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Abstract

Let R be a commutative domain in which 2 is invertible, and F its fraction field. Let (A, σ)
and (A′, σ′) be R−algebras with involution. They are said to be rationally isomorphic

if (A⊗RF, σ ⊗R idF) ≅F (A
′⊗RF, σ′ ⊗R idF). The main result of this paper states that

for R a semilocal Bézout domain, rationally isomorphic R−algebras with involution are

isomorphic.

Let R be a commutative domain in which 2 is invertible, and F its fraction field. Let (A, σ)
and (A′, σ′) be R−algebras with involution. They are said to be rationally isomorphic if

(A⊗RF, σ ⊗R idF) ≅F (A
′⊗RF, σ′ ⊗R idF). Under which conditions on R can we conclude

that (A, σ) and (A′, σ′) are already isomorphic as R−algebras with involution? If any pair of

R−algebras with involution that is rationally isomorphic, is already isomorphic over R, we say

that R has the RIII property.

Consider the linear algebraic group G = Aut(A, σ). The question whether (A, σ) ≅R (A
′, σ′)

translates to the question whether principal homogeneous spaces over G that are trivial over

F, are already trivial over R. This problem has been studied for R a discrete valuation ring,

and more generally for regular local rings. For these rings it goes back to a conjecture of

Grothendieck and Serre, stating that principal G−homogeneous spaces over a Noetherian reg-

ular integral k−scheme X, k a field, that are rationally trivial are locally trivial. In [N], Y.

Nisnevich proved the conjecture for schemes of dimension one and regular Henselian local

schemes of any dimension. Nisnevich’s work includes, in the case R is a discrete valuation ring,

a postive answer to the question considered in this paper. Nisnevich’s proof is based on the

relation between étale cohomology and adélic invariants of G. Other ingredients are the fact

that the statement holds for complete discrete valuation rings (an unpublished theorem of Tits),

and weak approximation (cf. [H]). In [Pa], I. Panin proved a purity theorem on multipliers for

Aut(A, σ), which together with the result for discrete valuations, gives a positive answer to the

conjecture for automorphism groups of algebras with involution.

In the rest of the introduction, we will always assume that 2 is invertible in the rings we consider.

In [B] the first author considers Azumaya algebras with involution under specialisation and the

question whether rationally isomorphic algebras with involution have isomorphic reductions.

The question whether for algebras with involution over valuation rings, rational isomorphism

implies isomorphism, is natural in this context. In [B, (8.7)] it is shown that Henselian valuation
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rings have the RIII property. In this paper we will show that semilocal Bézout domains have

the RIII property. We will first treat the case of finite Krull dimension and then show that the

general case can be reduced to this case. Our result includes in particular that valuation rings

have the RIII property. Although this also covers the case of discrete valuation rings, and more

generally semilocal principal ideal domains, we will treat this class of rings (the Noetherian

case) separately, since the proof then simplifies in different places. Furthermore, the role played

by a Cassels–Pfister type result for algebras with involution becomes transparent.

Using the relation between ε−hermitian spaces and adjoint involutions we obtain, as a corollary

to our main result, that “rational similarity implies similarity” for ε−hermitian spaces over an

Azumaya algebra with involution without zero divisors over a semilocal Bézout domain. In

particular this implies that rationally similar symmetric or skew–symmetric bilinear spaces over

semilocal Bézout domains, are similar.

The structure of the paper is as follows. In the first section we state the problem formally and re-

call from [B] some reduction that can be made in order to show the RIII property holds. We also

show that proving that the RIII property holds for two involutions on a fixed algebra, is equiv-

alent to a statement on multipliers. We then prove certain characterisations of the multipliers

of an algebra with involution over a semilocal Bézout domain of finite Krull dimension. This

characterisation is then used to prove the RIII property for such rings. In section 3 the character-

isation is first obtained in the Noetherian case (discrete valuation rings and semilocal principal

ideal domains), using that valuation rings are elementary divisor domains, and a Cassels–Pfister

type result for algebras with involution over semilocal principal ideal domains, which is proven

in section 2. In section 4 we treat the general case of semilocal Bézout domains, first consider-

ing the case of finite Krull dimension. The characterisation of the multipliers is then obtained

using some result for Henselian valuation rings (treated in [B]), and a norm argument based on

Paulo Ribenboim’s approximation theorem for valuations.

We fix some notation for the rest of the article. F will denote a field of characteristic different

from 2. R will be a commutative semilocal domain in which 2 is invertible, with fraction field F,

and S will be either equal to R or to a commutative separable R−algebra that is free of dimension

2 as an R−module. In the latter case, we call S a free separable quadratic R−algebra. If S is a

domain, we denote its fraction field by K.

Let T be a commutative ring and M a finitely generated, free T−module. We will use the term

dimension for the rank of M over T , and denote this by dimT(M).

1 Hermitian spaces, algebras with involution and multipliers

In this section we define R−algebras with involution and elaborate on the properties of ratio-

nally isomorphic R−algebras with involution, also by interpreting them as adjoint involutions

of hermitian spaces. Therefore, we zoom in on some properties of hermitian spaces first.

Let C be a (not necessarily commutative) ring with unit. We assume 2 ∈ C×. Let θ be an

involution on C, i.e. an anti–automorphism of C of order at most 2. Let ε = ±1. An ε−hermitian
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module over (C, θ) is a pair (V,h) where V is a finitely generated, projective right C−module,

and h ∶ V×V → C a bi–additive map such that for all x, y ∈ V and all α, β ∈ C, the following hold:

h(xα, yβ) = θ(α)h(x, y)β and h(y, x) = εθ(h(x, y)). The form h is called hermitian if ε = 1 and

skew–hermitian if ε = −1. If θ = idC , h is called a bilinear form.

Let V∗ = HomC(V,C). This is a left C−module. Define the right C−module θV∗ by θV∗ = {θϕ ∣
ϕ ∈ V∗} with the operations θϕ +θψ =θ(ϕ + ψ), (θϕ)α =θ(θ(α)ϕ) for all ϕ,ψ ∈ V∗ and all α ∈ C.

Then h is called non–singular if the adjoint transformation

ĥ ∶ V →θV∗ ∶ x ↦θϕ, where ϕ(y) = h(x, y) for all y ∈ V ,

is an isomorphism of right C−modules. We call (V,h) an ε−hermitian space if h is non–singular.

Suppose V is free over C with basisB = (e1, . . . , en). Then h defines a matrix Ch = (h(ei, e j)i, j) ∈
Mn(∆). Define the dual basisB# = (e#

1, . . . , e
#
n) by the property e#

i (e j) = δi j. Then (θe#
1, . . . ,

θe#
n) is

a C−basis for θV∗. The matrix of ĥ with respect to the bases B,B# is given by εCh. Hence, ĥ is

an isomorphism if and only Ch is invertible. If h is non–singular, we may consider the elements
θe#

1, . . . ,
θe#

n as elements of V .

Let U be a C−submodule of V . The orthogonal complement of U, which is equal to {x ∈ V ∣
h(x, y) = 0 for all y ∈ U}, will be denoted by U⊥. The subspace U is called totally isotropic

if U ⊂ U⊥. An ε−hermitian module (V,h) is called isotropic if it contains a nonzero totally

isotropic subspace U, and anisotropic otherwise. Equivalently, (V,h) is isotropic if there exists

an element 0 ≠ x ∈ V such that h(x, x) = 0. (V,h) is called hyperbolic if it contains a direct

summand U such that U⊥ = U.

Two ε−hermitian modules (V,h), (V ′,h′) over (C, θ) are called isometric, denoted by (V,h) ≃
(V ′,h′) or h ≃ h′, if there is a C−linear bijection ϕ ∶ V → V ′ such that h(x, y) = h′(ϕ(x), ϕ(y))
for all x, y ∈ V .

We recall some facts on R−algebras with involution from [B].

1.1 Proposition.

(a) Suppose S ≠ R. Then S has an R−basis (1, z) with z2 = az + b, for certain a,b ∈ R. Let

f (x) = x2 − ax − b ∈ R[x]. Then the discriminant of f (x) is a unit in R. Furthermore, S is

a domain if and only if f (x) is irreducible in R[x].

(b) Suppose R is integrally closed in F. Then S is the integral closure of R in S ⊗R F.

Furthermore S is a domain if and only if S ⊗R F is a field, and the latter is then the

fraction field of S . If S is not a domain, then S ≅ R × R.

Proof. See [B, (2.7)]. �

1.2 Proposition. There is a unique involution ι on S such that R = {x ∈ S ∣ ι(x) = x}. If S ≠ R

then this involution is given by ι ∶ S → S ∶ c + dz↦ c + d(a − z).

Proof. See [B, (2.9)]. �
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In the special case where S ≅ R × R, ι is given by the switch map.

LetA be an Azumaya algebra over S and σ an R−linear involution onA such that, if Z(A) ≠ R,

then σ restricts to the involution ι on S . If S = R, σ is called an involution of the first kind,

otherwise, it is called an involution of the second kind. We call the pair (A, σ) an R−algebra

with involution. If S is not a domain then we call (A, σ) degenerate.

If R is a field, then σ is called isotropic if there exists a nonzero x ∈ A such that σ(x)x = 0,

and anisotropic otherwise. σ is called hyperbolic if there is an idempotent x ∈ A such that

σ(x) = 1 − x.

Let R′ be a commutative semilocal domain that is also an R−algebra. We write (A, σ)R′ =
(AR′ , σR′) = (A⊗R R′, σ⊗R idR′). The center of AR′ is equal to S ⊗R R′.

1.3 Proposition. Let (A, σ) be an R−algebra with involution and let R′ a commutative semilo-

cal domain that is an R−algebra. Then (A, σ)R′ is an R′−algebra with involution.

Proof. See [B, (2.10)]. �

Let (A, σ) and (A′, σ′) be R−algebras with involution. We say (A, σ) and (A′, σ′) are isomor-

phic over R if there exists an isomorphism ϕ ∶ A → A′ of R−algebras such that ϕ ○ σ = σ′ ○ ϕ.

We denote this by (A, σ) ≅R (A′, σ′).

Let B be an Azumaya algebra over R. The map sw ∶ B × Bop → B × Bop ∶ (a,b) ↦ (b,a) defines

an involution of the second kind on B ×Bop, called the switch involution.

1.4 Proposition. Let A be an Azumaya algebra wit center R × R. Then there exist Azumaya

algebras A1,A2 over R such that A ≅ A1 ×A2. Furthermore, if σ is an involution of the second

kind on A, then A2 ≅ A
op

1 and (A, σ) ≅R (A1 ×A
op

1 , sw).

Proof. See [B, (2.11)]. �

1.5 Corollary. Suppose R is a field and let (A, σ) be a degenerate R−algebra with involution.

Then σ is hyperbolic.

Proof. By Proposition 1.1 (b), Z(A) ≅ R × R and Proposition 1.4 yields that there exists an

idempotent x ∈ A such that σ(x) = 1 − x. �

1.6 Proposition. Let A be an Azumaya algebra over S . Then A is free as an R−module.

Proof. See [B, (2.12)]. �

In this paper we will work with algebras with involution over a semilocal Bézout domain. These

are semilocal domains in which the finitely generated ideals are principal (the defining property

of a Bézout domain). Semilocal Bézout domains are exactly those semilocal domains whose

localisations at their finitely many maximal ideals are valuation rings, cf. [B, (2.2)].

The following characterisation of semilocal Bézout domains of finite Krull dimension is easily

obtained.

4



1.7 Lemma. R is a semilocal Bézout domain of finite Krull dimension if and only if R is the

intersection of finitely many valuation rings of F of finite rank (= Krull dimension).

If R is a semilocal Bezout domain then R−algebras with involution have additional properties.

1.8 Proposition. Suppose R is semilocal Bézout domain and assume S is a domain. Then S is

a semilocal Bézout domain. Let ∆ be an Azumaya algebra over S without zero divisors. Every

finitely generated, torsion–free left or right ∆−module is free.

Proof. See [B, (2.4), (2.8) and (2.16)]. �

1.9 Proposition. Suppose R is a semilocal Bézout domain.

(a) Let (C, θ) be an R−algebra with involution with center a domain. Let (V,h) be an ε−hermitian

space over (C, θ). There exists a unique involution σ on EndC(V) such that σ(a) = θ(a)
for all a ∈ Z(C), and for all x, y ∈ V and all f ∈ EndC(V) we have that

h(x, f (y)) = h(σ( f )(x), y).

We denote this involution by adh. Then (EndC(V), adh) is an R−algebra with involution,

called the adjoint algebra with involution of h, and denoted by Ad(h). If θ is of the first

kind (resp. of the second kind), then adh is of the first kind (resp. of the second kind).

(b) Let (A, σ) be an R−algebra with involution with center a domain. Then there exists an

R−algebra with involution (∆, θ) without zero divisors, with Z(∆) = Z(A) and θ of the

same kind as σ, and an ε−hermitian space (V,h) over (∆, θ), such that (A, σ) ≅R Ad(h).

Proof. See [B, (4.6)] for (a) and [B, (4.7)] for (b). �

1.10 Notation. Let (C, θ) be an R−algebra with involution and (V,h) an ε−hermitian module

over (C, θ). We denote by (V,h)F = (VF ,hF) the ε−hermitian module over (C, θ)F obtained by

extending scalars from R to F.

1.11 Proposition. Let R be a commutative semilocal Bézout domain with fraction field F. Let

(∆, θ) be an R−algebra with involution without zero divisors. The following hold.

(a) Let (V,h) be an ε−hermitian space over (∆, θ). If (V,h)F is isotropic (metabolic), then

(V,h) is already isotropic (metabolic).

(b) Suppose 2 ∈ R×. Then hyperbolic ε−hermitian spaces of the same dimension over (∆, θ)
are isometric.

(c) Suppose 2 ∈ R×. Let (V,h), (V ′,h′) be ε−hermitian spaces over (∆, θ). If (V,h)F ≃F

(V ′,h′)F then (V,h) ≃ (V ′,h′).

Proof. See [B, (4.5)]. The proof of (c) uses a general Witt cancellation result of Keller (see [K,

(VI.5.7.2)] for more details). �
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Let (A, σ) and (A′, σ′) be two R−algebras with involution. We say they have the “rational

isomorphism implies isomorphism” property, denoted by RIII, if the following holds:

if (A, σ)F ≅F (A′, σ′)F then (A, σ) ≅R (A′, σ′).

We say that R has the RIII property if any pair ((A, σ), (A′, σ′)) of R−algebras with involution

has the RIII property. In [B, (8.7)], the author showed that if R is a Henselian valuation ring,

then it has the RIII property. In this paper we will extend the results of [B] and show that if R is

a semilocal Bézout domain, then it has the RIII property. A crucial ingredient of the proof will

be the following result for Henselian valuation rings from [B].

1.12 Proposition. Suppose R is a Henselian valuation ring of F. Denote its residue field by κ.

Let (A, σ) be an R−algebra with involution. Then (A, σ)κ is hyperbolic if and only if (A, σ)F
is hyperbolic.

Proof. See [B, (7.7)]. �

As in [B], we will use this result in the following way. LetO be a valuation ring of F. Let F s be a

separable closure of F and letOs be an extension ofO to F s. Let G = {ρ ∈ Gal(F s/F) ∣ ρ(Os) =
Os}. Then ((F s)G,Os ∩(F s)G) is Henselian by [EP, (3.2.15)]. We denote it by (Fh,Oh), it is

called a Henselisation of (F,O). By [EP, (5.2.5)], (F,O) ⊂ (Fh,Oh) is an immediate extension,

i.e. (F,O) and (Fh,Oh) have isomorphic value groups and residue fields.

1.13 Corollary. Suppose R is a valuation ring of F. Denote its residue field by κ. Let (Fh,Rh)
be a Henselisation of (F,R). Let (A, σ) be an R−algebra with involution. Then (A, σ)κ is

hyperbolic if and only if (A, σ)Fh is hyperbolic.

Proof. Since Rh still has residue field κ, the statement follows immediately from Proposition

1.12. �

We recall several reductions of the RIII problem explained in [B].

1.14 Proposition. Suppose R is a semilocal Bézout domain. If pairs of R−algebras with invo-

lution of the form ((A, σ), (A, σ′)), where (A, σ)F ≅F (A
′, σ′)F via a Z(AF)−isomorphism,

have the RIII property, then R has the RIII property.

Proof. This is shown in [B, (8.3)] in the case R is a valuation ring, but it goes through for

semilocal Bézout domains. �

1.15 Proposition. Suppose R is a semilocal Bézout domain. Let ((A, σ), (A′, σ′)) be a pair

of R−algebras with involution. Assume that (A, σ)F ≅F (A
′, σ′)F and Z(A) ≅ R × R. Then

(A, σ) ≅ (A′, σ′).

Proof. By Proposition 1.14, in order to show the claim we may assume that A′ = A. Since all

involutions of the second kind on A are isomorphic over R by Proposition 1.4, the statement

follows. �
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1.16 Proposition. Suppose R is a semilocal Bézout domain. Let (∆, θ) be an R−algebra with

involution without zero divisors, and let (V,h) be an ε−hermitian space over (∆, θ). Let (A, σ) =
Ad(h). Let furthermore s ∈ A× be such that σ(s) = s and let σ′ = Int(s)○σ. Define h′ ∶ V ×V →
∆ by h′(x, y) = h(s−1(x), y) for all x, y, ∈ V . Then (V,h′) is an ε−hermitian space over (∆, θ)
such that (A, σ′) = Ad(h′), and the following are equivalent:

(i) (A, σ) ≅R (A, σ′) through a Z(A)−automorphism.

(ii) There exists elements e ∈ R× and g ∈ A× such that es = σ(g)g.

(iii) There exists u ∈ R× such that h′ ≃R uh.

Furthermore, if u ∈ R×, then h′ ≃R uh if and only if there exists an element g ∈ A× such that

us = σ(g)g.

Proof. See [B, (4.9)]. �

The following proposition is shown in [B, (8.5)] for valuation rings, but the proof goes through

for semilocal Bézout domains.

1.17 Proposition. Suppose R is a semilocal Bézout domain and assume S is a domain. Let A
be an Azumaya algebra over S , and σ,σ′ involutions of the first or second kind on A. Suppose

(A, σ)F ≅F (A, σ′)F . Then there exists s ∈ A× such that σ(s) = s and σ′ = Int(s) ○σ.

Proposition 1.16 yields the equivalence between similarity of certain hermitian spaces and iso-

morphism of their adjoint algebras with involution. This result holds in fact without constraints

on the hermitian spaces, as is shown below.

1.18 Proposition. Suppose R is a semilocal Bézout domain and let (∆, θ) be an R−algebra with

involution without zero divisors. Let (V,h) and (V ′,h′) be two ε−hermitian spaces over (∆, θ).
Then there exists u ∈ R× such that h′ ≃R uh if and only if Ad(h) and Ad(h′) are isomorphic

through a Z(∆)−isomorphism.

Proof. Suppose first there exists u ∈ R× and a ∆−linear bijection ϕ ∶ V → V ′ such that uh(x, y) =
h′(ϕ(x), ϕ(y)), for all x, y ∈ V . Then one easily checks that End∆(V)→ End∆(V ′); f ↦ ϕ○ f ○ϕ−1

defines a Z(∆)−isomorphism of algebras with involution: Ad(h)→ Ad(h′).
Suppose conversely that there exists an isomorphism β ∶ Ad(h) → Ad(h′) that is the identity

on Z(∆). Then End∆(V) ≅ End∆(V ′) and hence V and V ′ have the same dimension over ∆.

Hence, there is a ∆−linear bijection ψ ∶ V → V ′. Define an ε−hermitian form h̃ ∶ V ′ × V ′ → ∆ by

h̃(ψ(x), ψ(y)) = h(x, y), for all x, y ∈ V . Then h̃ ≃R h and therefore, Ad(h̃) ≅R Ad(h) ≅R Ad(h′)
via Z(∆)−isomorphisms. Since adh′ and adh̃ are involutions on End∆(V ′) and adh̃F

and adh′
F

are isomorphic, it follows from Proposition 1.17 that there exists s ∈ End∆(V ′)× such that

adh̃ = Int(s) ○ adh′ and adh′(s) = s. Define an ε−hermitian form h′′ ∶ V ′ × V ′ → ∆ by

h′′(x′, y′) = h′(s−1(x′), y′),
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for all x′, y′ ∈ V ′. One easily checks that adh′′ = adh̃. Furthermore, we have that v = ĥ′′
−1
○ ̂̃h ∈

End∆(V ′)× and, by definition of v, h′′(v(x′), y′) = h̃(x′, y′) for all x′, y′ ∈ V ′. It follows that

adh′′ = adh̃ = Int(v−1) ○ adh′′ . Hence, v ∈ Z(∆), and we get h̃ = θ(v)h′′. Since h̃ and h′′ are both

ε−hermitian, it follows that θ(v) = v and hence v ∈ R×. It follows that

h′′ ≃R v−1h̃ ≃R v−1h.

It follows that Ad(h′′) and Ad(h), and hence Ad(h′′) and Ad(h′) are isomorphic through a

Z(∆)−isomorphism. By Proposition 1.16, this means there exists e ∈ R×,g ∈ End∆(V ′)× such

that

es = adh′(g)g.

For all x′, y′ ∈ V ′, we get that

h′′(x′, y′) = h′(s−1(x′), y′) = eh′(g−1 adh′(g
−1)(x′), y′) = eh′(adh′(g

−1)(x′), adh′(g
−1)(y′)).

This means that h′′ ≃R eh′. So, putting everything together, we obtain h′ ≃R e−1h′′ ≃R e−1v−1h,

and e−1v−1 ∈ R×. This yields the statement. �

The next result will be crucial in order to show that semilocal Bézout domains have the RIII

property.

1.19 Proposition. Suppose R is a valuation ring of F, with residue field κ. Let (A, σ) be an

R−algebra with involution. Let e ∈ F×, s ∈ A× and g ∈ A×F be such that es = σF(g)g. Let (Fh,Rh)
be a Henselisation of (F,R). If e ∉ F×2R× then (A, σ)Fh and (A, σ)κ are hyperbolic.

Proof. If Z(A) is not a domain then (A, σ) is hyperbolic over Fh and κ by Proposition 1.5. See

[B, (8.6)] for the case where Z(A) is a domain and combine it with Corollary 1.13. �

Let (B, τ) be an F−algebra with involution. An element f ∈ B is called a similitude if τ( f ) f ∈
F×. The set of similitudes for (B, τ) forms a group, denoted by Sim(B, τ). If f ∈ Sim(B, τ) then

µ( f ) = σ( f ) f ∈ F× is called a multiplier of (B, τ). The multipliers of (B, τ) form a subgroup

of F×, denoted by G(B, τ).

1.20 Proposition. Let (C, θ) be an F−algebra with involution of any kind. Let (V, h̃) be an

ε−hermitian space over (C, θ) and let (B, τ) ≅ (EndC(V), adh̃). Then

G(B, τ) = {α ∈ F× ∣ h̃ ≃ αh̃}.

Proof. We have that h̃ ≃ αh̃ if and only if there exist a C−linear bijection ϕ ∶ V → V such that

h̃(x, y) = αh̃(ϕ(x), ϕ(y)) = αh̃((τ(ϕ)ϕ)(x), y), for all x, y ∈ V.

The non–singularity of h̃ implies that this equality holds if and only if τ(ϕ)ϕ = α−1, and hence

α−1 ∈ G(B, τ). Since G(B, τ) is a group, it follows that α ∈ G(B, τ). �

1.21 Proposition. Let (B, τ) be an F−algebra with involution of any kind.
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(a) If (B, τ) is hyperbolic then G(B, τ) = F×.

(b) Let L/F be a finite extension. Then

NL/F(G((B, τ)L)) ⊂ G(B, τ).

Proof. (a) follows using the characterisation of G(B, τ) in terms of ε−hermitian forms from

Proposition 1.20. If Z(B) is a domain, then (b) holds by [KMRT, (12.21)]. If Z(B) is not a

domain, then (b) holds since G(B, τ) = F× by (a). �

Using the language of multipliers, property (ii) in Proposition 1.16 can be replaced by another

(seemingly weaker) property,

1.22 Corollary. In the situation of Proposition 1.16, (i), (ii) and (iii) are also equivalent to

(ii’) There exist elements e ∈ G((A, σ)F)R× and g ∈ A×F such that es = σ(g)g.

Furthermore, if e ∈ F× is such that there exists an element g ∈ A such that es = σ(g)g and

(A, σ) ≅R (A, σ′), then e ∈ G((A, σ)F)R×.

Proof. For the first statement, it suffices to prove that (ii’) is equivalent to (iii). It follows directly

from Proposition 1.16 that (iii) implies (ii’), (since (ii) is stronger). So assume (ii’) holds. By

Proposition 1.16, es = σF(g)g yields that h′F ≅F ehF. Write e = au with a ∈ G((A, σ)F) and

u ∈ R×. By Proposition 1.20, we have that hF ≃F ahF and hence, it follows that h′F ≃F uhF. By

Proposition 1.11 (b), we get that h′ ≃R uh.

Let e ∈ F× be such that there exists g ∈ A such that es = σ(g)g and assume that (A, σ) ≅R

(A, σ′). Then g ∈ A×F and Proposition 1.16 yields that h′F ≃F ehF . Since (A, σ) ≅R (A, σ′)
by hypothesis, invoking Proposition 1.16 once more yields that there exists u ∈ R× such that

h′F ≃F uhF. It follows that euhF ≃F hF . By Proposition 1.20, the latter means exactly that

eu ∈ G((A, σ)F). �

2 Cassels–Pfister type theorems for involutions and hermi-

tian forms

In this section, we assume R is a semilocal principal ideal domain. We furthermore fix an

R−algebra with involution without zero divisors (∆, θ), and an ε−hermitian space (V,h) over

(∆, θ). Furthermore, we let (A, σ) = Ad(h) and D = ∆F . Note that Z(A) = Z(∆) is a domain.

A (∆−)lattice in (V,h)F is a finitely generated, right∆−submodule of VF containing a D−basis of

VF. Lattices in (V,h)F are torsion–free ∆−modules, and hence free ∆−modules by Proposition

1.8.

Let L be a lattice in (V,h)F . The dual of L is defined as

L# = {v ∈ VF ∣ hF(v,L) ⊂ ∆}.

L is called integral (with respect to hF) if L ⊂ L# and self–dual or unimodular if L = L#.
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2.1 Proposition. Let L be an integral lattice in (V,h)F and denote the restriction of hF to L by

hL. The following are equivalent:

(i) (L,hL) is an ε−hermitian space over (∆, θ).

(ii) L# = L.

Proof. Let B = ( f1, . . . , fn) be a ∆−basis for L. Consider the dual basis θB# = (θ f #
1 , . . . ,

θ f #
n ) as

elements of VF. Suppose (i) holds. Then the elements of θB# belong to L. Suppose hF(v,L) ⊂ ∆
for some v ∈ VF . We can write v = ∑n

i=1
θe#

i xi, with the xi ∈ D. Then hF(v, e j) = ∑
n
i=1 θF(xi)δi j =

θF(x j) ∈ ∆ and hence v ∈ L. So, L is unimodular.

Suppose L = L#. Since hF(θ f #
i , f j) = δi j ∈ ∆ and L is unimodular, we have that θB# belongs to

L. The matrix of ĥL is the matrix of base change from B to θB#, and hence invertible over ∆.

This yields (i). �

2.2 Corollary. V is a unimodular lattice in (V,h)F .

Proof. It is clear that V is an integral lattice in (V,h)F . Since (V,h) is a ε-hermitian space, the

statement follows from Proposition 2.1. �

We refer to [T] for proofs of the following known facts on lattices.

2.3 Proposition.

(a) Let L be a lattice in (V,h)F . Then L# is a lattice in (V,h)F and L## = L.

(b) Let L1,L2 be lattices in (V,h)F . Then

(L1 + L2)
# = L#

1 ∩L
#
2 and (L1 ∩L2)

# = L#
1 + L

#
2.

Note that this implies that the intersection of two lattices in (V,h)F is again a lattice.

(c) Let L1,L2 be lattices in (V,h)F . If L1 ⊂ L2, then L#
2 ⊂ L

#
1.

2.4 Lemma. The unimodular lattices in (V,h)F are exactly the maximal integral lattices in

(V,h)F .

2.5 Proposition. Let L be a unimodular lattice in (V,h)F . Then there is an isometry u of (V,h)F
such that u(V) = L.

Proof. Let hL denote the restriction of hF to L. The hermitian spaces (L,hL) and (V,h) become

isometric over F since they become two representations of the same form. Proposition 1.11 (c)

yields that (L,hL) and (V,h) are isometric over R. This means that there is a bijective ∆−linear

map u ∶ V → L such that hL(u(x),u(y)) = h(x, y). Extending scalars to F, u defines an isometry

of (V,h)F with u(V) = L. �

We can now prove a Cassels–Pfister type theorem for algebras with involution over semilocal

principal ideal domains.
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2.6 Theorem (Involution CP for semilocal principal ideal domains). Let f ∈ AF be such that

σF( f ) f ∈ A. Then there exists an element u ∈ A×F such that σF(u)u = 1 and u f ∈ A.

Proof. We follow the proof of the main theorem of [T].

We have that (A, σ)F ≅F (EndD(VF), adhF
). Let f ∈ EndD(VF) be such that σF( f ) f ∈ End∆(V).

Then we can write f = d−1 f̃ for some f̃ ∈ End∆(V) and d ∈ R. For all m,m′ ∈ V , we have that

hF( f (m), f (m′)) = hF(σF( f ) f (m),m′) ∈ ∆,

since σF( f ) f (m) ∈ V and V = V#.

Note that f (V) is not necessarily a lattice in (V,h)F . However, f (V) + dV is a lattice and it is

also integral since d f ∈ End∆(V). Since R is a principal ideal domain, every integral lattice in

(V,h)F is contained in a unimodular lattice. This can be seen as follows. Let L1 ⊂ L2 ⊂ . . . be a

chain of integral lattices, we have that Li ⊂ L#
1, for all i. Since L#

1 is a lattice over ∆, ∆ is finitely

generated over R, and R is a Noetherian ring, it follows that L#
1 is a Noetherian R−module. Since

all Li are R−submodules of L#
1, it follows that the chain L1 ⊂ L2 ⊂ . . . must stop. Hence, any

integral lattice in (V,h)F is contained in a maximal integral lattice.

Let L be a maximal integral lattice in (V,h)F containing f (V) + dV . Then L is unimodular by

Lemma 2.4. Proposition 2.5 implies that there is an isometry u of (V,h)F such that u(V) = L. It

follows that f (V) ⊂ L = u(V), so u−1 f (V) ⊂ V and hence u−1 f ∈ End∆ V. Since u is an isometry

of (V,h)F , we have that

hF(σF(u
−1)u−1(x), y) = hF(u

−1(x),u−1(y)) = hF(x, y),

for all x, y ∈ VF. It follows that σF(u−1)u−1 = 1. This proves the statement. �

2.7 Corollary (Hermitian CP for semilocal principal ideal domains). If there exists an ele-

ment x ∈ VF such that hF(x, x) ∈ ∆, then there exists an element x′ ∈ V such that h(x′, x′) =
hF(x, x).

Proof. Let (e1, . . . , en) be a ∆−basis for V . Let δ = hF(x, x), with x ∈ VF. Consider the element

f ∈ EndD(VF) defined by f (e1) = x and f (ei) = 0, for i = 2, . . . ,n. Since hF((adh( f ) f )(e j), ei) =
hF( f (e j), f (ei)) = 0 for i /= 1 or j /= 1, and hF((adh( f ) f )(e1), e1) = hF( f (e1), f (e1)) =
hF(x, x) ∈ ∆, it follows that hF((adh( f ) f )(y), y) ∈ ∆ for all y ∈ V . Therefore, (adh( f ) f )(y) ∈
V# = V , and hence adh( f ) f ∈ End∆(V).

By Theorem 2.6 there exists an element u ∈ EndD(VF)× with adh(u)u = 1 such that u f ∈
End∆(V). Since adh(u)u = 1, we have hF(u(y),u(y)) = hF((adh(u)u)(y), y) = hF(y, y) for all

y ∈ VF and therefore in particular

hF(u(x),u(x)) = hF(x, x) = δ.

So, we have found an element z = u(x) = u( f (e1)) ∈ V representing δ. �

2.8 Remarks.
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(a) The conclusion of Theorem 2.6 also holds if R is any valuation ring of F and ∆ is a

valuation ring of D. The proof of Theorem 2.6 goes through completely provided that

every integral lattice is contained in a unimodular (= maximal integral) lattice. If R is not

discrete then it is not Noetherian and the proof of the latter fact is fairly technical. It uses

the elementary divisor property for finitely generated modules over ∆.

(b) Theorem 2.6 is used in the proof of Proposition 3.5, which will be the crucial result in

order to show that semilocal principal ideal domains have the RIII property. The proofs

given of the analogous results for algebras with involution over semilocal Bézout do-

mains of finite Krull dimension (see section 4), rely heavily on Proposition 1.19. The

proof of this proposition, cf. [B, (8.6)], uses the Cassels–Pfister property as formulated in

Corollary 2.7, but for hermitian spaces over Azumaya algebras that are in addition (non–

commutative) valuation rings. A direct proof of this CP version is given in [B, (4.16)].

3 Semilocal principal ideal domains

In this section we assume R is a semilocal principal ideal domain. Let (A, σ) be an R−algebra

with involution. The main result in this section, Proposition 3.5, gives a characterisation of the

multipliers of (A, σ)F up to units in R. These multipliers are described by local conditions,

i.e. in terms of the discrete valuation rings of F lying over R. As consequence of this charac-

terisation, it follows that R has the RIII property. In particular we obtain a different proof of

Nisnevich’ theorem, stating that discrete valuation rings in which 2 is invertible have the RIII

property. The results in this section will also be covered by the more general results in the next

section, but since the proofs simplify when working with discrete valuation rings, we treat this

case separately.

3.1 Lemma. Let (B, τ) be an F−algebra with involution. The following are equivalent.

(i) (B, τ) is hyperbolic.

(ii) There is an element b ∈ B, such that τ(b)b = 0 and dimF bB ⩾ 1
2

dimF B.

Proof. See [T, (2.1)]. �

3.2 Proposition. Let O a discrete valuation ring of F. Denote the residue field of O by κ. Let

(A, σ) be anO−algebra with involution. Suppose there exist elements e ∈ O, s ∈ A× and g ∈ A×F
such that es = σ(g)g. If e ∉ F×2O×, then (A, σ)κ is hyperbolic.

Proof. Note that, if Z(A) ≅ O×O then (A, σ)κ is degenerate and hence automatically hyper-

bolic by Proposition 1.5.

Let 3 be a discrete valuation on F with valuation ring O. Without loss of generality, we may

assume that 3(e) = 1. For let π be a uniformiser for 3, then multiplying both sides of σ(g)g = es

with an appropriate even power of π and using that σ is the identity on O, we obtain πus =
σF(g′)g′, with u ∈ O×,g′ ∈ A×F. By Theorem 2.6, there exists g̃ ∈ A such that πus = σ(g̃)g̃. By
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abuse of notation, we denote g̃ again by g in the rest of the proof.

Let n ∈ N be such that dimOA = dimFAF = n2 if σ is of the first kind, and such that dimOA =
dimFAF = 2n2 if σ is of the second kind. Let L/Z(AF) be a splitting field of AF and let V be

a discrete valuation ring of L lying over O. Let 4 be a discrete valuation with valuation ring V

and let Π be a uniformiser for 4. Denote the residue field of V by κ̃. We denote the maps O → κ

and the induced map A→ Aκ by . The commutativity of the diagram

A

��

σ
// A

��

Aκ σκ
// Aκ

implies that σ(g) = σκ(g) and since 3(e) = 1, it follows that 0 = σκ(g)g. So, in order to show

that (A, σ)κ is hyperbolic, by Lemma 3.1, it suffices to show that

dimκ gAκ ⩾
1

2
dimκAκ =

n2

2
.

The commutative diagram

O

��

// V

��

κ // κ̃

induces a commutative diagram

A

��

ϕ
// A⊗O V

��

Aκ
ψ

// Aκ ⊗κ κ̃.

We have that AL ≅ Mn(L) if σ is of the first kind, and by [KMRT, (2.15)], AL ≅ Mn(L) ×
Mn(L) ≅ Mn(L) × Mn(L)op if σ is of the second kind. It follows from [B, (2.20), (2.22)] that

A⊗OV ≅ Mn(V), and hence also A⊗V κ̃ ≅ Mn(κ̃), if σ is of the first kind, and from [B, (2.23)]

that A⊗OV ≅ Mn(V) × Mn(V) ≅ Mn(V) ×Mn(V)op, and hence also A⊗V κ̃ ≅ Mn(κ̃) × Mn(κ̃) ≅
Mn(κ̃) × Mn(κ̃)op, if σ is of the second kind. Note that the involution σV on A⊗OV then

corresponds to the switch involution on Mn(V) ×Mn(V)op.

Since

dimκ̃ ψ(g)(A⊗κ κ̃) = dimκ̃(g⊗ 1)(Aκ ⊗κ κ̃) = dimκ̃(gAκ ⊗κ κ̃) = dimκ gAκ

it suffices to show that

dimκ̃ ψ(g)(A⊗κ κ̃) = dimκ̃ ϕ(g)(A⊗κ κ̃) ⩾
n2

2
.

Suppose σ is of the first kind. It is well–known that dimκ̃ ϕ(g)Aκ̃ = rank(ϕ(g)) ⋅ n. Since V is

a valuation ring, it is an elementary divisor domain by [Ka, p. 480]. Hence, there are matrices

P,Q ∈ Mn(V)× such that

ϕ(g) = P diag(d1, . . . ,dn)Q,
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with d1, . . . ,dn ∈ V (see [Ka, p. 465 (1)]). Let C = diag(d1, . . . ,dn). It follows that ϕ(g) = PCQ.

Since P,Q ∈ Mn(κ̃)×, we have that rank(ϕ(g)) = rank(C). The latter is obtained by subtracting

the number of di = 0 from n. Let us denote this number by ℓ. Then ℓ is equal to the number

of di that are divisible by Π. This number is at most 4(d1) + . . . + 4(dn) = 4(det(ϕ(g))),
since det(P),det(Q) ∈ V×. Taking determinants of the relation eϕ(s) = ϕ(σ(g))ϕ(g) =
σV(ϕ(g))ϕ(g) yields

en det(ϕ(s)) = det(ϕ(g))2,

by [KMRT, (2.2)]. Since s ∈ A×, it follows that det(ϕ(s)) ∈ V× and hence

4(det(ϕ(g))) =
n

2
.

So, we get that

dimκ̃ ϕ(g)(A⊗κ κ̃) = n ⋅ rank(ϕ(g)) = n(n − ℓ) ⩾ n[n − 4(det(ϕ(g)))] = n2/2.

Suppose σ is of the second kind. Let g′ ∈ Mn(V) and g′′ ∈ Mn(V)op be such that ϕ(g) =
(g′,g′′) ∈ A⊗OV ≅ Mn(V) ×Mn(V)op. It follows that

dimκ̃ ϕ(g)(A⊗κκ̃) = dimκ̃ g′Mn(κ̃) + dimκ̃ g′′Mn(κ̃)
op.

Invoking the elementary divisor property of V , we find matrices P′,Q′,P′′,Q′′ ∈ Mn(V)× and

elements d′1, . . . ,d
′
n,d
′′
1 , . . . ,d

′′
n ∈ V such that

g′ = P′ diag(d′1, . . . ,d
′
n)Q

′ and g′′ = P′′ diag(d′′1 , . . . ,d
′′
n )Q

′′.

We have that dimκ̃ g′Mn(κ̃) = rank(g′) ⋅ n = n(n − ℓ′), where ℓ′ is the number of indices in

i ∈ {1, . . . ,n} such that d′i = 0, and dimκ̃ g′′Mn(κ̃) = rank(g′′) ⋅ n = n(n − ℓ′′), where ℓ′′ is the

number of indices in i ∈ {1, . . . ,n} such that d′′i = 0. We have that ℓ′ is equal to the number of

d′i divisible by Π and ℓ′′ is equal to the number of d′′i divisible by Π. As in the reasoning in the

first kind case, we get that

dimκ̃ g′Mn(κ̃) ⩾ n(n − 4(det(g′))) and dimκ̃ g′′Mn(κ̃)
op ⩾ n(n − 4(det(g′′))).

So, it follows that

dimκ̃ ϕ(g)(A⊗κκ̃) ⩾ n(n −4(det(g′))) + n(n − 4(det(g′′))) = 2n2
− n(4(det(g′g′′))). (⋆)

Let s′, s′′ ∈ Mn(V) be such that ϕ(s) = (s′, s′′). Since s ∈ A×, it follows that s′, s′′ ∈ Mn(V)×.
Using the fact that σV acts as the switch involution on Mn(V) × Mn(V)op, we get (es′, es′′) =
(g′′,g′)(g′,g′′) = (g′′g′,g′ ∗ g′′) = (g′′g′,g′′g′) in Mn(V) × Mn(V)op. It follows that es′ = g′′g′

in Mn(V), and hence, taking determinants, en det(s′) = det(g′′g′). Applying 4 and using that

det(s′) ∈ V×, it follows that 4(det(g′′g′)) = n (since 4(e) = 3(e) = 1). Plugging this in into (⋆)

yields

dimκ̃ ϕ(g)(A⊗κκ̃) ⩾ 2n2
− n(4(det(g′g′′))) = n2 ⩾ n2/2.

�
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3.3 Corollary. Let O be a discrete valuation ring of F. Denote its residue field by κ. Let

(A, σ) be an O−algebra with involution. Let e ∈ G((A, σ)F)O×. If e ∉ F×2O×, then (A, σ)κ is

hyperbolic.

Proof. By assumption, there exist u ∈ O× and g ∈ A×F such that eu = σF(g)g. Proposition 3.2

yields the statement. �

The converse of the corollary, if (A, σ)κ is hyperbolic then every element of F× is a multiplier

times a unit in O, also holds. This will be shown in proposition 3.5.

3.4 Proposition. Let (B, τ) an F−algebra with involution. Let E/F be an algebraic field exten-

sion such that τE is hyperbolic. Then there is a finite separable subextension L/F over which τ

becomes hyperbolic.

Proof. Let (e1, . . . , en) be an F−basis for B. Then it is a E−basis for BE. Since τE is hyperbolic,

there is an idempotent x ∈ BE such that τE(x) = 1− x. Write x =∑n
i=1 eixi, with the xi in E. Then

τ already becomes hyperbolic over F(x1, . . . , xn). Since all the xi are algebraic over F, this is

a finite extension of F. Since char(F) ≠ 2, we get that τ already becomes hyperbolic over the

separable closure of F in F(x1, . . . , xn) (see [KMRT, (9.16)]). �

By assumption R is a semilocal principal ideal domain. The localisation of R at a maximal ideal

is a valuation ring that is moreover a principal ideal domain, and therefore a discrete valuation

ring.

3.5 Proposition. Let (A, σ) be an R−algebra with involution. Let e ∈ F×. The following

conditions are equivalent:

(i) e ∈ G((A, σ)F)R×.

(ii) For each discrete valuation ring O of F lying over R such that e ∉ F×2O×, we have that

(A, σ) becomes hyperbolic over the residue field of O.

Proof. That (i) implies (ii) follows Corollary 3.3.

Assume that (ii) holds. Let π1, . . . , πr be generators for the (finitely many) maximal ideals of

R, and let O1, . . . ,Or be the localisations of R at (π1), . . . , (πr) respectively. These are discrete

valuation rings and R = O1 ∩ . . .∩Or. Since R is a unique factorisation domain, there exist u ∈ R×

and α1, . . . , αr ∈ Z such that e = uπα1

1 ⋯π
αr
r . Since F×2 ⊂ G((A, σ)F) and G((A, σ)F) is a group,

in order to prove (i) holds, it suffices to show that for each i ∈ {1, . . . , r} such that e ∉ F×2O×i ,

i.e. αi is odd, there exists a generator π̃i for the prime ideal (πi) with π̃i ∈ G((A, σ)F).
Let O ∈ {O1, . . . ,Or} be arbitrary such that e ∉ F×2O×. Let π ∈ {π1, . . . , πr} be the prime ele-

ment corresponding toO and denote the residue field ofO by κ. Let (Fh,Oh) be a Henselisation

of (F,O). Recall that this is an immediate extension and therefore κh ≅ κ. Therefore, for any

subfield F ⊂ L ⊂ Fh, the residue field ofOh ∣L is also isomorphic to κ. Since (A, σ)κ is hyperbolic

by hypothesis, it follows from Corollary 1.13 that (A, σ)Fh is hyperbolic as well. Proposition

3.4 yields that there is a finite separable subextension F ⊂ L ⊂ Fh over which σ becomes hyper-

bolic. Let V = Oh ∣L. Let R′ be the integral closure of R in L. Since R is a Dedekind domain and
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L/F is a finite separable extension, R′ is also a Dedekind domain by [FT, (II.5)]. Furthermore,

R′ is the intersection of the valuation rings of L lying over O1, . . . ,Or. There are only finitely

many such valuation rings and therefore R′ is a semilocal Dedekind domain, and hence a prin-

cipal ideal domain by [L2, (I.15)]. Let (Π) be the principal prime ideal of R′ corresponding to

the valuation ring V . Taking norms of ideals, we have that N((Π)) = (N(Π)) = (π) fV , with

fV = [κV ∶ κ] the relative residue degree, cf. [L2, (I.22)]. Since, as we saw above, κV = κ, it

follows that fV = 1, and hence, π̃ = N(Π) is a generator for the prime ideal (π). Since (A, σ)L
is hyperbolic, G(A, σ)L = L× by Proposition 1.21 (a). Invoking part (b) of the same Proposition

then implies that π̃ ∈ G((A, σ)F). This proves the statement. �

3.6 Remark. If the center of A is not a domain then the properties (i) and (ii) in Proposition

3.5 both hold for trivial reasons. For if (A, σ) is degenerate then (A, σ)F is also degenerate

and hence hyperbolic. Proposition 1.21 (a) yields that G((A, σ)F) = F×. Furthermore, (A, σ)
remains degenerate over the valuation rings lying over R and hence, (A, σ) is automatically

hyperbolic over the residue fields of these valuation rings.

3.7 Remark. In the next section it is shown that Proposition 3.5 holds more generally for

semilocal Bezout domains of finite Krull dimension. Although the proof presented here for

semilocal principal ideal domains has the same structure as the one that will be given in the

next section, it is somewhat simpler. First of all for discrete valuations we need not invoke the

Henselisation to prove that (i) implies (ii). For the converse we do use the Henselisation (Corol-

lary 1.13) but the norm argument in the above proof is simpler than the norm argument we will

present in the next section, since we can use the properties of norms of ideals in prinicipal ideal

domains. This makes the norm argument much more direct.

Using Proposition 3.5 together with the reductions made in section 1, we can now show semilo-

cal principal ideal domains have the RIII property.

3.8 Theorem. Suppose R is a semilocal principal ideal domain. Then R has the RIII property.

Proof. Let ((A, σ), (A′, σ′)) be a pair of R−algebras with involution such that (A, σ)F ≅F

(A′, σ′)′F . By Proposition 1.14, we may assume that A′ = A and that (A, σ)F ≅F (A, σ′)′F are

isomorphic through a Z(AF)−isomorphism. Furthermore, by Proposition 1.15, we may assume

that Z(A) is a domain. By Proposition 1.16, there exist nonzero elements e ∈ F×, s ∈ A×,g ∈
A×F such that es = σF(g)g. Combining Propositions 3.2, 3.5 and Corollary 1.22 yields that

(A, σ) ≅R (A, σ′). �

4 Semilocal Bézout domains

In this section we assume R is a semilocal Bézout domain. Let (A, σ) be an R−algebra with

involution. We will show that the characterisation of the elements in G((A, σ)F)R×, as obtained

Proposition 3.5 for semilocal principal ideal domains, holds more generally for semilocal Bé-

zout domains of finite Krull dimension. As a consequence we obtain our main result saying that
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semilocal Bézout domains of finite Krull dimension have the RIII property. Using this we can

then prove that R also has the RIII property if it does not necessarily have finite Krull dimension.

In order to obtain a local description of the elements in G((A, σ)F)R× if R has finite Krull

dimension, the hyperbolicity result in the Henselian case (see Proposition 1.19) will play an

important role. The norm argument on ideals from the previous section will be replaced by a

norm argument on elements, based on the following strong approximation theorem of Paulo

Ribenboim.

4.1 Theorem. Let E be a field and 31, . . . , 3m pairwise incomparable valuations on E with re-

spective valuation rings O1, . . . ,Om. For i = 1, . . . ,m, let Γi be the value group of Oi. Let Vi j be

the smallest overring of Oi and O j in E and let ∆i j be the convex subgroup of Γi such that Γi/∆i j

is the value group of Vi j. Then Γi/∆i j ≅ Γ j/∆ ji. Let θi j be the quotient map Γi → Γi/∆i j. Let

(γ1, . . . , γm) ∈ Γ1 × . . . × Γm be such that θi j(γi) = θ ji(γ j) under the identification Γi/∆i j = Γ j/∆ ji.

Then there exists an element x ∈ E such that 3i(x) = γi for i = 1, . . . ,m.

Proof. See [R, Théorème 5’]. �

If O1, . . . ,Om are pairwise independent valuation rings, then ∆i j = Γi and one gets the well–

known classical approximation theorem.

4.2 Corollary. Let E be a field and 31, . . . , 3m pairwise independent valuations with respective

value groups Γ1, . . . ,Γm. Let (γ1, . . . , γm) ∈ Γ1 × . . . × Γm. Then there exists an element x ∈ E

such that 3i(x) = γi for i = 1, . . . ,m.

Proof. See [EP, (2.4.1)], where a stronger form is given. �

4.3 Proposition. Different valuation rings of rank 1 of the same field are independent.

Proof. See [EP, (2.3.2)]. �

4.4 Lemma. Let E/F be a finite field extension. Let O′ be a valuation ring of E lying over O.

Let β be a prime ideal of O′ different from the maximal ideal of O′. Then β∩O is a prime ideal

of O that is not maximal.

Proof. Since β is a prime ideal of O′, it is clear that β ∩O is a prime ideal of O. Let T be the

integral closure of O in E. Then T is the intersection of the finitely many valuation rings of

E lying over O. Let M′ be the maximal ideal of O′. Then m′ = M′
∩ T is a maximal ideal

of T and O′ = Tm′ by [EP, (3.2.6), (3.2.7)]. By [L1, (IX.1.11)], β ∩ T is a maximal ideal if

and only if β ∩O is a maximal ideal. Suppose β ∩ T is a maximal ideal. Then it is necessarily

equal tom′, sinceO′ can only contain one maximal ideal of T by [EP, (3.2.7)]. Then β contains

m′O1 = m′Tm′ , which is equal toM′, and hence, β = M′, a contradiction. So, it follows that

β ∩O is not maximal. �

4.5 Lemma. Let O be a valuation ring of F and let (A, σ) be an O −algebra with involution.

Let (Fh,Oh) be a Henselisation of (F,O). If (AFh , σFh) is hyperbolic then there exists a finite

subextension F ⊂ M ⊂ Fh with the following properties:

17



(a) σM is hyperbolic;

(b) let 3 be a valuation on F with valuation ring O and let 31 = 3h∣M, 32, . . . , 3m be the different

valuations on M extending 3. Then for i = 2, . . . ,m, there exist ni ∈ N such that for all

x ∈ M

3(NM/F(x)) = 31(x) +
m

∑
i=2

ni3i(x).

Proof. Since (AFh , σFh) is hyperbolic, Proposition 3.4 implies the existence of a finite subex-

tension F ⊂ L ⊂ Fh such that (AL, σL) is hyperbolic.

Let N/F be the Galois closure of L in F s. Let 3s be a valuation on F s extending 3. Let 3h = 3s∣Fh

and 4 = 3s∣N . Since N/F is a Galois extension, all valuation rings of N lying over O are

conjugate to O4 by [EP, (3.2.15)]. Let H = {τ ∈ Gal(N/F) ∣ τ(O4) = O4} and let M be the

fixed field of H. Then M = N ∩ Fh (for an explicit argument see the proof of [EP, (5.2.5)]). So,

we have that L ⊂ M and therefore, σM is hyperbolic.

Let {ρ1 = idN , ρ2, . . . , ρt} be a set of representatives for the right cosets of Gal(N/F)/H. By

Galois theory, the restrictions of the ρi to M are exactly the different F−embeddings of M in

F s. We have that 4 ○ (ρi)∣M is a valuation on M with valuation ring ρ−1
i (O4) ∩M. It is possible

that ρ−1
i (O4) ∩ M = ρ−1

j (O4) ∩ M for i ≠ j, but by the proof of [EP, (3.3.1)], it follows that

O4 ∩M ≠ ρ−1
i (O4) ∩ M if i ≠ 1. This means that 4∣M ≠ 4 ○ (ρi)∣M if i ≠ 1. We have that

31 = 3h∣M = 4∣M and {32, . . . , 3m} = {4 ○ (ρ2)∣M , . . . ,4 ○ (ρt)∣M}, and hence, 3i ≠ 31 if i ≠ 1.

Let x ∈ M. Then NM/F(x) = xρ2(x)⋯ρt(x) by definition.

3(NM/F(x)) = 4(NM/F(x)) = 4(xρ2(x)⋯ρt(x)) = 4(x) +4(ρ2(x)) + . . . + 4(ρt(x)).

By the reasoning above, it follows that there exist n1, . . . ,nm ∈ N such that

NM/F(x) = 31(x) +
m

∑
i=2

ni3i(x).

�

Let Vi j be as in Theorem 4.1 for some pair (i, j), i ≠ j. Then 3i j ∶ E → Γi/∆i j; x ↦ 3i(x) mod ∆i j

defines a valuation on 3i j on E with valuation ring Vi j. Let γi ∈ Γi as in Theorem 4.1 and let

b ∈ E be such that 3i(b) = γi. Then θi j(γi) = 3i j(b).

4.6 Lemma. LetO1, . . . ,Or be different valuation rings of F and let R = O1 ∩ . . .∩ Or. Suppose

x ∈ F is such that x ∈ F×2O×i for i = 1, . . . , r. Then x ∈ F×2R×.

Proof. Let 41, . . . ,4r be valuations on F with respective valuation rings O1, . . . ,Or. Denote

their respective value groups by Γ1, . . . ,Γr. The hypothesis implies that there exists a tuple

(γ1, . . . , γr) ∈ Γ1 × . . . × Γr such that 41(x) = 2γ1, . . . ,4r(x) = 2γr. In the notations of Theorem

4.1, we have that θi j(2γi) = 3i j(x) = 3 ji(x) = θ ji(2γ j). Since the θi j ∶ Γi → Γi/∆i j are group

homomorphisms and since Γi/∆i j is an ordered abelian group and therefore torsion–free, it

follows that θi j(γi) = θ ji(γ j). Therefore, we can apply Theorem 4.1 to find an element a ∈ F

such that 41(a) = γ1, . . . ,4r(a) = γr. Then 4i(a2x−1) = 0 for i = 1, . . . , r, which means that

a2x−1 ∈ R×. This proves the claim. �
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4.7 Proposition. Suppose R has Krull dimension 1. Let (A, σ) be an R−algebra with involu-

tion. Let e ∈ F×. If for each maximal ideal m of R such that e ∉ F×2R×m, we have that (A, σ)
becomes hyperbolic over R/m, then e ∈ G((A, σ)F)R×.

Proof. Let m1, . . . ,mr be the maximal ideals of R. For i = 1, . . . , r, we denote Rmi
by Oi. Note

that the residue field of Oi is isomorphic to R/mi. Let 41, . . . ,4r be valuations on F with

respective valuation rings O1, . . . ,Or. Let Ve = {i ∈ {1, . . . , r} ∣ e ∉ F×2O×i }.

For each j ∈ Ve, we have that σ becomes hyperbolic over the residue field of O j by assumption,

and hence, σ becomes hyperbolic over a Henselisation (Fh
j ,O

h
j) of (F,O j) by Corollary 1.13.

Then there exists a finite subextension F ⊂ M j ⊂ Fh
j with the properties as in Proposition 4.5.

Let {3 j1, . . . , 3 jn j
} be the set of valuations on M j lying over some 4i, starting with the ones

lying over 4 j, that is, let ℓ j ∈ {1, . . . ,n j} be such that 3 j1, . . . , 3 jℓ j
are the valuations lying over

4 j, and such that 3 j1 = 4
h
j ∣M j

. Since the 4i have rank 1, they are independent, and hence the

3 jk are pairwise independent by Lemma 4.3, since they all have rank 1 by [EP, (3.2.5)]. By

Corollary 4.2, there exists an element x j ∈ M j such that 3 j1(x j) = −4 j(e) and 3 jk(x j) = 0 for

k = 2, . . . ,n j. Then by Proposition 4.5, we have that 4 j(NM j/F(x j)) = 3 j1(x j) = −4 j(e) and

4i(NM j/F(x j)) = 0 for i ≠ j. Let y = ∏ j∈Ve
NM j/F(x j). We have that 4 j(y) = −4 j(e) for j ∈ Ve

and 4 j(y) = 0 for j ∉ Ve. It follows that ye ∈ F×2O×j for j = 1, . . . , r. Then Lemma 4.6 yields that

ye ∈ F×2R×. Since σ becomes hyperbolic over M j, invoking Proposition 1.21 (a) and (b) yields

that NM j/F(x j) ∈ G((A, σ)F). Since G((A, σ)F) is a group and F×2 ⊂ G((A, σ)F), it follows

that e ∈ G((A, σ)F)R×. �

4.8 Theorem. Suppose R has finite Krull dimension. Let (A, σ) be an R−algebra with involu-

tion. Let e ∈ F×. The following are equivalent.

(i) e ∈ G((A, σ)F)R×.

(ii) For each valuation ring O of F containing R, such that e ∉ F×2O×, we have that (A, σ)
becomes hyperbolic over the residue field of O.

Proof. That (i) implies (ii) follows from Proposition 1.19.

Let m1, . . . ,mr be the maximal ideals of R. For i = 1, . . . , r, we denote Rmi
by Oi. Let 41, . . . ,4r

be valuations on F with respective valuation rings O1, . . . ,Or. Denote their respective value

groups by Γ1, . . . ,Γr. We will show that (ii) implies (i) by induction on the sum of the ranks of

the Oi. We will denote this sum by m.

We have that m ⩾ r, since O1, . . . ,Or all have rank at least 1. If r = m, then they all have rank 1,

and hence R has Krull dimension 1. Proposition 4.7 then yields the statement.

Suppose now r > m. Then at least one of the Oi has rank bigger than 1. Without loss of

generality, we may assume that the rank of O1 is bigger than 1. Let V1 be the smallest overring

of O1 in F strictly bigger than O1 (which exists since O1 has finite rank). Then rank(V1) <
rank(O1). Let R′ = V1∩(∩

m
i=2Oi). Since rank(V1)+∑r

i=2 rank(Oi) < m and R ⊂ V1, by induction

we have that e ∈ G((A, σ)F)u, for some u ∈ R′×. Put v = u−1, then ev ∈ G((A, σ)F). Let g ∈ A×F
be such that ev = σF(g)g. We have that 4i(v) = 0 for i = 2, . . . , r. If 41(v) ∈ 2Γ1 we are done,
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since then, by Lemma 4.6, v ∈ R×F×2 and e ∈ G((A, σ)F)R× follows. So suppose 41(v) ∉ 2Γ1.

Let (Fh
1,O

h
1) be a Henselisation of (F,O1). If 41(e) ∈ 2Γ1 then 41(σF(g)g) ∉ 2Γ1. Then σ

becomes hyperbolic over Fh
1 by Proposition 1.19. If 41(e) ∉ 2Γ1 then σ is hyperbolic over the

residue field of O1 by assumption, and hence σ is hyperbolic over F1
h by Corollary 1.13. In

any case, there exists a finite field extension F ⊂ M1 ⊂ Fh
1 with the properties as in Proposition

4.5. Let {311, . . . , 31n} be the set of valuations on M1 lying over some 4i, starting with the ones

lying over 41, that is, let ℓ ∈ {1, . . . ,n} be such that 311, . . . , 31ℓ are the valuations lying over

41, and such that 311 = 4h
1∣M1

. For k = 2, . . . ,n, let V1k be the smallest overring of O311
and O31k

and let ∆1k be the corresponding convex subgroup of Γ1 ≅ Γ311
such that the value group of V1k

is Γ1/∆1k. We have that V12, . . . ,V1n are linearly ordered. Without loss of generality, we may

assume that V12 = ∩n
k=2V1k. It follows that ∆12 = ∩n

k=2∆1k. Let β be the maximal ideal of V12.

Then V12 = (O311
)β and hence β is a prime ideal of O311

that is not maximal. Let Ṽ = V12 ∩ F.

Then Ṽ is a valuation ring of F containing O1. We have that β ∩ Ṽ is the maximal ideal of Ṽ .

Furthermore, it is clear that β∩Ṽ = β∩O1. Hence, Ṽ = (O1)β∩O1
and since β∩O1 is a prime ideal

of O1 that is not maximal by Lemma 4.4, we have that O1 ⊊ Ṽ. Let ∆̃ be the convex subgroup

of Γ1 corresponding to Ṽ, that is, such that the value group of Ṽ is isomorphic to Γ1/∆̃. Then

by [EP, (2.3.1)], we have that ∆12 ⊂ ∆̃. By [EP, (3.2.5)], Ṽ and V12 have the same rank. This

implies that ∆̃ = ∆12.

Since V1 is the smallest overring of O1, we have that V1 ⊂ Ṽ. Let ∆̃ be the convex subgroup of

Γ1 corresponding to V1, then this means that ∆̃ ⊂ ∆12. Since v ∈ V×1 , we get that 41(v) ∈ ∆̃ ⊂ ∆12.

Then we can apply Theorem 4.1 to find an element x1 ∈ M1 with 31k(x1) = −41(v) for k = 1

and 31k(x1) = 0 otherwise. Proposition 4.5 then implies that 4i(NM1/F(x1)) = −41(v) for i = 1

and 4i(NM1/F(x1)) = 0 otherwise. It follows that vNM1/F(x1) ∈ R×. Furthermore, since σ is

hyperbolic over M1, Proposition 1.21 (a) yields that x1 ∈ G(AM1
, σM1
) and hence NM1/F(x1) ∈

G((A, σ)F) by Proposition 1.21 (b). Then evNM1/F(x1) ∈ G((A, σ)F), since ev ∈ G((A, σ)F)
and G((A, σ)F) is a group. It follows that e ∈ G((A, σ)F)R×, as desired. �

4.9 Remarks.

(a) As in the Noetherian case, see Remark 3.6, the properties (i) and (ii) of Theorem 4.8 both

hold for trivial reasons if Z(A) is not a domain. The reasoning is the same.

(b) Note that, whereas it suffices to impose the hyperbolicity condition on the localisations

of R at its maximal ideals in Proposition 4.7, we need to impose the condition on all

valuation rings containing R in Theorem 4.8, for the induction proof to work.

The above theorem implies that if R has finite Krull dimension, algebras with involution that

are rationally isomorphic, through a central isomorphism, are isomorphic.

4.10 Proposition. Suppose R has finite Krull dimension. Let ((A, σ), (A, σ′)) be a pair of

R−algebras with involution and assume Z(A) is a domain. If (A, σ)F ≅F (A, σ′)F through a

Z(AF)−isomorphism, then (A, σ) ≅R (A, σ′) through a Z(A)-isomorphism.

Proof. By Proposition 1.17, there exists an element s ∈ A× such that σ(s) = s and σ′ = Int(s) ○
σ. By Proposition 1.16, there exist elements e ∈ F× and g ∈ A×F such that es = σF(g)g.

Combining Proposition 1.19, Theorem 4.8 and Corollary 1.22 yields that (A, σ) ≅R (A, σ′),
through a Z(A)−isomorphism. �
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Note that, in view of Propositions 1.14 and 1.15, the above already implies that if R has finite

Krull dimension, then R has the RIII property. We can show more generally that R also has the

RIII property if it does not necessarily have finite Krull dimension, by reducing to the case of

finite Krull dimension.

4.11 Proposition. Let F0 be the prime field of F. Let (A, σ) be an R−algebra with involu-

tion. Then there exists a finitely generated field extension F̃/F0 and an (R ∩ F̃)−algebra with

involution (Ã, σ̃) such that R ∩ F̃ is a semilocal Bézout domain of finite Krull dimension and

(A, σ) ≅R (Ã, σ̃)R.

Proof. Since R is a semilocal Bézout domain, A is free as an R−module by Proposition 1.6.

Let (e1, . . . , en) be an R−basis for A. Then it is an F−basis for AF. In fact, by [K, (I.1.3.5)],

R is a direct summand of A, and hence, we may assume that e1 = 1. For i, j, k = 1, . . . ,n, let

εi jk ∈ R be such that eie j = ∑
n
k=1 ekεi jk. By [K, (III.5.1.2)], since A is separable over R, there

exists an idempotent x ∈ A⊗RA
op such that under the map m ∶ A⊗RA

op → A; a ⊗ b ↦ ab,

we have that m(x) = 1 and (a ⊗ 1)x = (1 ⊗ a)x, for all a ∈ A. We write x = ∑ℓ
i=1 xi ⊗ yi and

xi = ∑
n
k=1 ek xki and y = ∑n

k=1 ekyki. Furthermore, for i, j = 1, . . . ,n, there exist elements αi j ∈ R

such that σ(ei) = ∑n
j=1 e jαi j. Suppose that Z(A) is a free separable quadratic R−algebra. By

Proposition 1.1, Z(A) = R[z], for some z ∈ Z(A) satisfying z2 = az + b, with a,b ∈ R. If the

polynomial f (x) = x2
−ax−b ∈ R[x] is reducible, let y be a root of f (x) in R. Let F̃ be the field

obtained from F0 by adjoining the elements αi j, εi jk, xki, yki, and if Z(A) ≠ R by also adjoining

a,b, and furthermore if f (x) is reducible, we also adjoin y. Then F̃ is finitely generated over

F0. Let R̃ = R∩ F̃ and R0 = R∩F0. Since R is a semilocal Bézout domain, it is the intersection of

finitely many valuation rings of F. Then R̃ is the intersection of finitely many valuation rings of

F̃ and is therefore a semilocal Bézout domain with fraction field F̃. Similarly, R0 is a semilocal

Bézout domain with fraction field F0.

We define an algebra Ã over R̃ as follows. We let Ã be the free R̃−module with basis (e1, . . . , en).
Then Ã is multiplicatively closed in A, since all εi jk ∈ R̃ by construction. Furthermore, σ

restricts to an involution on Ã, which we denote by σ̃. By construction, we have that x ∈
Ã ⊗R̃ Ã

op
, and hence Ã is separable over R̃ by [K, (III.5.1.2)]. Furthermore, we have that

Z(Ã) = Z(A)∩ Ã. Suppose first Z(A) = R and let c ∈ R∩ Ã. Then there exist c1, . . . , cn ∈ R̃ such

that c = ∑n
i=1 eici. Considering c as element of A and using that e1 = 1, it follows that c1 = c and

it follows that c ∈ R̃. Hence, Z(Ã) = R̃.

Suppose Z(A) = R[z]. Since z ∈ Ã by construction of F̃, it is clear that R̃[z] ⊂ Z(Ã). Suppose

c + dz ∈ Ã, with c,d ∈ R. By construction of F̃, there exist z1, . . . , zn ∈ R̃ such that z = ∑n
i=1 eizi.

Since z ∉ R, at least one of z2, . . . , zn is nonzero, say z2. Then c + dz = (c + dz1) +∑n
i=2 ei(dzi),

and it follows that c + dz1,dz2, . . . ,dzn ∈ R̃. Since z2 ∈ R̃, it follows that d ∈ F̃, and then also

c ∈ F̃. Hence, c + dz ∈ F̃(z) ∩ Ã. Since Ã is finite–dimensional over R̃, it is integral over R̃. So,

F̃(z) ∩ Ã is contained in the integral closure of R̃ in F̃(z). Suppose R̃[z] is a domain. Since 2

and the discriminant of f (x) are units in R̃ by construction of F̃ and R̃ is integrally closed in F̃,

a standard argument shows that R̃[z] is the integral closure of R̃ in F̃(z).
Suppose R̃[z] is not a domain. By construction of F̃, f (x) is then reducible in R̃[x] (and

separable), which implies that F̃(z) ≅ F̃ × F̃ and R̃[z] ≅ R̃ × R̃, and R̃ × R̃ is the integral closure

of R̃ in F̃ × F̃. So, we get Z(Ã) = R̃[z].
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The above shows that (Ã, σ̃) is a R̃−algebra with involution and it is clear that (A, σ) ≅R

(Ã, σ̃)R.

It remains to show that R̃ has finite Krull dimension. By Proposition 1.7, it suffices to show

that R̃ is an intersection of valuation rings of F̃ of finite rank. If F0 is a finite field, then F0

only has one valuation ring, namely itself, and hence R0 = F0. If F0 = Q then [EP, 2.1.4] yields

that any non–trivial valuation ring of Q is discrete. Since R0 is the intersection of finitely many

valuation rings of F0, it therefore has finite Krull dimension . We have that R̃ is the intersection

of valuation rings of F̃ lying over valuation rings of F0. Let Õ be a valuation ring of F̃ and

O′ = Õ ∩ F0. Then, by [EP, 3.4.4],

rank(Õ) ⩽ tr.deg(F̃/F0) + rank(O′).

Since the right hand side is finite, it follows that Õ has finite rank. Hence, R̃ has finite Krull

dimension. �

4.12 Proposition. Let ((A, σ), (A, σ′)) be a pair of R−algebras with involution and assume

Z(A) is a domain. If (A, σ)F ≅F (A, σ′)F through a Z(AF)−isomorphism, then (A, σ) ≅R

(A, σ′) through a Z(A)-isomorphism.

Proof. By Proposition 1.17, there exists an element s ∈ A× such that σ(s) = s and σ′ = Int(s) ○
σ. By Proposition 1.16, the isomorphism (A, σ)F ≅F (A, σ′)F yields the existence of elements

e ∈ F× and g ∈ A×F such that es = σF(g)g. Let F0 be the prime field of F and let F̃, Ã, σ̃ be

as in Proposition 4.11. Let (e1, . . . , en) be an R−basis for A. There exist s1, . . . , sn ∈ R and

g1, . . . ,gn ∈ F such that s = ∑n
i=1 eisi and g = ∑n

i=1 eigi. We adjoin s1, . . . , sn,g1, . . . ,gn to F̃. This

field we obtain is still a finitely generated field extension of F0. By abuse of notation, we denote

it again by F̃. Let R̃ = R ∩ F̃. Then R̃ is a semilocal Bézout domain with fraction field F̃.

By construction of F̃, the equation es = σF(g)g is already defined in ÃF̃ . Furthermore, σ′

restricts to an involution on Ã, which we denote by σ̃′. Then, by Proposition 1.16, we have that

(Ã, σ̃)F̃ ≅F̃ (Ã, σ̃
′)F̃ , through a Z(ÃF)−isomorphism. Since R̃ has finite Krull dimension by

Proposition 4.11, Proposition 4.10 yields that (Ã, σ̃) ≅R̃ (Ã, σ̃
′), through a Z(Ã)−isomorphism,

and scalar extension to R then yields that (A, σ) and (A, σ′) are Z(A)−isomorphic.

4.13 Theorem. R has the RIII property.

Proof. Let ((A, σ), (A′, σ′)) be a pair of R−algebras with involution. Suppose (A, σ)F ≅F

(A′, σ′)F . By Proposition 1.14 we may assume that A′ = A and that (A, σ)F ≅F (A
′, σ′)F via

a Z(AF)−isomorphism. Furthermore, we may assume Z(A) is a domain by Proposition 1.15.

The theorem then follows from Proposition 4.12 �

4.14 Corollary. Let (∆, θ) be an R−algebra with involution without zero divisors. Let (V,h)
and (V ′,h′) be ε−hermitian spaces over (∆, θ). Suppose there exists e ∈ F× such that h′F ≃F ehF .

Then there exists u ∈ R× such that h′ ≃R uh.

Proof. Since by assumption, h′F and hF are similar, it follows from Propostion 1.18, applied

in the case R = F, that Ad(hF) ≅F Ad(h′F) through a Z(∆F)−isomorphism. It follows from

Proposition 4.12 that Ad(h) ≅R Ad(h′), through a Z(∆)−isomorphism. Applying the other

implication given by Proposition 1.18, we obtain that there exists u ∈ R× such that h′ ≃R uh. �
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4.15 Remark. This corollary states that “rational similarity implies similarity” for ε−hermitian

spaces over (∆, θ). As a special case of the above corollary, namely taking ∆ = R and θ = id, we

obtain that rationally similar non–singular symmetric or skew–symmetric bilinear spaces are

similar.
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