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ABSTRACT. Let p be a prime integer, I a field of characteristic not p, T the norm torus
of a degree p™ extension field of I, and E a T-torsor over F' such that the degree of each
closed point on E is divisible by p™ (a generic T-torsor has this property). We prove
that F is p-incompressible. Moreover, all smooth compactifications of E (including those
given by toric varieties) are p-incompressible. The main requisites of the proof are: (1)
A. Merkurjev’s degree formula (requiring the characteristic assumption), generalizing
M. Rost’s degree formula, and (2) combinatorial construction of a smooth projective fan
invariant under an action of a finite group on the ambient lattice due to J.-L. Colliot-
Thélene - D. Harari - A.N. Skorobogatov, produced by refinement of J.-L. Brylinski’s
method with a help of an idea of K. Kiinnemann.

Let F be a field, p a prime integer. We say that an F-variety (by which we mean
just a separated F-scheme of finite type) is p-incompressible (resp., incompressible), if its
canonical p-dimension (resp., canonical dimension), defined as in [[[3, §4b], is equal to its
usual dimension. Paraphrasing the definition, an integral F-variety X is incompressible
if and only if X (L) = () for any extension field L of F' which is a subfield of the function
field F(X) of transcendence degree < dim X; a connected smooth complete variety X is
incompressible if and only if any rational map X --+ X is dominant, [[3, Corollary 4.3(2)];
p-incompressibility is a p-local version of incompressibility implying the incompressibility.

Given an arbitrary F-variety V, we write ny for the greatest common divisor of the
degrees of the closed points on V. Usually, we are only interested in v,(ny), where v, is
the p-adic valuation.

By a compactification of an F-variety V' we mean a complete F-variety X containing a
dense open subvariety isomorphic to V.

Given a finite separable extension field (or, more generally, an étale algebra) K/F its
norm torus T' = Ty p, also called norm one torus and denoted by RQ}F(Gm), is the alge-
braic torus defined as the kernel of the norm map of algebraic tori Ng/p : Ri/r(Gm) —
G, p, where Ry /p is the Weil transfer with respect to K/F. The group of F-points of T
is the subgroup of norm 1 elements in K*.

We consider T-torsors over F' (i.e., the principal homogeneous spaces of T') and call
them simply T'-torsors. Any element a € F* produces a T-torsor E, with the set of F-
points being the set of norm a elements in K*. The isomorphism class of F, corresponds
to the image of a under the connecting homomorphism H°(F,G,,) — H'(F,T) of the
long exact sequence in galois cohomology, arising from the short exact sequence of the
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definition of 7". This connecting homomorphism is surjective (and its kernel is the norm
subgroup). Thus every T-torsor E is isomorphic to FE, for some element a € F'* (whose
class modulo N ,p(K*) is uniquely determined by E).

Note that for any F, the integer ng divides dimp K. Moreover, if K is the product of
étale F-algebras K1, ..., K,, then ng divides dimp K; for each ¢ = 1,...,r. In particular,
ng = dimp K is possible only if K is a field.

The main result of this note is the following theorem known for cyclic K/F (see [[[3,
§11d]):

Theorem 1. Assume that char F' # p. For some integer n > 0, let K/F be a (separable)
extension field of degree p™, T its norm torus, and E a T'-torsor such that ng = p™. Then
the F-variety E is p-incompressible. Any smooth compactification of the variety E is also
p-tncompressible.

Example 2. Let t be an indeterminate, K /F an arbitrary finite separable field extension,
and E; the Tk ) p@-torsor of norm t elements (£, is the generic principal homogeneous
space of T, or generic T-torsor in the sense of [[J, §3], produced out of the imbedding
of T into the special algebraic group Rk;p(Gy)). Then the degree of every closed point
on E; is divisible by d := [K : F|. Proving this, one may replace the base field F'(t) by
F((t)). If for a finite extension field L/F((t)), the element ¢t € L is the norm for the
d-dimensional étale L-algebra K ((t)) ®p(«)) L, then v(t) is divisible by d (see [fl, Theorem
in §(2.5) of Chapter 2]), where v is the extension to L of the t-adic discrete valuation on
F((t)); therefore d divides [L : F((t))] (see [, Exercise 1c in §2 of Chapter 2]).

Proof of Theorem []. According to [}, Corollaire 1], there exists a smooth projective (toric)
F-variety X containing E as an open subvariety. Clearly, E is p-incompressible if X is
so. (Actually, by [[4, Proposition 4], for any extension field L/F, one has X (L) # ()
if and only if E(L) # (0 so that F is p-incompressible if and only if X is so.) Since the
property of being p-incompressible is birationally invariant on connected smooth complete
varieties (see e.g. [[[J, Remark 4.13] or [}, Lemma 3.6]), all smooth compactifications of
E are p-incompressible provided that X is so.

A connected smooth complete variety V' over a field of characteristic # p is called
(p,n)-rigid here, if it is RP-rigid in the sense of [[4, §7] for the infinite sequence

R:=(0,...,0,1,0,...)

of 0 and 1 with precisely one 1 staying on the nth position. By definition, (p,n)-rigidity
of V' means that v,(ny) = v,(deg cr(—T1v)), where Ty is the tangent bundle of V and cg
is the Chern class corresponding to the sequence R and the prime p in the sense of |4,
§4].

By Theorem B right below, the variety X is (p,n)-rigid. A (p,n)-rigid variety is p-
incompressible by [[4, Corollary 7.3]. This is the place where the degree formula of
is used and where the characteristic assumption is needed. The projectivity assumption
made in [[4] is superfluous because of [fll, §10]. O

Theorem 3. For E as in Theorem [1, any smooth compactification of E is (p,n)-rigid.

Proof. Since the property of being (p, n)-rigid is birationally invariant [[4, Remark 7.5],
it suffices to construct one (p,n)-rigid smooth compactification of E. For this, let " be
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the galois group of the normalization L of K/F and let X be the I'-set corresponding to
the étale F-algebra K in the sense of [, §18]. The cardinality of the set X is equal to
Pt =[K : Fl.

The cocharacter lattice N of the split torus 77, is the lattice of the elements in the
free abelian group Z[X] on X with the sum of coordinates = 0. There exists a smooth
projective fan A of the lattice N (we do not require that A is invariant under the action
of I" on N yet), for instance, a fan producing the toric variety given by the projective
space (see [f, Exercise of §1.4]).

The symmetric group S of all permutations of the set X act on N by permutations of
the coordinates. By [[, Theorem 1], there exists a smooth projective S-invariant fan B of
N which is a subdivision of A. This produces a smooth projective toric variety X (over
any given field k) endowed with an action of S (see [B, §5.5]) as well as with an action of
the split k-torus with the cocharacter lattice N. In particular, I' acts on Xp. Twisting
X by the principal homogenous space Spec L of the constant group I' (quasi-projectivity
of Xr is needed for existence of the twisting, see [[, Proposition 2.12] or [[[6, V.20]) we get
a smooth projective T-equivariant compactification X of T' (cf. [}, Preuve du Corollaire 1
4 partir du Théoreme 1]). Twisting afterwards X by the T-torsor E as in [[], Proposition
2.12] (using (quasi-)projectivity once again), we get a smooth compactification Y of E.
We claim that the variety Y is (p, n)-rigid.

First of all, by [[4, Proposition 4], we have v,(ny) = v,(ng) = n. Therefore to check
(p, n)-rigidity of Y we have to check that v,(deg cgr(—Ty)) = n, where R is the sequence
introduced above. The integer degcr(—Ty) can be expressed in terms of the fan B (see
[B, Propositions of §4.3 and of §5.2]) and therefore does not depend on the base field
anymore so that we may replace Y by X with an arbitrary chosen field k.

Let us choose a field k (of characteristic # p) possessing a degree p" cyclic extension
field [ such that for its norm torus 7" = Tj; there exists a T"-torsor E’ with v,(ng) =n
(we can find it using Example P]). Fixing an arbitrary bijection of the (order p™ cyclic)
galois group I"” of [/k with the set X, we get an action of [" on X and therefore on Xj.
Twisting X by the principal homogeneous space Spec! of I and then by the T’-torsor
E', we get a smooth compactification Y’ of E’. Another smooth compactification of E’ is
given by a Severi-Brauer variety of certain central division k-algebra of degree p™ (cf. [I3]).
Concretely, if £’ is given by some a € k*, the Severi-Brauer variety of the cyclic division
algebra (I/k,a) can be taken. The Severi-Brauer variety is (p,n)-rigid by [[4, §7.2],
therefore Y’ is (p,n)-rigid. Since v,(ny+) = n, it follows that v,(deg cg(—Ty/)) =n. O

A (p,n)-rigid variety is actually strongly p-incompressible in the sense of [§, §2]. There-
fore for F as in Theorem [l, any smooth compactification of E is strongly p-incompressible.
This statement is stronger than the part of the statement of Theorem [| saying that any
smooth compactification of E is p-incompressible. It can be formulated in terms of F
alone (without mentioning its compactification) as follows:

Corollary 4. Let E be as in Theorem [ and let Y be an integral complete (not necessarily
smooth) F-variety such that v,(ny) > n (= vy(ng)) and vy(ny, ) =0 (i.e., Yp@) has a
closed point of a prime to p degree). Then

(1) dimY > dim E;
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(2) if dimY = dim E then v,(Y) = n and vy(ng,,) = 0.

Proof. Apply the strong incompressibility of a smooth compactification of E given by a
toric variety X, taking into account [[7, Proposition 4] saying that for any extension field
L/F, X(L) = 0 provided that E(L) = 0. O

Here is an application of Theorem [I] suggested in [[[3, §11d]:

Corollary 5. For any p-primary (separable) field extension K/F in characteristic # p,
the essential p-dimension as well as the essential dimension of the functor of non-zero
norms of K/F (defined as in [[3, Example 11.11]) is equal to the degree [K : F.

Proof. A proof for the case of cyclic K/F is given in [[J, §11d]. The only missing point
to make it work in the general case was absence of Theorem [[] (for non-cyclic K/F). O

Remark 6. In the case of cyclic K/F, the statement of Corollary | as well as the
statement of Theorem [[] hold also in characteristic p due to existence of a proof of p-

incompressibility for Severi-Brauer varieties avoiding a use of the degree formula (see [B,
Examples 2.4 and 3.3]). On the other hand, neither Theorem J nor Corollary f] are known
in characteristic p even for cyclic field extensions. One may expect that Theorems [l,
B and Corollaries fl, | hold in characteristic p for general K/F. This is so in the case
of [K : F] = p (i.e., in the case of n = 1) due to results of O. Haution, [, Corollary
10.2] (for Theorem [I] and Corollary [] alone it suffices to use [[[3, Proposition 1.5(2)]=[L3,

Proposition 2.4(2)]).
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