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VLADIMIR L. POPOV∗


Abstract. We classify up to conjugacy the subgroups of certain types
in the full, in the affine, and in the special affine Cremona groups. We
prove that the normalizers of these subgroups are algebraic. As an appli-
cation, we obtain new results in the Linearization Problem generalizing
to disconnected group Bia lynicki-Birula’s results of 1966–67. We prove
“fusion theorems” for n-dimensional tori in the affine and in the special
affine Cremona groups of rank n. In the final section we introduce and
discuss the notions of Jordan decomposition and torsion primes for the
Cremona groups.
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1. Introduction


This work arose from the attempt to solve the problem posed in [Po051],
[Po052]. In these papers have been introduced the notions of root α and root
vector D of an affine algebraic variety X with respect to an algebraic torus
T ⊆ AutX. Namely, D is a locally-nilpotent derivation of the coordinate
algebra of the variety X, and α is a character of the torus T such that t∗ ◦
D ◦ t∗−1 = α(t)D for all t ∈ T . These definitions are inspired by the natural
analogy with the classical definitions of the theory of algebraic groups and
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purport an attempt to apply to, in general, infinite dimensional group AutX
the techniques important in the theory of usual algebraic groups1.


In [Po051], [Po052] the following two problems related to the classical case
where X = An and T = D∗


n is the maximal diagonal torus that leaves fixed
the standard volume form (see below (9)) have been posed:


(R) Find all the roots and root vectors of the variety An with respect to
D∗


n.
(W) Describe the normalizer and centralizer of the torus D∗


n in the group
Aut∗An of automorphisms of the space An that leave fixed the stan-
dard volume form.


Problem (R) has been solved by Liendo in [Li11]. The answer is the fol-
lowing. Let x1, . . . , xn be the standard coordinate functions on An and let
ε1, . . . , εn be the “coordinate” characters of the standard n-dimensional di-
agonal torus Dn in AutAn (see below (8) and (10)). Then, up to multiplica-
tion by a nonzero constant, the root vectors are precisely all the derivations
D of the form


xl11 · · · x
ln
n (∂/∂xi), (1)


where l1, . . . , ln are nonnegative integers and li = 0. The root α correspond-
ing to root vector (1) is the restriction to D∗


n of the character


ε−1
i


∏n
j=1 ε


lj
j .


The problem mentioned in the beginning of this introduction is Problem
(W). It is clear that it is aimed at getting a description of the “Weyl group”
of the root system from Problem (R). We solve it in the present paper.
Namely, we prove (Theorem 14) that the normalizer (centralizer) of the
torus D∗


n in Aut∗An coincides with its normalizer (centralizer) in SLn, so
that the Weyl group of D∗


n in Aut∗An is the same as that of D∗
n in SLn — it


is the group of all permutations of the characters ε1, . . . , εn.
In fact, this result is only one special case of the series of general re-


sults that we obtain here. Namely, D∗
n is only one of the infinitely many


nonconjugate diagonalizable algebraic subgroups G of dimension > n− 1 in
the group AutAn. We prove that the normalizer of G in AutAn always is an
algebraic subgroup in AutAn (Theorem 16). It is the characteristic property
of the specified dimensions: in general, for the diagonalizable subgroups of
dimension 6 n − 2 it does not hold. Moreover, in the case when noncon-
stant G-invariant polynomial functions on An exist, we explicitly describe
the normalizer of G in AutAn, in particular, we show that in all but one
cases it coincides with the normalizer of G in a group conjugated to GLn


(Theorem 6).
Using the found information, we obtain the new results in the Lineariza-


tion Problem. In 1966–67 Bia lynicki-Birula proved [B-B66], [B-B67] that
every algebraic action on An of an algebraic torus of dimension > n − 1
is equivalent to a linear action. We extend this statement to disconnected


1In [Po051], [Po052] was considered the case where X = A
n and T is the maximal


diagonal torus that leaves fixed the standard volume form, but this restriction plays no
role in the definition.
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groups proving that every algebraic action on An of either an n-dimensional
algebraic group whose connected component of identity is a torus, or an
(n − 1)-dimensional diagonalizable group is equivalent to a linear action
(Theorems 13 and 15).


We also obtain the following classifications:


(i) the classification of diagonalizable subgroups of the group Affn of
affine transformastions (see below (6)) up to conjugacy in the full
Cremona group Crn = BirAn (Theorem 1);


(ii) the classification of n-dimensional diagonalizable subgroups of AutAn


up to conjugacy in AutAn (Theorem 11);
(iii) the classification of (n − 1)-dimensional diagonalizable subgroups of


Aut∗An up to conjugacy in Aut∗An (Theorem 12);
(iv) the classiciation, up to conjugacy in AutAn, of maximal n-dimensio-


nal algebraic subgroups G in AutAn such that G0 is a torus (Theo-
rem 11);


(v) the classiciation, up to conjugacy in Aut∗An, of maximal (n − 1)-
dimensional algebraic subgroups G in Aut∗An such that G0 is a torus
(Theorem 14);


(vi) the classification of (n − 1)-dimensional diagonalizable subgroups of
AutAn up to conjugacy in AutAn (Theorem 15);


(vii) the classification of diagonalizable subgroups in AutAn of dimension
> n− 1 up to conjugacy in Crn (Theorems 11 and 17);


(viii) the classification of one-dimensional tori of AutA3 up to conjugacy
in AutA3 (Theorem 18).


For instance, we prove that the set of classes of (n− 1)-dimensional diag-
onalizable subgroups of AutAn that are conjugate in AutAn is bijectively
parametrized by the set of nonzero nondecreasing sequences


(l1, . . . , ln) ∈ Zn, (2)


such that (l1 . . . , ln) 6 (−ln . . . ,−l1) with respect to the lexicographic order.
Under this parametrization, to sequence (2) corresponds the class of the


subgroup ker εl11 · · · ε
ln
n .


Another example: we show that diagonalizable subgroups of Affn are
conjugate in Crn if and only if they are isomorphic and we specify their
canonical representatives. In particular (see Corollary 5), every two isomor-
phic finite Abelian subgroups of Affn are conjugate in Crn (for finite cyclic
subgroups this has been proved in [Bl061]).


In [Se10] Serre proved “fusion theorem” for the torus Dn in Crn. We prove
and use “fusion theorems” for n-dimensional tori in AutAn and in Aut∗An+1


(Theorem 9).
In the final section, developing further the theme of analogies between the


Cremona groups and algebraic groups, we introduce and discuss the notions
of Jordan decomposition and torsion primes for the Cremona groups. In the
course of discussion, we formulate some open questions.


Acknowledgment. I am grateful to J.-P. Serre for the comments.







4 VLADIMIR L. POPOV


Notation and conventions.


In the sequel, “variety” means “algebraic variety over the fixed algebrai-
cally closed field k of characteristic zero” in the sense of Serre’s FAC [Se55].
Apart from the standard notation and conventions of [Bo91] and [PoVi94]
used without reminders we also use the following:


— Matm×n(R) is the set of all matrices with m rows, n columns, and
the coefficients in R.


— NH(S) and ZH(S) are, respectively, the normalizer and centralizer of
the subgroup S of the group H.


— µd is the subgroups of order d in Gm.
— X(D) is the group of rational characters of the diagonalizable algebraic


group D.
— χ(X) is the Euler characteristic of the variety X relative to the l-


adic cohomology (for k = C, by [La81] it coincides with the Euler
characteristic relative to the usual cohomology with compact supports
(cf. also [KrPo85, Appendix])).


— If the group G acts on a set M and ϕ : G × M → M is the map
defining this action, then for the subsets S ⊆ G and X ⊆ M , the
subset ϕ(S × X) ⊆ M is denoted by S · X (each time it is clear
from the context what ϕ is meant). In particular, by G · a is denoted
the G-orbit of the point a. By Ga is denoted the G-stabilizer of the
point a.


— x1, . . . , xn are the standard coordinate functions on An:


xi(a) := ai, a := (a1, . . . , an) ∈ An.


In the sequel it is assumed that all considered algebraic groups are affine
and all their homomorphisms are algebraic. Below all tori and diagonalizable
groups are algebraic.


An action of a group G on a vector space V is called locally finite, if for
every vector v ∈ V the linear span of the orbit G · v is finite dimensional.


The group Crn := BirAn is called the Cremona group of rank n. The map
ϕ 7→ (ϕ∗)−1 identifies it with Autkk(x1, . . . , xn). Every birational isomor-
phism X 99K An identifies Crn with BirX. For every g ∈ Crn the functions


gi = g∗(xi) ∈ k(An) (3)


determine g by the formula


g(a) = (g1(a), . . . , gn(a)) if g is defined at a ∈ An; (4)


we use the notation


(g1, . . . , gn) := g. (5)


By means of the notion of “algebraic family” S → Crn (see [Ra64]) the
group Crn is endowed with the Zariski topology (see [Se10], [Bl10]). If a
homomorphism G → Crn of an algebraic group G is an algebraic family,
then its image is called an algebraic subgroup of Crn (see [Po12]).


The subgroup


AutAn := {(g1, . . . , gn) ∈ Crn | g1, . . . , gn ∈ k[An] = k[x1, . . . , xn]}
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is called the affine Cremona group of rank n.
It contains the algebraic subgroup of affine transformations


Affn = {(g1, . . . , gn) ∈ AutAn | deg g1 = . . . = deg gn = 1}, (6)


and Affn, in turn, contains the algebraic subgroup of linear transformations


GLn = {g ∈ Affn | g(0) = 0}.


If g = (g1, . . . , gn) ∈ AutAn (see (5)), then we put


Jac(g) := det(∂gi/∂xj).


Since g ∈ AutAn, we have Jac(g) ∈ k \ {0}. Therefore, g 7→ Jac(g) is
the homomorphism of AutAn in the multiplicative group of the field k. Its
kernel


Aut∗An := {f ∈ AutAn | Jac(g) = 1}


consists of the automorphisms of An that leaves fixed the standard volume
form; it is called the special affine Cremona group of rank n− 1 (regarding
the ranks in these names see Theorems 2(i) and 4(i) below). The latter
group contains the algebraic subgroup


SLn := GLn ∩Aut∗An.


The embeddings Crn →֒ Crn+1, (g1, . . . , gn) 7→ (g1, . . . , gn, xn+1) are ar-
ranged the tower Cr1 →֒ Cr2 →֒ · · · →֒ Crn →֒ · · · . Its direct limit Cr∞ is
called the Cremona group of infinite rank, see [Po12, Sect. 1].


In GLn is distinguished the “standard” maximal torus


Dn := {(t1x1, . . . tnxn) | t1, . . . , tn ∈ k} ⊂ GLn. (7)


Its normilizer in GLn is the group of all monomial transformations in GLn:


NGLn
(Dn) = {(t1xσ(1), . . . , tnxσ(n)) | σ ∈ Sn, t1, . . . , tn ∈ k} ⊂ GLn, (8)


where Sn is the symmetric group of degree n. In Aut∗An is contained the
torus


D∗
n := Dn ∩Aut∗An = {(t1x1, . . . , tnxn) | t1, . . . , tn ∈ k, t1 · · · tn = 1}. (9)


The “coordinate” characters ε1, . . . , εn of the torus Dn defined by


εi : Dn → Gm, (t1x1, . . . , tnxn) 7→ ti, (10)


constitute a base of the (free Abelian) group X(Dn).


2. Some subgroups of Crn


In the sequel we consider the elements of the group Zn as rows of length n.
Then the rows of any matrix A = (aij) ∈ Matm×n(Z) become the elements
of this group and we use the following notation:


RA := the subgroup of Zn generated by the rows of matrix A, (11)


Dn(A) =


m
⋂


i=1


ker λi, where λi := ε
ai,1
1 · · · ε


ai,n
n . (12)
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If m = 1, then in place of Dn((l1 . . . ln)) we write Dn(l1, . . . , ln). In partic-
ular,


Dn(0, . . . , 0) = Dn. (13)


Clearly, Dn(A) is a closed subgroup of Dn and (see (11))


Dn(A) =
⋂


(l1,...,ln)∈R(A)


ker εl11 · · · ε
ln
n . (14)


Recall the terminology used below (see, e.g., [Vi03] and [MaMi64]).
Every finite Abelian group G decomposes as a direct sum of cyclic sub-


groups of orders d1, . . . , dm, where di divides di+1 for i = 1, . . . ,m− 1, and
d1 > 1 if |G| > 1. The numbers d1, . . . , ds are uniquely determined by G
and are called the invariant factors of G.


Every nonzero integer matrix A can be transformed by means of elementa-
ry transformations of its rows and columns into a matrix S = (sij) such that
only the coefficients sii for i = 1, . . . , r are nonzero and sii divides si+1,i+1


for i = 1, . . . , r − 1. The integers s11, . . . , srr are uniquely determined by A
(sii = fi/fi−1, where fi is gcd of the minors of order i of the matrix A and
f0 := 1) and are called the invariant factors of matrix A. The matrix S is
called the Smith normal form of matrix A.


Lemma 1. If B is obtained from A ∈Matm×n(Z) by means of the elemen-


tary transformations of rows and columns, then the subgroups Dn(A) and


Dn(B) are conjugate in Crn.


Proof. Let τ1, . . . , τn be some base of the group X(Dn). Then (see (12))
λi = τ


ci,1
1 · · · τ


ci,n
n for some cij ∈ Z and


Dn(A) =
m
⋂


i=1


ker τ
ci,1
1 · · · τ


ci,n
n . (15)


The group AutgrDn of automorphisms of the algebraic group Dn is natu-
rally identified with GLn(Z). Its natural action on the set of bases of the
group X(Dn) is transitive. Therefore, there is an automorphism


ϕ ∈ AutgrDn, (16)


such that τi ◦ ϕ = εi for each i. From (15) it then follows that


ϕ−1(Dn(A)) = Dn(C), C = (cij) ∈ Matm×n(Z). (17)


Since the map of varieties Dn → An, (t1x1, . . . , tnxn) 7→ (t1, . . . , tn), is
a birational isomorphism, by means of it we can identify the group Crn =
BirAn with the group of birational automorphisms of the underlying variety
of torus Dn. Then ϕ becomes an element of the group Crn and from (16)
and (17) it is easy to deduce that in this group we have the equality


ϕ−1Dn(A)ϕ = Dn(C).


Further, notice that if the base τ1, . . . , τn is obtained from the base ε1, . . .
. . . , εn by an elementary transformation, then the matrix C is obtained from
A by an elementary transformation of columns, and every elementary trans-
formation of columns of A is realizable in this way. Also, notice that if the







TORI IN THE CREMONA GROUPS 7


sequence ϕ1, . . . , ϕm ∈ X(Dn) is obtained by an elementary transformation
from the sequence λ1, . . . , λm, then Dn(A) =


⋂m
i=1 kerϕi, the matrix (cij)


defined by the equalities ϕi = ε
ci,1
1 · · · ε


ci,n
n is obtained from A by an elemen-


tary transformation of rows, and every elementary transformation of rows
of A is realizable in this way.


Clearly, the said implies the claim of lemma. �


Corollary 1. If S is the Smith normal form of matrix A, then the subgroups


Dn(A) and Dn(S) are conjugate in Crn.


Lemma 2.


(i) Let q16 · · ·6qr be all the invariant factors of matrix A∈Matm×n(Z).
Then the group Dn(A) is isomorphic to


µq1
× · · · × µqr ×Gn−r


m . (18)


(ii) The closed (n − m)-dimensional subgroups of Dn are every possible


subgroups Dn(A), where A ∈ Matm×n(Z), rkA = m, and only they.


(iii) RA = {(l1, . . . , ln) ∈ Zn | Dn(A) ⊆ ker εl11 · · · ε
ln
n } for every A ∈


Matm×n(Z).
(iv) If A ∈ Mats×n(Z), B ∈ Matt×n(Z), then


(a) Dn(A) = Dn(B) if and only if RA = RB ;
(b) The following properties are equivalent:


(b1) Dn(A) and Dn(B) are conjugate in GLn;
(b2) Dn(A) and Dn(B) are conjugate in NGLn


(Dn);
(b2) by a permutation of columns, it is possible to tranform B


into a matrix C such that RA = RC .


Proof. (i) Let S = (sij) be the normal Smith form of matrix A. Then s11 =
q1, . . . , srr = qr and sij = 0 in the other cases. Hence Dn(S) is isomorphic
to group (18). But Dn(A) is isomorphic to Dn(S) by Corollary 1. This
proves (i).


(ii) From (i) we deduce that


dimDn(A) = n− rkA; (19)


therefore, dimDn(A) = n−m, where rkA = m. Conversely, let H be a closed
subgroup of Dn such that dimH = n−m. Then Dn/H is an m-dimensional
torus [Bo91, p. 114] and therefore, there is an isomorphism α : Dn/H → Gm


m .
Let λi ∈ X(Dn) be the composition of homomorphisms


Dn
π
−→ Dn/H


α
−→ Gm


m
pri−−→ Gm,


where π s the canonical projection and pri is the projection to the ith factor.
Then H =


⋂m
i=1 ker λi. From (12) we then deduce that H = Dn(A) and from


(19) that rkA = m. This proves (ii).
(iii) From (11), (12) it follows that the left-hand side of the equality


under proof is contained in the right-hand side. Proving the inverse inclusion
consider a character λ = εl11 · · · ε


ln
n whose kernel contains Dn(A). Without


changing Dn(A) and RA, we can leave in A only the rows that form a base of
the groupRA removing the other rows, i.e., we can reduce our considerations
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to the case where rkA = m. Consider then the characters λ1, . . . , λm defined
by formula (12), and the homomorphism


ϕ : Dn → Gm
m , g 7→ (λ1(g), . . . , λm(g)).


In view of (12), we have kerϕ = Dn(A). From this and (19) it follows that
dimϕ(Dn) = m. Therefore, ϕ is a surjection. Hence Gm


m is the quotient
group of Dn by Dn(A) and ϕ is the canonical homomorphism to it. Since
λ is constant on the fibers of ϕ, the universal property of quotient implies
the existence of character µ : Gm


m → Gm such that λ = µ ◦ ϕ. Hence λ =
λc11 · · ·λ


cm
m for some c1, . . . , cm ∈ Z, and this means that (l1, . . . , ln) ∈ RA.


This proves (iii).
(iv)(a) If Dn(A) = Dn(B), then RA = RB because of (iii). Conversely, if


RA = RB , then Dn(A) = Dn(B) because of (14). This proves (iv)(a).
(iv)(b) By fusion theorem [Se00, 1.1.1] the subgroups Dn(A) and Dn(B)


are conjugate in GLn if and only if they are conjugate in NGLn
(Dn). But (8)


and (12) imply that Dn(A) and Dn(B) are conjugate in NGLn
(Dn) if and


only if by a permutation of columns one can obtain from B a matrix C such
that Dn(A) = Dn(C). Because of (iii)(a), the latter equality is equivalent
to the equality RC = RA. This proves (iv)(b). �


Corollary 2.


(i) Let (l1, . . . , ln) 6=(0, . . . , 0) and d :=gcd(l1, . . . , ln). Then Dn(l1, . . . , ln)
is isomorphic to µd×Gn−1


m . In particular, the group Dn(l1, . . . , ln) is


connected (i.e., is a torus) if and only if d = 1.
(ii) The closed (n − 1)-dimensional subgroups of Dn are every possible


subgroups Dn(l1, . . . , ln) with (l1, . . . , ln) 6= (0, . . . , 0) and only they.


(iii) Dn(l1, . . . , ln) = Dn(l′1, . . . , l
′
n) if and only if


(l1, . . . , ln) = ±(l′1, . . . , l
′
n).


(iv) The following properties are equivalent:


(iv1) Dn(l1, . . . , ln) and Dn(l′1, . . . , l
′
n) are conjugate in GLn;


(iv2) Dn(l1, . . . , ln) and Dn(l′1, . . . , l
′
n) are conjugate in NGLn


(Dn);
(iv3) there is a permutation σ ∈ Sn such that


(l1, . . . , ln) = ±(l′σ(1), . . . , l
′
σ(n)).


The following Lemma 3 gives an effective numerical criterion for the equa-
lity RA = RB from Lemma 2(iii).


Let A ∈ Matm×n(Z), rkA = m. For every strictly increasing sequence of
m integers i1, . . . , im taken from the interval [1, n], put


pi1,...,im(A) := detAi1,...,im, (20)


where Ai1,...,im is the submatrix of matrix A obtained by intersecting rows
with numbers 1, . . . ,m and columns with numbers i1, . . . , im (it is natural
to call the pi1,...,im(A)’s the Plücker coordinates of matrix A).


Lemma 3. For every two matrices A and B ∈ Matm×n(Z) of rank m the


following properties are equivalent:


(i) RA = RB.
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(ii) Two conditions hold:


(a) either pi1,...,im(A) = pi1,...,im(B) for all i1, . . . , im, or pi1,...,im(A) =
−pi1,...,im(B) for all i1, . . . , im;


(b) for every sequence i1, . . . , im such that pi1,...,im(A) 6= 0, the fol-


lowing inclusion holds:


Bi1,...,im(Ai1,...,im)−1 ∈ Matm×m(Z). (21)


Proof. Whereas rkA = rkB = m, the rows of A and B form the bases in
RA and RB respectively. Therefore, RA = RB if and only if when there is
a matrix Q ∈ GLm(Z) such that


A = QB. (22)


Let RA = RB . Then (22) implies that


Ai1,...,im = QBi1,...,im (23)


for every i1, . . . , im, and therefore, pi1,...,im(A) = detQpi1,...,im(B) because
of (20). Since Q ∈ GLm(Z), we have detQ = ±1. Hence condition (ii)(a)
holds. If pi1,...,im(A) 6= 0, then pi1,...,im(B) 6= 0 as well, hence Bi1,...,im is non-
degenerate and (23) implies that Q = Ai1,...,im(Bi1,...,im)−1. Hence condition
(ii)(b) holds. This proves (i)⇒(ii).


Proving the inverse implication, consider Zn as a subset of the coordinate
vectors space (of rows) Qn. Condition (ii)(a) shows that the Q-linear spans
of subsetsRA andRB of Qn have the same Plücker coordinates. Hence these
spans are one and the same linear subspace L (see, e.g., [ShRe09, Theorem
10.1]). Since the rows of A and rows of B form two bases in L, there exists
a matrix P ∈ GLm(Q) such that A = PB. Therefore, Ai1,...,im = PBi1,...,im


for every i1, . . . , im and hence P = Ai1,...,im(Bi1,...,im)−1 if pi1,...,im(B) 6= 0.
Then (ii)(b) implies that P ∈ GLn(Z). Therefore, RA = RB. This proves
(ii)⇒(i). �


Remark 1.
1. In the proof of Lemma 3 it is established that, in fact, (ii)(a) implies


that the matrix Bi1,...,im(Ai1,...,im)−1 is independent of the choice of a se-
quence i1, . . . , im for which pi1,...,im(A) 6= 0. Therefore, (ii)(b) follows from
(ii)(a) and feasibility of (21) for any one such a sequence.


2. If m=1, then (ii)(b) follows from (ii)(a) (but for m > 1 this is not so).


Theorem 1 (Classificaton of diagonalizable subgroups of Affn up to conju-
gacy in Crn).


(i) Two diagonalizable subgroups of the group Affn are conjugate in Crn
if and only if they are isomorphic.


(ii) Any diagonalizable subgroup G of the group Affn is conjugate in Crn
to a unique closed subgroup of the torus Dn that has the form


ker εd1r+1 ∩ . . . ∩ ker εdsr+s ∩ ker εr+s+1 ∩ . . . ∩ ker εn (24)


where 0 6 r 6 n, 0 6 s 6 n, r + s 6 n, 2 6 d1 and di divides


di+1 for every i < s. The integers determining subgroup (24) have


the following meaning: r = dimG and d1, . . . , ds are all the invariant


factors of the finite Abelian group G/G0.
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Proof. Since maximal reductive subgroups of algebraic group are conjugate
(see [BoSe64, 5.1]) and GLn is one of them in Affn, every diagonalizable
subgroup of Affn is conjugate to a subgroup of GLn. In turn, every diago-
nalizable subgroup of GLn is conjugate to a subgroup of the torus Dn


(see [Bo91, I.4.6]). In view of Lemma 2(ii) this shows that it suffices to
prove (i) for the subgroups Dn(A) and Dn(B) of the torus Dn. Further, ap-
pending, if necessary, zero rows we may assume that A and B have the same
number of rows. Let now Dn(A) and Dn(B) be isomorphic. Then their di-
mensions are equal and the groups Dn(A)/Dn(A)0 and Dn(B)/Dn(B)0 have
the same invariant factors. This and Lemma 2(i) imply that the matrices A
and B have the same invariant factors (because the latter are obtained by
appending the same number of 1’s to the invariant factors of the specified
groups). Hence the normal Smith forms of A and B are equal. By Corollary
1 this implies that Dn(A) and Dn(B) are conjugate in Crn. This proves (i).


It is clear that the integers determining subgroup (24) have the meaning
specified in (ii). Since every diagonalizable group is a direct product of a
finite Abelian group and a torus, it is uniquely, up to isomorphism, deter-
mined by its dimension and the invariant factors of the group of connected
components. This and (i) implies (ii). �


Corollary 3. Dn(A) and Dn(B) are conjugate in Crn if and only if A and


B have the same invariant factors.


Corollary 4. Every torus T in Affn is conjugate in Crn to the torus Dr,


r = dimT .


Proof. This follows from Theorem 1(ii). �


Corollary 5. Every two isomorphic finite Abelian subgroups of Affn are


conjugate in Crn.


Proof. Since char k = 0, every element in Affn of finite order is semisim-
ple. Hence every finite Abelian subgroup of Affn is reductive, and therefore,
is conjugate in Affn to a subgroups of GLn (see the proof of Theorem 1).
But every commutative subgroup of GLn consisting only of semisimple el-
ements is diagonalizable (see [Bo91, Prop. 4.6(b)]). The claim now follows
from Theorem 1(i). �


Corollary 6 ([Bl061, Thm. 1]). Every two elements in Affn of the same


finite order are conjugate in Crn.


3. Tori in Crn, AutAn, and Aut∗An


Theorem 2 (Tori in Crn).


(i) In Crn there are no tori of dimension > n.
(ii) In Crn every r-dimensional torus for r = n, n− 1, n − 2 is conjugate


to the torus Dr.


(iii) If n > 5, then in Crn there are (n− 3)-dimensional tori that are not


conjugate to subtori of the torus Dn.


(iv) Every r-dimensional torus inCrn is conjugate inCrn+r to the torusDr.
(v) In Cr∞ every r-dimensional torus is conjugate to the torus Dr.
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Proof. (i) This is proved, e.g., in [De70], see also [Po12, Cor. 2.2].
(ii) According to [B-B66, Cor. 2] (see also [Po12, Cor. 2.4(b)]), every r-


dimensional torus in Crn for r = n, n − 1, n − 2 is conjugate to a subtorus
of the torus Dn. Therefore, the claim follows from Corollary 4.


(iii) This is proved in [Po12, Cor. 2.5].
(iv) According to [Po12, Thm. 2.6], every r-dimensional torus in Crr is


conjugate in Crn+r to a subtorus of the torus Dn+r. Therefore, the claim
follows from Corollary 4.


(v) This follows from (iv). �


Corollary 7.


(i) In Crn every n-dimensional torus is maximal.


(ii) In Crn there are no maximal (n− 1)- and (n− 2)-dimensional tori.


(iii) For n > 5, in Crn there are maximal (n− 3)-dimensional tori.


Remark 2. For n 6 3, Theorem 2 gives the classification of tori in Crn up
to conjugacy: the classes of conjugate nontrivial tori are exhausted by that
of the tori D1, . . . ,Dn.


Let (l1, . . . , ln) ∈ Zn be a nonzero element with gcd(l1, . . . , ln)=1. Clearly,
the homomorphism


Gm → Dn, t 7→ (tl1x1, . . . , t
lnxn), (25)


is an embedding and every embedding Gm →֒ Dn is of this form. Denote
by T (l1, . . . , ln) the image of embedding (25). It is a one-dimensional torus
in Dn and every one-dimensional torus in Dn is of this form.


Lemma 4. The following properties are equivalent:


(i) T (l1, . . . , ln) = T (l′1, . . . , l
′
n).


(ii) (l1, . . . , ln) = ±(l′1, . . . , l
′
n).


Proof. (i)⇒(ii) This is clear.
(ii)⇒(i) Assume that (i) holds. Take an element t ∈ Gm of infinite order.


From (i) and the definition of T (l1, . . . , ln) we deduce that there is an element


s ∈ Gm such that tli = sl
′


i for every i = 1, . . . , n. Hence tlil
′


j = sl
′


il
′


j = tlj l
′


i


for every two nonequal integers i and j taken from the interval [1, n]. Since
the order of t is infinite, this implies that lil


′
j − lj l


′
i = 0. Hence


rk


(


l1 . . . ln
l′1 . . . l′n


)


= 1.


Therefore, (l1, . . . , ln) = γ(l′1, . . . , l
′
n) for some γ ∈ Q, or, equivalently,


p(l1, . . . , ln) = q(l′1, . . . , l
′
n), where p, q ∈ Z, gcd(p, q) = 1. Hence p di-


vides each of l′1, . . . , l
′
n, and q divides each of l1, . . . , ln. Since the integers in


each of these two sets are coprime, this implies that γ = ±1, i.e., (ii) holds.
�


Theorem 3 (Tori in AutAn).


(i) In AutAn every n-dimensional torus is conjugate to the torus Dn.
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(ii) In AutAn all (n − 1)-dimensional tori are exhausted, up to conju-


gacy in AutAn, by all the groups of the form Dn(l1, . . . , ln) with


(l1, . . . , ln) 6= (0, . . . , 0) and gcd(l1, . . . , ln) = 1.
(iii) In AutA3 all one-dimensional tori are exhaused, up to conjugacy, by


all the groups of the form T (l1, l2, l3).


Proof. According to [B-B66] and [B-B67], every r-dimensional torus in the
group AutAn for r = n and n − 1, respectively, is conjugate to a subtorus
of the torus Dn. This and Corollary 2 imply (i) and (ii).


According to [KKM-LR97], every one-dimensional torus in AutA3 is con-
jugate to subtorus of the torus D3. This implies (iii). �


Theorem 4 (Tori in Aut∗An).


(i) In Aut∗An there are no tori of dimension > n− 1.
(ii) In Aut∗An every (n− 1)-dimensional torus is maximal and conjugate


to the torus D∗
n (see (9)).


Proof. (i) If Aut∗An contains an n-dimensional torus T , then by Theorem
3(i) there is an element g ∈ AutAn such that


T = gDng
−1. (26)


Replacing g by gz, where z ∈ Dn is an element such that Jac(z) = det z =
1/Jac(g), we may assume that g ∈ Aut∗An. This and (26) imply that
Dn ⊂ Aut∗An, — a contradiction. This proves (i).


(ii) Let S be an (n − 1)-dimensional torus in Aut∗An. By Theorem 3(i)
and Corollary (ii) of Lemma 2, there are g ∈ AutAn and (l1, . . . , ln) ∈ Zn


such that
S = gDn(l1, . . . , ln)g−1. (27)


As in the proof of (i), we may assume that g ∈ Aut∗An. From (27) it
then follows that Dn(l1, . . . , ln) ⊂ Aut∗An. This and Dn ∩ ker Jac = D∗


n :=
Dn(1, . . . , 1) imply the inclusion Dn(l1, . . . , ln) ⊆ D∗


n. By Corollary (i) of
Lemma 2, both sides of this inclusion are (n− 1)-dimensional tori. Hence it
is the equality. This proves (ii) �


Remark 3. For AutAn and Aut∗An, unlike for Crn (see Corollary 7(iii)), at
present nothing is known on the existence of tori of nonmaximal dimension.
This problem is intimately related to the Cancellation Problem: Is there an
affine variety X not isomorphic to Am, m = dimX, such that X ×Ad is
isomorphic to Am+d for some d? If the answer is positive, then in AutAn


and Aut∗An with n = m+d there exists a maximal torus T of a nonmaximal
dimension. Indeed, multiplying, if necessary, X×Ad by A1, one may assume
that d > 2. Let λ be the character t 7→ t of the torus Gm. Consider the
linear action of Gm on Ad with precisely two isotypic components: one is
(d− 1)-dimensional of type λ, another is one-dimensional of typer λ1−d. It
determines the action of Gm on X ×Ad via the second factor and hence,
an action of Gm on An. Consider in AutAn the torus that is the image of
Gm under the homomorphism determined by this action. The construction
implies that this torus lies in Aut∗An. Let T (respectively, T ′) be a maximal
torus of AutAn (respectively, of Aut∗An) that contains this image. If T is
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n-dimensional (respectively, T ′ is (n−1)-dimensional), then by Theorem 3(i)
(respectively, by Theorem 4) it is conjugate to a subtorus of the torus Dn


and, therefore, the specified action of T (respectively, T ′) on An is equivalent
to a linear one. Hence the action of Gm on An is equivalent to a linear one
as well, and therefore, the set F of its fixed points is isomorphic to an affine
space. But, by the construction, in Ad there is a single Gm-fixed point,
consequently, F is isomorphic to X — a contradiction.


4. Orbits and stabilizers of the action of Dn(l1, . . . , ln) on An


Here we establish some properties, needed for what follows, of orbits and
stabilizers of the natural action on An of the group


G := Dn(l1, . . . , ln). (28)


Clearly, every coordinate hyperplane


Hi := {a ∈ An | xi(a) = 0} (29)


is G-invariant.


Lemma 5. The G-stabilizer of every point of An \
⋃n


i=1Hi is trivial.


(i) If (l1, . . . , ln) = (0, . . . , 0), then An \
⋃n


i=1Hi is a G-orbit, and dimen-


sion of the G-stabilizer of every point of
⋃n


i=1Hi is positive.


(ii) If (l1, . . . , ln) 6= (0, . . . , 0), then dimG · a = n − 1 for every point


a ∈ An \
⋃n


i=1Hi.


Proof. This immediately follows from (28), (12), (4) and Lemma 2. �


We now consider the case


(l1, . . . , ln) 6= (0, . . . , 0).


Lemma 6. If li 6= 0, then the open subsubset Oi := Hi \
⋃


j 6=iHj in Hi is a


G-orbit.


Proof. By virtue of G-invariance of Oi, it suffices to show that Oi is con-
tained in a G-orbit. Since li 6= 0, the equation xli = α has a solution for any
α ∈ k, α 6= 0. This and (28), (12) imply that for any two points


b=(b1, . . . , bi−1, 0, bi+1, . . . , bn), c=(c1, . . . , ci−1, 0, ci+1, . . . , cn)∈Hi \
⋃


j 6=i


Hj


there exists an element g = (t1x1, . . . , tnxn) ∈ G such that tj = b−1
j cj for


every j 6= i. From (4) we then obtain that g · b = c, as required. �


Lemma 7. The following properties are equivalent:


(i) all the numbers l1, . . . , ln are nonzero and have the same sign;


(ii) G-orbit of every point of An \
⋃n


i=1Hi is closed in An;


(iii) G-orbit of some point of An \
⋃n


i=1Hi is closed in An.


Proof. Consider a point


a = (a1, . . . , an) ∈ An \
⋃n


i=1Hi.
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Assume that (i) holds. Suppose that the G-orbit of the point a is not
closed in An. Then its boundary can be accessed by a one-parameter sub-
group, i.e., there is homomorphism ϕ : Gm → G such that there is a limit


limt→0ϕ(t) · a = b ∈ G · a \G · a (30)


(see [PoVi94, Thm. 6.9]); the latter means that the morphism Gm = A1 \
{0} → An, t 7→ ϕ(t) · a, extends to a morphism A1 → An that maps 0 to
the point b. As ϕ is algebraic, there is a vector (d1, . . . , dn) ∈ Zn such that
ϕ(t) = (td1x1, . . . , t


dnxn) for every t ∈ Gm. Since ϕ(t)·a = (td1a1, . . . , t
dnan)


and ai 6= 0 for every i, the existence of the specified limit means that


d1 > 0, . . . , dn > 0. (31)


On the other hand, it follows from ϕ(t) ∈ G and (28), (12) that td1l1+···+dnln


= 1 for every t, i.e.,


d1l1 + · · · + dnln = 0. (32)


But (31), (32) and condition (i) imply that d1 = · · · = dn = 0. Hence b = a
contrary to (30). This contradiction proves (i)⇒(ii).


Conversely, assume that (i) is not fulfilled, i.e., among l1, . . . , ln there
are either two nonzero numbers with different signs, or one number equal
to zero. In the first case, let, for instance, be l1 > 0, l2 < 0. Then
(12) implies that the image of the homomorphism ϕ : Gm → Dn, t 7→
(t−l2x1, t


l1x2, x3, . . . , xn), lies in G. Since


limt→0ϕ(t) · a = (0, 0, a3, . . . , an) /∈ G · a,


this shows that the orbit G · a is not closed. In the second case, let, say,
a1 = 0. Then G contains the image of the homomorphism ϕ : Gm → Dn,
t 7→ (tx1, x2, . . . , xn) and, since


limt→0ϕ(t) · a = (0, a2, . . . , an) /∈ G · a,


the orbit G · a is not closed. This proves (iii)⇒(i). �


¿From Lemmas 5, 6, and 7 we infer


Corollary 8. If all the numbers l1, . . . , ln are nonzero and have the same


sign, then in An there are precisely n nonclosed (n − 1)-dimensional G-
orbits— these are the orbits O1, . . . ,On from Lemma 6.


Remark 4. Recall from [Po70] that an action of an algebraic group on an
algebraic variety is called stable, if orbits of points in general position are
closed. Lemma 7 shows that the following properties are equivalent:


(i) all the numbers l1, . . . , ln are nonzero and have the same sign;
(ii) the action G on An is stable.


Lemma 8. Assume that none of the numbers l1, . . . , ln are equal to ±1.
Then the following properties of the point a = (a1, . . . , an) ∈ An are equiva-


lent:


(i) a has a nontrivial G-stabilizer;
(ii) a ∈


⋃n
i=1Hi.
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Proof. Lemma 5 implies (i)⇒(ii). Now assume that (ii) holds. Then there
are the indices i1, . . . , is, where s > 1, such that aj = 0 for j = i1, . . . , is
and aj 6= 0 for other j’s. It follows from (4), (28), and (12) that an element
(t1x1, . . . , tnxn) ∈ Dn lies in the G-stabilizer of the point a if and only if
tj = 1 for j 6= i1, . . . , is and


t
li1
i1
· · · t


lis
is


= 1. (33)


Since there is no ±1 among the numbers l1, . . . , ln and k is an algebraically
closed field of characteristic zero, equality (33), considered as the equation
in ti1 , . . . , tis , has at least two solutions. Hence the G-stabilizer of the point
a is nontrivial. This proves (ii)⇒(i). �


Lemma 9. If among l1, . . . , ln there are two nonzero numbers with different


signs, then every G-orbit contains (0, . . . , 0) in its closure.


Proof. For definiteness, let, for instance, be


l1 > 0, l2 > 0, . . . , ls > 0, ls+1 < 0, ls+2 6 0, . . . , ln 6 0.


Choose a positive integer d so large that


q := l2 + · · · + ls + dls+1 + ls+2 + · · · + ln < 0.


Since −ql1 + l1l2 + · · ·+ l1ls + l1dls+1 + l1ls+2 + . . .+ l1ln = 0, from (28) and
(12) we infer that the image of the homomorphism


ϕ : Gm → Dn, t 7→ (t−qx1, t
l1x2, . . . , t


l1xs, t
l1dxs+1, t


l1xs+2 . . . , t
l1xn) (34)


lies in G. On the other hand, since the numbers −q, l1 and d are positive,
(4) implies that for every point a ∈ An the limit limt→0ϕ(t) · a exists and is
equal to (0, . . . , 0). �


Now consider the case where 0 and ±1 are contained among l1, . . . , ln,
there are at least two nonzero li’s, and all of them have the same sign. By
(12), without loss of generality we may assume that this sign is positive.
Up to replacing the group G by its conjugate by means of an element of
NGLn


(Dn), we may then assume that


l1 = . . . = lp = 1, lp+1 > 2, . . . , lq > 2, lq+1 = . . . = ln = 0,


where p > 1, n > q > p and q > 2.
(35)


Lemma 10. Assume that (35) holds. Take a point a = (a1, . . . , an) ∈ An.


(i) Let a /∈
⋃n


i=1Hi. Then the orbit G · b, where b = (a1, . . . , aq, 0, . . . , 0),
lies in the closure of the orbit G · a, is closed, and dimG · b = q − 1.


(ii) Let a ∈ Hi. Then the group Ga is


(a) trivial if 1 6 i 6 p and a ∈ Oi (see Lemma 6);
(b) nontrivial and finite if p+ 1 6 i 6 q and a ∈ Oi;
(c) has positive dimension if i > q.


Proof. From (28), (12), and (35) it follows that the image of the homomor-
phism


ϕ : Gm → Dn, t 7→ (x1, . . . , xq, txq+1, . . . , txn),
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lies in G. Hence the point


limt→0ϕ(t) · a = (a1, . . . , aq, 0, . . . , 0) = b (36)


lies in the closure of the orbit G · a.
Now let a /∈


⋃n
i=1Hi. If the orbit G · b is not closed, then, as in the proof


of Lemma 7, there exist a homomorphism


ψ : Gm → G, t 7→ (td1x1, . . . , t
dnxn), (37)


such that c := limt→0ψ(t) · b ∈ G · b \G · b. ¿From (36) it follows that d1 >


0, . . . , dq > 0, and from (35), (28), and (12) it follows that d1l1+· · ·+dqlq = 0.
Since l1, . . . , lq are positive, this yields d1 = . . . = dq = 0. In view of (36),
from this we infer that ψ(t) · b = b for every t, and therefore, c = b— a
contradiction. Thus, G · b is closed. Since a1, . . . , aq are nonzero, (28), (12),
(4), (35), and (36) imply that an element (t1x1, . . . , tnxn) ∈ Dn lies in Gb if
and only if t1 = . . . = tq = 1. This proves (i).


The arguments analogous to that used in the proof of Lemma 8 yield (ii).
�


Finally, consider the case where one of the numbers l1, . . . , ln is equal to
±1 (in view of (12), without loss of generality we may assume that it is
equal to 1), and all the others are equal to 0.


Lemma 11. Let li = 1 and let lj = 0 for j 6= i. For any s ∈ k denote by


H(s) the hyperplane in An defined by the equation xi + s = 0. Then:


(i)
⋃


j 6=iHj is the set of points with nontrivial G-stabilizer (that automa-


tically has positive dimension).
(ii) The open subset H(s) \


⋃


j 6=iHj of H(s) is an (n − 1)-dimensional


G-orbit and every (n− 1)-dimensional G-orbit is of this form.


Proof. Part (i) immediately follows from (4), (28), and (12), and part (ii) fol-
lows from (i), the invariance of H(α), and the equality dimG = dimH(α) =
n− 1. �


5. The group NAutAn(Dn(l1, . . . , ln))


First, we shall prove several general statements about normalizers for the
actions on arbitrary affine varieties.


Lemma 12. Let X be an irreducible affine variety and let G be an algebraic


subgroup of AutX. Then the following properties are equivalent:


(i) NAutX(G) is an algebraic subgroup of AutX.


(ii) The natural action of NAutX(G) on k[X] is locally finite.


Proof. (i)⇒(ii) This follows from the fact that the natural action on k[X] of
every algebraic subgroup of AutX is locally finite (see [Bo91, Prop. 1.9]).


(ii)⇒(i) Assume that (ii) holds. Then in k[X] there is an NAutX(G)-
invariant finite dimensional k-linear subspace V containing a system of gen-
erators of the k-algebra k[X]. Hence the homomorphism


ρ : NAutX(G)→ GL(V ∗)
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determined by the action of NAutX(G) on V is an embedding. Consider the
NAutX(G)-equivariant map


ι : X → V ∗, ι(x)(f) := f(x) for every x ∈ X, f ∈ V .


The standard argument (see [Bo91, Prop. 1.12]) shows that ρ|G is a mor-
phism of algebraic groups, and ι is a closed embedding. Identify X with
ι(X) by means of ι, and NAutX(G) with ρ(NAutX(G)) by means of ρ. Then
X is a closed subvariety of V ∗, and NAutX(G) and G are the subgroups of
GL(V ∗); besides, G is closed, and


NAutX(G) ⊂ NGL(V ∗)(G) ∩TranGL(V ∗)(X,X), where (38)


TranGL(V ∗)(X,X) := {g ∈ GL(V ∗) | g ·X ⊂ X}. (39)


In fact, in the right-hand side of (39) the equality g ·X = X automatically
holds: indeed, X is irreducible and closed in V ∗, and g ∈ AutV ∗ implies
that g · X is a closed subset of X of the same dimension as X. Hence
TranGL(V ∗)(X,X), as well as NGL(V ∗)(G), is a subgroup of GL(V ∗), and
therefore, the right-hand side of (38) is a subgroup of GL(V ∗). Its elements
normalize G an, being restricted to X, are the automorphisms of X; whence,
they lie in NAutX(G). Therefore,


NAutX(G) = NGL(V ∗)(G) ∩ TranGL(V ∗)(X,X). (40)


¿From closedness of G in GL(V ∗) and that of X in V ∗ we deduce, respecti-
vely, that NGL(V ∗)(G) and TranGL(V ∗)(X,X) are closed in GL(V ∗) (see
[Bo91, Prop. 1.7]). This and (40) imply that NAutX(G) is closed in GL(V ∗).
Hence NAutX(G) is an algebraic subgroup of AutX. �


Theorem 5. Let X be an irreducible affine variety and let G be a reductive


algebraic subgroup in AutX such that


k[X]G = k. (41)


In either of the following cases NAutX(G) is the algebraic subgroup of AutX:


(i) G has a fixed point in X.


(ii) G0 is semisimple.


Proof. Take f ∈ k[X]. We shall prove that in each of cases (i) and (ii) the
k-linear span of the orbit NAutX(G) · f is finite dimensional. The claim of
the theorem will then follow from Lemma 12.


LetM(G) be the set of isomorphism classes of algebraic simple G-modu-
les. If L is an algebraic G-module, denote by Lµ its isotypic component of
type µ ∈ M(G).


Since G is reductive, we have (see [PoVi94, 3.13])


k[X] =
⊕


µ∈M(G)


k[X]µ (42)


The group NAutX(G) permutes the isotypic components of the G-module
k[X].
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Since k[X]µ is a finitely generated k[X]G-module (see [PoVi94, Thm.
3.24]), (41) implies that


dimk k[X]µ <∞ for every µ. (43)


In view of (42), there are elements µ1, . . . , µs ∈ M(G) such that


k[X]µi
6= 0 for all i, and f ∈ k[X]µ1


⊕ · · · ⊕ k[X]µs
. (44)


(i) Assume that in X there is a G-fixed point a. Since closed orbits
are separated by G-invariant regular functions (see [PoVi94, Thm. 4.7]), it
follows from (41) that there are no other G-fixed points in X. Hence a is
fixed by NAutX(G) as well. Therefore, the ideal


ma := {f ∈ k[X] | f(a) = 0}


is NAutX(G)-invariant. Hence every member of the decreasing filtration


ma ⊃ · · · ⊃ m
d
a ⊃ m


d+1
a ⊃ · · · . (45)


is NAutX(G)-invariant. This filtration has the property (see [AtMa69, Cor.
10.18]) that


⋂


d


m
d
a = 0. (46)


In view of (45), we have a decreasing system of nested linear subspaces
{k[X]µ ∩ m


d
a | d = 1, 2, . . .}. Since they are finite dimensional (see (43)),


there is dµ such that k[X]µ ∩ m
d
a = k[X]µ ∩ m


d+1
a for every d > dµ. From


(46) it then follows that, in fact,


k[X]µ ∩m
d
a = 0 for every d > dµ. (47)


Let l ∈ Z, l > max{dµ1
, . . . , dµs


}. ¿From (47) it follows that


k[X]µi
∩m


l
a = 0 for every i = 1, . . . , s. (48)


Since the natural projection π : k[X] → k[X]/ml
a is an epimorphism of


G-modules, we have π(k[X]µ) = (k[X]/ml
a)µ for every µ ∈ M(G). Whereas


dimk k[X]/ml
a <∞,


(see [AtMa69, Prop. 11.4]), this implies finiteness of the set of µ ∈ M(G)
such that


k[X]µ 6= 0 k[X]µ ∩m
l
a = 0. (49)


Let {λ1, . . . , λt} be this set. Since (49) holds for µ = µ1, . . . , µs (see (44),
(48)), we may assume that


λi = µi i = 1, . . . , s. (50)


Whereas the group NAutX(G) permutes the isotypic components of the G-
module k[X] and sends ml


a into itself, it permutes k[X]λ1
, . . . , k[X]λt


. Hence
k[X]λ1


⊕ · · · ⊕ k[X]λt
is an NAutAn(G)-invariant subspace of k[X]. In views


of (43), (44), and (50), it is finite dimensional and contains f . Hence the
k-linear span of the orbit NAutX(G) · f is finite dimensional, as claimed.


(ii) Let G0 be semisimple. From the Weyl formula for dimension of simple
G0-module and finiteness of the index [G :G0] it follows that, up to iso-
morphism, there are only finitely many algebraic simple G-modules whose
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dimension does not exceed any preassigned constant. This implies finiteness
of the set of µ ∈ M(G) such that


k[X]µ 6= 0 dimk k[X]µ 6 max
i


dimk k[X]µi
.


Let {λ1, . . . , λt} be this set. We may assume that (50) holds. SinceNAutX(G),
permuting isotypic components, preserves their dimensions, k[X]λ1


⊕ · · · ⊕
k[X]λt


is invariant with respect to NAutX(G). The proof can be now comple-
ted as in case (i). �


Corollary 9. Let X and G be the same as in Theorem 5 and let k = C.


Assume that the variety X is simply connected and smooth, and χ(X) = 1.
Then NAutX(G) is an algebraic subgroup of AutX.


Proof. By corollary of theorem on étale slice (see [Lu73, III, Cor. 2] and
[PoVi94, Thm. 6.7]), condition (41) and smoothness of X imply that X is a
homogeneous vector bundle over the unique closed G-orbit O in X. Hence
O is simply connected and χ(X) = χ(O). Being affine, O is isomorphic
to G/H for some reductive subgroup H (see [PoVi94, Thm. 4.17]). The
conditions that G/H is simply connected and χ(G/H) = 1 imply that G =
H (see [KrPo85, 5.1]). Hence O is a fixed point. The claim now follows from
Theorem 5(i). �


Corollary 10. Let G be an reductive algebraic subgroups of AutAn and


k[An]G = k. Then NAutAn(G) is the algebraic subgroup of AutAn.


Proof. In view of char k = 0, by the Lefschetz principle [Ha77, 15.1] we
may assume that k = C. Since An is simply connected and smooth, and
χ(An) = 1, the claim follows from Corollary 9. �


Remark 5. The following example shows that condition (41) alone (for irre-
ducible affine X and reductive G) does not, in general, imply that NAutX(G)
is algebraic.


Example 1. Let G be an algebraic torus of dimension n > 2. Take as X
the underlying variety of the algebraic group G. Its group of automorphisms
AutgrG is embedded in AutX and is isomorphic to GLn(Z). The action of G
on X by left translations embeds G in AutX. These two subgroups generate
AutX, more precisely, AutX = Aut grG ⋉ G. Therefore, NAutX(G) =
AutX. Let g ∈ Aut grG be an element of infinite order and let f1, . . . , fn ∈


k[X] be a base of X(G). Then gd ·fi ∈ X(G) for every d ∈ Z and i = 1, . . . , n,
and the set Ci := {gd · fi | i ∈ Z} is finite if and only if the stabilizer of fi
with respect to the cyclic group generated by g is nontrivial. Assume that
all C1, . . . , Cn are finite. Then there is d ∈ Z, d 6= 0, such that gd ·fi = fi for
every i = 1, . . . , n. Since f1, . . . , fn is a base in X(G), this means that the
autormorphism gd is trivial contrary to the assumption that the order of g is
infinite and d 6= 0. Hence Ci is infinite for some i. Since different characters
are linear independent over k (see [Bo91, Lemma 8.1]), this implies that the
k-linear span of the set Ci (and hence of the orbit NAutX(G) · fi) is infinite
dimensional.
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We shall now use the obtained information in the proof of algebraicity of
the groups NAutAn(Dn(l1, . . . , ln)).


Theorem 6. NAutAn(Dn(l1, . . . , ln)) for every l1, . . . , ln is an algebraic sub-


group of AutAn. Moreover,


(i) NAutAn(Dn) = NGLn
(Dn).


(ii) If (l1, . . . , ln) 6= (0, . . . , 0), then


NAutAn(Dn(l1, . . . , ln)) ⊆ NGLn
(Dn) (51)


in either of the following cases:


(a) all the numbers l1, . . . , ln are nonzero and have the same sign;


(b) none of the numbers l1, . . . , ln is equal to ±1;
(c) the numbers l1, . . . , ln contain 0 and ±1, at least two of them


are nonzero, and all nonzero of them have the same sign.


(iii) If li = 1 and lj = 0 for j 6= i, then NAutAn(Dn(l1, . . . , ln)) is isomor-


phic to NGLn−1
(Dn−1) × Aff1 and consists of all (g1, . . . , gn) ∈ Affn


of the form


gj =


{


tjxσ(j) j 6= i;


tjxj + s j = i,
(52)


where t1, . . . , tn, s∈k and σ is a permutation of the set {1,. . ., i−1, i+
1,. . ., n}.


Proof. If G is a subgroup of AutAn and g ∈ NAutAn(G), a ∈ An, then


g(G · a) = G · g(a), gGag
−1 = Gg(a), g(G · a) = g(G · a), and


if G is algebraic, dimG · a = dim g(G · a).
(53)


Let G = Dn. Lemma 5(i) implies that
⋃n


i=1Hi is the set of points whose
G-stabilizer has positive dimension. By (53), it is g-invariant. Since the
restriction of g to the variety


⋃n
i=1Hi is its automorphism, g permutes its


irreducible components H1, . . . ,Hn, i.e., there is a permutation σ ∈ Sn such
that


g(Hi) = Hσ(i) for every i = 1, . . . , n. (54)


Since the ideal in k[An] determined by Hi is generated by xi, this shows that
the polynomial g∗(xi) divides xσ(i), hence g∗(xi) = tixσ(i) for some nonzero
ti ∈ k. Therefore, g ∈ NGLn


(Dn) (see (3), (8)). This proves (i).
Further, let G = Dn(l1, . . . , ln), (l1, . . . , ln) 6= (0, . . . , 0).
Assume that condition (a) holds. Then (53) and Corollary of Lemma 7


imply that g permutes the orbits O1, . . .On, i.e., there exists a permutation
σ ∈ Sn such that g(Oi) = Oσ(i) for every i. In view of Lemma 6 and (53),
this implies that g has property (54), and as is shown above, the latter
implies that g ∈ NGLn


(Dn). Thus, (51) is proved in the case when condition
(a) holds.


Assume that condition (b) holds. Then g-invariance of
⋃n


i=1Hi follows
from (53) and Lemma 8. Now the same argument as for G = Dn completes
the proof of (51) in the case when condition (b) holds.


Assume that condition (c) holds. Proving (51), we may replace G by the
group conjugate to G by means of an appropriate element of NGLn


(Dn)
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and assume that (35) holds. The set {a ∈ An | dimGa > 0} is closed
(see [PoVi94, 1.4]). By virtue of (53), it is g-invariant, and Lemmas 5 and
10(ii) imply that its (n−1)-dimensional irreducible components are Hq+1, . . .
. . . ,Hn. Hence g permutes Hq+1, . . . ,Hn. Further, it follows from Lemmas
(5) and (10)(ii) that Op+1, . . . ,Oq are all the G-orbits O in An such that
Ga is finite and nontrivial for a ∈ O. From (53) it then follows that g
permutes the orbits Op+1, . . . ,Oq and, therefore, permutes their closures
Hp+1, . . . ,Hq. Finally, in view of Lemmas 5 and 10(ii), all the G-orbits O in
An such that Ga is trivial for a ∈ O are exhausted by the orbits O1, . . . ,Op


and G · a, where a /∈
⋃n


i=1Hi. Since G is reductive, every G-orbit in An


contains in its closure a unique closed G-orbit (see [PoVi94, Cor. p. 189]).
By Lemma 6, for each of the orbits O1, . . . ,Op this closed orbit is the fixed
point (0, . . . , 0). On the other hand, by Lemma 10(i), the closed orbit lying
in G · a for a /∈


⋃n
i=1Hi has dimension q − 1 > 1 and, therefore, is not the


fixed point. Hence g permutes O1, . . . ,Op, and therefore, permutes their
closures H1, . . . ,Hp. Thereby, it is proved that (54) holds for a certain per-
mutation σ ∈ Sn. As above, this allows to conclude that (51) holds in case
(c). Thus, (ii) is proved.


Assume now that li = 1 and lj = 0 for j 6= i. From (53) and Lemma 11(i)
it follows that the closed set


⋃


j 6=iHj is invariant with respect to g. Hence g
permutes its irreducible components H1, . . . ,Hi−1,Hi+1, . . . ,Hn. As above,
from here we conclude that for j 6= i the equality gj = tjxσ(j) holds for
some tj ∈ k and some permutation σ of the set {1, . . . , i − 1, i + 1, . . . , n}.
Further, (53) and Lemmas 11(i), 11(ii) imply that g(Oi) is an orbit open in
a certain hyperplane H(c) (see Lemma 11(ii)). Since Oi = Hi, and xi and
xi + c are, respectively, the generators of the ideals of hyperplanes Hi and
H(c), we conclude that gi = g∗(xi) differs from xi + c only by a nonzero
constant factor: gi = tixi + s for some ti, s ∈ k, ti 6= 0. Thus, g is of the
form (52). Conversely, clearly, every element g ∈ AutAn of the form (52)
normalizes G. This proves (iii).


Finally, let us prove the first claim of this theorem. According to (i), (ii),
and (iii), the group NAutAn(Dn(l1, . . . , ln)) is algebraic if either (l1, . . . , ln) =
(0, . . . , 0), or (l1, . . . , ln) 6= (0, . . . , 0) and any of conditions (a), (b), (c) of
statement (ii) or condition of statement (iii) hold. The only case not covered
by these conditions is that when among l1, . . . , ln there are numbers with
different signs. However, it follows from Lemma 9 that in this case there
are nonconstant Dn(l1, . . . , ln)-invariant regular functions on An. But then
by Corollary 2 of Theorem 5 we conclude that NAutAn(Dn(l1, . . . , ln)) is
algebraic. �


6. Fusion theorems for tori in AutAn and Aut∗An


Fusion theorems describe subgroups that control fusion of subsets under
conjugation. Namely, let G be an (abstract) groups and let H be its sub-
group. We say that NG(H) controls fusion of subsets in H under conjugation
by the elements of G, if the following property holds:
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(F)


for any subset S ⊆ H and an element g ∈ G such that
gSg−1 ⊆ H, there is an element w ∈ NG(H), such that
gsg−1 = wsw−1 for every element s ∈ S.


If property (F) holds for a pair (G,H), then we say that for H in G fusion


theorem holds. Notice that the action of NG(H) on H by conjugation boils
down to the action of the “Weyl group” NG(H)/ZG(H).


Examples 7. Fusion theorem for H in G holds in the following cases:
1. G is a finite group and H is its Abelian Sylow p-subgroup. It is the


classical Burnside’s result.
2. G is an affine algebraic group and H is its maximal torus. It is the


classical result of the theory of algebraic groups, see, e.g., [Se00, 1.1.1].
3. (G,H) = (Crn,Dn). It is Serre’s result [Se10, Thm. 1.1]. Since every


n-dimensional torus in Crn is maximal and conjugate to Dn (see Theorem
2(i),(ii)), here one can replace Dn by any n-dimensional torus. Recall that
for n > 5 in Crn there exist (n− 3)-dimensional maximal tori (see Corollary
7(iii)).


Question 8. Does fusion theorem hold if Dn is replaced by such a torus?


We shall now prove that fusion theorem holds for n-dimensional tori in
AutAn and (n− 1)-dimensional tori in Aut∗An.


Lemma 13. For every element g = (g1, . . . , gn) ∈ AutAn there is an ele-


ment g′ ∈ SLn such that if s, gsg−1 ∈ GLn, then


gsg−1 = g′sg′
−1
. (55)


Proof. Let gi = g
(0)
i +g


(1)
i +. . . , where g


(s)
i is a form of degree s in x1, . . . , xn.


Since Jac(g) ∈ k, we have Jac(g) = det(∂gi/∂xj |x1=...=xn=0). But the right-


hand side of this equality is equal to det(∂g
(1)
i /∂xj). Hence


g(1) :=
(


g
(1)
1 , . . . , g(1)n


)


∈ GLn. (56)


The automorphism g(1) is the differential of the automorphism g at the point
(0, . . . , 0). From (56) it follows that


(i) g = g(1) if g ∈ GLn;


(ii) (ga)(1) = g(1)a and (ag)(1) = ag(1) if a ∈ GLn.
(57)


Now let s and t := gsg−1 be the elements of GLn. In view of (56), we


have g(1) ∈ GLn, and gs = tg and (57) imply that g(1)s = tg(1). Therefore,


the product of g(1) by a constant α ∈ k such that αn det g(1) = 1 can be
taken as g′. �


Theorem 9. The following pairs (G,H) have property (F):


(i) (Fusion theorem for n-dimensional tori in AutAn)


(G,H) = (AutAn, an n-dimensional torus).


(ii) (Fusion theorem for (n− 1)-dimensional tori in Aut∗An)


(G,H) = (Aut∗An, an (n− 1)-dimensional torus).
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Proof. (i) Let G = AutAn, let H be a torus, and dimH = n. Then, by
Theorem 3 we may assume that H is a maximal torus in GLn. Maintain
the notation of the formulation of property (F). By Lemma 13 there exists
an element g′ ∈ GLn such that for every element s ∈ S equality (55) holds.
Therefore, g′Sg′−1 = gSg−1 ⊆ H. Since g′ ∈ GLn, this shows that


H ′ := g′−1Hg′ (58)


is another maximal torus in GLn containing S. The tori H and H ′ lie in
the (closed [Bo91, I.1.7]) subgroup ZGLn


(S) of the group GLn and therefore,
are maximal tori of ZGLn


(S). In view of conjugacy of maximal tori in any
affine algebraic group [Bo91, IV.11.3], there is an element


z ∈ ZGLn
(S), (59)


such that
H ′ = zHz−1. (60)


From (58) and (60) it follows that w := g′z ∈ NGLn
(H), and from (59) and


(55) that gsg−1 = wsw−1 for every s ∈ S. This proves (i).
(ii) The same argument applies in the case where G = Aut∗An, H is a


torus, and dimH = n−1: one only has to replace GLn by SLn, the reference
to Theorem 3 by the reference to Theorem 4, and notice that by Lemma 13
the element g′ may be taken from SLn. �


7. Applications: The classifications of classes of conjugate


subgroups


In this section, using the obtained results, we derive the classifications
specified in the Introduction and, in particular, prove the generalizations to
disconnected groups of the Bia lynicki-Birula’s theorems on linearization of
actions on An of tori of dimension > n− 1.


Theorem 10. Let G be an algebraic subgroups of AutAn such that G0 is a


torus.


(i) If dimG = n or n − 1, then there is an element g ∈ AutAn such


that gGg−1 ⊂ GLn and gG0g−1 ⊂ Dn.


(ii) If G ⊂ Aut∗An and dimG = n − 1, then there is an element g ∈
Aut∗An such that gGg−1 ⊂ SLn and gG0g−1 = D∗


n (see (9)).


Proof. (i) By virtue of conjugacy of maximal tori in GLn, it suffices to prove
the existence of g ∈ AutAn such that gGg−1 ⊂ GLn.


The group G is reductive. Therefore, by Corollary of Theorem on étale
slice [Lu73, Cor. 2, p. 98] the claim holds if k[An]G = k (here only reductivity
of G is used, not the stronger condition that G0 is a torus). Therefore, in
what follows we may assume that k[An]G 6= k. The latter is equivalent to
the condition


k[An]G
0


6= k. (61)


In view of Theorem 3 and equality (13), replacing G by a conjugate group,
we may assume that


G0 = Dn(l1, . . . , ln) ⊂ GLn. (62)
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The claim on the existence of g will be proved if we show that (62) and (61)
imply the inclusion


G ⊂ GLn. (63)


Let F be a finite subgroup of G that intersects every connected component
of this group — such a subgroup exists, see [BoSe64, Lemme 5.11]. Then


G = FG0. (64)


Since G0 is a normal subgroup of G, we have F ⊂ NAutAn(Dn(l1, . . . , ln)).
In view of Theorem 6 this shows that


F ⊂ NGLn
(Dn) ⊂ GLn, (65)


if either (l1, . . . , ln) = (0, . . . , 0), or (l1, . . . , ln) 6= (0, . . . , 0) and any of con-
ditions (a), (b), (c) of statement (ii) of Theorem 6 holds. By virtue of (62)
and (64), this proves (63) for the specified (l1, . . . , ln)’s. From Lemma 9
and (61) it now follows that it remains to consider the last possibility for
(l1, . . . , ln), namely, that where li = 1 and lj = 0 if j 6= i for certain i.


Turning to its consideration, take some element g ∈ F . Then, by Theorem
6(iii), equalities (52) hold. Since F is finite, the order of g is finite. This
implies that in (52) we have s = 0. This and (8) mean that in the case under
consideration (65) holds as well, and therefore, (63), too. This proves (i).


(ii) The proof is the same as that of (i) if AutAn is replaced by Aut∗An,
GLn by SLn = GLn


⋂


Aut∗An, Dn(l1, . . . , ln) by D∗
n, the reference to Theo-


rem 3 by the reference to Theorem 4, and it is taken into account that D∗
n


is the maximal torus of SLn. �


Theorem 11 (Classification of n-dimensional diagonalizable subgroups of
AutAn up to conjugacy in AutAn). Up to conjugacy in AutAn, the torus


Dn is the unique n-dimensional diagonalizable subgroup of AutAn.


Proof. By virtue of Theorem 10 this follows from the fact that in GLn ev-
ery diagonalizable subgroup is conjugate to a subgroup of the torus Dn


(see [Bo91, p. 112, Prop.(d)]). �


Theorem 12 (Classification of (n − 1)-dimensional diagonalizable sub-
groups of Aut∗An up to conjugacy in Aut∗An). Up to conjugacy in Aut∗An,


the torus D∗
n is the unique (n − 1)-dimensional diagonalizable subgroup of


Aut∗An.


Proof. By virtue of Theorem 10, this follows form the fact that in SLn every
diagonalizable subgroup is conjugate to a subgroup of the torus D∗


n (this
easily follows from [Bo91, p. 112, Prop.(d)]). �


Theorem 13 (Classification up to conjugacy in AutAn of maximal n-dimen-
sional algebraic subgroups G of AutAn such that G0 is a torus). Up to


conjugacy in AutAn, the group NGLn
(Dn) (see (8)) is the unique maximal


algebraic subgroup of AutAn whose connected component of identity is an


n-dimensional torus.


Proof. By virtue of Theorem 10, this follows from the fact that Dn =
NGLn


(Dn)0. �
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Theorem 14 (Classification up to conjugacy in Aut∗An of maximal (n−1)-
dimensional algebraic subgroups G in Aut∗An such that G0 is a torus). Up


to conjugacy in Aut∗An,


NSLn
(D∗


n) = NGLn
(Dn) ∩ SLn


is the unique maximal algebraic subgroup of Aut∗An whose connected compo-


nent of identity is an (n− 1)-dimensional torus.


Proof. By virtue of Theorem 10, this follows from the fact that D∗
n =


NSLn
(D∗


n)0. �


Denote by Ln the additive monoid of all (l1, . . . , ln) ∈ Zn such that


(a) l1 6 · · · 6 ln;
(b) (l1, . . . , ln) 6 (−ln, . . . ,−l1) with respect to the lexicographical or-


der on Zn.


Theorem 15 (Classification of (n−1)-dimensional diagonalizable subgroups
in AutAn up to conjugacy in AutAn).


(i) Every (n−1)-dimensional diagonalizable subgroup of the group AutAn


is conjugate in AutAn to a unique subgroup of the form


Dn(l1, . . . , ln), (l1, . . . , ln) ∈ Ln \ {(0, . . . , 0)}. (66)


(ii) Every subgroup (66) is an (n− 1)-dimensional diagonalizable group.


Proof. Let G be an (n− 1)-dimensional diagonalizable subgroup of AutAn.
Taking into account Theorem 10(i), conjugacy in GLn of every diagonal-
izable subgroup of this group to a subgroup of the torus Dn, and Corol-
lary 2(ii), we conclude that G is conjugate in AutAn to a certain subgroup
Dn(l1, . . . , ln) with (l1, . . . , ln) 6= (0, . . . , 0). It follows from the definition
of Ln and Corollary 2(iv) that we may presume that (l1, . . . , ln) ∈ Ln.
Assume that G is also conjugate in AutAn to a subgroup Dn(l′1, . . . , l


′
n)


with (l′1, . . . , l
′
n) ∈ Ln. Then Dn(l1, . . . , ln) and Dn(l′1, . . . , l


′
n) are conjugate


in AutAn, and therefore, Theorem 9(i) implies that they are conjugate in
NGLn


(Dn). In view of Corollary 2(iv) and Definition Ln, this implies that
(l1, . . . , ln) = (l′1, . . . , l


′
n). This proves (i).


Statement (ii) follows from Corollary 2(ii). �


¿From Theorems 6, 11, and 15 we deduce


Theorem 16. If G is a diagonalizable subgroup of AutAn of dimension


> n− 1, then NAutAn(G) is an algebraic subgroup of AutAn.


Remark 6. It is easy to see that n− 1 in Theorem 16 cannot be replaced by
a smaller integer.


Theorem 17 (Classification of (n−1)-dimensional diagonalizable subgroups
of AutAn up to conjugacy in Crn).


(i) Two diagonalizable (n−1)-dimensional subgroups of the group AutAn


are conjugate in Crn if and only if they are isomorphic.
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(ii) Every (n−1)-dimensional diagonalizable subgroup of the group AutAn


is conjugate in Crn to a unique closed subgroup of Dn of the form


ker εdn, d ∈ Z.


Proof. This follows from Theorems 15 and 1 and Corollary 2(i). �


For n 6 3, Theorems 2(i), 11, and 15 yield the classification of all tori in
AutAn up to conjugacy in AutAn except for one-dimensional tori in AutA3.
The classification of the latter is given below in Theorem 18.


Theorem 18 (Classification of one-dimensional tori in AutA3 up to con-
jugacy in AutA3). Every one-dimensional torus in AutA3 is conjugate in


AutA3 to a unique torus of the form T (l1, l2, l3), where (l1, l2, l3) ∈ L3.


Proof. Let G be a one-dimensional torus in AutA3. By Theorem 3 it is
conjugate in AutA3 to some torus T (l1, l2, l3). In view of (8) and the equal-
ity T (l1, l2, l3) = T (−l1,−l2,−l3), we may presume that (l1, l2, l3) ∈ L3.
Assume that G is conjugate in AutA3 to another torus T (l′1, l


′
2, l


′
3) with


(l′1, l
′
2, l


′
3) ∈ L3. Then T (l1, l2, l3) and T (l′1, l


′
2, l


′
3) are conjugate in AutA3,


and therefore, by Theorem 9(i), also in NGL3
(D3). From this, Corollary


2(iv), the definition of Ln, and Lemma 4, it is then not difficult to deduce
that (l1, l2, l3) = (l′1, l


′
2, l


′
n). �


8. Jordan decomposition in Crn. Torsion primes for the


Cremona groups


Although the Cremona groups are infinite dimensional (this has a precise
meaning, see [Ra64]), the analogies between them and algebraic groups strike
the eye: they have the Zariski topology, algebraic subgroups, tori, roots, the
Weyl groups, . . . In [Se10, 1.2] Serre writes about the analogy


“groupe de Cremona de rang n ←→ groupe semi-simple de rang n”.


Below we briefly touch upon two topics demonstrating that these analogies
extend further. The second of them is intimately related to tori in the Cre-
mona groups.


Jordan decomposition in Crn.


Let X be an algebraic variety. “Algebraic families” endow BirX with the
Zariski topology [Ra64], [Bl10, 2], [Se10, 1.6]: a subset of BirX is closed if
and only if its inverse image for every algebraic family S → BirX is closed.
For every algebraic subgroup G in BirX and its subset Z, the closures of
Z in this topology and in the Zariski topology of the group G coincide. In
particular, G is closed in BirX.


Let us call an element g ∈ BirX algebraic if in Crn there is an algebraic
subgroup G containing g. This is equivalent to the property that the closure
of the cyclic group generated by g is an algebraic group. If G is affine, then
for g the Jordan decomposition in G is defined, see [Bo91, Chap. I, §4]:


g = gsgn (67)
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In fact, gs and gn depend only of g, not of the choice of G. Indeed, let G′ be
another affine algebraic subgroup of BirX containing g, and let g = g′sg


′
n be


the Jordan decomposition in G′. Since G∩G′ is a closed subgroup of G and
of G′, there exists the Jordan decomposition g = g′′s g


′′
n in G ∩G′. Applying


theorem on behaviour of the Jordan decompositions under homomorphisms
(see [Bo91, Thm. 4.4(4)]) to the embeddings G ←֓ G ∩G′ →֒ G′, we obtain
gs = g′′s , gn = g′′n, g′s = g′′s , g


′
n = g′′n. Hence, if we call (67) the Jordan


decomposition in BirX, we get the well-defined notion.
According to [Ma63], every algebraic subgroup of Crn is affine. Therefore,


in Crn every algebraic element admits the Jordan decomposition.
Jordan decompositions in algebraic groups have several known properties


[St65], [Bo91], for instance:


(a) Every semisimple element of a connected group lies in its torus.
(b) The set of all unipotent elements is closed.
(c) The conjugacy class of every semisimple element of a connected re-


ductive group is closed.
(d) The closure of the conjugacy class of every element g of a connected


reductive group contains gs.


Recall that Crn is connected and, for n = 1, 2, simple [Bl10], and that
AutAn, Aut∗An are connected and Aut∗An is simple [Sh66], [Sh82]. It is
natural to ask:


Question 19. Are there analogues or modifications of the mentioned pro-


perties for the groups Crn, AutAn, and Aut∗An?


For instance, property (a) for Crn holds if n = 1, but does not hold if
n > 1. Indeed, if n > 2, then by [Po12, Thm. 4.3] in Crn there is a semisim-
ple element of order two that is not contained in any connected algebraic
subgroup of the group Crn. If n = 2, then by virtue of Theorem 2(ii) and
Corollary 5, all the elements of order d <∞ in Crn that can be included in
tori constitute a single conjugacy class, while, for instance, for even d, the
set of all elements of order d is the union of infinitely many conjugacy classes
[Bl07]. On the other hand, in the groups AutA2 and Aut∗A2 property (a)
holds, because action of every finite group on A2 is linearizable [Ig77].


Torsion primes for the Cremona groups.


Let G be a connected reductive algebraic group and let p be a prime in-
teger. Recall (see [Se00, 1.3] and references therein) that p is called torsion


prime for the group G if in G there is a finite Abelian p-subgroup not con-
tained in any torus of the group G. The set Tors(G) of all torsion primes
for the group G admits various interpretations. For instance, p ∈ Tors(G)
for k = C if and only if


⊕


i Hi(G,Z) contains an element of order p (this ex-
plains the name). Finding Tors(G) is reduced to the case where G is simply
connected. For every simple G the set Tors(G) is explicitly described.


The possibility to speak about tori in groups of the form BirX where X is
an algebraic variety, makes it possible to replace G in the above definition by
BirX or its subgroup thereby obtaining the well-defined notion. In particu-
lar, we consider what is obtained when G is replaced by Crn, AutAn, or
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Aut∗An as the definitions of torsion primes for these groups. Denote the sets
of these primes respectively by Tors(Crn), Tors(AutAn), and Tors(Aut∗An).
It is natural to ask


Question 20. What are, explicitly, the sets Tors(Crn), Tors(AutAn), and
Tors(Aut∗An)?


(About Tors(Crn) this question has been formulated and discussed in talk
[Po12].)


Since Cr1 = PGL2, we have


Tors(Cr1) = {2}. (68)


According to [Bl07], for every d = 2, 3, and 5, in Cr2 there are infinitely
many conjugacy classes of elements of order d. On the other hand, as is
explained at the end of section on Jordan decomposition, in Cr2 there is
the unique conjugacy class of elements of order d contained in tori. Hence
2, 3, and 5 are torsion primes for the group Cr2. Consider a prime integer
p > 5. According to [Fe04, Thm. E], every element g ∈ Cr2 of order p lies in
a subgroup isomorphic to AutP2 = PGL3. Hence g lies in a torus. Finally,
according to [Bl062, Thm. B, p. 146], in Cr2 there is a unique up to conjugacy
noncyclic finite Abelian p-group (it is denoted by 0.mn), and this group is
contained in a maximal torus of a subgroup isomorphic to (Aut (P1×P1))0 =
PGL2×PGL2. Thus we conclude that the torsion primes for Cr2 are the same
as that for the exceptional simple algebraic group E8:


Tors(Cr2) = {2, 3, 5}. (69)


¿From AutA1 = Aff1 and [Ig77] it follows that every finite subgroup of
AutAn (respectively, Aut∗An) for n 6 2 is contained in a subgroup isomor-
phic to GLn (respectively, SLn). Therefore,


Tors(AutAn) = Tors(Aut∗An) = {∅} for n 6 2.


For n > 3, there is no comprehensive information about the sets Tors(Crn),
Tors(AutAn), and Tors(Aut∗An). From [Po12, Thm. 4.3], (68), and (69) it
follows that


Tors(Crn) = {2, . . .} for every n. (70)


According to [Be07], in Cr2 there is a 3-elementary Abelian subgroups of
rank 3 (i.e., isomorphic to (µd)3). Since Cr1 contains a cyclic subgroup of
order 3, and the direct product of Cr2 and n − 2 copies of Cr1 can be
embedded in Crn for n > 3, this implies that in Crn there is a 3-elementary
Abelian subgroup G of rank n + 1. But from Lemma (2)(i) it follows that
for every prime integer p, the rank of any elementary Abelian p-subgroup
of an r-dimensional torus is at most r. From this and Theorem (2)(i) it
follows that G is not contained in a torus of Crn. In view of (69) and (70),
this yields


Tors(Crn) = {2, 3, . . .} for any n > 2.


Question 21. What is the minimal n such that 7 lies in one of the sets


Tors(Crn), Tors(AutAn), and Tors(Aut∗An)?


Question 22. Are these sets finite?
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N. Bourbaki 2008/09, Exp. no. 1000, Astérisque, Vol. 332, Société Mathé-
matique de France, 2010, pp. 75–100.


[St65] R. Steinberg, Regular elements of semisimple algebraic groups, Inst. Hau-


tes Études Sci. Publ. Math. 25 (1965), 49–80.
[Sh66] I. R. Shafarevich, On some infinite-dimensional groups, Rend. Mat. e


Appl. (5) 25 (1966), nos. 1–2, 208–212.
[Sh82] I. R. Shafarevich, On some infinite-dimensional groups. II, Mathematics


of the USSR-Izvestiya 18 (1982), no. 1, 185–194.
[ShRe09] I. R. Xafareviq, A. O. Remizov, Line�na� algebra i geometri�,


Fizmatlit, M., 2009. [I. R. Shafarevich, A. O. Remizov, Linear Alge-


bra and Geometry, Fizmatlit, Moscow, 2009 (in Russian).]
[Vi03] E. B. Vinberg, A Course in Algebra, Graduate Studies in Mathematics,


Vol. 56, American Mathematical Society, Providence, RI, 2003.


Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina 8,


Moscow, 119991, Russia


E-mail address: popovvl@mi.ras.ru






