (¢ M, Z(1)) satisfies do([E]) = 1y (see [7)).
Commutativity of the previous diagram gives:

Proposition B.1. Let X be a smooth variety over F' such that Pic(Xeep) is

a lattice. Let T be the torus over F satisfying Tiep, = Pic(Xeep) and let E be
a universal T-torsor over X with the class [E] € H'(X,T). Then for every
§ € HY(F,T°), we have

di(q"(8) U[E]) = p(0),

where dy : F'H*(X,Z(2)) — H'(F, H*(Xeep, Z(2))) is the map induced by
the Hochschild-Serre spectral sequence (B.3) and the cup-product is taken for
the pairing (B.6).
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B-III. Second spectral sequence. We assume that H?(Xp,Z(2)) = 0,

hence in particular E5° = 0 in the spectral sequence (B.3) and so E22? C E3>.
Therefore, we have a canonical map

es: FPH*(X,Z(2)) — E22 — E3* = H*(F, H*(Xeep, Z(2)).
Let N be a I'-lattice. Consider an element

v € H*(F,N ® F}5,) = Ext(N°, Gy, ) = Ext}(N°, Z(1)),

sep
and view 7y as a morphism
v: N° — Z(1)[3]
in D (Sheavesy (F)).
As above, the commutative diagram

TR1 prod

N° @ A(1)[1]

Z(1) @" A(1)[4] A(2)[4]
(1®i1)[1] T (1®i1)[4] T (i2)[4] T
N° @ e A(D[1] — 22—~ Z(1) @ 72, A(1)[4] T2 A(2)[4]

1®h1 l 1®h1 l ho l

T®1 prod

N° @ H' (Xaep, Z(1)) —= Z(1) @ H' (Xaop, Z(1)) [8] — H*(Xop, Z(2)) 2],

prod

where 71, i3, h; and hy are defined in a similar fashion as in §B-II, yields a
commutative square

(U -

Ext (¢* N, Z(1)) F?H*(X,7Z(2))

Homp (N, H'(Xep, Z(1)) —> H?(F, HX(Xoop, Z(2))),

where d; is the edge map coming from the spectral sequence
Ext?. (N, HY(Xeep, Z(1))) = Exti (¢" N, Z(1))

and £ coincides with the composition

Homp (N, H' (Xeep, Z(1)) = H°(F, N° © H(Xoop, Z(1))) ==
H*(F, F, © HY (Xeep, Z(1))) — H*(F, H* (Xeep, Z(2)))

sep

with the last homomorphism given by the product map.
Suppose N is a I'-lattice in Fip[X]* such that the composition N
Foop[X]* — Fiop[X]*/Fy, is an isomorphism. Consider the torus ¢ with

@Sep = N, so that v € H*(F,Q°).
Note that v Uiy = v, where
in € H(F,N° ® H'(Xsep, Z(1))) = Homp (N, Fyep[X])
is the embedding.
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The top map in the previous diagram is given by the pairing
(X, Q") ® HY(X, Q) — F*H*(X,Z(2))

B.9
(B.9) a®@br—aUb,

defined as the cup-product in (4.3),
HY(X,Q(1) @ H'(X,Q°(1))) — H*(X,Z(2)).
if we identify Ext} (¢*N,Z(1)) with H'(X,Q°(1)) = H(X, Q).

~

The inclusion of Qsep into Fiep[X]* yields a morphism e : X — @ that can
be viewed as an element of H°(X, Q). Consider the map

(B]'O) I HQ(Fa QO) — HQ(Fa HQ(XsepaZ(Q)))
given by composition with the product homomorphism

Q° (Fap) = Fy @ Quep — F5 0 H' (Xop, Z(1)) — H?(Xoep, Z(2)).

sep

We have proved:

Proposition B.2. Let X be a smooth variety over F such that H*(Xsep, Z(2)) =
0. Let N be aT'-lattice in Fyop| X|* such that the composition N — Fip[ X]* —

A~

Foop [ X]* [ F35, is an isomorphism. Let Q) be the torus over F' satisfying Qsep =
N. Then for every v € H*(F,Q°), we have

es(q" (7)) Ue) = pu(v),

where ey : F?H*(X,Z(2)) — H?(F, H*(Xsep, Z(2))) is the map induced by
the Hochschild-Serre spectral sequence (B.3) and the cup-product is taken for
the pairing (B.9).

B-IV. Relative étale cohomology. Let X be a smooth variety over F'. Fol-
lowing [23, §3], we define the relative étale cohomology groups as follows.
Recall that A(i) = Rq.(Z(i)) for i = 1 and 2, where ¢ : X — Spec(F) is
the structure morphism, and let A’(i) be the cone of the natural morphism
Z(i) — A(i) in D, (Sheavesg(F)). Define H*(X/F,Z(2)) := H*(F, N'(2)).
There is an infinite exact sequence

... — H'(F,Z(2)) — H'(X,Z(2)) — H'(X/F,Z(2)) — H"(F,Z(2)) — -~

If X has a rational point, we have
HY(X/F,Z(2)) = H (X,Z(2)) :== H'(X,Z(2))/H (F,Z(2)).
There is a Hochschild-Serre type spectral sequence [23, §3]

(B.11) EY = Hp(F, Hq(Xsep/Fsep,Z(Q))) = Hp+q(X/F,Z(2)),
and we have by [23, Lemma 3.1] that
0, if ¢ <0;
uniquely divisible group, if ¢ =1;
H1 KXeep/ Fie 7Z 2)) = 57 .
(Yoo P B =4 g0 (X ) itg =2
H%ar<Xsep7 ICQ), if q = 3.
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It follows that EY? =0 if ¢ < 1 and p > 0. Comparing the spectral sequences
(B.3) and (B.11), by Proposition B.1 we have:

Proposition B.3. Let X be a smooth variety over F such that X(F) # 0. If
H) (Xeep, K2) = Ko(Fyp), then the spectral sequence (B.11) yields an exact
sequence

0 — H'(F, Hoy(Xeops K2)) = H (X, Z(2)) —
F4(Xsep,Z(2))F — H*(F, Hy, (Xoep, K2)).

If, moreover, the group Pic(Xsep) is a lattice and T is the torus over F' such
that Teep = Pic(Xeep), then a(p(d)) = ¢*(86) U [E] for every 6 € H'(F,T°),
where p is defined in (B.8) and E is a universal T-torsor over X.

Comparing the spectral sequences (B.3) and (B.11), by Proposition B.2 we
have:

Proposition B.4. Let X be a smooth variety over F such that X (F) # 0. If
H}, (Xeep, K2) = 0, then the spectral sequence (B.11) yields an exact sequence

0 — H2 (F’ HZar(Xsepa ’CQ)) i> H (X, Z(Q)) —
—q r — 0
H (Xsep7 Z(Q)) — I (F7 HZar(Xsep7 IC2)) :
If N is a T-lattice in Fy,[X]* such that the composition N < Fyp[ X< —

~

Foop [ X]* /3, is an isomorphism and @Q is the torus over F' satisfying Qsep =
N, then B(u(v)) = q*(v) Ue for every v € H*(F,Q°), where pi is defined in
(B.10) and € € H°(X, Q) is given by the inclusion of @sep into Fep[X]*.
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