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Abstract. In the present paper we generalize the construction of the nil Hecke ring of
Kostant-Kumar to the context of an arbitrary algebraic oriented cohomology theory of
Levine-Morel and Panin-Smirnov, e.g. to Chow groups, Grothendieck’s K0, connective K-
theory, elliptic cohomology, and algebraic cobordism. The resulting object, which we call a
formal (affine) Demazure algebra, is parameterized by a one-dimensional commutative for-
mal group law and has the following important property: specialization to the additive and
multiplicative periodic formal group laws yields completions of the nil Hecke and the 0-Hecke
rings respectively. We also introduce a deformed version of the formal (affine) Demazure
algebra, which we call a formal (affine) Hecke algebra. We show that the specialization of
the formal (affine) Hecke algebra to the additive and multiplicative periodic formal group
laws gives completions of the degenerate (affine) Hecke algebra and the usual (affine) Hecke
algebra respectively. We show that all formal affine Demazure algebras (and all formal affine
Hecke algebras) become isomorphic over certain coefficient rings, proving an analogue of a
result of Lusztig.
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Introduction


Geometric realizations of representations of algebras such as quantized enveloping algebras
of Lie algebras and Hecke-type algebras have proved to be an exceptionally interesting and
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useful tool in both representation theory and geometry. In particular, the field of geometric
representation theory has produced such results as the proof of the Kazhdan-Lusztig con-
jecture and the construction of canonical bases in quantized enveloping algebras. Geometric
realizations are also often a precursor to categorification, a current topic of great interest.


Two fundamental constructions in geometric representation theory are of particular rele-
vance to the current paper. The first arises from so-called push-pull operators (coming from
the projection from the flag variety G/B to the quotient G/P of G by a minimal parabolic)
on the singular cohomology or K-theory (i.e. Grothendieck’s K0) of the flag variety. If one
works with singular cohomology, these operators generate the nil Hecke algebra. (When we
use the term “nil Hecke algebra” here, we do not include the polynomial part.) If one works
instead with K-theory, the push-pull operators generate the 0-Hecke algebra (the specializa-
tion of the Hecke algebra at q = 0). Adding the operators corresponding to multiplication
by elements of the singular cohomology or K-theory, one obtains the affine analogues of the
algebras above.


The above-mentioned algebras can also be realized in a more algebraic way. Let W be the
Weyl group of a reduced root system, acting on the weight lattive Λ. In [KK86], Kostant and
Kumar introduced a twisted group algebra QW , which is the smash product of the group ring
Z[W ] and the field of fractions Q of the polynomial ring S in Λ. Then they defined a subring
R of QW generated by Demazure elements and elements of S and showed that R is similar to
the 0-Hecke algebra: it satisfies the classical braid relation but a nilpotence relation instead
of an idempotence one. For this reason, they called R the nil Hecke algebra. Following this
approach, Evens and Bressler in [EB87] introduced the notion of a generalized Hecke ring
(where the nilpotence/idempotence relation is replaced by a general quadratic one) which
includes both 0-Hecke and nil Hecke algebras as examples. The Demazure elements play the
role of a Hecke basis and have several geometric interpretations (as Demazure operators and
push-pull operators) on the singular cohomology of the variety of Borel subgroups associated
to the root system.


The second geometric construction relevant to the current paper is the realization of
Hecke-type algebras via the geometry of the Steinberg variety. There is a natural structure
of an algebra on the (co)homomology of the Steinberg variety via convolution. Again, the
resulting algebra depends on the choice of (co)homology theory. Equivariant K-theory yields
the affine Hecke algebra, equivariant singular cohomology yields the degenerate affine Hecke
algebra, and top degree Borel-Moore homology yields the group algebra of the Weyl group.
We refer the reader to [CG10, Gin] and the references therein for further details.


Another important ingredient of the current paper originates from algebraic topology and,
especially, the cobordism theory of the 60s. The notion of an algebraic oriented cohomology
theory was introduced by Levine-Morel [LM07] and by Panin-Smirnov [Pan03]. Roughly
speaking, it is a cohomological-type functor h from the category of smooth algebraic vari-
eties over a field to the category of commutative rings endowed with push-forward maps and
characteristic classes (see §4). Basic examples of such functors are the Chow ring of algebraic
cycles modulo rational equivalence, the Grothendieck group K0, and the algebraic cobordism
of Levine-Morel (see [LM07, §1.1] and [Pan03, §§2.1, 2.5, 3.8] for further examples). The
theory of formal group laws has been used extensively in topology, especially in cobordism
theory and, more generally, for studying topological oriented theories. The link between ori-
ented cohomology and formal group laws is given by the Quillen formula expressing the first
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characteristic class ch1 of a tensor product of two line bundles, ch1(L1⊗L2) = F (ch1(L1), c
h


1(L2))
(see [LM07, Lem. 1.1.3]), where F is the one-dimensional commutative formal group law as-
sociated to h.


In [CPZ], the authors generalized the notions of Demazure operators and push-pull opera-
tors to the context of an arbitrary algebraic oriented cohomology theory h and the associated
formal group law F , e.g. replacing singular cohomology by connective K-theory, elliptic coho-
mology or algebraic cobordism. It is thus natural to ask if one can extend the Kostant-Kumar
construction of the nil Hecke algebra and the convolution construction of the affine Hecke
algebra to the setting of an arbitrary algebraic oriented cohomology theory or formal group
law. In the present paper we provide an affirmative answer to the first question. We also
define algebras that we believe should be related to the more general convolution algebras
of the second question.


Given a formal group law F (corresponding to some algebraic oriented cohomology the-
ory), we introduce the notion of a twisted formal group algebra QF


W . To do this, we replace
the polynomial ring S of [KK86, §4] by the formal group algebra associated to F . We
then define the formal Demazure element to be the expression in QF


W corresponding to the
formal Demazure operator. One of our key objects is the algebra generated by the formal
Demazure elements and the elements of the formal group algebra. We call this the formal
affine Demazure algebra and denote it DF . The subalgebra generated by only the formal
Demazure elements is called the formal Demazure algebra. Next, we “deform” these alge-
bras by introducing an infinite cyclic group. Geometrically, this corresponds to introducing
C∗-actions on the relevant varieties. We call the deformed algebra the formal (affine) Hecke
algebra associated to the formal group law. Specializing to the additive and multiplicative
periodic formal group laws, which correspond to (equivariant) singular cohomology and K-
theory respectively, we recover (completions of) all of the algebras mentioned above. This is
summarized in the following table.


Additive FGL Multiplicative FGL


Alg. Oriented Cohom. Theory (Equiv.) singular cohomology (Equiv.) K-theory
Formal Demazure alg. Nil Hecke alg. 0-Hecke alg.
Formal affine Demazure alg. Affine nil Hecke alg. Affine 0-Hecke alg.
Formal Hecke alg. Group alg. of the Weyl Group Hecke alg.
Formal affine Hecke alg. Degenerate affine Hecke alg. Affine Hecke alg.


Therefore, the algebra DF can be viewed as a deformation space between the generalized
Hecke rings studied by Bressler and Evens. We see that DF shares many properties with
affine Hecke algebras. However, it does not always satisfy the braid relations. In general, the
braid relations are satisfied only up to lower order terms (see Proposition 5.7). This reflects
the fact that formal Demazure operators for a general algebraic oriented cohomology theory
depend on a choice of reduced decomposition of an element of the Weyl goup.


Our construction provides two things. First, it gives a uniform presentation of the funda-
mental algebras appearing in both the push-pull and Steinberg variety constructions. Sec-
ond, it generalizes to other formal groups laws and algebraic oriented cohomology theories,
yielding new algebras in the process. These new algebras should be thought of as natural
generalizations of the Hecke-type algebras appearing in the table above. Given the repre-
sentation theoretic importance of these Hecke-type algebras, we expect the new algebras
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defined here to be of interest to both geometers and representation theorists. For example,
Hecke-type algebras have played crucial roles in the categorification of quantum groups and
related algebras. Thus, it is natural to ask if the generalizations defined in the current paper
can be used as building blocks in more general categorifications.


This paper is organized as follows. In the first four sections we recall basic definitions
and facts used in the rest of the paper. We review the definition of a formal group law and
the exponential map in Section 1. In Section 2, we recall the definition and basic properties
of formal group rings/algebras following [CPZ, §2]. In Section 3, following [CPZ, §3], we
recall the definition and basic properties of formal Demazure operators. Section 4 is devoted
to algebraic oriented cohomology theories. We define the formal (affine) Demazure algebras
and prove various facts about them in Sections 5 and 6. In particular, we describe them
in terms of generators and relations in the case that the root system is simply-laced. We
also show that they are all isomorphic over certain coefficient rings. In Section 7, we define
the formal (affine) Hecke algebras and describe them in terms of generators and relations.
We prove various properties about them in Section 8. In particular, we show that they
are all isomorphic over certain coefficient rings (an analogue of a result of Lusztig ([Lus89,
Thm. 9.3])).


Acknowledgements. The authors would like to thank Sam Evens, Iain Gordon, Anthony
Licata and Erhard Neher for useful discussions.


1. Formal group laws


In the present section we recall the definition and properties of formal group laws (see
[Frö68, Ch. 1, §3, Ch. III, §1] and [LM07, Ch. 1 and 2] for details).


Definition 1.1 (Formal group law). A one-dimensional commutative formal group law
(FGL) is a pair (R,F ), where R is a commutative ring, called the coefficient ring, and
F = F (u, v) ∈ RJu, vK is a power series satisfying the following axioms:


(FG1) F (u, 0) = F (0, u) = u ∈ RJuK,
(FG2) F (u, v) = F (v, u), and
(FG3) F (u, F (v, w)) = F (F (u, v), w) ∈ RJu, v, wK.


Note that axioms (FG1) and (FG2) imply that


(1.1) F (u, v) = u+ v +
∑


i,j≥1 aiju
ivj, where aij = aji ∈ R.


Given an integer m ≥ 1 we use the notation


u+F v := F (u, v), m ·F u := u+F · · ·+F u︸ ︷︷ ︸
m times


, and (−m) ·F u := −F (m ·F u),


where −Fu denotes the formal inverse of u, i.e. the unique power series in RJuK such that
u+F (−Fu) = (−Fu) +F u = 0 (see [Frö68, Ch. 1, §3, Prop. 1]). We define


(1.2) µF (u) :=
−Fu


−u
= 1− a11u+ a211u


2 − (a311 + a12a11 − a22 + 2a13)u
3 + · · ·


(see [LM07, (2.7)]). Note that µF (u) has a multiplicative inverse since its constant term is
invertible.
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Throughout the current paper, whenever a particular FGL is denoted using a subscript
(e.g. FA, FM , FL, FU), we will use the same subscript to denote various quantities associated
to that FGL. Thus, we will write −Au for −FA


u, µL for µFL
, etc.


Example 1.2. (a) For the additive FGL (Z, FA(u, v) = u + v) we have (see [LM07,
Example 1.1.4])


−Au = −u and µA(u) = 1.


(b) For the multiplicative FGL (R,FM(u, v) = u+ v − βuv), β ∈ R, β 6= 0, we have (see
[LM07, Example 1.1.5])


−Mu = −u
∑


i≥0 β
iui and µM(u) =


∑
i≥0 β


iui.


Observe that (1 − βu)µM(u) = 1, so µM(u)−1 = 1 − βu in RJuK. If β ∈ R×, where R×


denotes the group of invertible elements of R, we say that the FGL is multiplicative periodic.
(c) The Lorentz FGL (R,FL) is given by


FL(u, v) =
u+v


1+βuv
= (u+ v)


∑
i≥0(−βuv)


i, β ∈ R, β 6= 0.


We have −Lu = −u and µL(u) = 1. Note that for β = 1/c2, where c is the speed of light,
the expression FL(u, v) corresponds to the addition of relativistic parallel velocities.


(d) Let E be the elliptic curve defined by the Tate model ([Tat74, §3]):


(1.3) E : v = u3 + a1uv + a2u
2v + a3v


2 + a4uv
2 + a6v


3.


Here the coefficient ring is R = Z[a1, a2, a3, a4, a6]. The group law on E induces an elliptic
FGL (R,FE) with


FE(u, v) = u+ v − a1uv − a2(u
2v + uv2)− 2a3(u


3v + uv3) + (a1a2 − 3a3)u
2v2 +O(5)


(see [Lan87, Appendix 1, (3.6)]). We have


−Eu = −u
1−a1u−a3v(u)


, µE(u) =
1


1−a1u−a3v(u)


(see [Sil09, §IV.1,p. 120]), where v(u) is considered as an element in RJuK after a recursive
procedure in the Tate model.


(e) We define the Lazard ring L to be the commutative ring with generators aij , i, j ∈ N+,
and subject to the relations that are forced by the axioms for formal group laws. The
corresponding FGL (L, FU (u, v) = u + v +


∑
i,j≥1 aiju


ivj) is then called the universal FGL


(see [LM07, §1.1]). The series µU(u) is given by (1.2).


Let (R,F ) and (R,F ′) be formal group laws. Amorphism of formal group laws f : (R,F ) →
(R,F ′) is a formal power series f ∈ RJuK such that f(u+F v) = f(u)+F ′ f(v). Given a FGL
F over R, there is an isomorphism of FGLs after tensoring with Q,


eF : (RQ, FA) → (RQ, F ), RQ = R⊗Z Q,


given by the exponential series eF (u) ∈ RQJuK which satisfies the property eF (u + v) =
eF (u) +F eF (v) (see [Frö68, Ch. IV, §1]).


Example 1.3. (a) For a general FGL F (u, v) = u + v + a11uv + a12(u
2v + uv2) + O(4)


we have


eF (u) = u+ a11
2!
u2 +


a211+2a12
3!


u3 +O(4).
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(b) For the multiplicative FGL we have


eM(u) =
∑


i≥1(−β)
i−1 ui


i!
, so that βeM(u) = 1− exp(−βu).


(c) For the Lorentz FGL we have eL(u) =
e2u−1
e2u+1


.
(d) For the elliptic FGL we have


eE(u) = u− a1
2!
u2 +


(
3a21−2(a21+a2)


3!


)
u3 +O(4).


2. Formal group algebras


Following [CPZ, §2], we recall the definition and basic properties of formal group algebras.
These will play a fundamental role in our definition of formal (affine) Demazure and Hecke
algebras.


Definition 2.1 (Formal group algebra). Suppose (R,F ) is a FGL and Λ is an abelian group.
Let R[xΛ] := R[{xλ | λ ∈ Λ}] denote the polynomial ring over R with variables indexed by
Λ. Let ε : R[xΛ] → R be the augmentation homomorphism which maps all xλ, λ ∈ Λ, to
0 and consider the (ker ε)-adic topology on R[xΛ]. We define RJxΛK to be the (ker ε)-adic
completion of the polynomial ring R[xΛ]. In particular, if Λ is finite of order n, then the ring
RJxΛK is the usual ring of power series in n variables.


Let JF be the closure of the ideal generated by the elements x0 and xλ1+λ2 − (xλ1 +F xλ2)
for all λ1, λ2 ∈ Λ. We define the formal group algebra (or formal group ring) to be the
quotient (see [CPZ, Def. 2.4])


RJΛKF := RJxΛK/JF .


The class of xλ in RJΛKF will be denoted by the same letter. By definition, RJΛKF is a
complete Hausdorff R-algebra with respect to the (ker ε)-adic topology, where ε : RJΛKF → R
is the induced augmentation map. We define the augmentation ideal IF := ker ε to be the
kernel of this induced map.


The assignment of the formal group algebra RJΛKF to the data (R,F,Λ) is functorial in
the following ways (see [CPZ, Lem. 2.6]).


(a) Given a morphism f : (R,F ) → (R,F ′) of FGLs, there is an induced continuous
ring homomorphism f ⋆ : RJΛKF ′ → RJΛKF , xλ 7→ f(xλ). If f ′ : (R,F ′) → (R,F ′′) is
another morphism of FGLs, then (f ′f)⋆ = f ⋆(f ′)⋆.


(b) Given a group homomorphism f : Λ → Λ′, there is an induced continuous ring ho-


momorphism f̂ : RJΛKF → RJΛ′KF , xλ 7→ xf(λ). If f ′ : Λ′ → Λ′′ is another group


homomorphism, then f̂ ′f = f̂ ′f̂ .


Note that maps of the type f̂ commute with maps of the type f ⋆.


Example 2.2. The map xm 7→ m ·F x, m ∈ Z, defines R-algebra isomorphisms


RJZKF ∼= RJxK and RJZ/nZKF ∼= RJxK/(n ·F x).


More generally, there is a (non-canonical) R-algebra isomorphism (see [CPZ, Cor. 2.12])


RJZnKF ∼= RJx1, . . . , xnK,


where the right hand side is independent of F . This implies that if R is a domain, then so
is RJZnKF .
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It follows from (1.1) that n ·F x = nx + x2p(x) for some p(x) ∈ RJxK. Thus, if n ∈ R×,
then n ·F x is the product of x and a unit in RJxK, so (x) = (n ·F x) and RJZ/nZKF ∼= R.


Lemma 2.3. Given a FGL (R,F ), we have µF (xλ)
−1 = µF (x−λ), for all λ ∈ Λ.


Proof. This follows immediately from the fact that −Fxλ = x−λ in RJΛKF . �


We now consider what happens at a finite (truncated) level in RJΛKF . Let R[Λ]F de-
note the subalgebra of RJΛKF equal to the image of R[xΛ] under the composition R[xΛ] →֒
RJxΛK ։ RJΛKF . Then RJΛKF is the completion of R[Λ]F at the ideal (ker ε)∩R[Λ]F . As be-
fore, the assignment (R,F,Λ) 7→ R[Λ]F is functorial with respect to group homomorphisms.


Example 2.4. (a) Suppose Λ is a free abelian group. Then for the additive FGL FA(u, v) =
u+ v over R we have ring isomorphisms (cf. [CPZ, Example 2.19])


RJΛKA ∼= S∗
R(Λ)


∧ :=


∞∏


i=0


SiR(Λ) and R[Λ]A ∼= S∗
R(Λ) :=


∞⊕


i=0


SiR(Λ),


where SiR(Λ) is the i-th symmetric power of Λ over R, and the isomorphisms are induced by
sending xλ to λ ∈ S1


R(Λ).
(b) Consider the group ring


R[Λ] :=
{∑


j rje
λj | rj ∈ R, λj ∈ Λ


}
.


Let ε : R[Λ] → R be the augmentation map, i.e. the R-linear map sending all eλ, λ ∈ Λ, to
1. Let R[Λ]∧ be the completion of R[Λ] at ker ε.


Assume that β ∈ R×. Then for the multiplicative periodic FGL FM (u, v) = u + v − βuv
over R, we have R-algebra isomorphisms (cf. [CPZ, Example 2.20])


RJΛKM ∼= R[Λ]∧ and R[Λ]M ∼= R[Λ]


induced by xλ 7→ β−1(1 − e−λ) and eλ 7→ (1− βx−λ) = (1 − βxλ)
−1 respectively. Using this


identification, along with Example 1.2(b) and Lemma 2.3, we obtain


µM(xλ)µM(xλ′) = (1− βx−λ)(1− βx−λ′) = eλ+λ
′


= 1− βx−λ−λ′ = µM(xλ+λ′).


Example 2.5. Fix a generator γ of Z and let t = eγ be the corresponding element in the
group ring R[Z]. According to the previous examples we have R-algebra isomorphisms


RJZKM ∼= R[t, t−1]∧ and RJZKA ∼= RJγK,


where R[t, t−1]∧ denotes the completion of R[t, t−1] at the ideal generated by t − 1. At the
truncated levels, we have


R[Z]M ∼= R[t, t−1] and R[Z]A ∼= R[γ],


given by xnγ 7→ β−1(1 − t−n) (with inverse map given by t 7→ 1 − βx−γ) and xnγ 7→ nγ
respectively.







8 ALEX HOFFNUNG, JOSÉ MALAGÓN LÓPEZ, ALISTAIR SAVAGE, AND KIRILL ZAINOULLINE


3. Formal Demazure operators


In the present section we introduce, following [CPZ, §3], the notion of formal Demazure
operators. We also state some of their properties that will be needed in our constructions.
For the remainder of the paper, we assume that R is a commutative domain.


Consider a reduced root system (Λ,Φ, ̺) as in [Dem73, §1], i.e. a free Z-module Λ of finite
rank (the weight lattice), a finite subset Φ of Λ whose elements are called roots, and a map
̺ : Λ → Λ∨ := HomZ(Λ,Z) associating a coroot α∨ ∈ Λ∨ to every root α, satisfying certain
axioms. The reflection map λ 7→ λ − 〈α∨, λ〉α is denoted by sα. Here 〈·, ·〉 denotes the
natural pairing between Λ∨ and Λ.


The Weyl group W associated to a reduced root system is the subgroup of linear auto-
morphisms of Λ generated by the reflections sα. We fix sets of simple roots {αi}i∈I and
fundamental weights {ωi}i∈I . That is, ωi ∈ Λ∨ satisfies 〈ωi, αj〉 = δij for all i, j ∈ I. Let
{si = sαi


}i∈I denote the corresponding set of simple reflections in W and let ℓ denote the
usual length function on W . We say the root system is simply laced if 〈α∨


i , αj〉 ∈ {0,−1} for
all i, j ∈ I, i 6= j. For instance, the roots systems of type ADE are simply laced.


Fix a FGL (R,F ). Since the Weyl group acts linearly on Λ, it acts by R-algebra auto-
morphisms on RJΛKF via the functoriality in Λ of RJΛKF (see Section 2), i.e. we have


w(xλ) = xw(λ), for all w ∈ W, λ ∈ Λ.


Definition 3.1 (Formal Demazure operator ∆F
α ). By [CPZ, Cor. 3.4], for any ϕ ∈ RJΛKF


and root α ∈ Φ, the element ϕ − sα(ϕ) is uniquely divisible by xα. We define an R-linear
operator ∆F


α on RJΛKF (see [CPZ, Def. 3.5]), called the formal Demazure operator, by


∆F
α (ϕ) :=


ϕ−sα(ϕ)
xα


, ϕ ∈ RJΛKF .


Observe that if F is the additive or multiplicative FGL, then ∆F
α is the classical Demazure


operator of [Dem73, §3 and §9]. We will often omit the superscript F when the FGL is
understood.


Definition 3.2 (gF , κFα and CF
α ). Consider the power series gF (u, v) defined by u +F v =


u+ v − uvgF (u, v) and, for α ∈ Φ, let


κFα := gF (xα, x−α) =
1
xα


+ 1
x−α


∈ RJΛKF .


We define an R-linear operator CF
α on RJΛKF (see [CPZ, Def. 3.11]) by


CF
α (ϕ) := κFαϕ−∆F


α (ϕ), ϕ ∈ RJΛKF .


We will often omit the superscript F when the FGL is understood.


Lemma 3.3. The following statements are equivalent.


(a) F (u, v) = (u+ v)h(u, v) for some h(u, v) ∈ RJu, vK.
(b) κFα = 0 for all α ∈ Φ.
(c) κFα = 0 for some α ∈ Φ.
(d) µF (u) = 1.


If these equivalent conditions are satisfied, we write κF = 0. If they are not satisfied, we
write κF 6= 0.
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Proof. First suppose that F (u, v) = (u+ v)h(u, v) for some h(u, v) ∈ RJu, vK. Then, for any
α ∈ Φ, we have F (xα,−xα) = 0. By the uniqueness of the formal inverse, this implies that
x−α = −Fxα = −xα. Thus κ


F
α = 0 and so (a) implies (b). Clearly (b) implies (c).


Now suppose that κFα = 0 for some α ∈ Φ. Then xα ∈ IF \ {0} and F (xα,−xα) = 0 in
RJΛKF . By the definition of a FGL, we have


F (xα,−xα) = x2α
∑


i,j≥1(−1)jaijx
i+j−2
α = x2α


∑
n≥0 bnx


n
α ∈ I2


F ,


where bn =
∑


i+j=n+2(−1)jaij .


We claim that bn = 0 for all n ≥ 0. Indeed, let n0 be the smallest n such that bn0 6= 0. Then


0 = F (xα,−xα) = x2α
∑


n≥n0
bnx


n
α = x2+n0


α


∑
n≥n0


bnx
n−n0
α .


Since xα 6= 0 (this follows from [CPZ, Lem. 4.2]) and RJΛKF is a domain, we have
∑


n≥0 bnx
n−n0
α = 0.


Applying the augmentation map, we obtain bn0 = 0, contradicting our choice of n0.
Now let Fi(u, v) be the i-th homogeneous component of F , i ≥ 2. Since Fi(u,−u) =


bi−2u
i = 0, Fi(u, v) is divisible by (u+v) for every i ≥ 2. Since the homogeneous components


of degree zero and one for any FGL are 0 and u+v, this implies that F (u, v) = (u+v)h(u, v)
for some h(u, v) ∈ RJu, vK. Thus (c) implies (a).


Now, if µF (u) = 1, then −xα = −Fxα = x−α and so κFα = 0 for all α ∈ Φ. Thus (d)
implies (b).


Finally, if F (u, v) = (u + v)h(u, v) for some h(u, v) ∈ RJu, vK, then −Fu = −u by the
uniqueness of the formal inverse (as above). Thus µF (u) = 1. Hence (a) implies (d). �


As in the case of the usual Demazure operators, the operators ∆F
α and CF


α satisfy Leibniz-
type properties (see [CPZ, Props. 3.8 and 3.12]).


4. Algebraic oriented cohomology theories and characteristic maps


We now recall several facts concerning algebraic oriented cohomology theories. We refer
the reader to [LM07] and [Pan03] for further details and examples.


An algebraic oriented cohomology theory (AOCT) is a contravariant functor h from the
category of smooth projective varieties over a field k to the category of commutative unital
rings which satisfies certain properties (see [LM07, §1.1]). Given a morphism f : X → Y
of varieties, the map h(f) will be denoted f ∗ and called the pullback of f . One of the
characterizing properties of h is that, for any proper map f : X → Y , there is an induced map
f∗ : h(X) → h(Y ) of h(Y )-modules called the push-forward (here h(X) is an h(Y )-module
via f ∗). A morphism of AOCTs is a natural transformation of functors that also commutes
with push-forwards. Basic examples of AOCTs are Chow groups CH and Grothendieck’s K0


(see [Pan03, §§2.1, 2.5, 3.8] for further examples).
The connection between algebraic oriented cohomology theories and FGLs is as follows.


Given two line bundles L1 and L2 over X , we have (see [LM07, Lem. 1.1.3])


ch1(L1 ⊗ L2) = ch1(L1) +F c
h


1(L2),


where ch1 is the first characteristic class with values in h and F is a one-dimensional commu-
tative FGL over the coefficient ring R = h(Spec k) associated to h.
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There is an AOCT Ω defined over a field of characteristic zero, called algebraic cobordism
(see [LM07, §1.2]), that is universal in the following sense: Given any AOCT h there is a
unique morphism Ω → h of AOCTs. The FGL associated to Ω is the universal FGL FU .


Moreover, given a FGL F over a ring R together with a morphism L → R, we define a
functor X 7→ h(X) := Ω(X) ⊗L R. If F satisfies certain conditions, the functor h gives an
AOCT.


Example 4.1. In the above terms, the additive FGL corresponds to the theory of Chow
groups. The multiplicative periodic FGL with β ∈ R× corresponds to Grothendieck’s K0.
The multiplicative FGL with β /∈ R× corresponds to connective K-theory.


Let G be a split simple simply connected linear algebraic group over a field k corresponding
to the root system (Λ,Φ, ̺). Fix a split maximal torus T and a Borel subgroup B so that
T ⊆ B ⊆ G. Let G/B be the variety of Borel subgroups of G and let F be the FGL over
R associated to an AOCT h satisfying the assumptions of [CPZ, Thm. 13.12]. Consider the
formal group algebra RJΛKF . Then there is a ring homomorphism, called the characteristic
map (see [CPZ, §6]),


cF : RJΛKF → h(G/B), xλ 7→ ch1(L(λ)),


where L(λ) is the line bundle associated to λ ∈ Λ. Note that this map is neither injective nor
surjective in general. Its kernel contains the ideal generated by W -invariant elements, and
h(G/B) modulo the ideal generated by the image of cF is isomorphic to h(G) (see [GZ12,
Prop. 5.1]).


Example 4.2. (a) The characteristic map for the theory of Chow groups, i.e. correspond-
ing to the additive FGL, is given by


cA : ZJΛKA → CH(G/B), xλ 7→ c1 (L(λ)) ,


which recovers the usual characteristic map for Chow groups (see [Dem74, §1.5]).
(b) The characteristic map for Grothendieck’s K0, i.e. corresponding to the multiplicative


periodic FGL, is given by


cM : ZJΛKM → K0(G/B), xλ 7→ 1− [L(λ)∨].


Restricting to the integral group ring Z[Λ] and using the identification of Example 2.4(b),
we recover the usual characteristic map for K0 ([Dem74, §1.6]) which maps eλ to [L(λ)].


(c) Algebraic cobordism Ω defined over a field of characteristic 0 satisfies the assumptions
of [CPZ, Thm.13.12]. Therefore, we have the characteristic map


cU : LJΛKU → Ω(G/B), xλ 7→ cΩ1 (L(λ)).


Let G/Pi be the projective homogeneous variety, where Pi is the minimal parabolic sub-
group of G corresponding to the simple root αi, i ∈ I. Then


p : G/B = PG/Pi
(1⊕ L(ωi)) → G/Pi


is the projective bundle associated to the vector bundle 1⊕L(ωi), there 1 denotes the trivial
bundle of rank one (see, for example, [CPZ, §10.3]). Then the operators CF


α introduced in
Definition 3.2 have the following geometric interpretation in terms of push-pull operators
(generalizing [PR99, Prop.]).
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Proposition 4.3 ([CPZ, Prop. 10.10(4)]). We have


p∗p∗(cF (χ)) = cF (C
F
α (χ)), for all χ ∈ RJΛKF .


5. Formal (affine) Demazure algebras: definitions


In the present section we introduce the notion of a twisted formal group algebra and a
particular subalgebra, called the formal (affine) Demazure algebra, which is one of our main
objects of interest. Our method is inspired by the approach of [KK86, §4.1].


Definition 5.1 (Twisted formal group algebra). LetQF = Q(R,F ) denote the field of fractions
of RJΛKF . The action of the Weyl groupW on RJΛKF induces an action by automorphisms on
QF . We define the twisted formal group algebra to be the smash product QF


W := R[W ]⋉RQ
F .


(This is sometimes denoted by R[W ]#QF .) In other words, QF
W is equal to R[W ]⊗R Q


F as
an R-module, with multiplication given by


(δw′ψ′)(δwψ) = δw′ww
−1(ψ′)ψ for all w,w′ ∈ W, ψ, ψ′ ∈ QF


(extended by linearity), where δw denotes the element in R[W ] corresponding to w (so we
have δw′δw = δw′w for w,w′ ∈ W ).


Observe that QF
W is a free right QF -module (via right multiplication) with basis {δw}w∈W .


Note that QF
W is not a QF -algebra (but only an R-algebra) since δeQ


F = QF δe is not central
in QF


W . We denote δe (the unit element of QF
W ) by 1.


Definition 5.2 (Formal Demazure element). For each root α ∈ Φ, we define the correspond-
ing formal Demazure element


∆F
α := 1


xα
(1− δsα) =


1
xα


− δsα
1


x−α
∈ QF


W


(cf. [KK86, (I24)]). We will omit the superscript F when the FGL is clear from the context.


We can now define our first main objects of study.


Definition 5.3 (Formal (affine) Demazure algebra). The formal Demazure algebra DF is
the R-subalgebra of QF


W generated by the formal Demazure elements ∆F
i . The formal affine


Demazure algebra DF is the R-subalgebra of QF
W generated by DF and RJΛKF . When we


wish to specify the coefficient ring, we write DR,F (resp. DR,F ) for DF (resp. DF ).


Remark 5.4. Suppose h is an algebraic oriented cohomology theory satisfying the assump-
tions of [CPZ, Thm. 13.12] and with FGL F (see Section 4). By Proposition 4.3, we see
that, under the characteristic map cF , the affine Demazure algebra DF corresponds to the
algebra of operators on h(G/B) generated by left multiplication (by elements of h(G/B))
and the push-pull operators p∗p∗.


Lemma 5.5 (cf. [KK86, Prop. 4.2]). For all ψ ∈ Q and α ∈ Φ, we have


ψ∆α = ∆αsα(ψ) + ∆α(ψ),


where ∆α(ψ) = ψ−sα(ψ)
xα


∈ Q is the formal Demazure operator applied to ψ (see Defini-


tion 3.1).


Proof. We have


ψ∆α = ψ
(


1
xα


− δsα
1


x−α


)
= ψ−sα(ψ)


xα
+
(


1
xα


− δsα
1


x−α


)
sα(ψ) = ∆α(ψ) +∆αsα(ψ). �
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Proceeding from Lemma 5.5 by induction, we obtain the following general formula (cf.
[KK86, (I26)])


ψ∆β1∆β2 · · ·∆βs =
∑


(1≤i1<···<ir≤s)


∆βi1
∆βi2


· · ·∆βirφ(i1, . . . , ir),


where β1, β2, . . . , βs ∈ Φ are roots and φ(i1, . . . , ir) ∈ QF is defined to be the composition
∆βs ◦∆βs−1 ◦ · · · ◦ ∆β1 applied to ψ, where the Demazure operators at the places i1, . . . , ir
are replaced by the respective reflections.


Recall the elements κα, α ∈ Φ, from Definition 3.2. It is easy to verify that καδsα = δsακα,
κα∆α = ∆ακα, and


(5.1) ∆2
α = ∆ακα.


Example 5.6. (a) For the additive and Lorentz FGLs we obtain the nilpotence relation
∆2
α = 0 since κAα = κLα = 0.


(b) For the multiplicative FGL we obtain the relation ∆2
α = β∆α, since κ


M
α = β. In


particular, if β = 1 we obtain the idempotence relation ∆2
α = ∆α.


(c) For the elliptic FGL we have, in the notation of Example 1.2(d),


∆2
α = a1xα+a3v(xα)


xα
∆α.


For example, if a3 = 0, then ∆2
α = a1∆α.


To simplify notation in what follows, for i, j, i1, . . . , ik ∈ I, we set


(5.2) x±i = x±αi
, x±i±j = x±αi±αj


, δi1i2...ik = δsi1si2 ···sik , ∆i = ∆αi
, κi = καi


.


Furthermore, when we write an expression such as δw
ϕ


for w ∈ W , ϕ ∈ RJΛKF , we interpret


this as being equal to δw
1
ϕ
. That is, we consider the numerators of rational expressions to


be to the left of their denominators.


Proposition 5.7. Suppose i, j ∈ I and let mij be the order of sisj in W . Then


(5.3) ∆j∆i∆j · · ·︸ ︷︷ ︸
mij terms


−∆i∆j∆i · · ·︸ ︷︷ ︸
mij terms


=
∑


w∈W,ℓ(w)<mij


∆wη
w
ij


for some ηwij ∈ QF . In particular, we have the following:


(a) If 〈αi, αj〉 = 0, so that mij = 2, then ∆i∆j = ∆j∆i.
(b) If 〈αi, αj〉 = −1, so that mij = 3, then


∆j∆i∆j −∆i∆j∆i = ∆iκij −∆jκji,


where


(5.4) κij =
1


xi+j


(
1
xj


− 1
x−i


)
− 1


xixj
∈ RJΛKF .


Proof. We have


∆j∆i∆j · · ·︸ ︷︷ ︸
mij terms


= 1
xj
(1− δj)


1
xi
(1− δi)


1
xj
(1− δj) · · · .
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Since the δw, w ∈ W , form a basis of QW as a right Q-module, this can be written as a sum
of (right) Q-multiplies of δw. The leading term (with respect to the length of w) is


(−1)mijδsjsisj · · · snsk︸ ︷︷ ︸
mij terms


(x−sksn · · · sjsi︸ ︷︷ ︸
mij−1 terms


(αj ) · · ·x−sk(αn)x−αk
)−1,


where n = i and k = j (resp. n = j and k = i) if mij is odd (resp. even). Now, by [Bou81,
Cor. 2 de la Prop. 17],


αk, sk(αn), . . . , sksn · · · sjsi︸ ︷︷ ︸
mij−1 terms


(αj)


are precisely the positive roots mapped to negative roots by δsjsisj ··· (mij reflections in the
subscript). Since δsjsisj ··· = δsisjsi (mij reflections in each subscript), we see that the highest
order terms in ∆j∆i∆j · · · −∆i∆j∆i · · · cancel, proving the first part of the proposition.


Under the assumptions of (a), we have si(αj) = αj and


∆i∆j =
(


1
xi
− δi


x−i


)(
1
xj


−
δj
x−j


)
= 1


xixj
− δi


x−ixj
− 1


xi


δj
x−j


+ δi
x−i


δj
x−j


= 1
xixj


− δi
x−ixj


−
δj


xix−j
+


δij
x−ix−j


.


Since the final expression is symmetric in i and j, we have ∆i∆j = ∆j∆i.
It remains to prove (b). We have si(αj) = sj(αi) = αi + αj and sisj(αi) = αj . Thus


∆j∆i∆j =
(


1
xj


−
δj
x−j


)(
1
xi
− δi


x−i


)(
1
xj


−
δj
x−j


)


= 1
xix2j


− 1
xjxi


δj
x−j


− 1
xj


δi
x−ixj


−
δj


x−jxixj
+ 1


xj


δi
x−i


δj
x−j


+
δj


x−jxi


δj
x−j


+
δj
x−j


δi
x−ixj


−
δj
x−j


δi
x−i


δj
x−j


= 1
xix2j


−
δj


xi+jx2−j


− δi
xi+jx−ixj


−
δj


x−jxixj
+


δij
xix−i−jx−j


+ 1
xi+jx−jxj


+
δji


x−i−jx−ixj
−


δjij
x−i−jx−ix−j


= ∆j


(
1


xixj
+ 1


xi+jx−j


)
+∆i


1
xi+jxj


+
δij


xix−i−jx−j
+


δji
x−i−jx−ixj


−
δjij


x−i−jx−ix−j
− 1


xixi+jxj
.


Using the fact that sisjsi = sjsisj , we obtain


(5.5) ∆j∆i∆j −∆i∆j∆i = ∆i


(
1


xi+jxj
− 1


xi+jx−i
− 1


xixj


)
−∆j


(
1


xi+jxi
− 1


xi+jx−j
− 1


xixj


)
.


It remains to prove that κij ∈ RJΛKF . We have


g(xi+j , x−i) =
xi+j+x−i−xj
xi+jx−i


= 1
x−i


+ 1
xi+j


−
xj


xi+jx−i
∈ RJΛKF .


and, hence,


κij =
g(xi+j ,x−i)−g(xi,x−i)


xj
,


where g(xi, x−i) = 1
xi


+ 1
x−i


∈ RJΛKF . Therefore, it suffices to show that g(xi+j, x−i) −


g(xi, x−i) is divisible by xj . The latter follows (taking u1 = xi, u2 = xj and v = x−i) from
the congruence u1 +F u2 ≡ u1 (mod u2), which implies that g(u1 +F u2, v) ≡ g(u1, v) (mod
u2). �


Remark 5.8. Note that
κij =


xi(x−i−xj)−xi+jx−i


xix−ixjxi+j
.


By [BE90, p. 809], the numerator of the above expression equals zero if and only if F (u, v) =
u+ v + a11uv for some a11 ∈ R (i.e. if and only if F is the additive or multiplicative FGL).
Therefore, contrary to the situation for the additive and multiplicative FGLs, the formal
Demazure elements do not satisfy the braid relations in general (cf. [BE90, Thm. 3.7]).
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Remark 5.9. Observe that the key difference between our setting and the setting of [BE90]
is that we deal with algebraic theories for which the groups h(BT ) and their properties,
which are used extensively in [BE90], are not well-defined or remain unknown. Instead,
we rely on the formal group algebra RJΛKF (as a replacement for h(BT )) and techniques
introduced in [CPZ].


For each w ∈ W , fix a reduced decomposition w = si1 · · · sik and set


(5.6) ∆w = ∆i1 · · ·∆ik .


Note that, in general, ∆w depends on the choice of reduced decomposition.


Definition 5.10 (R̃ and RJΛK∼F ). Let R̃ be the subalgebra of QF defined by


(5.7) R̃ := R[W ] ·R[ηwij | i, j ∈ I, w ∈ W, ℓ(w) < mij ],


where R[W ]· denotes the natural action of the group algebra R[W ] of W on QF . Similarly,
define


(5.8) RJΛK∼F := R[W ] · RJΛKF [η
w
ij | i, j ∈ I, w ∈ W, ℓ(w) < mij ].


Note that RJΛK∼F = RJΛKF if the root system is simply laced (since κij ∈ RJΛKF ).


The following lemma is an easy generalization of [KK86, Thm. 4.6] (which considers the
case of the additive FGL).


Lemma 5.11. The set {∆w | w ∈ W} forms a basis of DF⊗R R̃ as a right (or left) R̃-module
and a basis of DF ⊗RJΛKF RJΛK∼F as a right (or left) RJΛK∼F -module.


Proof. Since R is a domain, so are R̃ and RJΛK∼F . By (5.1) and Proposition 5.7, we can write
any product of formal Demazure elements as a R̃-linear combination of the elements ∆w,
w ∈ W . Combined with Lemma 5.5, we can write any product of formal Demazure elements
and elements of RJΛK∼F as an RJΛK∼F -linear combination of the elements ∆w, w ∈ W . Thus
{∆w | w ∈ W} is a spanning set of the modules in the statement of the lemma. Now, it is
easy to see from the definition of the formal Demazure elements (Definition 5.2) that, for all
w ∈ W ,


∆w =
∑


v : ℓ(v)≤ℓ(w) δvaw,


where the sum is over elements v ∈ W with length less than or equal to the length of w,
av ∈ QF for all v, and aw 6= 0. Thus, since {δw | w ∈ W} is a basis for QF


W as a right (or
left) QF -module, we see that {∆w | w ∈ W} is also a basis for this module. In particular,
the set {∆w | w ∈ W} is linearly independent over QF and hence over R̃ or RJΛK∼F . �


Theorem 5.12. Given a formal group law (R,F ), the formal affine Demazure algebra DF


is generated as an R-algebra by RJΛKF and the formal Demazure elements ∆i, i ∈ I, and
satisfies the following relations:


(a) ϕ∆i = ∆isi(ϕ) + ∆αi
(ϕ) for all i ∈ I and ϕ ∈ RJΛKF ;


(b) ∆2
i = ∆iκi for all i ∈ I, where κi =


1
xi
+ 1


x−i
∈ RJΛKF ;


(c) ∆i∆j = ∆j∆i for all i, j ∈ I such that
〈
αi, α


∨
j


〉
= 0;
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(d) ∆j∆i∆j −∆i∆j∆i = ∆iκij −∆jκji for all i, j ∈ I such that
〈
αi, α


∨
j


〉
= −1, where


κij =
1


xi+j


(
1
xj


− 1
x−i


)
− 1


xixj
∈ RJΛKF


(note that, in general, κij 6= κji);
(e) relation (5.3) for all i, j ∈ I such that 〈αi, α


∨
j 〉 ≤ −2.


Furthermore, if the root system is simply laced, then (a)–(d) form a complete set of relations.
In arbitrary type, (a)–(e) form a complete set of relations (over RJΛK∼F ) for DF⊗RJΛKF RJΛK∼F .


Proof. The first part of the theorem follows immediately from (5.1), Lemma 5.5 and Propo-
sition 5.7.


Since R is a domain, so is RJΛK∼F . Let D̃F be the R-algebra generated by RJΛJ∼F and
elements ∆′


i, i ∈ I, subject to the relations given in the theorem. Then we have a surjective


ring homomorphism ρ : D̃F → DF ⊗RJΛKF RJΛJ∼F which is the identity on RJΛJ∼F and maps
∆′
i to ∆i. We wish to show that this map is an isomorphism.
For w ∈ W , define ∆′


w as in (5.6). The relations among the ∆′
w allow us to write any


element of D̃F in the form ∑
w∈W ∆′


waw, aw ∈ RJΛJ∼F .


Suppose such an element is in the kernel of ρ. Then


0 = ρ
(∑


w∈W ∆′
waw


)
=


∑
w∈W ∆waw.


By Lemma 5.11, this implies that aw = 0 for all w. Thus ρ is injective and hence an
isomorphism. This completes the proof of the proposition once we recall thatRJΛJ∼F


∼= RJΛKF
in simply laced type. �


6. Formal (affine) Demazure algebras: examples and further properties


In this section we specialize the definition of the formal (affine) Demazure algebra to
various FGLs. We then prove several important facts about these algebras in general. The
first proposition demonstrates that our definition recovers classical objects in the additive
and multiplicative cases.


Proposition 6.1. (a) For the additive FGL over R = Z, the formal affine Demazure
algebra DA is isomorphic to the completion of the nil Hecke ring of [KK86, Def. 4.12].
In this case, all the relations among the ∆i are given by the braid relations and the
nilpotence relations ∆2


i = 0 (even in non-simply laced type).
(b) For the additive FGL over R = C, the formal Demazure algebra DA is isomorphic to


the nil-Hecke ring of [EB87, Def. 3].
(c) For the multiplicative FGL over R = C with β = 1, the formal Demazure algebra


DM is the completion of the 0-Hecke algebra, which is the classical Hecke algebra
specialized at q = 0. In this case all the relations among the ∆i are given by the braid
relations and the idempotence relations (even in non-simply laced type).


Proof. For the additive FGL over R = Z, Q is the field of fractions of the ring S∗(Λ)∧ ∼=
RJΛKA and ∆i is the −xi of [KK86, (I24)]. This proves part (a). Similarly, if R = C, then
our ∆i corresponds to the Xi of [EB87], proving part (b).
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For the multiplicative FGL over R = C with β = 1, we have that Q is the field of fractions
of C[Λ]∧ and −∆αi


is the Bi of [EB87, §2] if we identify the simple root αi of [EB87] with
our −αi. This proves part (c). �


We now consider some other FGLs, where our definition gives new algebras.


Example 6.2 (Lorentz affine Demazure algebra). Consider the Lorentz FGL (R,FL). Then
xi+j =


xi+xj
1+βxixj


, β ∈ R. Since x−λ = −xλ for all λ ∈ Λ, we have


(6.1) κij =
1+βxixj
xi+xj


·
xi+xj
xixj


− 1
xixj


= β


for i, j ∈ I with 〈αi, αj〉 = −1. Therefore, relation (d) of Theorem 5.12 becomes


∆j∆i∆j −∆i∆j∆i = β(∆i −∆j) for all i, j such that 〈αi, αj〉 = −1.


Example 6.3 (Elliptic affine Demazure algebra). Consider the elliptic FGL (R,FE). Set
µi = µE(xi) and g


E
ij = gE(xi, xj). Then, for i, j ∈ I with 〈αi, αj〉 = −1, we have


κij =
xi(x−i−xj)−xi+jx−i


xix−ixjxi+j
=


x−i−xj+xi+jµi
x−ixjxi+j


=
x−i−xj+µi(xi+xj−xixjg


E
ij)


x−ixjxi+j
=


−xj+µixj−µixixjg
E
ij


x−ixjxi+j


=
µi−1−µixigEij
x−ixi+j


=
µ−1
−i−1−µixigEij
x−ixi+j


=
−a1x−i−a3v(x−i)+x−igEij


xi+jx−i
=


gEij−a1


xi+j
− a3v(x−i)


xi+jx−i
.


Theorem 6.4. For any two formal group laws (R,F ) and (R,F ′) over the same ring R, we
have DRQ,F


∼= DRQ,F ′ as algebras, where RQ = R ⊗Z Q.


Proof. It suffices to prove the result for the special case where F ′ = FA. There is an
isomorphism of FGLs


eF : (RQ, FA) → (RQ, F )


given by the exponential series eF (u) ∈ RQJuK (see Section 1). This induces an isomorphism
of formal group algebras


e⋆F : RQJΛKF → RQJΛKA.


This map commutes with the action of W and thus we have an induced isomorphism of
twisted formal group algebras


e⋆F : Q
(RQ,F )
W → Q


(RQ,A)
W .


ThusDRQ,F is isomorphic to its imageD′ := e⋆F (DRQ,F ) under this map. Now, D′ is generated
over RQJΛKA by the elements


e⋆F (∆
F
i ) =


1
eF (xi)


(1− δi) =
xi


eF (xi)
∆A
i , i ∈ I.


Since eF (xi)/xi ∈ RQJΛKA is invertible in RQJΛKA (because its constant term is invertible
in RQ – see Example 1.3(a)), D′ is also generated over RQJΛKA by ∆A


i , i ∈ I, and thus
isomorphic to DRQ,A. �


Remark 6.5. Note that while Theorem 6.4 shows that all affine Demazure algebras are
isomorphic when the coefficient ring is RQ, the isomorphism is not the naive one sending ∆F


i


to ∆F ′


i . Furthermore, the completion (with respect to the augmentation map) is crucial. No
assertion is made regarding an isomorphism (even over RQ) of truncated versions.
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7. Formal (affine) Hecke algebras: definitions


In the present section we define deformed versions of the formal (affine) Demazure al-
gebras. Our goal is to construct generalizations of the usual (affine) Hecke algebra and its
degenerate analogue. These two examples correspond to the multiplicative periodic and ad-
ditive FGL cases of our more general construction. We begin by reminding the reader of the
definition of these classical objects.


Definition 7.1 (Hecke algebra). The (classical) Hecke algebra H associated to the Weyl
groupW is the Z[t, t−1]-algebra with 1 generated (as a Z[t, t−1]-algebra) by elements Ti := Tsi,
i ∈ I, modulo


(a) the quadratic relations (Ti + t−1)(Ti − t) = 0 for all i ∈ I, and
(b) the braid relations TiTjTi · · · = TjTiTj · · · (mij factors in both products) for any i 6= j


in I with sisj of order mij in W .


Definition 7.2 (Affine Hecke algebra). The (classical) affine Hecke algebra H is H ⊗Z[t,t−1]


Z[t, t−1][Λ], where the factors H and Z[t, t−1][Λ] are subalgebras and the relations between
the two factors are given by


eλTi − Tie
si(λ) = (t− t−1) e


λ−esi(λ)


1−e−αi
, λ ∈ Λ, i ∈ I.


Remark 7.3. In Defintions 7.1 and 7.2, we have followed the conventions found, for instance,
in [CMHL02, pp. 71–72] (except that we use t in place of v and Ti in place of T̃i). These
conventions differ somewhat from those found in other places in the literature. For instance,
H as defined above is isomorphic to H ′ ⊗Z[q,q−1] Z[q


1/2, q−1/2], where H ′ is the Hecke algebra
as defined in [Hum90, §7.4] or [CG10, Def. 7.1.1]. The Tsi appearing in [Hum90, CG10]
correspond to tTsi in our notation, where t corresponds to q1/2.


Definition 7.4 (Degenerate affine Hecke algebra). Let ǫ be an indeterminate. The degen-
erate affine Hecke algebra Hdeg is the unital associative Z[ǫ]-algebra that is Z[W ]⊗Z S


∗
Z[ǫ](Λ)


as a Z[ǫ]-module and such that the subspaces Z[W ] and S∗
Z[ǫ](Λ) are subalgebras and the


following relations hold:


δiλ− si(λ)δi = −ǫ〈α∨
i , λ〉, i ∈ I, λ ∈ Λ.


Fix a free abelian group Γ of rank 1 with generator γ. Denote by RF the formal group
algebra RJΓKF . For instance, ZM ∼= Z[t, t−1]∧ and ZA ∼= ZJγK (see Example 2.5). Let
Q′ := Q(RF ,F ) denote the fraction field of RF JΛKF and let Q′


W
∼= RF [W ] ⋉R Q


′ be the
respective twisted formal group algebra over RF (see Definition 5.1). We will continue to
use the shorthand (5.2). We are now ready to define our second main objects of study.


Definition 7.5 (Formal (affine) Hecke algebra). The formal Hecke algebra HF is the RF -
subalgebra of Q′


W generated by the elements


(7.1) T Fi :=


{
∆F
i


ΘF


κFi
+ δiµF (xγ) if κF 6= 0,


2∆F
i xγ + δi if κF = 0,
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for all i ∈ I, where ΘF := µF (xγ) − µF (x−γ) ∈ RF . The formal affine Hecke algebra HF is
the RF -subalgebra of Q′


W generated by HF and


RF JΛKκF :=


{
RF JΛKF [(κ


F
α )


−1 | α ∈ Φ] if κF 6= 0,


RF JΛKF if κF = 0.


We sometimes write Ti when the FGL is understood from the context. When we wish to
specify the coefficient ring, we write HR,F (resp. HR,F ) for HF (resp. HF ).


Remark 7.6. (a) If a11 (in the notation of (1.1)) is invertible in R, then κFα is invertible
in RF JΛKF for all α ∈ Φ. Thus, RF JΛKκF = RF JΛKF .


(b) The coefficients ΘF


κi
, µF (xγ), and xγ−x−γ appearing in Definition 7.5 are all invariant


under the action of si.
(c) In the multiplicative case we have


ΘF


κi
=


β(xγ−x−γ)


β
= xγ − x−γ .


Since the additive FGL is the β → 0 limit of the multiplicative, this motivates the
choice of coefficient of ∆F


i in the case κF = 0. More generally, one can show that
when ΘF


κFi
is expanded as a power series in xi and xγ, the leading term is equal to 2xγ .


Similarly, when κF = 0, we have x−γ = −xγ and so µF (xγ) = 1, the coefficient of δi.


Lemma 7.7. For all ψ ∈ Q′ and i ∈ I, we have


(7.2) ψTi − Tisi(ψ) =


{
ΘF


κi
∆F
αi
(ψ) if κF 6= 0,


2xγ∆
F
αi
(ψ) if κF = 0.


In particular, ϕTi − Tisi(ϕ) ∈ RF JΛKκF for all ϕ ∈ RF JΛKκF .


Proof. Let a and b be the coefficients of ∆i and δi in (7.1), so that Ti = ∆ia + δib. By
Lemma 5.5, we have


ψTi = ψ(∆ia+ δsib) = (∆isi(ψ) + ∆αi
(ψ))a+ δsisi(ψ)b = Tisi(ψ) + a∆αi


(ψ).


The last statement is an easy verification left to the reader. �


Lemma 7.8. The elements Ti, i ∈ I, satisfy the quadratic relation


(7.3) T 2
i = TiΘF + 1.


Thus Ti is invertible and T−1
i = Ti −ΘF . Furthermore


(7.4) (Ti + µF (x−γ))(Ti − µF (xγ)) = 0.


Proof. Let a and b be the coefficients of ∆i and δi in (7.1), so that Ti = ∆ia+δib. Using (5.1)
and the fact that ∆iδi + δi∆i = (δi − 1)κFi , we have


T 2
i = ∆2


ia
2 + (∆iδi + δi∆i)ab+ b2 = ∆iκ


F
i a


2 + (δi − 1)κFi ab+ b2 = Ti(κ
F
i a) + b(b− κFi a).


One readily verifies that in both cases in (7.1), we have κFi a = ΘF and b(b − κFi a) = 1,
completing the proof of the first statement in the lemma. The second two statements follow
easily. �
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Remark 7.9. Because of (7.4) and the fact that µF (x−γ) = µF (xγ)
−1, one may think of the


power series µF (xγ) as a generalization of the deformation parameter t of the classical Hecke
algebra (see Definition 7.1(a)).


Proposition 7.10. Suppose i, j ∈ I and let mij be the order of sisj in W . Then


(7.5) TjTiTj · · ·︸ ︷︷ ︸
mij terms


−TiTjTi · · ·︸ ︷︷ ︸
mij terms


=
∑


w∈W,ℓ(w)<mij


Twτ
w
ij


for some τwij ∈ Q′. In particular, we have the following.


(a) If 〈αi, αj〉 = 0, so that mij = 2, then TiTj = TjTi.
(b) If 〈αi, αj〉 = −1, so that mij = 3, then


(7.6) TjTiTj − TiTjTi = (Ti − Tj)σij , σij = χi+j(χj − χ−i)− χiχj,


where


χα =


{
ΘF


xακα
if κF 6= 0,


2xγ
xα


if κF = 0,
α ∈ Φ.


(We use the usual convention that χ±i = χ±αi
and χ±i±j = χ±αi±αj


.) Moreover,


σij = σji commutes with δi and δj (and hence with Ti and Tj). If κF = 0, then
σij = 4x2γκij ∈ RF JΛKF .


Proof. Set µ = µF (xγ). (Thus µ = 1 iff κF = 0 by Lemma 3.3.) In both cases (i.e. κF 6= 0
or κF = 0), we have Tj = χj + (µ− χj)δj. Now


TjTiTj · · ·︸ ︷︷ ︸
mij terms


= (χj + (µ− χj)δj)(χi + (µ− χi)δi)(χj + (µ− χj)δj) · · · .


Since the δw, w ∈ W , form a basis of Q′
W as a right Q′-module, this can be written as a sum


of (right) Q′-multiplies of δw. The leading term (with respect to the length of w) is


δsjsisj · · · snsk︸ ︷︷ ︸
mij terms


(µ− χ−sksn · · · sjsi︸ ︷︷ ︸
mij−1 terms


(αj)) · · · (µ− χ−sk(αn))(µ− χ−αk
),


where n = i and k = j (resp. n = j and k = i) if mij is odd (resp. even). As in the proof of
Proposition 5.7, we see that the highest order terms in TjTiTj · · ·−TiTjTi · · · cancel, proving
the first part of the proposition.


Part (a) follows immediately from Proposition 5.7(a) and the facts that, under the as-
sumptions, δiδj = δjδi, ∆iδj = δj∆i, and ∆jδi = δi∆j.


It remains to prove (b). We have


TjTiTj =
(
χj + (µ− χj)δj


)(
χi + (µ− χi)δi


)(
χj + (µ− χj)δj


)


= χiχ
2
j + (µ− χj)(µ− χ−j)χi+j +


(
(µ− χj)χi+jχ−j + (µ− χj)χiχj


)
δj


+ (µ− χi)χjχi+jδi + (µ− χj)(µ− χi+j)χiδjδi + (µ− χi)(µ− χi+j)χjδiδj


+ (µ− χj)(µ− χi)(µ− χi+j)δjδiδj.
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Using the fact that δjδiδj = δjδiδj , we see that


TjTiTj − TiTjTi = χiχ
2
j − χ2


iχj + (µ− χj)(µ− χ−j)χi+j − (µ− χi)(µ− χ−i)χi+j


− σji(µ− χj)δj + σij(µ− χi)δi


= σijχi − σjiχj − σji(µ− χj)δj + σij(µ− χi)δi + µχi+j(χi + χ−i − χj − χ−j)


= σijTi − σjiTj + µχi+j(χi + χ−i − χj − χ−j)


= σijTi − σjiTj + µ(σji − σij)


= σij(Ti − µ)− σji(Tj − µ).


If κF = 0, then clearly σij = 4x2γκij. Since, in this case, κij = κji (use the fact that


x−i = −xi in (5.4)), we have σij = σji. If κ
F 6= 0, we have


σij = Θ2
F
xix−iκi−xixjκj−x−ixi+jκi+j


xix−ixjxi+jκiκjκi+j


= Θ2
F


(xi+x−i)x−jx−i−j−(xj+x−j)xix−i−j−(xi+j+x−i−j)x−ix−j


(xi+x−i)(xj+x−j)(xi+j+x−i−j)


= −Θ2
F


xixjx−i−j+x−ix−jxi+j


(xi+x−i)(xj+x−j)(xi+j+x−i−j)
= −Θ2


F


(
1


xixjx−i−j
+ 1


x−ix−jxi+j


)
1


κiκjκi+j
,


which implies that σij = σji. Thus we have


TjTiTj − TiTjTi = σij(Ti − Tj)


The fact that σij commutes with δi and δj is an easy verification left to the reader. �


For each w ∈ W , fix a reduced decomposition w = si1 · · · sik and set


(7.7) Tw = Ti1 · · ·Tik .


Note that, in general, Tw depends on the choice of reduced decomposition.


Definition 7.11 (R̃F and RF JΛK∼F ). Let R̃F be the subalgebra of Q′ defined by


(7.8) R̃F := RF [W ] · RF [τ
w
ij | i, j ∈ I, w ∈ W, ℓ(w) < mij ].


where RF [W ]· denotes the natural action of the group algebra RF [W ] ofW on Q′. Similarly,
define


(7.9) RF JΛK∼F := RF [W ] · RF JΛKκF [τ
w
ij | i, j ∈ I, w ∈ W, ℓ(w) < mij ].


Note that RF JΛK∼F = RF JΛKF if the root system is simply laced and κF = 0 (since σij =
4x2γκij ∈ RF JΛKF in that case).


Lemma 7.12. The set {Tw | w ∈ W} forms a basis of HF ⊗RF
R̃F as a right (or left)


R̃F -module and a basis of HF ⊗RF JΛKF RF JΛK∼F as a right (or left) RF JΛK∼F -module.


Proof. The proof is analogous to that of Lemma 5.11 and will be omitted. �


Theorem 7.13. Given a formal group law (R,F ), the formal affine Hecke algebra HF is
generated as an RF -algebra by RF JΛKκF and the elements Ti, i ∈ I, and satisfies


(a) relation (7.2) for all i ∈ I and ϕ ∈ RF JΛKκF ,
(b) (Ti + µF (x−γ))(Ti − µF (xγ)) = 0 for all i ∈ I,
(c) TiTj = TjTi for all i, j ∈ I such that


〈
αi, α


∨
j


〉
= 0,


(d) relation (7.6) for all i, j ∈ I such that
〈
αi, α


∨
j


〉
= −1, and
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(e) relation (7.5) for all i, j ∈ I such that
〈
αi, α


∨
j


〉
≤ −2.


Furthermore, (a)–(e) form a complete set of relations (over RF JΛK∼F ) for HF⊗RF JΛKFRF JΛK∼F .


Proof. The first part of the theorem follows immediately from Lemmas 7.7 and 7.8 and
Proposition 7.10. The second part is analogous to the proof of Theorem 5.12 and will be
omitted. �


8. Formal (affine) Hecke algebras: examples and further properties


In this final section we specialize the definition of the formal (affine) Hecke algebra to var-
ious FGLs, yielding classical algebras as well as new ones. We then prove several important
facts about these algebras in general.


As in Section 5, we have a map Q′
W → EndRF


Q′. Since the operators T Fi preserve
RF JΛKκF , we have an induced map HF → EndRF


RF JΛKκF of RF -algebras. Recall that if
a11 (in the notation of (1.1)) is invertible in R, then κFα is invertible for all α ∈ Φ, and so
RF JΛKκF = RF JΛKF .


Proposition 8.1. If a11 is invertible in R, then the map HF → EndRF
RF JΛKF described


above is injective. In other words, the natural action of HF on RF JΛKF is faithful.


Proof. Suppose, contrary to the statement of the proposition, that the given map is not
injective. Let a ∈ HF be in the kernel of this map, with a 6= 0. In other words, a acts by
zero on RF JΛKF under the associated action. By Lemma 7.12, we may write


a =
∑


w∈W Twaw, aw ∈ RF JΛK∼F .


Now, clearly aϕ also acts by zero on RF JΛKF for all ϕ ∈ RF JΛKF . Choosing ϕ to be a
common denominator of all the aw, we see that we may assume that aw ∈ RF JΛKF for all
w ∈ W .


For ϕ ∈ RF JΛKF , define the degree of ϕ to be


deg ϕ := max{m ∈ Z≥0 | ϕ ∈ ImF },


where IF is the kernel of the augmentation map ε : RF JΛKF → RF (i.e. the element xγ is not
mapped to zero). We adopt the convention that deg 0 = −∞. Then the formal Demazure
operators lower degree and the coefficients µF (xγ),


ΘF


κFi
and xγ appearing in Definition (7.1)


of Ti preserve degree. Thus, if degϕ = m, we have


Ti(ϕ) = µF (xγ)si(ϕ) + (terms of degree < m).


Furthermore, deg(ϕϕ′) = degϕ+ deg ϕ′ for ϕ, ϕ′ ∈ RF JΛKF . Indeed, it follows by definition
that deg(ϕϕ′) ≥ degϕ + degϕ′. If deg(ϕϕ′) > degϕ + degϕ′, then in the associate graded
algebra we have ϕϕ′ = 0, where ϕ 6= 0 and ϕ′ 6= 0. Identifying the associated graded
algebra with the polynomial algebra (by [CPZ, Lem. 4.2]) we obtain a contradiction as the
polynomial algebra is a domain.


Let m be the maximum degree of the aw, w ∈ W , and set W ′ = {w ∈ W | deg aw = m}.
Then, for all ϕ ∈ RF JΛKF , we have


0 = a(ϕ) =
∑


w∈W ′ Tw(awϕ) +
∑


w∈W\W ′ Tw(awϕ)


=
∑


w∈W ′ µF (xγ)
ℓ(w)sw(awϕ) + b,







22 ALEX HOFFNUNG, JOSÉ MALAGÓN LÓPEZ, ALISTAIR SAVAGE, AND KIRILL ZAINOULLINE


where the last summation lies in Im+degϕ
F and b 6∈ Im+degϕ


F . It follows that
∑


w∈W ′ µF (xγ)
ℓ(w)sw(awϕ) =


∑
w∈W ′ sw


(
µF (xγ)


ℓ(w)awϕ
)
= 0 for all ϕ ∈ RF JΛKF .


The above sum is therefore also equal to zero in Im+deg ϕ
F /Im+degϕ+1


F . But
⊕


n I
n
F/I


n+1
F


∼=
S∗
RF


(Λ), by [CPZ, Lem. 4.2]. Since the action of RF JW K ⋉ S∗
RF


(Λ) on S∗
RF


(Λ) is faithful
(see, for example, the argument in [Kle05, Second Proof of Thm. 3.2.2]), we have that
µF (xγ)


ℓ(w)aw = 0 (hence aw = 0) for all w ∈ W ′. But this contradicts the choice of m. �


Remark 8.2. In the additive and multiplicative cases, Proposition 8.1 reduces to known
embeddings of the (degenerate) affine Hecke algebra into endomorphism rings. See the proof
of Proposition 8.3.


The following proposition demonstrates that our definition of the formal (affine) Hecke
algebra recovers classical objects in the additive and multiplicative cases.


Proposition 8.3. Suppose R = Z.


(a) For the additive FGL, we have the following isomorphisms of algebras:


HA
∼= H∧


deg := Hdeg ⊗Z[ǫ] ZJγK, HA
∼= ZA[W ] ∼= Z[W ]⊗Z ZJγK,


where ǫ = −2γ.
(b) For the multiplicative periodic FGL, we have the following isomorphisms of algebras:


HM
∼= H⊗Z[t,t−1] Z[t, t


−1]∧, HM
∼= H ⊗Z[t,t−1] Z[t, t


−1]∧.


Proof. It is easy to see that for the additive and multiplicative FGLs in simply laced type, the
relations of Theorem 7.13 become the relations of the respective algebras in the statement
of the proposition. However, we provide a proof that remains valid in all types (i.e. not
necessarily simply laced). Note that in the both the additive case (where κF = 0) and
multiplicative periodic case (where a11 = β is invertible and hence all κα, α ∈ Φ, are
invertible), we have RF JΛKκF = RF JΛKF .


Consider first the additive FGL. Recall the identification ZA ∼= ZJγK of Example 2.5. The
injective map HA →֒ EndZA


ZAJΛKA is given on the Ti by


Ti = 2γ∆A
i + δi 7→ si + 2γ 1


α
(si − 1).


Thus HA is isomorphic to the subalgebra H′
A of EndZA


ZAJΛKA generated by multiplication
by elements of ZAJΛKA and the operators si + 2γ 1


α
(si − 1).


Observe that, in the notation of [Gin, §12], the algebra S∗
ZA
(Λ)∧ ⊗Z C = S∗


Z(Λ)
∧ ⊗Z CJγK


can be identified with the completion of the algebra C[h, γ] of polynomial functions on h


with coefficients in C[γ]. If we let ǫ = −2γ, then we see that H′
A is precisely the completion


of the image of Hdeg under the faithful action on C[h, ǫ] given by Demazure-Lusztig type
operators (see [Gin, Prop. 12.2] or [Kle05, Second Proof of Thm. 3.2.2]). This proves the
first isomorphism of part (a). The second follows by considering the subalgebra generated
by the Ti.


Now consider the multiplicative periodic FGL FM(u, v) = u+ v − βuv, β ∈ Z×. We have
(see Example 1.2(b))


µM(xγ) = 1− βx−γ = t and ΘM = β(xγ − x−γ) = t− t−1 ∈ Z[t, t−1]∧,
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under the identifications of Example 2.5. Using the above and the identifications of Exam-
ple 2.4(b), the injective map HM →֒ EndZM


ZMJΛKM is given on the Ti by


(8.1) Ti = ∆M
i


ΘM


κMi
+ δiµM(xγ) =


t−t−1


1−e−αi
(1− δi) + tδi 7→ t−1 1−si


e−αi−1
− t1−e


−αisi
e−αi−1


.


We identify ZMJΛKM with Z[q, q−1][P ] ⊗Z[q,q−1] Z[t, t
−1]∧ in the notation of [Lus85] (where


the P and q of [Lus85] are our Λ and t2, respectively) via the map eλ 7→ −λ (see Exam-
ple 2.4(b)). (The negative sign in front of the αi arises from the twisting of the action of
Z[q, q−1][P ] on itself by a sign in [Lus85, (8.2)].) Under this identification, the right hand
side of (8.1) corresponds to the Demazure-Lusztig operator [Lus85, (8.1)], where the Ts of
[Lus85] corresponds to our tTi, where s = si (see Remark 7.3). Therefore, the actions of HM


and H on ZMJΛKM ∼= Z[q, q−1][P ] ⊗Z[q,q−1] Z[t, t
−1]∧ coincide. The action of HM is faithful


by Proposition 8.1 and the action of H is also known to be faithful (see, for example, [Gin,
Prop. 12.2(i)] or note that the action of H specializes to the standard action of Z[W ]⋉Z[Λ]
on Z[Λ] when q = 1). Thus we have the first isomorphism of part (b). The second follows
by considering the subalgebra generated by the Ti. �


For other FGLs our definition gives new algebras as the following examples indicate.


Example 8.4 (Lorentz case). For the Lorentz FGL FL, we have µL(u) = 1, ΘL = 0, and
κ = 0. Since κij = β (see (6.1)), we have σij = 4βx2γ. Thus the relations (a)–(d) of
Theorem 7.13 become


(a) ϕTi − Tisi(ϕ) = 2xγ∆
L
αi
(ϕ) for all ϕ ∈ RF JΛKF , i ∈ I.


(b) T 2
i = 1 for all i ∈ I,


(c) TiTj = TjTi for all i, j ∈ I such that 〈αi, α
∨
j 〉 = 0,


(d) TiTjTi − TjTiTj = 4βx2γ(Ti − Tj) for all i, j ∈ I such that 〈αi, αj〉 = −1.


These form a complete set of relations in the simply laced case.


Example 8.5 (Elliptic case). For the elliptic FGL FE , we have


µE(u) =
1


1−a1u−a3v(u)
, ΘE = 2ψ−ψ2


1−ψ
= ψ


1−ψ
+ ψ,


where ψ = a1xγ + a3v(xγ) (see Example 1.2(d)). If, for example, a3 = 0, then


µE(u) =
1


1−a1u
, ΘE =


2a1xγ−a21x
2
γ


1−a1xγ
, κi = a1 for all i ∈ I,


and so
Ti = ∆E


i
2xγ−a1x2γ
1−a1xγ


+ δi
1


1−a1u
for all i ∈ I.


Furthermore, when a3 = 0, we have
χi =


ΘE


xia1


and so
σij =


ΘE


xia1


ΘE


xja1
+ ΘE


xi+ja1


(
ΘE


x−ia1
− ΘE


xja1


)
= −


Θ2
E


a21
κij .


Example 8.6 (Universal formal Hecke algebra). We call the formal Hecke algebra HU cor-
responding to the universal FGL FU the universal formal Hecke algebra. Observe that HU


is an algebra over LU , where L is the Lazard ring. Note that in this case we have


ΘU = −a11(xγ − x−γ) + a211(x
2
γ − x2−γ)− (a311 + a12a11 − a22 + 2a13)(x


3
γ − x3−γ) + · · ·


= −2a11xγ − 2(a311 + a11a12 − a22 + 2a13)x
3
γ + · · · .
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Theorem 8.7. Suppose (R,F ) and (R,F ′) are FGLs over the same ring R, with either
κF = 0 or a11 invertible in R (in the notation of (1.1)). Then


HF ⊗RF JΛKF R
′
F JΛKF ∼= HF ′ ⊗RF ′ JΛKF ′


R′
F ′JΛKF ′


as algebras, where R′
F = (R⊗Z Q)F ⊗Q Q[x−1


γ ] (and similarly, with F replaced by F ′).


Proof. It suffices to prove the result when F ′ = FA. Let RQ = R ⊗Z Q. As in the proof of
Theorem 6.4, we have an isomorphism of twisted formal group algebras


e⋆F : Q
(R′


F ,F )


W → Q
(R′


A,A)


W .


Since
e⋆F (x


−1
γ ) = 1


eF (xγ)
= xγ


eF (xγ)
x−1
γ


and xγ
eF (xγ)


∈ (RQ)A is invertible in (RQ)A, we see that e⋆F (R
′
F ) = R′


A and so e⋆F (R
′
F JΛKF ) =


R′
AJΛKA. The algebra HF ⊗RF JΛKF R


′
F JΛKF is isomorphic to its image H′ := e⋆F (HF ⊗RF JΛKF


R′
F JΛKF ) under e


⋆
F .


We first consider the case where κF = 0. Then HF ⊗RF JΛKF R
′
F JΛKF is generated over


R′
F JΛKF by (the element 1 and) the elements


T Fi − 1 = 2∆F
i xγ + δi − 1 = ΞFi (δi − 1), i ∈ I,


where
ΞFi = 1− 2xγ


xi
∈ Q


(RF ,F )
W .


We see that


e⋆F (T
F
i − 1) = e⋆F (Ξ


F
i )(δi − 1) =


e⋆F (ΞF
i )


ΞA
i


(TAi − 1).


Thus it suffices to show that e⋆F (Ξ
F
i )/Ξ


A
i lies in R′


AJΛKA and is invertible in R′
AJΛKA (i.e. has


invertible constant term). Now,


e⋆F (ΞF
i )


ΞA
i


=
(
1− 2eF (xγ)


eF (xi)


)(
1− 2xγ


xi


)−1


=
(


xi
eF (xi)


eF (xγ)
xγ


− xi
2xγ


)(
1− xi


2xγ


)−1


.


Note that eF (xi)/xi, eF (xγ)/xγ ∈ R′
AJΛKA are invertible in R′


AJΛKA (with constant term one).
Since 1− xi/(2xγ) ∈ R′


AJΛKA is also clearly invertible in R′
AJΛKA, we are done.


Now consider the case where κF 6= 0 and a11 is invertible in R (hence in R′
A). The elements


T Fi − µF (xγ) = ρi(δi − 1), i ∈ I,


where
ρi = µF (xγ)−


ΘF


xiκFi
∈ Q


(RF ,F )
W


generate HF ⊗RF JΛKF R
′
F JΛKF over R′


F JΛKF (along with the element 1). Since


e⋆F (T
F
i − µF (xγ)) =


e⋆F (ρi)


ΞA
i


(TAi − 1),


it follows as in the κF = 0 case that it suffices to show that e⋆F (ρi)/Ξ
A
i lies in R′


AJΛKA and is
invertible in R′


AJΛKA (i.e. has invertible constant term).
For any x ∈ R′


AJΛKA we set


ψ(x) = 1−µF (eF (x))
x


= a11 +O(1) ∈ R′
AJΛKA
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so that µF (eF (x)) = 1− xψ(x). Then (as x−λ = −xλ in RAJΛKA)


e⋆F (ρi)


ΞA
i


=
(
µF (eF (xγ))−


µF (eF (xγ))−µF (eF (−xγ))
1−µF (eF (x−i))


)(
1− 2xγ


xi


)−1


=
(
1− xγψ(xγ)−


xγ
xi


· ψ(−xγ )+ψ(xγ )
ψ(−xi)


)(
1− 2xγ


xi


)−1


=
(
ψ(−xγ)+ψ(xγ )


ψ(−xi)
+ xiψ(xγ)−


xi
xγ


)(
2− xi


xγ


)−1


.


Since a11 is invertible, we have


ψ(−xγ)+ψ(xγ )
ψ(−xi)


= 2a11+O(1)
a11+O(1)


= 2 +O(1).


Combining all of the above computations, we see that


e⋆F (ρi)


ΞA
i


= 1 +O(1) ∈ R′
AJΛKA


is invertible in R′
AJΛKA as desired. �


Remark 8.8. (a) It is known that certain localizations or completions of the affine Hecke
algebra and degenerate affine Hecke algebra are isomorphic (see [Lus89, Thm. 9.3] and [Rou,
§3.1.7]). Theorem 8.7 can be seen as an analogue of these results.


(b) Note that while Theorem 8.7 shows that all affine Hecke algebras (satisfying the
hypotheses of the proposition) become isomorphic over appropriate rings, the isomorphism
is not the naive one sending T Fi to T F


′


i . Furthermore, the completion (with respect to the
augmentation map) is crucial. No assertion is made regarding an isomorphism (even over
Q) of truncated versions. See Remark 6.5.
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