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ABSTRACT. In the present paper we generalize the construction of the nil Hecke ring of
Kostant-Kumar to the context of an arbitrary algebraic oriented cohomology theory of
Levine-Morel and Panin-Smirnov, e.g. to Chow groups, Grothendieck’s Ky, connective K-
theory, elliptic cohomology, and algebraic cobordism. The resulting object, which we call a
formal (affine) Demazure algebra, is parameterized by a one-dimensional commutative for-
mal group law and has the following important property: specialization to the additive and
multiplicative periodic formal group laws yields completions of the nil Hecke and the 0-Hecke
rings respectively. We also introduce a deformed version of the formal (affine) Demazure
algebra, which we call a formal (affine) Hecke algebra. We show that the specialization of
the formal (affine) Hecke algebra to the additive and multiplicative periodic formal group
laws gives completions of the degenerate (affine) Hecke algebra and the usual (affine) Hecke
algebra respectively. We show that all formal affine Demazure algebras (and all formal affine
Hecke algebras) become isomorphic over certain coefficient rings, proving an analogue of a
result of Lusztig.
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Geometric realizations of representations of algebras such as quantized enveloping algebras
of Lie algebras and Hecke-type algebras have proved to be an exceptionally interesting and
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useful tool in both representation theory and geometry. In particular, the field of geometric
representation theory has produced such results as the proof of the Kazhdan-Lusztig con-
jecture and the construction of canonical bases in quantized enveloping algebras. Geometric
realizations are also often a precursor to categorification, a current topic of great interest.

Two fundamental constructions in geometric representation theory are of particular rele-
vance to the current paper. The first arises from so-called push-pull operators (coming from
the projection from the flag variety G/B to the quotient G/ P of G by a minimal parabolic)
on the singular cohomology or K-theory (i.e. Grothendieck’s Kj) of the flag variety. If one
works with singular cohomology, these operators generate the nil Hecke algebra. (When we
use the term “nil Hecke algebra” here, we do not include the polynomial part.) If one works
instead with K-theory, the push-pull operators generate the 0-Hecke algebra (the specializa-
tion of the Hecke algebra at ¢ = 0). Adding the operators corresponding to multiplication
by elements of the singular cohomology or K-theory, one obtains the affine analogues of the
algebras above.

The above-mentioned algebras can also be realized in a more algebraic way. Let W be the
Weyl group of a reduced root system, acting on the weight lattive A. In [KK86], Kostant and
Kumar introduced a twisted group algebra QQy, which is the smash product of the group ring
Z[W] and the field of fractions @ of the polynomial ring S in A. Then they defined a subring
R of Qw generated by Demazure elements and elements of S and showed that R is similar to
the O-Hecke algebra: it satisfies the classical braid relation but a nilpotence relation instead
of an idempotence one. For this reason, they called R the nil Hecke algebra. Following this
approach, Evens and Bressler in [EB87] introduced the notion of a generalized Hecke ring
(where the nilpotence/idempotence relation is replaced by a general quadratic one) which
includes both 0-Hecke and nil Hecke algebras as examples. The Demazure elements play the
role of a Hecke basis and have several geometric interpretations (as Demazure operators and
push-pull operators) on the singular cohomology of the variety of Borel subgroups associated
to the root system.

The second geometric construction relevant to the current paper is the realization of
Hecke-type algebras via the geometry of the Steinberg variety. There is a natural structure
of an algebra on the (co)homomology of the Steinberg variety via convolution. Again, the
resulting algebra depends on the choice of (co)homology theory. Equivariant K-theory yields
the affine Hecke algebra, equivariant singular cohomology yields the degenerate affine Hecke
algebra, and top degree Borel-Moore homology yields the group algebra of the Weyl group.
We refer the reader to [CG10, Gin] and the references therein for further details.

Another important ingredient of the current paper originates from algebraic topology and,
especially, the cobordism theory of the 60s. The notion of an algebraic oriented cohomology
theory was introduced by Levine-Morel [LM07] and by Panin-Smirnov [Pan03]. Roughly
speaking, it is a cohomological-type functor h from the category of smooth algebraic vari-
eties over a field to the category of commutative rings endowed with push-forward maps and
characteristic classes (see §4). Basic examples of such functors are the Chow ring of algebraic
cycles modulo rational equivalence, the Grothendieck group Ky, and the algebraic cobordism
of Levine-Morel (see [LMO07, §1.1] and [Pan03, §§2.1, 2.5, 3.8] for further examples). The
theory of formal group laws has been used extensively in topology, especially in cobordism
theory and, more generally, for studying topological oriented theories. The link between ori-
ented cohomology and formal group laws is given by the Quillen formula expressing the first
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characteristic class ¢} of a tensor product of two line bundles, &4(L; ® Ly) = F(4(L1), & (Lo))
(see [LMO7, Lem. 1.1.3]), where F is the one-dimensional commutative formal group law as-
sociated to h.

In [CPZ], the authors generalized the notions of Demazure operators and push-pull opera-
tors to the context of an arbitrary algebraic oriented cohomology theory h and the associated
formal group law F', e.g. replacing singular cohomology by connective K-theory, elliptic coho-
mology or algebraic cobordism. It is thus natural to ask if one can extend the Kostant-Kumar
construction of the nil Hecke algebra and the convolution construction of the affine Hecke
algebra to the setting of an arbitrary algebraic oriented cohomology theory or formal group
law. In the present paper we provide an affirmative answer to the first question. We also
define algebras that we believe should be related to the more general convolution algebras
of the second question.

Given a formal group law F' (corresponding to some algebraic oriented cohomology the-
ory), we introduce the notion of a twisted formal group algebra Qf;,. To do this, we replace
the polynomial ring S of [KK86, §4] by the formal group algebra associated to F. We
then define the formal Demazure element to be the expression in Q% corresponding to the
formal Demazure operator. One of our key objects is the algebra generated by the formal
Demazure elements and the elements of the formal group algebra. We call this the formal
affine Demazure algebra and denote it Dp. The subalgebra generated by only the formal
Demagzure elements is called the formal Demazure algebra. Next, we “deform” these alge-
bras by introducing an infinite cyclic group. Geometrically, this corresponds to introducing
C*-actions on the relevant varieties. We call the deformed algebra the formal (affine) Hecke
algebra associated to the formal group law. Specializing to the additive and multiplicative
periodic formal group laws, which correspond to (equivariant) singular cohomology and K-
theory respectively, we recover (completions of) all of the algebras mentioned above. This is
summarized in the following table.

Additive FGL Multiplicative FGL
Alg. Oriented Cohom. Theory (Equiv.) singular cohomology (Equiv.) K-theory
Formal Demazure alg. Nil Hecke alg. 0-Hecke alg.
Formal affine Demazure alg.  Affine nil Hecke alg. Affine 0-Hecke alg.
Formal Hecke alg. Group alg. of the Weyl Group Hecke alg.
Formal affine Hecke alg. Degenerate affine Hecke alg.  Affine Hecke alg.

Therefore, the algebra Dp can be viewed as a deformation space between the generalized
Hecke rings studied by Bressler and Evens. We see that Dp shares many properties with
affine Hecke algebras. However, it does not always satisfy the braid relations. In general, the
braid relations are satisfied only up to lower order terms (see Proposition 5.7). This reflects
the fact that formal Demazure operators for a general algebraic oriented cohomology theory
depend on a choice of reduced decomposition of an element of the Weyl goup.

Our construction provides two things. First, it gives a uniform presentation of the funda-
mental algebras appearing in both the push-pull and Steinberg variety constructions. Sec-
ond, it generalizes to other formal groups laws and algebraic oriented cohomology theories,
yielding new algebras in the process. These new algebras should be thought of as natural
generalizations of the Hecke-type algebras appearing in the table above. Given the repre-
sentation theoretic importance of these Hecke-type algebras, we expect the new algebras
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defined here to be of interest to both geometers and representation theorists. For example,
Hecke-type algebras have played crucial roles in the categorification of quantum groups and
related algebras. Thus, it is natural to ask if the generalizations defined in the current paper
can be used as building blocks in more general categorifications.

This paper is organized as follows. In the first four sections we recall basic definitions
and facts used in the rest of the paper. We review the definition of a formal group law and
the exponential map in Section 1. In Section 2, we recall the definition and basic properties
of formal group rings/algebras following [CPZ, §2]. In Section 3, following [CPZ, §3], we
recall the definition and basic properties of formal Demazure operators. Section 4 is devoted
to algebraic oriented cohomology theories. We define the formal (affine) Demazure algebras
and prove various facts about them in Sections 5 and 6. In particular, we describe them
in terms of generators and relations in the case that the root system is simply-laced. We
also show that they are all isomorphic over certain coefficient rings. In Section 7, we define
the formal (affine) Hecke algebras and describe them in terms of generators and relations.
We prove various properties about them in Section 8. In particular, we show that they
are all isomorphic over certain coefficient rings (an analogue of a result of Lusztig ([Lus89,
Thm. 9.3])).

Acknowledgements. The authors would like to thank Sam Evens, Tain Gordon, Anthony
Licata and Erhard Neher for useful discussions.

1. FORMAL GROUP LAWS

In the present section we recall the definition and properties of formal group laws (see

[Fr668, Ch. 1, §3, Ch. III, §1] and [LMO07, Ch. 1 and 2] for details).

Definition 1.1 (Formal group law). A one-dimensional commutative formal group law
(FGL) is a pair (R, F), where R is a commutative ring, called the coefficient ring, and
F = F(u,v) € Ru,v] is a power series satisfying the following axioms:

(FG1) F(u,0) = F(0,u) = u € R[u],

(FG2) F(u,v) = F(v,u), and

(FG3) F(u, F(v,w)) = F(F(u,v),w) € Rlu,v,w].

Note that axioms (FG1) and (FG2) imply that

(1.1) Flu,v) =u+v+3, o azur’, where a; = aj; € R.
Given an integer m > 1 we use the notation
u+pv:=F(u,v), m-pu:=u+p---+pu, and (—m)-pu:=—p(m- gu),
—_———
m times

where —pu denotes the formal inverse of w, i.e. the unique power series in R[u] such that
u+p (—pu) = (—pu) +ru = 0 (see [Fr668, Ch. 1, §3, Prop. 1]). We define

—FU
(12) /LF(U) = _—2 =1- aju + a?lfzf — (a:{’l + a12011 — Q92 + 2&13)U3 + -
(see [LMO7, (2.7)]). Note that up(u) has a multiplicative inverse since its constant term is
invertible.
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Throughout the current paper, whenever a particular FGL is denoted using a subscript
(e.g. Fa, Fyr, Fr, Fy), we will use the same subscript to denote various quantities associated
to that FGL. Thus, we will write —su for —p,u, pr, for pg, , ete.

Example 1.2.  (a) For the additive FGL (Z, Fa(u,v) = u + v) we have (see [LMO07,
Example 1.1.4])
—au=—u and jpgu(u)=1.
(b) For the multiplicative FGL (R, Far(u,v) = u +v — puv), B € R, B # 0, we have (see
[LMO07, Example 1.1.5])

— U= —u ZiZO Biut  and  pp(u) = Zizo Biul.

Observe that (1 — fu)uy(u) = 1, so pp(u)™ =1 — fu in Ru]. If B € R*, where R*
denotes the group of invertible elements of R, we say that the FGL is multiplicative periodic.
(¢) The Lorentz FGL (R, Fy) is given by

Fr(u,v) = ﬂﬁgﬁv = (u+v) Zizo(_ﬂuv)ia BeR, B#0.

We have —pu = —u and ur(u) = 1. Note that for 3 = 1/c?, where c is the speed of light,
the expression Fp(u,v) corresponds to the addition of relativistic parallel velocities.
(d) Let E be the elliptic curve defined by the Tate model ([Tat74, §3]):

(1.3) E: v=1u4 aquv + asu®v + azv® + aguv® + agv’.

Here the coefficient ring is R = Z[ay, as, ag, as, ag]. The group law on E induces an elliptic
FGL (R, Fg) with

Fe(u,v) = u+v — ajuv — ap(v®v + uv?) — 2a3(v*v + uv?) + (a1as — 3az)u®v? + O(5)

(see [Lan87, Appendix 1, (3.6)]). We have

—BU = T ey He(u) = m
(see [Sil09, §IV.1,p. 120]), where v(u) is considered as an element in R[u] after a recursive
procedure in the Tate model.

(e) We define the Lazard ring L to be the commutative ring with generators a;j, 4, j € N,
and subject to the relations that are forced by the axioms for formal group laws. The
corresponding FGL (L, Fyy(u,v) = u +v + 37, ;5 aiju'v?) is then called the universal FGL
(see [LMO7, §1.1]). The series py(u) is given by (1.2).

Let (R, F) and (R, F") be formal group laws. A morphism of formal group laws f: (R, F) —
(R, F') is a formal power series f € R[u] such that f(u+rv) = f(u)+p f(v). Given a FGL
F over R, there is an isomorphism of FGLs after tensoring with Q,

er: (RQ,FA) — (RQ,F), RQ = R®yz @,
given by the exponential series ep(u) € Rglu] which satisfies the property ep(u + v) =
er(u) +r ep(v) (see [Fro68, Ch. IV, §1]).

Example 1.3.  (a) For a general FGL F(u,v) = u+ v + ajjuv + app(u?v + uv?) + O(4)
we have ,
er(u) = u+ Gu? + DE2N23 1 O(4),
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(b) For the multiplicative FGL we have

en(u) = ZiZI(—B)i_l%, so that  fey(u) =1 — exp(—pu).

(c) For the Lorentz FGL we have e (u) = EEZ—E
(d) For the elliptic FGL we have

enlu) =u— gru? + (B2 4 4 O (1),

2. FORMAL GROUP ALGEBRAS

Following [CPZ, §2], we recall the definition and basic properties of formal group algebras.
These will play a fundamental role in our definition of formal (affine) Demazure and Hecke
algebras.

Definition 2.1 (Formal group algebra). Suppose (R, F') is a FGL and A is an abelian group.
Let Rlxa] := R[{x) | A € A}] denote the polynomial ring over R with variables indexed by
A. Let e: R[zp] — R be the augmentation homomorphism which maps all ), A € A, to
0 and consider the (kere)-adic topology on R[z,]. We define R[z] to be the (kere)-adic
completion of the polynomial ring R[z,]. In particular, if A is finite of order n, then the ring
R[z4] is the usual ring of power series in n variables.

Let Jr be the closure of the ideal generated by the elements xy and zy, 15, — (zx, +F T),)
for all A;, Ao € A. We define the formal group algebra (or formal group ring) to be the
quotient (see [CPZ, Def. 2.4])

R[[A]]F = R[[ZL‘A]]/JF
The class of z, in R[A]r will be denoted by the same letter. By definition, R[A]r is a
complete Hausdorff R-algebra with respect to the (ker €)-adic topology, where e: R[A]r — R
is the induced augmentation map. We define the augmentation ideal Zp := kere to be the
kernel of this induced map.

The assignment of the formal group algebra R[A]r to the data (R, F,A) is functorial in
the following ways (see [CPZ, Lem. 2.6]).

(a) Given a morphism f: (R, F) — (R, F’) of FGLs, there is an induced continuous
ring homomorphism f*: R[A]p — R[A]p, ) — f(z\). If f/: (R, F') — (R, F") is
another morphism of FGLs, then (f'f)* = f*(f')*.

(b) Given a group homomorphism f: A — A’ there is an induced continuous ring ho-
momorphism f: R[A]r — R[N]r, z\ — wpny- I f'r AY — A" is another group
homomorphism, then f’\f = ]/”\’ f .

Note that maps of the type f commute with maps of the type f*.

Example 2.2. The map z,, — m g x, m € Z, defines R-algebra isomorphisms
R[Z]r = R[z] and R[Z/nZ]r = R[z]/(n Fx).
More generally, there is a (non-canonical) R-algebra isomorphism (see [CPZ, Cor. 2.12])
R[Z")r = R]x1,. .., 2],

where the right hand side is independent of F'. This implies that if R is a domain, then so
is R[Z"] .
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It follows from (1.1) that n -y x = nz + z%p(z) for some p(x) € R[z]. Thus, if n € R*,
then n - 2 is the product of z and a unit in R[z], so (z) = (n ¢ z) and R[Z/nZ]r = R.

Lemma 2.3. Given a FGL (R, F), we have pup(x\)~" = pr(z_y), for all X € A.

Proof. This follows immediately from the fact that —px)y = z_) in R[A]p. O

We now consider what happens at a finite (truncated) level in R[A]r. Let R[A]r de-
note the subalgebra of R[A]r equal to the image of R[z,] under the composition R[z,] <
R[zp] = R[A]r. Then R[A]F is the completion of R[A]r at the ideal (ker e) N R[A]p. As be-
fore, the assignment (R, F, A) — R[A]r is functorial with respect to group homomorphisms.

Example 2.4. (a) Suppose A is a free abelian group. Then for the additive FGL Fy(u,v) =
u + v over R we have ring isomorphisms (cf. [CPZ, Example 2.19])

RIALs = Sp(A)" =[] S(A) and R[AJ4 = SH(A) == €D Sp(A),

where S%(A) is the i-th symmetric power of A over R, and the isomorphisms are induced by
sending zy to A € SL(A).
(b) Consider the group ring

R[A] = {Z] ried | r; €R, \j € A}.

Let ¢: R[A] — R be the augmentation map, i.e. the R-linear map sending all e}, A € A, to
1. Let R[A]" be the completion of R[A] at kere.

Assume that f € R*. Then for the multiplicative periodic FGL Fy/(u,v) = u+ v — fuv
over R, we have R-algebra isomorphisms (cf. [CPZ, Example 2.20])

R[Aly = RIA]" and  R[A]y = R[A]

induced by xy +— 71(1 —e ) and e* — (1 — Bz_)) = (1 — Bx,) ! respectively. Using this
identification, along with Example 1.2(b) and Lemma 2.3, we obtain

par () par(zx) = (1= Br_y)(1 = Br_y) = N =1 By = pu(wrin).

Example 2.5. Fix a generator v of Z and let ¢t = €7 be the corresponding element in the
group ring R[Z]. According to the previous examples we have R-algebra isomorphisms

R[Z]y = R[t,t™ )" and R[Z]a = R[Y],

where R[t,t7']" denotes the completion of R[t,t!] at the ideal generated by ¢t — 1. At the
truncated levels, we have

R[Z)y = R[t,t7'] and R[Z]a = R[],

given by @, — 711 — ¢ ") (with inverse map given by ¢ — 1 — fz_,) and x,, — ny
respectively.
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3. FORMAL DEMAZURE OPERATORS

In the present section we introduce, following [CPZ, §3], the notion of formal Demazure
operators. We also state some of their properties that will be needed in our constructions.
For the remainder of the paper, we assume that R is a commutative domain.

Consider a reduced root system (A, @, o) as in [Dem73, §1], i.e. a free Z-module A of finite
rank (the weight lattice), a finite subset ® of A whose elements are called roots, and a map
o: A — AY := Homg(A, Z) associating a coroot o € AV to every root «, satisfying certain
axioms. The reflection map A — XA — (a¥, A« is denoted by s,. Here (-,-) denotes the
natural pairing between AY and A.

The Weyl group W associated to a reduced root system is the subgroup of linear auto-
morphisms of A generated by the reflections s,. We fix sets of simple roots {«;}ic; and
fundamental weights {w;};e;. That is, w; € AV satisfies (w;, ;) = 0;; for all i,j € I. Let
{si = Sa, }ier denote the corresponding set of simple reflections in W and let ¢ denote the
usual length function on W. We say the root system is simply laced if (o), ;) € {0, —1} for
all 7,5 € I, i # j. For instance, the roots systems of type ADE are simply laced.

Fix a FGL (R, F'). Since the Weyl group acts linearly on A, it acts by R-algebra auto-
morphisms on R[A]r via the functoriality in A of R[A]r (see Section 2), i.e. we have

w(wy) = Ty, forallw e W, A e A

Definition 3.1 (Formal Demazure operator AZ). By [CPZ, Cor. 3.4], for any ¢ € R[A]r
and root a € @, the element ¢ — s,(¢) is uniquely divisible by z,. We define an R-linear
operator AL on R[A]r (see [CPZ, Def. 3.5]), called the formal Demazure operator, by

Al(p) =222 o € R[A]r.

et

Observe that if F' is the additive or multiplicative FGL, then AL is the classical Demazure
operator of [Dem73, §3 and §9]. We will often omit the superscript F' when the FGL is
understood.

Definition 3.2 (g%, kZ and C¥). Consider the power series g% (u,v) defined by u +p v =
u+ v —uvg”(u,v) and, for a € @, let

k=g (Ta, 7 0) = 7= + 77— € R[A]p.
We define an R-linear operator CX on R[A]r (see [CPZ, Def. 3.11]) by

Ca () = kg — A (9), v € R[A]r.
We will often omit the superscript ' when the FGL is understood.

Lemma 3.3. The following statements are equivalent.

(a) F(u,v) = (u+v)h(u,v) for some h(u,v) € R]u,v].

(b) k¥ =0 for all o € .

(¢) k¥ =0 for some a € ®.

(d) pp(u) =1.
If these equivalent conditions are satisfied, we write k¥ = 0. If they are not satisfied, we
write k¥ # 0.
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Proof. First suppose that F'(u,v) = (u+ v)h(u,v) for some h(u,v) € RJu,v]. Then, for any
a € ¢, we have F(z,, —2,) = 0. By the uniqueness of the formal inverse, this implies that
T o= —pTa = —T4. Thus kf =0 and so (a) implies (b). Clearly (b) implies (c).

Now suppose that kf = 0 for some o € ®. Then z, € Zr \ {0} and F(x,, —z4) = 0 in
R[A]r. By the definition of a FGL, we have

F(2o, —1a) = 2, Zi,jg(_l)jaijxgj_Z =7 ano boxyy € T,
where b, =37, (1) ay.
We claim that b, = 0 for all n > 0. Indeed, let ng be the smallest n such that b,, # 0. Then
0= F(xav —l‘a) = xgz anno bnxg = xi—i-no ZnZno bnxg—no.

Since z, # 0 (this follows from [CPZ, Lem. 4.2]) and R[A]r is a domain, we have
ano bz~ = 0.

Applying the augmentation map, we obtain b,, = 0, contradicting our choice of ny.

Now let F;(u,v) be the i-th homogeneous component of F, i > 2. Since F;(u,—u) =
bi_ou' = 0, F;(u,v) is divisible by (u+wv) for every i > 2. Since the homogeneous components
of degree zero and one for any FGL are 0 and u+ v, this implies that F'(u,v) = (u+v)h(u,v)
for some h(u,v) € RJu,v]. Thus (c) implies (a).

Now, if pp(u) = 1, then —z, = —pz, = v_, and so k- = 0 for all « € ®. Thus (d)
implies (b).

Finally, if F'(u,v) = (u + v)h(u,v) for some h(u,v) € R]u,v], then —pu = —u by the
uniqueness of the formal inverse (as above). Thus pup(u) = 1. Hence (a) implies (d). O

As in the case of the usual Demazure operators, the operators AL and CI” satisfy Leibniz-
type properties (see [CPZ, Props. 3.8 and 3.12]).

4. ALGEBRAIC ORIENTED COHOMOLOGY THEORIES AND CHARACTERISTIC MAPS

We now recall several facts concerning algebraic oriented cohomology theories. We refer
the reader to [LMO7] and [Pan03] for further details and examples.

An algebraic oriented cohomology theory (AOCT) is a contravariant functor h from the
category of smooth projective varieties over a field k to the category of commutative unital
rings which satisfies certain properties (see [LMO07, §1.1]). Given a morphism f: X — Y
of varieties, the map h(f) will be denoted f* and called the pullback of f. One of the
characterizing properties of h is that, for any proper map f: X — Y, there is an induced map
fe: h(X) — (YY) of h(Y)-modules called the push-forward (here h(X) is an h(Y)-module
via f*). A morphism of AOCTSs is a natural transformation of functors that also commutes
with push-forwards. Basic examples of AOCTs are Chow groups CH and Grothendieck’s K
(see [Pan03, §§2.1, 2.5, 3.8] for further examples).

The connection between algebraic oriented cohomology theories and FGLs is as follows.
Given two line bundles L; and Ly over X, we have (see [LMO07, Lem. 1.1.3])

ALy ® Ly) = (L) 45 H(La),

where @ is the first characteristic class with values in h and F is a one-dimensional commu-
tative FGL over the coefficient ring R = h(Spec k) associated to h.
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There is an AOCT (2 defined over a field of characteristic zero, called algebraic cobordism
(see [LMO7, §1.2]), that is universal in the following sense: Given any AOCT h there is a
unique morphism € — h of AOCTs. The FGL associated to €2 is the universal FGL Fy.

Moreover, given a FGL F' over a ring R together with a morphism L. — R, we define a
functor X — h(X) := Q(X) @ R. If F satisfies certain conditions, the functor h gives an
AOCT.

Example 4.1. In the above terms, the additive FGL corresponds to the theory of Chow
groups. The multiplicative periodic FGL with g € R* corresponds to Grothendieck’s K.
The multiplicative FGL with 8 ¢ R* corresponds to connective K-theory.

Let GG be a split simple simply connected linear algebraic group over a field k corresponding
to the root system (A, ®, p). Fix a split maximal torus 7" and a Borel subgroup B so that
T C B C G. Let G/B be the variety of Borel subgroups of G and let F' be the FGL over
R associated to an AOCT h satisfying the assumptions of [CPZ, Thm. 13.12]. Consider the
formal group algebra R[A]r. Then there is a ring homomorphism, called the characteristic
map (see [CPZ, §6]),

cr: R[A]r = h(G/B), o\ &(L(N)),

where L()) is the line bundle associated to A € A. Note that this map is neither injective nor
surjective in general. Its kernel contains the ideal generated by W-invariant elements, and
h(G/B) modulo the ideal generated by the image of ¢p is isomorphic to h(G) (see [GZ12,
Prop. 5.1]).

Example 4.2.  (a) The characteristic map for the theory of Chow groups, i.e. correspond-
ing to the additive FGL, is given by

ca: Z[A]Ja — CH(G/B), xx— ¢ (L(N)),

which recovers the usual characteristic map for Chow groups (see [Dem74, §1.5]).
(b) The characteristic map for Grothendieck’s Ky, i.e. corresponding to the multiplicative
periodic FGL, is given by

err: Z[ALy — Ko(G/B), xy 1 —[L(\)Y].

Restricting to the integral group ring Z[A] and using the identification of Example 2.4(b),
we recover the usual characteristic map for K, ([Dem?74, §1.6]) which maps e* to [L())].

(c) Algebraic cobordism (2 defined over a field of characteristic 0 satisfies the assumptions
of [CPZ, Thm.13.12]. Therefore, we have the characteristic map

cv: L[AJy — Q(G/B), x> cE(LN).

Let G/P; be the projective homogeneous variety, where P; is the minimal parabolic sub-
group of G corresponding to the simple root «a;, ¢ € I. Then

p: G/B =Pgp (16 L(w;)) — G/P,

is the projective bundle associated to the vector bundle 1@ L(w;), there 1 denotes the trivial
bundle of rank one (see, for example, [CPZ, §10.3]). Then the operators CZ introduced in
Definition 3.2 have the following geometric interpretation in terms of push-pull operators
(generalizing [PR99, Prop.)).
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Proposition 4.3 ([CPZ, Prop. 10.10(4)]). We have
p'pi(er(x)) = er(C5 (X)), for all x € R[A]p.
5. FORMAL (AFFINE) DEMAZURE ALGEBRAS: DEFINITIONS

In the present section we introduce the notion of a twisted formal group algebra and a
particular subalgebra, called the formal (affine) Demazure algebra, which is one of our main
objects of interest. Our method is inspired by the approach of [KK86, §4.1].

Definition 5.1 (Twisted formal group algebra). Let QF = Q%) denote the field of fractions
of R[A]r. The action of the Weyl group W on R[A]r induces an action by automorphisms on
QF. We define the twisted formal group algebra to be the smash product Qf, := R[W|x pQF.
(This is sometimes denoted by R[W]#QF.) In other words, Qf; is equal to R[W] ®@r QF as
an R-module, with multiplication given by

(0w t)") (6uh) = durpw™ (W) for all w,w' € W, ,¢" € QF
(extended by linearity), where d,, denotes the element in R[W] corresponding to w (so we

have 0,0, = Gy for w,w" € W).

Observe that Qf; is a free right Q¥ -module (via right multiplication) with basis {0, fwew-
Note that Qf; is not a QF-algebra (but only an R-algebra) since §.Q" = Q4. is not central
in Qf,. We denote 4. (the unit element of Q%) by 1.

Definition 5.2 (Formal Demazure element). For each root o € ®, we define the correspond-
ing formal Demazure element

Af = (1=06,) = 3 = 87 € Qy

Sag_,

(cf. [KK86, (I24)]). We will omit the superscript ' when the FGL is clear from the context.
We can now define our first main objects of study.

Definition 5.3 (Formal (affine) Demazure algebra). The formal Demazure algebra Dy is
the R-subalgebra of Qf, generated by the formal Demazure elements A, The formal affine
Demazure algebra Dp is the R-subalgebra of Qf}, generated by Dy and R[A]r. When we
wish to specify the coefficient ring, we write Dg g (resp. Dg g) for Dp (resp. Dp).

Remark 5.4. Suppose h is an algebraic oriented cohomology theory satisfying the assump-
tions of [CPZ, Thm. 13.12] and with FGL F (see Section 4). By Proposition 4.3, we see
that, under the characteristic map ¢p, the affine Demazure algebra Dy corresponds to the
algebra of operators on h(G/B) generated by left multiplication (by elements of h(G/B))
and the push-pull operators p*p,.

Lemma 5.5 (cf. [KK86, Prop. 4.2]). For all ¢ € Q and o € ®, we have
wAa = Aa%@) + Aa(w)a

where A, () = w%z(w) € @ is the formal Demazure operator applied to 1 (see Defini-
tion 3.1).

Proof. We have
PAa =0 (E =) = 2 (= 0,2 ) 5a(®) = Ba(¥) + Ausa(¥). D
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Proceeding from Lemma 5.5 by induction, we obtain the following general formula (cf.

[KKS86, (I2)])

¢451 A52 T Aﬁs = Z Aﬁil AﬁiQ e Aﬁir¢(i17 s 77;T)7

(1<iy <-+<ip<s)

where (1, f2,...,8s € ® are roots and ¢(iy,...,4,) € QF is defined to be the composition
Ag, oApg,_,o---0Ag applied to ¢, where the Demazure operators at the places 7y, ...,1%,
are replaced by the respective reflections.

Recall the elements k., a € @, from Definition 3.2. It is easy to verify that k.05, = ds,Ka,
Kala = Agkea, and

(5.1) A2 = Aykq.

Example 5.6. (a) For the additive and Lorentz FGLs we obtain the nilpotence relation
A% =0 since k7 = kE = 0.

(b) For the multiplicative FGL we obtain the relation A% = SA,, since k¥ = 3. In
particular, if 3 =1 we obtain the idempotence relation A% = A,.
(c) For the elliptic FGL we have, in the notation of Example 1.2(d),

A2 — a1xa+a3v(xa)A
(e}

To o

For example, if a3 = 0, then A2 = a; A,
To simplify notation in what follows, for ¢, j,71,...,1, € I, we set
(5.2) Tai = Thay, Thitj = Thaskays Oigig.iy = Os; iy Di = Doyy Ki = Koy

Furthermore, when we write an expression such as %” for w € W, ¢ € R[A]F, we interpret

this as being equal to 5wé' That is, we consider the numerators of rational expressions to
be to the left of their denominators.

Proposition 5.7. Suppose i,j € I and let m;; be the order of s;s; in W. Then
(5.3) AjAA o= NN A= Y Ay

weW, l(w)<my;

m;; terms mij terms

Jor some n;7 € QY. In particular, we have the following:

(a) If (a;, ;) =0, so that m;; =2, then A;A; = A A;.
(b) If (o, ;) = —1, so that m;; = 3, then

AjAA; — DA A = Aikiy — Ak,

where
_ 1 (1 1 1
(54) /'iij = Tis <z_7 — z_i> - m < R[[A]]F
Proof. We have
A4 = 2= 6L =)0 - 6)
J 1 J

mi; terms
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Since the §,, w € W, form a basis of Qw as a right Q-module, this can be written as a sum
of (right) Q-multiplies of d,,. The leading term (with respect to the length of w) is
(_]-)mij5§j8i8j s SnS]E(:L‘*kan s Sjsi(aj) o :L‘fsk(an)x—ak)_la

g v~

mgj terms mgj —1 terms

where n =i and k = j (resp. n = j and k = i) if m;; is odd (resp. even). Now, by [Bou8l,
Cor. 2 de la Prop. 17],
Qs Sk(Qn)s .oy SkSn - Sjsi(aj)
t
m;;j_1 terms
are precisely the positive roots mapped to negative roots by ds,,s,... (m;; reflections in the
subscript). Since dy;,s;... = 05,5, (My; reflections in each subscript), we see that the highest
order terms in A;A;A; - — A;A; A, - -+ cancel, proving the first part of the proposition.
Under the assumptions of (a), we have s;(a;) = a; and

A.A._<L_L><L_ﬁ>_ L & 1% s 1 s by
K3 J - -

z; T_; T T_j TiT;j T ;T T T T T_j T;T T ;T TiT_j T T’

Since the final expression is symmetric in ¢ and j, we have A;A; = A; A,
It remains to prove (b). We have s;(a;) = s;(o;) = a; + ¢; and s;5;(e;) = a;. Thus

A;AiA; = <i - ff) (:% - zST) (i B z%)

— 1 1% 1 & % 416 % 4 % &% % & % & %
- mla:? TjT; T_j Tj T ;T T_jT;T TjT ;T T_jT; T T_j ;T T_j X T_j
S S ) S 5 _ 5 9ij 1 9ji _ 9jij
mzm? $i+,j$2_j Tt jT 4T T TiTj TiT—j—jT—j TitjT—Tj T_i—jT—iTj T_j—jT T —j
Sis 5ji 8515 1
= A L I A 1 L¥) J _ JiJ _ .
J TiTj + Tit;T—j _'_ Z$i+]'$]' + TiT—i—jT—j _'_ T_j—jT—iTj T_i—jT—iT—j TiTit;Tj
Using the fact that s;s;s; = s;s;5;, we obtain
TipjTj  Tip Toi TiTj TipjTi Tig T TiT
It remains to prove that x;; € R[A]r. We have
o N Tipjtri—xy 1 1 Zj
g(szrJaxﬂ) = T ey 1 + Tir; | Tirit_: € R[A]F.

and, hence,
9(@itj,v—i)—g(xi,x—i)
T ’

lil‘j =

where g(z;,z_;) = m% + w%z € R[A]p. Therefore, it suffices to show that g(x;i;,z_;) —
g(z;,x_;) is divisible by x;. The latter follows (taking u; = z;, us = x; and v = z_;) from
the congruence u; +p us = u; (mod us), which implies that g(u; + ug, v) = g(uy,v) (mod

Ug). U
Remark 5.8. Note that

Ti(T—i—%j)—Tit T i
TiT i TjTiqj :

By [BE90, p. 809], the numerator of the above expression equals zero if and only if F'(u,v) =
u~+ v + ajjuv for some ay; € R (i.e. if and only if F' is the additive or multiplicative FGL).
Therefore, contrary to the situation for the additive and multiplicative FGLs, the formal
Demazure elements do not satisfy the braid relations in general (cf. [BE90, Thm. 3.7]).

I{Z‘j =



14  ALEX HOFFNUNG, JOSE MALAGON LOPEZ, ALISTAIR SAVAGE, AND KIRILL ZAINOULLINE

Remark 5.9. Observe that the key difference between our setting and the setting of [BE9OQ]
is that we deal with algebraic theories for which the groups h(BT') and their properties,
which are used extensively in [BE90], are not well-defined or remain unknown. Instead,
we rely on the formal group algebra R[A]r (as a replacement for h(BT)) and techniques
introduced in [CPZ].

For each w € W, fix a reduced decomposition w = s;, - --s;, and set

k
(5.6) Ay =24 A

ik'

Note that, in general, A, depends on the choice of reduced decomposition.
Definition 5.10 (R and R[A]3). Let R be the subalgebra of Q" defined by
(5.7) R:=R[W]-Rn%|ijel, weW, l(w)<myl

where R[W]- denotes the natural action of the group algebra R[W] of W on Q. Similarly,
define

(5.8) R[A]7 = RW]- R[A]rlni; | 4,5 € I, w e W, L(w) < myj].
Note that R[A]z = R[A]F if the root system is simply laced (since x;; € R[A]r).

The following lemma is an easy generalization of [KK86, Thm. 4.6] (which considers the
case of the additive FGL).

Lemma 5.11. The set {A, | w € W} forms a basis of Dp®@g R as a right (or left) R-module
and a basis of Dp @rpap,. R[A]7 as a right (or left) R[A]%-module.

Proof. Since R is a domain, so are R and R[A]%. By (5.1) and Proposition 5.7, we can write
any product of formal Demazure elements as a R-linear combination of the elements A,
w € W. Combined with Lemma 5.5, we can write any product of formal Demazure elements
and elements of R[A]7 as an R[A]%-linear combination of the elements A,,, w € W. Thus
{A, | w € W} is a spanning set of the modules in the statement of the lemma. Now, it is
easy to see from the definition of the formal Demazure elements (Definition 5.2) that, for all
we W,

Aw = ZU:E(U)SE(@U) 6va’w’
where the sum is over elements v € W with length less than or equal to the length of w,
a, € QF for all v, and a,, # 0. Thus, since {d,, | w € W} is a basis for Qf; as a right (or
left) @F-module, we see that {A,, | w € W} is also a basis for this module. In particular,
the set {4, | w € W} is linearly independent over Q" and hence over R or R[A]3. O

Theorem 5.12. Given a formal group law (R, F), the formal affine Demazure algebra Dp
is generated as an R-algebra by R[A]r and the formal Demazure elements A;, i € I, and
satisfies the following relations:

(a) pA; = Aisi(p) + Ay, (@) for alli € I and ¢ € R[A]Fr;

(b) A2 = A;k; for all i € I, where k; = m% + m%l € R[A]r;

(c) AjA; = A;A; forall i, j € I such that <ai,a}/> =0;
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(d) AjAA; — AA A = Ak — Ajky for all i, j € I such that <ai,ajv> = —1, where

_ 1 1 1 1
Kij = o, (?j - a:,v) — or; € RIAIF

k3

(note that, in general, kij # Kji);
(e) relation (5.3) for alli,j € I such that (o, af) < —2.
Furthermore, if the root system is simply laced, then (a)—(d) form a complete set of relations.
In arbitrary type, (a)—(e) form a complete set of relations (over R[A]z) for Dp®pgap,. R[A] 7.

Proof. The first part of the theorem follows immediately from (5.1), Lemma 5.5 and Propo-
sition 5.7. )

Since R is a domain, so is R[A]%. Let Dp be the R-algebra generated by R[A[% and
elements Al, i € I, subject to the relations given in the theorem. Then we have a surjective
ring homomorphism p : Dy — Dy ®gap, R[A[F which is the identity on R[A[% and maps
Al to A;. We wish to show that this map is an isomorphism.

For w € W, define A! as in (5.6). The relations among the A/ allow us to write any
element of D r in the form

Y owew Aptw, aw € R[A[.
Suppose such an element is in the kernel of p. Then

0=p (ZwEW Aiuaw) = > wew Aulu.

By Lemma 5.11, this implies that a,, = 0 for all w. Thus p is injective and hence an
isomorphism. This completes the proof of the proposition once we recall that R[A[3 = R[A]r
in simply laced type. U

6. FORMAL (AFFINE) DEMAZURE ALGEBRAS: EXAMPLES AND FURTHER PROPERTIES

In this section we specialize the definition of the formal (affine) Demazure algebra to
various FGLs. We then prove several important facts about these algebras in general. The
first proposition demonstrates that our definition recovers classical objects in the additive
and multiplicative cases.

Proposition 6.1. (a) For the additive FGL over R = 7Z, the formal affine Demazure
algebra D 4 is isomorphic to the completion of the nil Hecke ring of [KK86, Def. 4.12].
In this case, all the relations among the A; are given by the braid relations and the
nilpotence relations A? = 0 (even in non-simply laced type).

(b) For the additive FGL over R = C, the formal Demazure algebra D 4 is isomorphic to
the nil-Hecke ring of [EB87, Def. 3].

(¢) For the multiplicative FGL over R = C with = 1, the formal Demazure algebra
Dy is the completion of the 0-Hecke algebra, which is the classical Hecke algebra
specialized at ¢ = 0. In this case all the relations among the A; are given by the braid
relations and the idempotence relations (even in non-simply laced type).

Proof. For the additive FGL over R = Z, @ is the field of fractions of the ring S*(A)" =
R[A] 4 and A4; is the —z; of [KK86, (Is4)]. This proves part (a). Similarly, if R = C, then
our 4A; corresponds to the X; of [EB87], proving part (b).
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For the multiplicative FGL over R = C with g = 1, we have that () is the field of fractions
of C[A]" and —A,, is the B; of [EB87, §2] if we identify the simple root a; of [EB87] with
our —c;. This proves part (c). O

We now consider some other FGLs, where our definition gives new algebras.

Example 6.2 (Lorentz affine Demazure algebra). Consider the Lorentz FGL (R, F,). Then

Tipj = 115::;77 B € R. Since x_, = —x, for all A € A, we have

(6.1) _ WBmiz; mitw; 1 _ B

K/U - Ti+T; TiT Tixj
for i, j € I with (a;, ;) = —1. Therefore, relation (d) of Theorem 5.12 becomes
AinAj — AZA]AZ = B(Az — AJ) for all Z,j such that <Oéi, O[j> = —1.

Example 6.3 (Elliptic affine Demazure algebra). Consider the elliptic FGL (R, Fg). Set
i = pp(z;) and g5 = g% (2, ;). Then, for i,j € I with {(a;, ;) = —1, we have

. . (s P ) . e )
- T (@i =) =i T T =i BT (@i wiwg5) @ T TG
v LT X4y T XL T X T T T
E -1 E E E
o Hi_l_ﬂixigij o H_i_l_uimigi]' . _alm—i_a3v(m—i)+x—igi]’ _ Y9y a1 a3v(z_i)
T Titj T Titj TitjT—i Titj TitjT—4 :

Theorem 6.4. For any two formal group laws (R, F') and (R, F') over the same ring R, we
have Dy r = Dgy rr as algebras, where Rg = R ®z Q.

Proof. It suffices to prove the result for the special case where F' = F,. There is an
isomorphism of FGLs

ep : (RQ,FA) — (RQ,F)
given by the exponential series ep(u) € Rglu] (see Section 1). This induces an isomorphism
of formal group algebras

6}} : RQ[[A]]F — RQ[[A]]A
This map commutes with the action of W and thus we have an induced isomorphism of
twisted formal group algebras

R,V Rg,A
6}2 E/VQ )_>Q§/VQ )'

Thus Dy, r is isomorphic to its image D' := e} (Dg,, ) under this map. Now, D" is generated
over Rg[A]a by the elements

(A = L (1-§)= 2N el

ep(:vl) ep(zz) 1

Since ep(z;)/x; € Rg[A]a is invertible in Rg[A]a (because its constant term is invertible
in Rg — see Example 1.3(a)), D’ is also generated over Rg[A]a by A#, i € I, and thus

7 )

isomorphic to Dpg a. 0

Remark 6.5. Note that while Theorem 6.4 shows that all affine Demazure algebras are
isomorphic when the coefficient ring is Rg, the isomorphism is not the naive one sending AF
to AF ". Furthermore, the completion (with respect to the augmentation map) is crucial. No
assertion is made regarding an isomorphism (even over Rg) of truncated versions.
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7. FORMAL (AFFINE) HECKE ALGEBRAS: DEFINITIONS

In the present section we define deformed versions of the formal (affine) Demazure al-
gebras. Our goal is to construct generalizations of the usual (affine) Hecke algebra and its
degenerate analogue. These two examples correspond to the multiplicative periodic and ad-
ditive FGL cases of our more general construction. We begin by reminding the reader of the
definition of these classical objects.

Definition 7.1 (Hecke algebra). The (classical) Hecke algebra H associated to the Weyl
group W is the Z[t, t ~']-algebra with 1 generated (as a Z|[t, t~']-algebra) by elements T} := T, ,
1 € I, modulo

(a) the quadratic relations (7; +¢1)(T; —t) = 0 for all ¢ € I, and
(b) the braid relations T;1;7; - - - = T;1;T; - - - (m;; factors in both products) for any i # j
in I with s;s; of order m;; in W.

Definition 7.2 (Affine Hecke algebra). The (classical) affine Hecke algebra H is H ®zp 1)
Z[t, t7')[A], where the factors H and Z[t,t '][A] are subalgebras and the relations between
the two factors are given by

A s

A — Tt = (-t )= Ne A, iel
Remark 7.3. In Defintions 7.1 and 7.2, we have followed the conventions found, for instance,
in [CMHLO2, pp. 71-72] (except that we use t in place of v and T} in place of T;). These
conventions differ somewhat from those found in other places in the literature. For instance,
H as defined above is isomorphic to H' @z 41 Z[q"/?,q7'/?], where H' is the Hecke algebra
as defined in [Hum90, §7.4] or [CG10, Def. 7.1.1]. The T}, appearing in [Hum90, CG10]
correspond to T}, in our notation, where ¢ corresponds to ¢'/2.

Definition 7.4 (Degenerate affine Hecke algebra). Let € be an indeterminate. The degen-
erate affine Hecke algebra Hqeg is the unital associative Z[e]-algebra that is Z[W] ®z Sy, (A)

as a ZleJ-module and such that the subspaces Z[W] and S;,(A) are subalgebras and the
following relations hold:

(51)\ - SZ(A)(SZ = —€<O[;/, A), 1€ I, AeA.

Fix a free abelian group I' of rank 1 with generator . Denote by Rp the formal group
algebra R[I']p. For instance, Zy = Z[t,t7']" and Zs = Z[y] (see Example 2.5). Let
Q' = QWErI) denote the fraction field of Rp[A]r and let @i, = Rp[W] xz Q" be the
respective twisted formal group algebra over Rp (see Definition 5.1). We will continue to
use the shorthand (5.2). We are now ready to define our second main objects of study.

Definition 7.5 (Formal (affine) Hecke algebra). The formal Hecke algebra Hp is the Rp-
subalgebra of ()};, generated by the elements

(7.1) 2AF ., +6; if k¥ =0,

7

{AiF@F + 5@,U/F(5L"y) if I{F 7é 0,
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for all ¢ € I, where Op := pp(xy) — pp(r_,) € Rp. The formal affine Hecke algebra Hp is
the Rp-subalgebra of @)}, generated by Hp and

Re[Alp[(kD) 7" [a € @] if 67 #0,

RrlAlr = {RF[[A]]F if K = 0.

We sometimes write T; when the FGL is understood from the context. When we wish to
specify the coefficient ring, we write Hr p (resp. Hp ) for Hp (resp. Hp).

Remark 7.6.  (a) If ay; (in the notation of (1.1)) is invertible in R, then xZ% is invertible
in RF[[A]]F for all o € P. ThUS, RF[[A]]% = RF[[A]]F
(b) The coefficients 2—5, pr(zy), and x, —x_, appearing in Definition 7.5 are all invariant
under the action of S;.
(¢) In the multiplicative case we have
Or _ Blay—z_)
K B
Since the additive FGL is the g — 0 limit of the multiplicative, this motivates the
choice of coefficient of A in the case k" = 0. More generally, one can show that

when (25 is expanded as a power series in z; and ., the leading term is equal to 2z.,.

- l',y - l'_,y.

Similarlzy, when £ =0, we have r_, = —z,, and so pp(z,) = 1, the coefficient of d;.
Lemma 7.7. For ally € Q' and i € I, we have
SEALW) i ET#0,
20, AL (1) if k¥ =0.
In particular, ¢T; — T;si(¢) € Rp[A]} for all ¢ € Rp[A]%.

Proof. Let a and b be the coefficients of A; and §; in (7.1), so that T; = A;a + 6;b. By
Lemma 5.5, we have

Ui = ¢(Aia + 05,0) = (Aisi(¥) + Ao, (¥))a + bs:5:(¢)b = Tisi(¢) + ala, ().

The last statement is an easy verification left to the reader. O

(7.2) VT — Tisi(¢) = {

Lemma 7.8. The elements T;, i € I, satisfy the quadratic relation

(7.3) T? = T,0F + 1.
Thus T; s invertible and Ti_1 =T; — Op. Furthermore
(7.4) (Ti + pr(z—y)) (T3 — pr(z4)) = 0.

Proof. Let a and b be the coefficients of A; and ¢; in (7.1), so that T; = A;a+6;b. Using (5.1)
and the fact that A;6; + 6;4; = (6; — 1)k!", we have
T? = AZa® + (A + 6:0:)ab + b* = Akl a® + (6; — 1)l ab + b* = Ti(kFa) + b(b — kF a).

One readily verifies that in both cases in (7.1), we have xf'a = O and b(b — rf'a) = 1,
completing the proof of the first statement in the lemma. The second two statements follow
easily. O
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Remark 7.9. Because of (7.4) and the fact that pp(z_,) = pr(z,)"!, one may think of the
power series pp(z,) as a generalization of the deformation parameter ¢ of the classical Hecke
algebra (see Definition 7.1(a)).

Proposition 7.10. Suppose i,j € I and let m;; be the order of s;s; in W. Then

5 LI -T0G= 3 L

ms; terms m;; terms weW, f(w)<mi;

for some 75 € Q'. In particular, we have the following.
a a;, ) = 0, so that m;; = 2, then 1;1; = 151;.
I i) =0 h i =2, then T;T; = T;T,
o, ) = —1, so that m;; = 3, then
(b) If (o, a;) 1, h ij = 93, th
(7.6) T;TT; — T T = (T — Ty)oij,  0ij = Xiri(XG — X—i) — XiXj»

where

22y TPy
. if k7 =0,

Or P L0
Xoc:{%% A a € P,

(We wuse the usual convention that xi; = Xia, and Xiit; = Xiaiiaj-) Moreover,
oi; = 0 commutes with §; and 0; (and hence with T; and Tj). If k¥ = 0, then
05 = 4{L‘,2yliz‘j c RF[[A]]F

Proof. Set p = pp(,). (Thus p =1 iff k¥ = 0 by Lemma 3.3.) In both cases (i.e. k¥ # 0
or k" = 0), we have T; = x; + (1 — x;)9;. Now

TTT; = (g + (n—x5)0;) (i + (o — xa)0) (s + (= x5)05) -+
i terms

Since the d,,, w € W, form a basis of @y, as a right ()’-module, this can be written as a sum
of (right) @’-multiplies of §,,. The leading term (with respect to the length of w) is

58jSiSj s SnS]g(/'L — X=8kSy - SjSi(aj)) o (/'L - stk(an))(/i - X—ak)a
~—— —_——

mij terms mij_1 terms

where n =i and k = j (resp. n = j and k = i) if m;; is odd (resp. even). As in the proof of
Proposition 5.7, we see that the highest order terms in 1737775 - - - —T;T;T; - - - cancel, proving
the first part of the proposition.

Part (a) follows immediately from Proposition 5.7(a) and the facts that, under the as-
sumptions, 515J = 5j5i7 AZ5] = 5J’Ai, and AJ(SZ = 5ZA_]

It remains to prove (b). We have

;T = (Xj + (1= x3)05) (xi + (= x2)8:) (xj + (1 — x;)9;)
= XiX5 4 (= x) (= x—)Xirs + (= X Xirax— + (= X3)XiX5) 0,
+ (10— X)X X0 + (1= X5) (0 — Xi+)Xa050i + (1 — Xi) (1 — Xi+j)X;0:;
+ (= x;5) (10— X)) (o — Xi+§)0;0:0;.
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Using the fact that 6;0,0, = 9,0,0;, we see that
TyTTy — TTGT = xaxG — xixs + (= xa) (1 = X j)Xavs — (= xa) (1 = X—i)Xits
— 0ji(p = X;)0; + o3 ( — Xi)0;
= 0ijXi — 05iXj — 051t — X;3)0; + 035 (1t — Xi)0i + pXiri(Xi + X—i — X5 — X—j)
= 0yTi — 05 T; + X (Xi + X—i — X5 — X-j)
= 0i;1i — 05T; + ploji — 035)
= 0yi(Ti — p) — 0i(T; — ).
If k" = 0, then clearly Oij = 4953/%. Since, in this case, k;; = kj; (use the fact that
r_; = —x; in (5.4)), we have 0;; = ;. If k¥ # 0, we have

o @2 TiT_iKi—XiTjKj—T it jRitj
- F

0'4 .
v TiT T T jRiKjRidgj

— O2 (itz—i)r—jT—ij—(Tj+T )T i j— (Tipj+T i j)T_iT—;
F (@ita—i)(zj+a—;)( @iy +o—ij)

_ _@%( TiTjT—j—j+T i Ty ) — _@% < 1 4 1 ) 1

Tita i) (@ o) (@igj+T—ij Tiwge_i g | T m mirg ) RikgRirg
which implies that 0;; = 0;;. Thus we have
TTiT; — TT T = 0y3(Ti — T))
The fact that o;; commutes with 0; and ¢; is an easy verification left to the reader. O
For each w € W, fix a reduced decomposition w = s;, - - - s;, and set
(7.7) T,=1,---T,.
Note that, in general, T,, depends on the choice of reduced decomposition.
Definition 7.11 (R and Rp[A]3). Let Ry be the subalgebra of Q' defined by
(7.8) Rp = Rp[W]-Rp[r | i,j €1, w e W, L(w) < my].
where Rp[W]- denotes the natural action of the group algebra Rp[W] of W on @'. Similarly,
define
(7.9) Re[A]% == Re[W]- Rp[A]Rlr; | 4,7 € I, we W, L(w) < my.

Note that Rrp[A]% = Rp[A]r if the root system is simply laced and x* = 0 (since o;; =
4x2k;; € Rp[A]p in that case).

Lemma 7.12. The set {T,, | w € W} forms a basis of Hp @g, Ry as a right (or left)
Rp-module and a basis of Hp @p, a1, Rr[A]7 as a right (or left) Rp[A]x-module.

Proof. The proof is analogous to that of Lemma 5.11 and will be omitted. U

Theorem 7.13. Given a formal group law (R, F'), the formal affine Hecke algebra Hp is
generated as an Rp-algebra by Rp[A]% and the elements T;, i € I, and satisfies

(a) relation (7.2) for alli € I and p € Rp[A]%,

(b) (T; + pp(x_y))(T; — pp(zy)) =0 for all i € I,

(c) T;T; = T;T; for all i,j € I such that <ozz~,oz}/> =0,

(d) relation (7.6) for alli,j € I such that <ai, a}/> =—1, and
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(e) relation (7.5) for alli,j € I such that <ozz~,oz;-/> < -2,
Furthermore, (a)—(e) form a complete set of relations (over Rp[A]%) for Hp®p, a1, Re[A]7-

Proof. The first part of the theorem follows immediately from Lemmas 7.7 and 7.8 and
Proposition 7.10. The second part is analogous to the proof of Theorem 5.12 and will be
omitted. U

8. FORMAL (AFFINE) HECKE ALGEBRAS: EXAMPLES AND FURTHER PROPERTIES

In this final section we specialize the definition of the formal (affine) Hecke algebra to var-
ious FGLs, yielding classical algebras as well as new ones. We then prove several important
facts about these algebras in general.

As in Section 5, we have a map Q}, — Endg, @Q’. Since the operators T preserve
Rp[A]%, we have an induced map Hrp — Endg, Rr[A]} of Rp-algebras. Recall that if
ay; (in the notation of (1.1)) is invertible in R, then xZ is invertible for all « € ®, and so
Re[A]%: = Re[A]F.

Proposition 8.1. If ay;y is invertible in R, then the map Hr — Endg, Rr[A]r described
above is injective. In other words, the natural action of Hr on Rp[A]r is faithful.

Proof. Suppose, contrary to the statement of the proposition, that the given map is not
injective. Let a € Hp be in the kernel of this map, with a # 0. In other words, a acts by
zero on Rp[A]r under the associated action. By Lemma 7.12, we may write

a=3 wew Lwtw, @y € Rp[A]7.

Now, clearly ay also acts by zero on Rp[A]r for all ¢ € Rp[A]r. Choosing ¢ to be a
common denominator of all the a,, we see that we may assume that a,, € Rp[A]r for all
weW.

For ¢ € Rp[A]F, define the degree of ¢ to be

deg ¢ :=max{m € Z>o | ¢ € I}’ },

where Zp is the kernel of the augmentation map e: Rp[A]r — Rp (i.e. the element z is not
mapped to zero). We adopt the convention that deg0 = —oo. Then the formal Demazure

operators lower degree and the coefficients pip(z,), % and z., appearing in Definition (7.1)

of T; preserve degree. Thus, if deg ¢ = m, we have
Ti(p) = pr(xy)si(p) + (terms of degree < m).

Furthermore, deg(p¢') = deg ¢ + deg ¢’ for ¢, ¢’ € Rp[A]r. Indeed, it follows by definition
that deg(py’) > degp + deg . If deg(py’) > deg ¢ + deg¢’, then in the associate graded
algebra we have ¢¢’ = 0, where ¢ # 0 and ¢’ # 0. Identifying the associated graded
algebra with the polynomial algebra (by [CPZ, Lem. 4.2]) we obtain a contradiction as the
polynomial algebra is a domain.

Let m be the maximum degree of the a,, w € W, and set W' = {w € W | dega,, = m}.
Then, for all ¢ € Rp[A]F, we have

0=alp) = > pew Tulawp) + ZwGW\W/ Tw(awp)
= ZwEW’ ILLF("L"Y)Z(w)Sw(aw(p) + b7
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where the last summation lies in Zj P98 %® and b ¢ Z7 98¢ Tt follows that
D wew: MF(xW)Z(w)Sw(aw‘P) = D wew’ Sw (MF(xw)g(w)aw@) =0 forall p € Rp[A]r.

The above sum is therefore also equal to zero in Zp T8¢/ Tptee™t But @ Tp/Tpt! =
Sk, (A), by [CPZ, Lem. 4.2]. Since the action of Rp[W] x S; (A) on Sj_(A) is faithful
(see, for example, the argument in [Kle05, Second Proof of Thm. 3.2.2]), we have that
pr(r,) @a, =0 (hence a,, = 0) for all w € W’. But this contradicts the choice of m. [

Remark 8.2. In the additive and multiplicative cases, Proposition 8.1 reduces to known
embeddings of the (degenerate) affine Hecke algebra into endomorphism rings. See the proof
of Proposition 8.3.

The following proposition demonstrates that our definition of the formal (affine) Hecke
algebra recovers classical objects in the additive and multiplicative cases.

Proposition 8.3. Suppose R = 7.
(a) For the additive FGL, we have the following isomorphisms of algebras:

HA = Hél\eg = Hdeg ®Z[€] Z[h/]]a HA = ZA[W] = Z[W] Rz Z[[V]]?

where e = —27.
(b) For the multiplicative periodic FGL, we have the following isomorphisms of algebras:

Hy = H ®gp,1) Zt, t7'", Hu=H Rz L, 0

Proof. 1t is easy to see that for the additive and multiplicative FGLs in simply laced type, the
relations of Theorem 7.13 become the relations of the respective algebras in the statement
of the proposition. However, we provide a proof that remains valid in all types (i.e. not
necessarily simply laced). Note that in the both the additive case (where x = 0) and
multiplicative periodic case (where a;; = [ is invertible and hence all k,, a € @, are
invertible), we have Rp[A]% = Rp[A]F.

Consider first the additive FGL. Recall the identification Z 4 = Z[~] of Example 2.5. The
injective map Hy < Endy, Z[A] 4 is given on the T; by

Ty = 2yAD + ;v 55 + 27%(31- —1).

Thus H, is isomorphic to the subalgebra H’y of Endy, Z4[A] 4 generated by multiplication
by elements of Z4[A]4 and the operators s; + 2y (s; — 1).

Observe that, in the notation of [Gin, §12], the algebra S; (A)" ®z C = S3(A)" @z C[v]
can be identified with the completion of the algebra C[h, | of polynomial functions on b
with coefficients in C[y]. If we let € = —2, then we see that H’, is precisely the completion
of the image of Hge, under the faithful action on C[h, €] given by Demazure-Lusztig type
operators (see [Gin, Prop. 12.2] or [Kle05, Second Proof of Thm. 3.2.2]). This proves the
first isomorphism of part (a). The second follows by considering the subalgebra generated
by the T;.

Now consider the multiplicative periodic FGL Fy/(u,v) = u+v — fuv, § € Z*. We have
(see Example 1.2(b))

par(ry) =1—pBr_, =tand Oy = Bz, —x_,) =t —t ' € Z[t,t ']",
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under the identifications of Example 2.5. Using the above and the identifications of Exam-
ple 2.4(b), the injective map Hy;, < Endy,, Zy[A]ar is given on the T; by

(81) T; = Ai\/l% -+ 52,LLM(177) = b=t (1 - 51) + t(gz — t_le_l(:isi - tl_e_aisi.

l—e™ % 1 e % —1

We identify Z[A]a with Zg, ¢~ '|[P] ®z,4-1 Z[t,t~']" in the notation of [Lus85] (where
the P and ¢ of [Lus85] are our A and 2, respectively) via the map e* — —\ (see Exam-
ple 2.4(b)). (The negative sign in front of the a; arises from the twisting of the action of
Zlq,q '][P] on itself by a sign in [Lus85, (8.2)].) Under this identification, the right hand
side of (8.1) corresponds to the Demazure-Lusztig operator [Lus85, (8.1)], where the Ty of
[Lus85] corresponds to our ¢7;, where s = s; (see Remark 7.3). Therefore, the actions of H,
and H on Zy[Aly = Zg, ¢ V|[P] ®z1q,4-11 Z[t, t7]" coincide. The action of Hyy is faithful
by Proposition 8.1 and the action of H is also known to be faithful (see, for example, [Gin,
Prop. 12.2(i)] or note that the action of H specializes to the standard action of Z[W] x Z[A]
on Z[A] when ¢ = 1). Thus we have the first isomorphism of part (b). The second follows
by considering the subalgebra generated by the T;. O

For other FGLs our definition gives new algebras as the following examples indicate.

Example 8.4 (Lorentz case). For the Lorentz FGL Fp, we have pp(u) = 1, ©, = 0, and
k = 0. Since r;; = § (see (6.1)), we have o;; = 4f22. Thus the relations (a)-(d) of
Theorem 7.13 become

(a) oT; — T;si(p) = 22,AL (o) for all p € Rp[A]p, i€ I.

(b) T? =1 for alli € I,

(c) TiT; = T;T; for all 4, j € I such that (a;,af) =0,

(d) TLTT; — T;TiT; = 4822(T; — Tj) for all 4,5 € I such that (g, o) = —1.
These form a complete set of relations in the simply laced case.

Example 8.5 (Elliptic case). For the elliptic FGL Fg, we have

2
Hp() = e, Op = 22 oy

1—aju—asv(u)’
where 1) = a2, + azv(z,) (see Example 1.2(d)). If, for example, az = 0, then

2.2
o 1 o 2a1zy—aix o .
/LE(U)—m, @E‘— ﬁ, R; = a1 for aHZEI,

and so

T~y —Q $2 .
T, :AZE2 u 17” +5Z-1_1“u for alli € I.

l—aix

Furthermore, when az = 0, we have

. — ©E
Xi = T
and so
_ 65 ©g , ©p (6p e\ _ _ O
05 = - 2 Rij-
J a1 Tjay Tiyja1r \ T_;a1 Tja1 ay Y

Example 8.6 (Universal formal Hecke algebra). We call the formal Hecke algebra Hy cor-
responding to the universal FGL Fy the universal formal Hecke algebra. Observe that Hy
is an algebra over Ly, where LL is the Lazard ring. Note that in this case we have

2 2

O = —an(zy —r_) + a%l(xﬂY —x7) — (a3, + arpa1; — agy + 2a13)(:pi - xiw) +--

3 3
= —261,111‘,y — 2(0,11 + a2 — Qg + 2(113)?[77 + e
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Theorem 8.7. Suppose (R, F) and (R, F') are FGLs over the same ring R, with either
F =0 or ayy invertible in R (in the notation of (1.1)). Then

HF ®RF[[A]]F RIF[[A]]F = HF/ ®RF,[[AHF, R/F/ [[A]]F/
as algebras, where Ry = (R ®z Q)p ®q Q[z;'] (and similarly, with F replaced by F').

Proof. 1t suffices to prove the result when F' = Fj4. Let Ry = R ®z Q. As in the proof of
Theorem 6.4, we have an isomorphism of twisted formal group algebras
(R, F) N (R, A)

€F - Ww w
Since
r(@) = ooy = e
and #;W) € (Rg)a is invertible in (Rg)a, we see that e}.(R%) = Ry and so ei(Rp[A]r) =

R, [A]a. The algebra Hp ®@g,a], Rp[A]F is isomorphic to its image H' := e},(Hp ®pg,.[a],
R.[A] ) under €.
We first consider the case where k¥ = 0. Then Hp ®p,[a], Rp[A]r is generated over

R%.[A]r by (the element 1 and) the elements

TF —1=2AF2, +6, - 1=2(6;—-1), iel,
where

:F _ 2:13—\/ E Q RF F

We see that

(T —1) = p(EN) (0~ 1) = EET ~ 1),

Thus it suffices to show that e%(ZF)/Z2 lies in R, [A] 4 and is invertible in R/;[A] (i.e. has
invertible constant term). Now,

et (EF er(x e -1
2 (-2) 0-2)
-1
— L eF(‘T ) Ty oy
- (eF(zi) a:»yw 2&:7) <]' 2z7> :

Note that ep(x;)/z;, eF(:cv)/xW € R/,[A] 4 are invertible in R/,[[A] 4 (with constant term one).
Since 1 — z;/(2x,) € R4 [A] 4 is also clearly invertible in R’ [[A]] 4, we are done.
Now consider the case where % # 0 and ay; is invertible in R (hence in R/;). The elements

TiF _MF(xW) :pi((si - 1)7 i€,

where
Rp,F)
pi = up(xw) f’: € Q( o

generate Hp ®g, (a1, Rp[A]r over R [A]r (along with the element 1). Since
(T — ur(ay)) = BT — 1),

it follows as in the k" = 0 case that it suffices to show that ek (p;) /=2 lies in R4 [A]4 and is
invertible in R/;[A] (i.e. has invertible constant term).
For any x € R,[A]4 we set

P(x) = rler) — o 1 0(1) € R, [A]a
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so that pp(ep(z)) =1 —a(x). Then (as z_y = —x) in RA[A]4)

e%(pi ep(xy))— ep(—x 22~ \
L = (ur(en(an) - erenlnpienos) (1 - 22)

1
T —x T 2
_ (1 — z(z,) — 2 %) <1 _ T:)

-1
— (Mot () - 5 (2-5)

Since aq; is invertible, we have

Y(—zy)+(zy) _ 2014+40(1)
wﬂ(/fzi) == a1111+0(1) _2+O(1)

Combining all of the above computations, we see that

e*FE<gi> =1+0(1) € R, [A]a
is invertible in R/,[A] 4 as desired. O
Remark 8.8.  (a) It is known that certain localizations or completions of the affine Hecke

algebra and degenerate affine Hecke algebra are isomorphic (see [Lus89, Thm. 9.3] and [Rou,
§3.1.7]). Theorem 8.7 can be seen as an analogue of these results.

(b) Note that while Theorem 8.7 shows that all affine Hecke algebras (satisfying the
hypotheses of the proposition) become isomorphic over appropriate rings, the isomorphism
is not the naive one sending T to T} ". Furthermore, the completion (with respect to the
augmentation map) is crucial. No assertion is made regarding an isomorphism (even over
Q) of truncated versions. See Remark 6.5.
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