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Abstract

It is proved the following. Let R be a regular semi-local domain containing a
field such that all the residue fields are infinite. Let K be the fraction field of R.
If a quadratic space (Rn, q : Rn → R) over R is isotropic over K, then there is a
unimodular vector v ∈ Rn such that q(v) = 0. If char(R) = 2, then in the case of
even n we assume that q is a non-singular space in the sense of [Kn] and in the case
of odd n > 2 we assume that q is a semi-regular in the sense of [Kn].

1 Introduction

Let k be an infinite field,possibly char(k) = 2, and let X be a k-smooth irreducible affine
scheme,let x1, x2, . . . , xs ∈ X be closed points. Let P be a free k[X ]-module of rank n > 0.
If n is odd, then let (P, q : P → k[X ]) be a semi-regular quadratic module over k[X ] in
the sense of [Kn, Ch.IV, §3]. If n is even, then let (P, q : P → k[X ]) be a non-singular
quadratic space in the sense of [Kn, Ch.I, (5.3.5))]. (In both cases it is equivalent of saying
that the X-scheme Q := {q = 0} ⊂ Pn−1

X is smooth over X).
Let p : Q→ X be the projection. For a nonzero element g ∈ k[X ] let Qg = p−1(Xg).

Let U = Spec(OX,{x1,x2,...,xs}). Set UQ = U ×X Q. For a k-scheme D equipped with
k-morphisms U ← D and D → Xg set DQ = UQ×U D and QD,g = D ×Xg

Qg.

1.0.1 Proposition. If n > 1, then there exists a finite surjective étale k-morphism U ←

D of odd degree, a morphism D → Xg and an isomorphism of the D-schemes DQ
Φ̄
←− QD,g.

Given this Proposition we may prove the following Theorem

1.0.2 Theorem (Main). Assume that g ∈ k[X ] is a non-zero element such that there is

a section s : Xg → Q of the projection Qg → Xg. Then there is a section sU : U → UQ
of the projection UQ→ U .
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Proof of Main Theorem. We will give a proof of the Theorem only in the local case and
left to the reader the semi-local case. So, s = 1 and we will write x for x1 and OX,x

for OX,{x1}. If g ∈ k[X ] − mx, then there is nothing to prove. Now let g ∈ mx then by
Proposition 1.0.1 there is a a finite surjective étale k-morphism U ← D of odd degree, a

morphism D → Xg and an isomorphism of the D-schemes DQ
Φ̄
←− QD,g.

The section s defines a section sD = (id, s) : D → QD,g of the projection QD,g → D.
Further Φ̄◦sD : D → DQ is a section of the projection DQ→ D. Finally, if p1 : DQ→ UQ
is the projection, then p1 ◦ Φ̄ ◦ sD : D → UQ is a U -morphism of U -schemes. Recall that
U ← D is a a finite surjective étale k-morphism of odd degree and U is local with an
infinite residue field. Whence by a variant of Springer’s theorem proven in [PR] there is
a section sU : U → UQ of the projection UQ → U . (If char(k)=2 the proof a variant of
Springer’s theorem given in [PR] works well with a very mild modification). The Theorem
is proven.

The Main Theorem has the following corollaries

1.0.3 Corollary (Main1). Let OX,{x1,x2,...,xs} be the semi-local ring as above and let k(X)
be the rational function field on X. Let P be a free OX,{x1,x2,...,xs}-module of rank n > 1 and

q : P → OX,{x1,x2,...,xs} be a form over OX,{x1,x2,...,xs} as above, that is the OX,{x1,x2,...,xs}-

scheme Q := {q = 0} ⊂ Pn−1
OX,x

is smooth over OX,x. If the equation q = 0 has a non-trivial

solution over k(X), then it has a unimodular solution over OX,{x1,x2,...,xs}.

1.0.4 Corollary (Main2). Let R be a semi-local regular domain containing a field and R
is such that all the residue fields are infinite. Let K be the fraction field of R. Let P be

a free R-module of rank n > 1 and q : P → R be a quadratic form over R such that the

R-scheme Q := {q = 0} ⊂ Pn−1
R is smooth over R. If the equation q = 0 has a non-trivial

solution over K, then it has a unimodular solution over R.

1.0.5 Corollary (Main3). Let R be a semi-local regular domain containing a field and

R is such that all the residue fields are infinite. Let K be the fraction field of R. Let P
be a free R-module of even rank n > 0 and q : P → R be a quadratic form over R such

that the R-scheme Q := {q = 0} ⊂ Pn−1
R is smooth over R. Let u ∈ R× be a unit. If u is

represented by q over K, then u is represented by q already over R.

If 1/2 ∈ R, then the same holds for a quadratic space of an arbitrary rank.

Proof of Proposition 1.0.1. The following Lemma is a corollary from Lemma 2.2.1 and
Proposition 3.1.7. from [Kn]

1.0.6 Lemma. For n > 1 there exists an affine open subset X0 containing x and a

Galois étale cover X̃0 π
−→ X0 such that the k[X0]-module P ⊗k[X] k[X

0] coincides with

k[X0]n and π∗(q) is proportional to the quadratic space ⊥m
i=1TiTi+m in the case n = 2m

and is proportional to the semi-regular quadratic module ⊥m
i=1TiTi+m ⊥ T 2

n in the case

n = 2m+ 1.
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By this Lemma we may and will assume that P = k[X ]n and that we are given with
a Galois étale cover π : X̃

π
−→ X such that the quadratic space π∗(q) is proportional to a

split quadratic space. Let Γ be the Galois group of X̃ over X . Let Ũ = π−1(U) ⊂ X̃.
Let U ×X := (Ũ × X̃)/∆(Γ). Clearly, U ×X = (Ũ × X̃)/(Γ× Γ). Let ρ : U ×X →

U ×X be the obvious map.
Let p2 : U × X → X be projection to X and p1 : U × X → U be the projection

to U . The quadratic spaces p∗1(q) and p∗2(q) over U ×X are not proportional in general.
However the following Proposition holds (see Appendix, Lemma 2.0.8)

1.0.7 Proposition. The quadratic spaces ρ∗(p∗2(q)) and ρ∗(p∗1(q)) are proportional.

Further by [PSV, Prop. 3.3, Prop. 3.4] and [PaSV] we may find an open X ′ in
X containing x and an open affine S ⊂ Pd−1 (d=dim(X)) and a smooth morphism
f ′ : X ′ → S making X ′ into a smooth relative curve over S with the geometrically
irreducible fibres. Moreover we may find f ′ such that f ′|X′∩Z : Z ′ = X ′ ∩ Z → S
is finite, where Z is the vanishing locus of g ∈ k[X ]. Moreover f ′ can be written as
prS ◦Π

′ = f ′, where Π′ : X ′ → A1×S is a finite surjective morphism. Set X̃ ′ = π−1(X ′).
Replacing notation we write X for X ′, X̃ for X̃ ′, Z for Z ′, f : X → S for f ′ : X ′ → S,
Π : X → A1 × S for Π′ : X ′ → A1 × S.

Let U ×S X := (Ũ ×S X̃)/∆(Γ). Clearly, U ×S X = (Ũ ×S X̃)/(Γ× Γ). Let

ρS : U ×S X → U ×S X

be the obvious map.
Let pX : U ×S X → X be projection to X and pU : U ×S X → U be the projection to

U . By Proposition 1.0.7 the quadratic spaces ρ∗S(p
∗
X(q)) and ρ∗S(p

∗
U(q)) are ...

Now the pull-back of Π be means of the morphism U →֒ X → S defines a finite
surjective morphism Θ : U ×S X → A1 × U . So, Θ ◦ ρS : U ×S X → A1 × U is a
finite surjective morphism of U -schemes. The U -scheme U ×S X is smooth over U since
U ×S X is smooth over U and ρS is étale. The subscheme ∆(Ũ)/∆(Γ) ⊂ U ×S X projects
isomorphically onto U . So, we are given with a section ∆̃ of the morphism

U ×S X
ρS−→ U ×S X

pU−→ U.

The recollection from the latter paragraph shows that we are under the hypotheses
of Lemma 3.0.9 from Appendix B for the relative U -curve X := U ×S X and its closed
subset Z := ρ−1

S (U ×S Z). (If to be more accurate, then one should take the connected
component Xc of X containing ∆̃(U) and the closed subset Z ∩ Xc of Xc ).

By Lemma 3.0.9 there exists an open subscheme X0 →֒ X and a finite surjective
morphism α : X0 → A1 ×U such that α is étale over 0×U and 1× U and α−1(0×U) =
∆̃(U)

∐

D0. Moreover if we define D1 as α−1(1 × U), then D1 ∩ Z = ∅ and D0 ∩ Z = ∅.
One has [D1 : U ] = [D0 : U ] + 1. Thus either [D1 : U ] is odd or [D0 : U ] is odd.

Assume [D1 : U ] is odd. Then the morphism 1×U
α|D1←−− D1, the morphism D1

pX◦ρS−−−→
X − Z and the isomorphism Φ̄ := Φ|D1

satisfy the conclusion of the Proposition 1.0.1
(here Φ is from the Proposition 1.0.7). The Proposition is proven.
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2 Appendix A: Equating Lemma

Let k be a field, X be a k-smooth affine scheme, G be a reductive k-group, G/X be a
principle G-bundle over X . Let π : X̃ → X be a finite étale Galois cover of X with a
Galois group Γ and let s : X̃ → G be an X-scheme morphism (in other words G splits

over X̃). Let X ×X := (X̃ × X̃)/∆(Γ). Clearly, X × X = (X̃ × X̃)/(Γ × Γ). Let
π : X ×X → X ×X be the obvious map. Observe that the map X̃ × X̃ → X ×X is an
étale Galois cover with the Galois group Γ.

Let qi : X̃ × X̃ → X̃ be projection to the i-th factor and let pi : X × X → X be
projection to the i-th factor. The principal G bundles G1 := p∗1(G) and G2 := p∗2(G) over
X ×X are not isomorphic in general. However the following Proposition holds

2.0.8 Lemma. The principal G-bundles π∗(G1) and π∗(G2) are isomorphic and more-

over there is such an isomorphism Φ : π∗(G1) → π∗(G2) that the restriction of Φ to the

subscheme X = ∆(X̃)/(Γ) ⊂ X ×X is the identity isomorphism.

Proof. The morphism s : X̃ → G gives rise to a 1-cocycle a : Γ→ G(X̃) defined as follows:
given γ ∈ Γ consider the composition s ◦ γ and set aγ ∈ G(X̃) to be a unique element
with aγ · s = s ◦ γ in G(X̃).

It’s straight forward to check that the 1-cocycle corresponding to the principal G
bundle π∗(G1) and the morphism X̃ × X̃

q1
−→ X̃

s
−→ G coincides with the one

Γ
a
−→ G(X̃)

q∗
1−→ G(X̃ × X̃).

Similarly the 1-cocycle corresponding to the principal G bundle π∗(G2) and the morphism

X̃ × X̃
q2
−→ X̃

s
−→ G coincides with the one

Γ
a
−→ G(X̃)

q∗
2−→ G(X̃ × X̃).

Let b ∈ G(X̃ × X̃) be an element defined by the equality b · (s ◦ q2) = s ◦ q1. To prove
that the principal G bundles π∗(G1) and π∗(G2) are isomorphic it suffices to check that
for every γ ∈ Γ the following relation holds in G(X̃ × X̃)

γb · q∗2(a)(γ) · b
−1 = q∗1(a)(γ), (1)

where q∗i (a)(γ) := q∗i ◦ a for i = 1, 2.
To prove the relation (1) it suffices to check the following one in G(X̃ × X̃)

(γb · q∗2(a)(γ) · b
−1) · (s ◦ q1) = q∗1(a)(γ) · (s ◦ q1). (2)

One has the following chain of relations

(γb · q∗2(a)(γ) · b
−1) · (s ◦ q1) = ( γb · q∗2(a)(γ)) · (s ◦ q2) =

γb · γ(s ◦ q2) =

= γ(s ◦ q1) = s ◦ q1 ◦ (γ × γ)
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The first one follows from the definition of the element b, the second one follows from the
commutativity of the diagram

G× G
ν

−−−→ G

(a(γ),s)

x





x





s

X̃
γ

−−−→ X̃

q2

x





x





q2

X̃ × X̃
γ×γ
−−−→ X̃ × X̃,

the third one follows from the commutativity of the diagram

G× G
ν

−−−→ G

(b,s◦q2)

x





x





s

X̃ × X̃
q1
−−−→ X̃

γ×γ

x





X̃ × X̃.

Thus (γb · q∗2(a)(γ) · b
−1) · (s ◦ q1) = s ◦ q1 ◦ (γ× γ). The right hand side of the relation (2)

is equal to s ◦ q1 ◦ (γ × γ) as well, as follows from the commutativity of the diagram

G× G
ν

−−−→ G

(a(γ),s)

x





x





s

X̃
γ

−−−→ X̃

q1

x





x





q1

X̃ × X̃
γ×γ
−−−→ X̃ × X̃.

So, the relation (2) holds. Whence the relation (1) holds. Whence the principal G bundles
π∗(G1) and π∗(G2) are isomorphic.

The composite X̃
∆
−→ X̃ × X̃

q2
−→ X̃

s
−→ G equals s and equals the composite s ◦ q1 ◦

∆. Whence ∆∗(b) = 1 ∈ G(X̃). This shows that the restriction to X = ∆(X)/∆(Γ)
of the isomorphism π∗(G1) and π∗(G2) corresponding to the element b is the identity
isomorphism. The Lemma is proved.

3 Appendix B: a variant of geometric lemma

Let k be an infinite field, Y be a k-smooth algebraic variety, y ∈ Y be a point, O = OY,y

be the local ring, U = Spec(O). Let X/U be a U -smooth relative curve with geometrically
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connected fibres equipped with a finite surjective morphism π : X→ A1×U and equipped
with a section ∆ : U → X of the projection p : X → U . Let Z ⊂ X be a closed subset
finite over U . The following Lemma is a variant of Lemma 5.1 from [OP].

3.0.9 Lemma. There exists an open subscheme X0 →֒ X and a finite surjective morphism

α : X0 → A1×U such that α is étale over 0×U and 1×U and α−1(0×U) = ∆(U)
∐

D0.

Moreover if we define D1 as α−1(1× U), then D1 ∩ Z = ∅ and D0 ∩ Z = ∅.

Proof. Let X̄ be the normalization of the scheme P1 × U in the function field k(X) of
X. Let π̄ : X̄ → P1 × U be the morphism. Let X∞ = π−1(∞× U) be the set theoretic
preimage of ∞× U . Let p̄ : X̄→ U be the structure map. Let u ∈ U be the closed point
and X̄u = X̄×U u.

Let , L′ = π̄∗(OP1×U(1)), L
′′ = OX̄(∆(U)). Let D∞ = (π∗)(∞×U) be the pull-back of

the Cartier divisor ∞×U ⊂ P1×U . Choose and fix a closed embedding i : X̄ →֒ Pn×U
of U -schemes. Set L = i∗(OPn×U(1)).

The sheaf L is very ample. Thus the sheaf L′′⊗L is very amply as well. So, there exists
a closed embedding i′′ : X̄ →֒ Pn′′

×U of U -schemes such that L′′⊗L = (i′′)∗(O
Pn′′×U(1)).

Using Bertini theorem choose a hyperplane H ′′ ⊂ Pn′′

× U such that
(a′′) H ′′ ∩∆(U) = ∅, H ′′ ∩ Z = ∅, H ′′ ∩D∞ = ∅.
Define a Cartier divisor D′′ on X̄ as the the closed subscheme H ′′ ∩ X̄ of X̄.
Regard D′′

1 := D′′
∐

D∞ as a Cartier divisor on X̄. Clearly, one has OX̄(D
′′
1) = L′′⊗L⊗L′.

The sheaf L is very ample. Thus the sheaf L′⊗L is very ample as well. So, there exists
a closed embedding i′ : X̄ →֒ Pn′

× U of U -schemes such that L′ ⊗ L = (i′)∗(O
Pn′×U(1)).

Using Bertini theorem choose a hyperplane H ′ ⊂ Pn′

× U such that
(a′) H ′ ∩∆(U) = ∅, H ′ ∩ Z = ∅, H ′ ∩D′′

1 = ∅;
(b′) the scheme theoretic intersection H ′ ∩ X̄u is a k(u)-smooth scheme.
Define a Cartier divisor D′ on X̄ as the closed subscheme D′ = H ′ ∩ X̄ of X̄.
RegardD′

1 := D′
∐

∆(U) as a Cartier divisor on X̄. Clearly, one has OX̄(D
′
1) = L′⊗L⊗L′′.

Observe that D′ is an essentially k-smooth scheme finite and étale over U . Let s′ and
s′′ be global sections of L′ ⊗ L ⊗ L′′ such that the vanishing locus of s′ is the Cartier
divisor D′

1 and the vanishing locus of s′′ is the Cartier divisor D′′
1 . Clearly D′

1 ∩D′′
1 = ∅.

Thus f = [s′ : s′′] : X̄→ P1 is a regular morphism of U -schemes. Set

ᾱ = (f, p̄) : X̄→ P1 × U.

Clearly, ᾱ is a finite surjective morphism. Set X0 = ᾱ−1(A1 × U) and

α = ᾱ|X0 : X0 → A1 × U.

Clearly, α is a finite surjective morphism and X0 is an open subscheme of X. Since α is
a finite surjective morphism and X0, A1 × U are regular schemes the morphism α is flat
by a theorem of Grothendieck. Since D′

1 is finite étale over U the morphism α is étale
over 0 × U . So, we may choose a point 1 ∈ P1 such that the α is étale over 1 × U and
(α)−1(1×U)∩Z = ∅. If we set D0 = D′

1, then α−1(0×U) = ∆(U)
∐

D0 and D0 ∩Z = ∅.
The Lemma is proven.
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