
WEIGHT TWO MOTIVIC COHOMOLOGY OF CLASSIFYING

SPACES FOR SEMISIMPLE GROUPS

A. MERKURJEV

Abstract. Let f : X → Y be a torsor for a semisimple group G with Y

a smooth and geometrically irreducible variety over an arbitrary field. We
relate the étale motivic cohomology of weight two for X , Y and G. We also
compute the étale motivic cohomology groups of degree at most 4 for the
classifying space of G.

1. Introduction

Let G be a smooth algebraic group over a field F and f : X → Y a G-
torsor with Y smooth and geometrically irreducible over F . In [14], Sansuc
constructed an exact sequence

(1.1) 1 −→ F [Y ]× −→ F [X ]× −→ Ĝ −→ Pic(Y ) −→

Pic(X) −→ Pic(G) −→ Br(Y ) −→ Br(X),

where Ĝ = Hom(G,Gm) is the character group of G, Pic and Br are the Picard
and the (cohomological) Brauer group, respectively. The exact sequence can
be viewed as a relation between the étale cohomology groups of Y , X and G
with values in the multiplicative sheaf Gm since for every variety U over F , we
have

H i(U,Gm) =





F [U ]×, if i = 0;
Pic(U), if i = 1;
Br(U), if i = 2.

Recall that the sheaf Gm is the motivic sheaf Z(1) shifted by 1 and thus the
groups above are the étale motivic cohomology groups of weight 1 (with values
in Z(1)).

In the present paper, we extend Sansuc’s result to the weight two étale
motivic cohomology (with values in Z(2)) in the case G is a semisimple group
(Theorem 5.1). We adopt the definition of Z(2) given in [8] and [9].

In Theorem 5.3, we compute the groups H i(BG,Z(2)) for i ≤ 4, where BG
is the classifying space of the group G. This result was used in [10] for the
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2 A. MERKURJEV

computation of the group of degree 3 cohomological invariants of semisimple
groups with coefficients in Q/Z(2).

In the proof of Theorem 5.1, following [4, Lemma B.2], we introduce the
relative motivic complex Zf (2) for a G-torsor f : X → Y that connects the
weight two motivic cohomology of X and Y . We construct the exact triangle
(4.12) containing Zf (2) in the derived category of et́ale sheaves on Y . The
other terms of the exact triangle are determined by the combinatorics of G (the
root system, weight and root lattices). Some verifications are lengthy. For the
reader’s convenience, we move the technical computations to the Appendix.

We don’t impose any characteristic assumption in the paper. Sometimes we
need to treat the “bad” characteristic case separately, but the main results are
stated in a uniform way.

Acknowledgements: I would like to thank Paul Balmer and Bruno Kahn for
helpful discussions and comments.

1a. Notation. We will use the following notation in the paper.
F is the base field (of arbitrary characteristic),
Fsep a separable closure of F ,
ΓF = Gal(Fsep/F ),
K∗ and KQ

∗ denote Milnor’s and Quillen’s K-groups, respectively.
We identify (continuous) Galois modules (i.e., ΓF -modules) and étale sheaves

of abelian groups on SpecF . For two sheaves A and B, we write A ∗B for the
sheaf corresponding to the Galois module TorZ1 (A(Fsep), B(Fsep)).

For a complex A of étale sheaves on a variety X , we write H∗(X,A) for the
étale (hyper-)cohomology group of X with values in A.

Let X be an algebraic variety over F . For any i ≥ 0, the homology group
of the complex C•(X,Kd):

. . . −→
∐

x∈X(i−1)

Kd−i+1

(
F (x)

) ∂
−→

∐

x∈X(i)

Kd−i

(
F (x)

) ∂
−→

∐

x∈X(i+1)

Kd−i−1

(
F (x)

)
−→ . . . ,

where X(i) is the set of point in X of codimension i, will be denoted by
Ai(X,Kd) (see [13]). In particular, Ai(X,Ki) = CHi(X) is the Chow group of
classes of algebraic cycles on X of codimension i.

2. Invariant quadratic forms

Let R be a root system. Write Λr ⊂ Λw for the root and the weight lattices
respectively. The goal of this section is to introduce an abelian group D(R,Λ)
associated with the root system R and an intermediate lattice Λ between Λr

and Λw.
Let R∗ be the dual root system. The lattices Λ∗

r and Λ∗
w are dual to Λw

and Λr, respectively. Choose a system of simple roots α1, . . . αn; they form a
Z-basis for Λr. The dual system of simple co-roots α∗

1, . . . α
∗
n is a basis for Λ∗

r.
The fundamental weights f1, . . . , fn form the basis for Λw dual to the basis
of simple co-roots. Similarly, write f ∗

1 , . . . , f
∗
n for the fundamental co-weights.

Write W for the Weyl group of both R and R∗.
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If R is irreducible, there is a unique W -invariant integral quadratic form q
on Λ∗

r having value 1 on all short co-roots of R∗. We view q as an element
of the symmetric square S2(Λw). In fact, q generates the group S2(Λw)

W

of W -invariant elements in S2(Λw) (see [5, Part II, §7]). Write bq for the
polar form of q, so bq is an integral symmetric bilinear form on Λ∗

r defined by
bq(x, y) = q(x + y) − q(x) − q(y). Thus, bq can be viewed as an element of
Λw ⊗ Λw in the image of the map

(2.1) S
2(Λw) −→ Λw ⊗ Λw, xy 7→ x⊗ y + y ⊗ x.

Lemma 2.1. The bilinear form bq extends to a bilinear map Λ∗
r × Λ∗

w → Z.
In particular, bq ∈ Λw ⊗ Λr.

Proof. The form bq extends uniquely to a W -invariant bilinear map b′q : Λ
∗
r ×

Λ∗
w −→ Q. It suffices to show that b′q(α

∗
i , f

∗
j ) ∈ Z for all i and j. Let si be

the reflection in Λ∗
w with respect to α∗

i . We have si(α
∗
i ) = −α

∗
i and si(f

∗
j ) =

f ∗
j − δijα

∗
i . As b

′
q is W -invariant, we have

b′q(α
∗
i , f

∗
j ) = b′q(si(α

∗
i ), si(f

∗
j )) = b′q(−α

∗
i , f

∗
j − δijα

∗
i ),

therefore, b′q(α
∗
i , f

∗
j ) = δijbq(α

∗
i , α

∗
i )/2 = δijq(α

∗
i ) ∈ Z. �

In the general case, when R is not necessarily irreducible, the group S
2(Λw)

W

has the canonical basis {q1, q2, . . . , qs}, where qi are the canonical quadratic
forms as above corresponding to the connected components of the root system.
Lemma 2.1 yields then the following proposition.

Proposition 2.2. For every root system, the image of S2(Λw)
W under the

map (2.1) is contained in Λw ⊗ Λr. �

Choose a lattice Λ such that Λr ⊂ Λ ⊂ Λw. Note that as W acts trivially
on Λw/Λr, the lattice Λ is W -invariant.

Set ∆ := Λw/Λ, and consider the inclusion homomorphism i : Λ→ Λw and
the canonical homomorphism p : Λw → ∆. Consider also the commutative
diagram

(2.2) Λ2(Λ)
d1 //

��

Λ⊗ Λw
d2 //

Id⊗p

��

S2(Λw)/S
2(Λw)

W

q

��
0 // Λ⊗∆

i⊗Id // Λw ⊗∆,

where d1 takes x ∧ y to x ⊗ y − y ⊗ x, d2 is induced by the canonical map
Λw ⊗ Λw → S2(Λw) and q takes the class of xy to x ⊗ p(y) + y ⊗ p(x). Note
that q is well defined by Proposition 2.2 since Λr ⊂ Λ = Ker(p).

Write D(R,Λ) for the homology group of top row of the diagram (2.2). The
diagram yields a canonical homomorphism

κ : D(R,Λ) −→ ∆ ∗∆ := TorZ1 (∆,∆) = Ker(i⊗ Id).

The kernel Q(R,Λ) of κ coincides with S2(Λ) ∩ S2(Λw)
W = S2(Λ)W . Thus,

Q(R,Λ) is a lattice of the rank the number of connected components of R.
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3. The groups A0(X,K2) and A1(X,K2)

In this section G is a semisimple group over a field F and C is the kernel of

a simply connected cover Gsc → G. By (1.1), Ĉ = Pic(G) = CH1(G).

3a. K-cohomology of semisimple groups. We generalize the approach
given in [5, Part II, §6] for simply connected groups to arbitrary semisimple
groups.

Let G be a split semisimple group and T ⊂ G a split maximal torus. Let
Gsc → G be a simply connected cover and T sc the maximal torus of Gsc over
T .

Set Z := G/T = Gsc/T sc. By [5, Part II, §6], there is a canonical isomor-

phism CH1(Z) ≃ T̂ sc and the kernel of the surjective product homomorphism

S
2(T̂ sc) −→ CH2(Z)

coincides with S2(T̂ sc)W , where W is the Weyl groups of G.
The fiber of the natural morphism π : G→ Z is a torsor for the split torus

T , and hence is isomorphic to T . In follows that in the spectral sequence [13,
§8]

Ep,q
1 =

∐

z∈Z(p)

Aq(π
−1

(z), Kn−p) =⇒ Ap+q(G,Kn)

we have Ep,q
1 = 0 if q > 0 by [5, Part II, Proposition 5.6.2]. It follows that

Ap(G,Kn) ≃ Ap(Z,Mn),

where M is a cycle module over Z defined by

Mn(z) = A0(π−1z,Kn)

for every point z ∈ Z(K) for a field extension K/F .
By [5, Part II, §5.7], there is a filtration by cycle modules

0 = M (1)
n ⊂M (0)

n ⊂ . . .M (1−n)
n ⊂M (−n)

n = Mn

with the factor cycle modules

M (p/p+1)
n ≃ Λ

−p(T̂ )⊗Kn+p.

The E1-term of the spectral sequence

Ep,q
1 = Ap+q(Z,M (p/p+1)

n ) =⇒ Ap+q(Z,Mn),

associated with the filtration is isomorphic to

Λ
−p(T̂ )⊗ Ap+q(Z,Kn+p) ≃ Λ

−p(T̂ )⊗ CHp+q(Z)⊗Kn−q(F )

by [5, Part II, Lemma 6.5]. Thus, we have a spectral sequence

Ep,q
1 = Λ

−p(T̂ )⊗ CHp+q(Z)⊗Kn−q(F ) =⇒ Ap+q(G,Kn).

When n = 2, the nontrivial E1-terms of the spectral sequence are the fol-
lowing:
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Λ2(T̂ )
d1 // T̂ ⊗ T̂ sc d2 // S2(T̂ sc)/S2(T̂ sc)W

T̂ ⊗ F× i⊗Id // T̂ sc ⊗ F×

K2(F ).

The differentials of the similar spectral sequence for the natural morphism
Gsc → Z were computed in [5, Part II, §6]. As the two spectral sequences
are related by the pull-back homomorphisms with respect to the morphisms
Gsc → G and T sc → T , the computation of the differentials shows that the
top row of the diagram coincides with the top row of the diagram (2.2) with

R the root system of G relative to the torus T , the weight lattice Λw = T̂ sc,

the lattice Λ = T̂ and ∆ = Ĉ, where

C := Ker(T sc → T ) = Ker(Gsc → G).

Write D(G) for the group D(R,Λ) defined in Section 2. Note that D(G)
does not change under field extensions, i.e., for any field extension K/F , the
natural homomorphism D(G)→ D(GK) is an isomorphism.

Recall that we have a natural homomorphism

κ : D(G) −→ Ĉ ∗ Ĉ.

Write Q(G) for the lattice

Q(R,Λ) = Ker(κ) = S
2(T̂ )W .

Remark 3.1. The group Q(G) for a split semisimple group G has intrinsic
description as the group of all quadratic integral-valued functions on the set
of all loops in G (see [7, §31] and [5, Part II, §7]).

In the spectral sequence the map d1 is injective and

Ker(i⊗ Id) = TorZ1 (Ĉ, F×) = Ĉ ∗ F× = Ĉ ∗ µ(F ),

where µ(F ) is the group of roots of unity in F . The spectral sequence then
yields the following proposition.

Proposition 3.2. Let G be a split semisimple group over a field F . Then
there are natural exact sequences

0 −→ K2(F ) −→ A0(G,K2) −→ Ĉ ∗ µ(F ) −→ 0,

0 −→ Ĉ⊗F× −→ A1(G,K2) −→ D(G) −→ 0. �
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3b. The groups D(G) and Q(G). Let G be an arbitrary (not necessarily
split) semisimple group over F . Then Gsep is split and D(Gsep) is a Galois
module over F , i.e., a (continuous) ΓF -module, where ΓF = Gal(Fsep/F ).
WriteD(G) for the corresponding étale sheaf over F . In particular, D(G)(F ) =
D(Gsep)

ΓF . We will simply write D(G) for D(G)(F ) and Q(G) for the kernel

of κ : D(G)→ (Ĉ ∗ Ĉ)(F ).

For a field extension L/F , write Ĉ(L) for the character group of C over

L. Denote by Ĉ the étale sheaf over F corresponding to the Galois module

Ĉ(Fsep). In particular, Ĉ(F ) = Ĉ(Fsep)
ΓF .

WriteGqs for the quasisplit twisted form ofG (see [16]). Thus, Gqs is an inner
twisted form of G. In particular, Gqs

sep ≃ Gsep. Let T
qs be the maximal torus of

Gqs
sep corresponding to Tsep under this isomorphism and T qcqs the inverse image

of T qs under the simply connected quasisplit cover of Gqs
sep. The character

lattice T̂ qcqs is spanned by the fundamental weights and the Galois group ΓF

permutes them according to the action on the Dynkin diagram of G (the so-
called ∗-action, see [16]).

For every variety X over F define D(Xsep) as the cokernel of the product
homomorphism

CH1(Xsep)⊗ F×
sep −→ A1(Xsep, K2).

By Proposition 3.2, the group D(Gsep) for a split semisimple group G coincides
with the one defined previously.

Proposition 3.3. Let X → SpecF be a G-torsor. Then the Galois modules
D(Xsep), D(Gsep) and D(Gqs

sep) are all canonically isomorphic.

Proof. The Galois actions on Gsep and Gqs
sep differ by the conjugation action

of G(Fsep), where G is the corresponding adjoint group. Similarly, the Galois
actions on Xsep and Gsep differ by an action of G(Fsep). The statement follows
from Lemma 6.2 applied to the homotopy invariant functor D (see Example
6.1) as D(Gsep) does not change under field extensions. �

3c. The group A0(X,K2). For a variety X over F , write A
0
(X,K2) for the

cokernel of the natural homomorphism K2(F )→ A0(X,K2).
As G is smooth, by [15, Corollary 5.9] and Proposition 3.2, there are natural

isomorphisms

(3.1) A
0
(G,K2) ≃ A

0
(Gsep, K2)

ΓF ≃ (Ĉ ∗ µ)(F ),

where Ĉ and µ are viewed as locally constant étale sheaves.
In particular, if K/F is a field extension such that F is separably closed in

K, then the natural homomorphism

A
0
(G,K2) −→ A

0
(GK , K2)

is an isomorphism. By Lemma 6.2, the natural action of G(F ) on A
0
(G,K2)

is trivial.
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Proposition 3.4. Let f : X → Y be a trivial G-torsor with Y a geometrically
irreducible variety over F . Then there is a natural split exact sequence

0 −→ A0(Y,K2) −→ A0(X,K2) −→ (Ĉ ∗ µ)(F ) −→ 0.

Proof. The Rost spectral sequence [13, §8] for f yields the exactness of the
middle row in the diagram

A0(Y,K2)
� � //

� _

��

K2F (Y ) //
� _

��

∐
y∈Y (1)

K1F (y)

A0(X,K2)
� � // A0(E,K2) //

����

∐
y∈Y (1)

A0(f−1(y), K1)

A
0
(E,K2),

where E is the generic fiber of f . Note that E is isomorphic to GF (Y ) and

the induced isomorphism A
0
(E,K2) ≃ A

0
(GF (Y ), K2) is independent of the

isomorphism between E and GF (Y ) as the group of F (Y )-points of G acts

trivially on A
0
(GF (Y ), K2) ≃ (Ĉ ∗ µ)(F ). Also, the later group is canonically

isomorphic to A
0
(G,K2) since F is algebraically closed in F (Y ).

This proves the exactness at the first and the middle terms of the sequence.
In fact, the sequence is split by the homomorphism A0(G,K2) → A0(X,K2)

induced by the composition X
∼
→ G× Y → G. �

Let X → Y be a (not necessarily trivial) G-torsor with Y a geometrically
irreducible variety over F . Then the first projection p : X ×Y X → X is a
trivial G-torsor and by Proposition 3.4, we have the composition

(3.2) α : A0(X,K2)
p∗

−→ A0(X ×Y X,K2) −→ (Ĉ ∗ µ)(F ).

3d. The group A1(X,K2). Let f : X → Y be a trivial G-torsor over a
geometrically irreducible variety Y over F with G split. The nontrivial E1-
terms of the Rost spectral sequence for f [13, §8]:

Ep,q
1 =

∐

y∈Y (p)

Aq(f−1(y), K2−p) =⇒ Ap+q(X,K2)

are the following:

A1(E,K2)
d //

∐
y∈Y (1)

A1(f−1(y), K1)

A0(E,K2) //
∐

y∈Y (1)

A0(f−1(y), K1) //
∐

y∈Y (2)

A0(f−1(y), K0),
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where E is the generic fiber of f .
Note that A0(f−1(y), Ki) = KiF (y) for i = 0 or 1, and A1(f−1(y), K1) =

CH1(Gy) = Ĉ. We then have an exact sequence

A1(Y,K2) −→ A1(X,K2) −→ Ker(d) −→ CH2(Y ) −→ CH2(X).

As f is a trivial G-torsor, the first and the last homomorphisms in the sequence
are injective, hence A1(Y,K2) can be viewed as a subgroup of A1(X,K2) and
we have an isomorphism

A1(X,K2)/A
1(Y,K2) ≃ Ker(d).

By Proposition 3.2, there is a natural surjective homomorphism

A1(E,K2)→ D(GF (Y )) = D(G)

with the kernel Ĉ ⊗ F (Y )×. The commutative diagram

Ĉ ⊗ F (Y )×
d′ //

��

Ĉ ⊗ Div(Y )

A1(E,K2)
d //

∐
y∈Y (1)

A1(f−1(y), K1),

where Div is the divisor group and d′ = 1Ĉ ⊗ div, yields an exact sequence

0 −→ Ker(d′) −→ Ker(d)
γ
−→ D(G).

The last homomorphism in the sequence is surjective as it is split by the
homomorphism A1(G,K2) → A1(E,K2) induced by the composition E

∼
→

GF (Y ) → G.
As the group PDiv(Y ) of principal divisors on Y is torsion-free, we have the

following diagram with the exact column and row:

Ĉ ∗ CH1(Y )
� _

��

0 // Ĉ ⊗A0(Y,K1) // Ĉ ⊗ F (Y )× //

d′ ''PP
PP

PP
PP

PP
PP

Ĉ ⊗ PDiv(Y ) //

��

0

Ĉ ⊗ Div(Y ).

Therefore, there is an exact sequence

0 −→ Ĉ ⊗ A0(Y,K1) −→ Ker(d′) −→ Ĉ ∗ CH1(Y ) −→ 0.

We have proved:

Proposition 3.5. Let X → Y be a trivial G-torsor with Y a geometrically
irreducible variety over F and G split. Then the sequence

0 −→ Ĉ ⊗ A0(Y,K1) −→ A1(X,K2)/A
1(Y,K2)

γ
−→ D(G) −→ 0
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is exact, except at the middle term, where the homology group is naturally

isomorphic to Ĉ ∗ CH1(Y ).

Corollary 3.6. Let X → SpecF be a trivial G-torsor with G split. Then the
sequence

0 −→ Ĉ ⊗ F× −→ A1(X,K2)
γ
−→ D(G) −→ 0

is exact.

Let X → Y be a (not necessarily trivial) G-torsor with Y a geometrically
irreducible variety over F . Then the first projection X ×Y X → X is a trivial
G-torsor. As G is split over Fsep, by Proposition 3.5 we have the composition

(3.3) γ : A1(X,K2) −→ A1(Xsep ×Ysep Xsep, K2)
ΓF −→ D(Gsep)

ΓF = D(G).

4. The complexes Zf (i)

For a smooth variety X over F we write ZX(i) with i = 1 or 2 for the motivic
complex of étale sheaves defined in [8] and [9]. By [6, Theorem 1.1], we have
the following formulas for the étale motivic cohomology of weight 1 and 2:

(4.1) Hq(X,ZX(1)) =





0, if q ≤ 0;
A0(X,K1) = F [X ]×, if q = 1;
A1(X,K1) = CH1(X), if q = 2;
Br(X), if q = 3.

(4.2) Hq(X,ZX(2)) =





0, if q ≤ 0;
K3(F (X))ind, if q = 1;
A0(X,K2), if q = 2;
A1(X,K2), if q = 3,

where K3(L)ind := Coker
(
K3(L)→ KQ

3 (L)
)
for a field L.

Let G be a semisimple algebraic group over F and let C be the kernel of a
simply connected cover Gsc → G.

Let f : X → Y be a G-torsor over a smooth geometrically irreducible variety
Y over F . We write Zf (i) for the cone of the natural morphism ZY (i) →
Rf∗ZX(i) in the derived category D+ Shét(Y ) of étale sheaves of abelian groups
on Y . Thus, we have the exact triangles

(4.3) ZY (i) −→ Rf∗(ZX(i)) −→ Zf (i) −→ ZY (i)[1].

4a. The complex Zf (1). We have Z(1) = Gm[−1], hence H
i(Zf (1)) = 0 for

i ≤ 0 and there is an exact sequence

0 −→ Gm,Y −→ f∗(Gm,X) −→ H
1(Zf(1)) −→ 0.

Therefore, H1(Zf(1)) is the étale sheaf associated with the presheaf

U 7→ F [f−1U ]×/F [U ]×,

and hence, it follows from (1.1) thatH1(Zf (1)) = Ĝ = 0. (We view Ĝ as a sheaf
on Y via the pull-back with respect to the structure morphism Y → SpecF .)
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If q ≥ 2, we haveHq(Zf (1)) = Rqf∗(ZX(1)). Again, by (1.1),H
2(Zf (1)) ≃ Ĉ

as the étale sheaves on Y . Thus, we have

(4.4) Hq(Zf(1)) =

{
0, if q ≤ 1;

Ĉ, if q = 2.

It follows that

τ≤2Zf (1) ≃ H
2(Zf (1))[−2] = Ĉ[−2],

where τ≤i is the truncation functor. The exact sequence of the étale coho-
mology groups for the exact triangle (4.3) (when i = 1) gives then the exact
sequence (1.1).

Denote by βf the composition

(4.5) βf : Ĉ ≃ τ≤2Zf (1)[2] −→ Zf(1)[2] −→ ZY (1)[3].

4b. The complex Zf (2). The complex Z(2) is supported in dimensions 1 and
2, hence Hq(Zf (2)) = 0 if q < 0. We have an exact sequence

(4.6) 0 −→ H0(Zf (2)) −→ H
1(ZY (2))

s
−→ R1f∗(ZX(2)) −→

H1(Zf (2)) −→ H
2(ZY (2)) −→ R2f∗(ZX(2)) −→ H

2(Zf (2)) −→ 0.

It follows from (4.2) that H1(ZY (2)) and R1f∗(ZX(2)) are the étale sheaves
associated to the presheaves

U 7→ H1(U,Z(2)) = K3F (U)ind and U 7→ H1(f−1U,Z(2)) = K3F (f−1U)ind,

respectively. The variety of G is unirational by [2, Theorem 18.2], hence the
natural morphism K3F (U)ind → K3F (f−1U)ind is an isomorphism if the G-
torsor f−1U → U is trivial by [4, Lemma 6.2]. As the G-torsor f is trivial
locally in the étale topology, the first morphism s in the sequence (4.6) is an
isomorphism.

The sheaves H2(ZY (2)) and R2f∗(ZX(2)) are associated to the presheaves

U 7→ H2(U,Z(2)) = A0(U,K2) and U 7→ H2(f−1U,Z(2)) = A0(f−1U,K2),

respectively. As the G-torsor f is trivial locally in the étale topology, it follows
from Proposition 3.4 that we have an exact sequence

0 −→ H2(ZY (2)) −→ R2f∗(ZX(2)) −→ Ĉ ∗ µ −→ 0.

Therefore, by (4.6),

(4.7) Hq(Zf (2)) =

{
0, if q ≤ 1;

Ĉ ∗ µ, if q = 2.

The sheaf H3(Zf (2)) = R3f∗(ZX(2)) is associated with the presheaf

U 7→ H3(f−1U,Z(2)) = A1(f−1U,K2).

Proposition 3.5 yields then a morphism of étale sheaves

H3(Zf (2)) −→ D(G).
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Consider the product map

CH1(f−1U)⊗ A0(U,K1) −→ A1(f−1U,K2).

Assume that f−1U → U is a trivial G-torsor. Tensoring the exact sequence
(see (1.1))

0 −→ CH1(U) −→ CH1(f−1U) −→ Ĉ −→ 0

with A0(U,K1) and sheafifying, we get a morphism of sheaves

(4.8) Ĉ ⊗Gm −→ H
3(Zf(2)).

It follows from Proposition 3.5 that the sequence of sheaves

(4.9) 0 −→ Ĉ ⊗Gm −→ H
3(Zf (2)) −→ D(G) −→ 0

is exact.
In particular,we have a canonical morphism

τf : τ≤3Zf (2)[3] −→ H
3(Zf (2)) −→ D(G).

4c. The complex Ĉ(1) and the morphism θf . Let f : X → Y be a G-

torsor. Write Ĉ(1) for the derived tensor product Ĉ
L
⊗ ZY (1). We have

Hq(Ĉ(1)) =





Ĉ ⊗Gm, if q = 1;

Ĉ ∗ µ, if q = 0;
0, otherwise.

Let l be the characteristic exponent of F . Note that the l-primary compo-

nent of Ĉ ∗ µ is trivial and the l′-primary component of C ⊗Gm is trivial for
every prime l′ 6= l. Hence

(4.10) Hom
(
Ĉ ⊗Gm, (Ĉ ∗ µ)[i]

)
= 0

for every i and

(4.11) Ĉ(1) = (Ĉ ∗ µ)⊕ (Ĉ ⊗Gm)[−1].

It follows from (4.7) and (4.9) that we have the following diagram of the
horizontal and the vertical exact triangles

Ĉ ⊗Gm

��ww♦ ♦
♦
♦
♦
♦
♦

0

''◆◆
◆◆

◆◆
◆◆

◆◆
◆

(Ĉ ∗ µ)[1] // τ≤3Zf (2)[3]

τf ''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

// H3(Zf(2)) //

��

(Ĉ ∗ µ)[2]

D(G)

��

77♦
♦

♦
♦

♦
♦

(Ĉ ⊗Gm)[1]
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By (4.10), there are unique dotted arrows making the diagram commutative.
It follows from the octahedral axiom that the diagram yields a natural exact
triangle

(4.12) Ĉ(1)[1]
ρf
−→ τ≤3Zf (2)[3]

τf
−→ D(G)

θf
−→ Ĉ(1)[2].

with ρf and θf defined by the morphisms in the diagram.
If f : G→ SpecF is the (trivial) G-torsor over SpecF , we simply write θG

for θf . We view θG as a morphism in D+ Shét(F ) or in D+ Shét(Y ) for any
variety Y .

The morphism θG may not be trivial. But in certain cases it is zero. (See
also Remark 5.5.)

Proposition 4.1. (1) If G is simply connected, then θG = 0.

(2) If G is split, then the induced map θ∗G : D(G)→ H2(F, Ĉ(1)) is trivial.

Proof. (1) follows simply because Ĉ = 0, (2) is proved in Lemma 6.13. �

5. Main theorems

Let G be a semisimple group over F . Recall that we have a morphism βf :

Ĉ → ZY (1)[3] associated to a G-torsor f : X → Y . Consider the compositions

(5.1) λf : D(G)
κ
−→ Ĉ ∗ Ĉ −→ (Ĉ

L
⊗ Ĉ)[−1]

(Id
L
⊗βf )[−1]

−−−−−−−→ Ĉ(1)[2]

and

(5.2) σf : Ĉ(1) = Ĉ
L
⊗ ZY (1)

βf

L
⊗Id

−−−−→
(
ZY (1)

L
⊗ ZY (1)

)
[3]

m[3]
−−−→ ZY (2)[3],

where m is the product defined in [8] and [9].
The following theorem relates the étale motivic cohomology of weight 2 and

degree at most 4 for the varieties X and Y .

Theorem 5.1. Let G be a semisimple group over a field F , C the kernel of the
universal cover Gsc → G and X → Y a G-torsor with Y a smooth geometrically
irreducible variety. Then there are exact sequence:

0 −→ A0(Y,K2) −→ A0(X,K2)
α
−→ (Ĉ ∗ µ)(F )

σ∗

f

−→ A1(Y,K2) −→ A1(X,K2)
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and a commutative diagram

0

��

H1(Y, Ĉ(1))

��

σ∗

f

((PP
PP

PP
PP

PP
PP

P

A1(Y,K2) // A1(X,K2) //

γ
''PP

PP
PP

PP
PP

PP

H3(Y,Zf(2)) //

��

H4(Y,ZY (2)) // H4(X,ZX(2))

D(G)

θ∗
G
+λ∗

f
��

H2(Y, Ĉ(1))

with the exact row and the column, where α and γ are defined in (3.2) and
(3.3), respectively.

Proof. It follows from (4.7) that

Hq(Y,Zf (2)) =

{
0, if q ≤ 1;

Ĉ ∗ µ, if q = 2.

The first exact sequence and the horizontal exact sequence in the diagram are
obtained then by Proposition 6.3(1) and by applying the étale cohomology
groups of Y to the exact triangle (4.3).

The vertical exact sequence is given by the exact triangle (4.12) since
H3(Y, τ≤3Zf(2)) = H3(Y,Zf (2)). The other marked homomorphisms in the
diagram are identified in Sections 6d and 6e. �

Remark 5.2. For a character χ ∈ Ĉ(F ) and a ∈ F [Y ]× = H1(Y,ZY (1)), we

have χ ∪ (a) ∈ H1(Y, Ĉ(1)) and the map σ∗
f : H1(Y, Ĉ(1)) −→ H4(Y,ZY (2))

takes χ ∪ (a) to β∗
f(χ) ∪ (a), where

β∗
f : Ĉ(F ) −→ H3(Y,ZY (1)) = Br(Y )

is induced by βf .

5a. Cohomology of classifying spaces. Let G be a semisimple group over
F . Choose a generically free representation V of G such that there is a G-
equivariant open subset U ⊂ V with the property codimV (V \ U) ≥ 3 and a
versal G-torsor f : U → Z (see [3, Lemma 9]). Moreover, we may assume that
Z(F ) 6= ∅.

By the assumption on codimension, it follows from the localization sequence
that the restriction homomorphisms Ai(V,K2)→ Ai(U,K2) are isomorphisms.
Hence, by the homotopy invariance property,

(5.3) Ai(U,K2) =

{
K2(F ), if i = 0;
0, otherwise.
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By Theorem 5.1 applied to f : U → Z, we have

(5.4) Ai(Z,K2) =

{
K2(F ), if i = 0;

(Ĉ ∗ µ)(F ), if i = 1.

We see that the groups Ai(Z,K2) are independent of the choice of V , and we
write Ai(BG,K2) for Ai(Z,K2). We think of Z as an approximation of the
“classifying space” BG.

It follows from (4.2) and (5.4) that the groups Hq(Z,Z(2)) don’t depend on
the choice of V when q = 2 or 3. We write Hq(BG,Z(2)) for these groups. But
when l = char(F ) > 0, the l-primary component of H4(Z,Z(2)), does depend
on the choice of the representation V , so we have to modify the definition of
H4(BG,Z(2)).

Let A• be a cosimplicial abelian group and write h∗(A
•) for the homology

groups of the associated complex of abelian groups. If A• is a constant cosim-
plicial abelian group, we have h0(A

•) = A0 and hi(A
•) = 0 for all i > 0.

Write Un for the product of n copies of U with the diagonal action of G.
Let H : SmVar(F ) −→ Ab be a contravariant functor from the category of
smooth varieties over F to the category of abelian groups. We have the two
maps H(pi) : H(Z) −→ H(U2/G), i = 1, 2, where pi : U

2/G→ Z are the two
projections. An element h ∈ H(Z) is called balanced if H(p1)(h) = H(p2)(h).
We write H(Z)bal for the subgroup of balanced elements in H(Z). In other
words, H(Z)bal = h0

(
H(U•/G)

)
(see [1]).

By Theorem 5.1, applied to the G-torsor Un → Un/G for every n, we have
an exact sequence of cosimplicial groups

0 −→ H1(U•/G, Ĉ(1)) −→ H3(U•/G,Zf•(2)) −→ D(G) −→ H2(U•/G, Ĉ(1)),

where the third group is viewed as a constant cosimplicial group. By Proposi-

tion 6.3(2), H1(Un/G, Ĉ(1)) ≃ H1(F, Ĉ(1)) for every n, hence the first cosim-
plicial group in the sequence is also constant. Applying h0, we have an exact
sequence (see [1, Lemma A.2])

0 −→ H1(F, Ĉ(1)) −→ H3(Z,Zf(2))bal −→ D(G)
θ∗G+λ∗

f

−−−−→ H2(Z, Ĉ(1)).

It follows from Theorem 5.1 applied to f that we have an exact sequence

(5.5) 0 −→ H1(F, Ĉ(1)) −→ H3(Z,Zf(2)) −→ D(G)
θ∗
G
+λ∗

f

−−−−→ H2(Z, Ĉ(1)).

Therefore,

(5.6) H3(Z,Zf(2))bal = H3(Z,Zf•(2)),

i.e., every element in H3(Z,Zf(2)) is balanced.
By Theorem 5.1 again and (5.3), the sequence

0 −→ H3(U•/G,Zf•(2)) −→ H4(U•/G,Z(2)) −→ H4(U•,Z(2))

is exact. Applying h0 and taking into account (5.6), we get an exact sequence

(5.7) 0 −→ H3(Z,Zf(2)) −→ H4(Z,Z(2))bal −→ H4(U,Z(2))bal.
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By Lemma 6.8, the last group in the sequence is canonically isomorphic to

H4(F,Z(2)). Write H
4
(Z,Z(2)) for the factor group H

4
(Z,Z(2))/H4(F,Z(2)).

It follows from (5.7) that there is an isomorphism

(5.8) H3(Z,Zf(2))
∼
→ H

4
(Z,Z(2))bal.

It follows from the proof of the following theorem that the groupH4(Z,Z(2))bal
does not depend on the choice of the representation V . We will denote this
group by H4(BG,Z(2)). We write BG for Z and EG for U .

Theorem 5.3. Let G be a semisimple group over F and C the kernel of the
universal cover Gsc → G. Then there are canonical isomorphisms

Hq(BG,Z(2)) ≃ Aq−2(BG,K2) ≃

{
K2(F ), if q = 2;

(Ĉ ∗ µ)(F ), if q = 3,

and an exact sequence

0 −→ H1(F, Ĉ(1)) −→ H
4
(BG,Z(2)) −→ Q(G)

θ∗G−→ H2(F, Ĉ(1)).

Proof. The first part follows from (4.2) and (5.4). By (5.5) and (5.8) it suffices
to show that the kernel of θ∗G + λ∗

f coincides with the kernel of θ∗G : Q(G) →

H2(F, Ĉ(1)). Let a ∈ D(G) be such that θ∗G(a) + λ∗
f(a) = 0 in H2(Z, Ĉ(1)).

Passing to Zsep, we get λ
∗
f(a) = 0 in H2(Zsep, Ĉ(1)). It follows from Lemma 6.6

that a ∈ Q(G) = Ker
(
D(G)

κ
−→ (Ĉ ∗ Ĉ)(F )

)
and a ∈ Ker(θ∗G) by Proposition

6.3(2). �

Remark 5.4. If G is simply connected, i.e., Ĉ = 0, we get an isomorphism

H
4
(BG,Z(2)) ≃ Q(G). This was proved in [4, Theorem B.5].

Remark 5.5. Let X → SpecF be a G-torsor and G′ = AutG(X). As X is
trivial over Fsep, the groups G and G′ are inner twisted forms of each other,
i.e., the group G′ is the twist of G by the torsor X . Then EG′ and BG′ are
the twists of EG and BG by X , respectively. But this twist does not affect
BG, i.e., BG = BG′. It follows that Ker(θ∗G) = Ker(θ∗G′) since this equality
holds over Fsep and Q(G) = Q(Fsep)

ΓF . In particular, if θ∗G = 0, then θ∗G′ = 0.
As every adjoint semisimple group of inner type is an inner twisted form of a
split group, it follows from Proposition 4.1 that θ∗G = 0 for such a group G.

6. Appendix

6a. Homotopy invariant functors. A contravariant functor S : SmVar(F )→
Ab is called homotopy invariant if for every variety X , the map S(X) →
S(X × A1

F ) induced by the projection X × A1
F → X , is an isomorphism.

Example 6.1. The functors X 7→ Ai(X,Kj) are homotopy invariant by [13,
§9]. It follows that the functor

X 7→ Coker
(
CH1(X)⊗ F× −→ A1(X,K2)

)
.

is also homotopy invariant.
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Lemma 6.2. Let S : SmVar(F )→ Ab be a homotopy invariant contravariant
functor and G a semisimple group acting on a variety X over F . Assume
that map S(X)→ S(XL) is injective for every field extension L/F . Then the
natural action of the group G(F ) on S(X) is trivial.

Proof. By assumption, we can replace F by an algebraic closure of F and G
by a semisimple cover Gsc of G since the homomorphism Gsc(F ) → G(F )
is surjective if F is algebraically closed. As G is simply connected, G(F ) is
generated by the F -points of 1-dimensional unipotent subgroups U ≃ A1

F of
G. It suffices to show that every t ∈ U(F ) acts trivially on S(X). The action
morphism a : U × X → X and the projection p : U × X → X induce the
maps S(a), S(p) : S(X) → S(U × X). By homotopy invariance, S(p) is an
isomorphism.

Write it : X → U ×X for the morphism x 7→ (t, x). As a◦ i1 = p ◦ i1 = IdX ,
we have S(a) ◦S(i1) = IdS(X) = S(p) ◦S(i1) and hence S(a) = S(p) since S(p)
is an isomorphism. It follows that

S(a ◦ it) = S(it) ◦ S(a) = S(it) ◦ S(p) = S(p ◦ it) = S(IdX) = IdS(X),

whence the result as t acts on S(X) via S(a ◦ it). �

6b. Cohomology of Ĉ(1). Assume first that the group G is split. Let T be
a split maximal torus in G. The exact triangle

T̂ (1) −→ T̂ sc(1) −→ Ĉ(1) −→ T̂ (1)[1]

and (4.1) yield the triviality of H i(Y, Ĉ(1)) for every variety Y if i < 0, an
isomorphism

(6.1) H0(Y, Ĉ(1)) ≃ Ĉ ∗ A0(Y,K1) = Ĉ ∗ µ(F (Y ))

and the exact sequences

(6.2) 0 −→ Ĉ ⊗ A0(Y,K1) −→ H1(Y, Ĉ(1)) −→ Ĉ ∗ CH1(Y ) −→ 0,

(6.3) 0 −→ Ĉ ⊗ CH1(Y ) −→ H2(Y, Ĉ(1)) −→ Ĉ ∗ Br(Y ) −→ 0.

Now consider the general case when G is not necessarily split. We have a
natural homomorphism

H2(Y, Ĉ(1)) −→ H2(Ysep, Ĉ(1))ΓF −→
(
Ĉsep ∗ Br(Ysep)

)ΓF .

Proposition 6.3. Let Y be an absolutely irreducible variety over F . Then

(1) H0(Y, Ĉ(1)) ≃ (Ĉ ∗ µ)(F ).
(2) Assume in addition that A0(Ysep, K1) = F×

sep, CH
1(Ysep) = 0 and Y has

a smooth F -point. Then the natural homomorphism H1(F, Ĉ(1)) →

H1(Y, Ĉ(1)) is an isomorphism and the sequence

0 −→ H2(F, Ĉ(1)) −→ H2(Y, Ĉ(1)) −→
(
Csep ∗ Br(Ysep)

)ΓF −→ 0

is exact.
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Proof. (1) The Hochschild-Serre spectral sequence

Ep,q
2 = Hp(F,Hq(Ysep, Ĉ(1)) =⇒ Hp+q(Y, Ĉ(1))

and (6.1) over Fsep give the isomorphism (1).

(2) The spectral sequence and (6.2) over Fsep provide an exact sequence

0 −→ H1(F, Ĉ ∗ µ) −→ H1(Y, Ĉ(1)) −→ (Ĉ ⊗ F×
sep)

ΓF −→

H2(F, Ĉ ∗ µ) −→ H2(Y, Ĉ(1)).

The last homomorphism in the sequence is injective as Y has an F -point. It

follows from (4.11) that the map H1(F, Ĉ(1)) → H1(Y, Ĉ(1)) is an isomor-
phism.

In order to prove the last statement, notice that all the differentials in the
spectral sequence coming to the line q = 0 are trivial as Y has a rational point.
By (6.2), we have

E2,1
2 = H2(F, Ĉ ⊗ F×

sep).

This group is trivial as Ĉ⊗F×
sep is l-primary torsion, where l is the characteristic

exponent of F , and the cohomological l-dimension of F is at most 1 if l > 0.
It follows that the differential E0,2

2 → E2,1
2 is trivial. Hence H2(Y, Ĉ(1)) has

a filtration with the factors H2(F, Ĉ ∗ µ), H1(F, Ĉ ⊗ F×
sep) and H0(F, Ĉsep ∗

Br(Ysep)). The result follows from (4.11). �

Corollary 6.4. In the assumptions of the proposition assume in addition that

Y is smooth. Then the natural homomorphismH2(Y, Ĉ(1))→ H2(F (Y ), Ĉ(1))
is injective.

Proof. It follows from (6.3) that H2(Fsep(Y ), Ĉ(1)) = Ĉ ∗ Br(Fsep(Y ). Hence
we have a commutative diagram

H2(F, Ĉ(1)) //

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

H2(Y, Ĉ(1)) //

��

Ĉsep ∗ Br(Ysep))

��

H2(F (Y ), Ĉ(1)) // Ĉsep ∗ Br(Fsep(Y )).

The top row is exact by Proposition 6.3 and the right vertical arrow is injective
as Y is smooth by [11, Corollary 2.6]. By specialization at a rational point,
the diagonal map is injective. The result follows. �

Lemma 6.5. Let Y ′ → Y be a morphism of smooth varieties such that the
induced maps Fsep[Y ]× → Fsep[Y

′]×, CH1(Ysep)→ CH1(Y ′
sep) are isomorphisms

and the map Br(Ysep) → Br(Y ′
sep) is injective. Then the map H2(Y, Ĉ(1)) →

H2(Y ′, Ĉ(1)) is injective.

Proof. Consider the natural morphism of the Hochschild-Serre spectral se-

quences for Y and Y ′ and the complex Ĉ(1). By assumption, the maps
Ep,q

∗ (Y ) → Ep,q
∗ (Y ′) are isomorphisms if (p, q) = (1, 1) and (2, 0) and injec-

tive if (p, q) = (0, 2). The result follows. �
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Lemma 6.6. Let f : X → Y be a G-torsor over F = Fsep with Y smooth
geometrically irreducible. If CH1(X) = 0, then the composition

(Ĉ ∗ Ĉ)(F ) −→ H−1(Y, Ĉ
L
⊗ Ĉ)

∪β∗

f

−−→ H2(Y, Ĉ(1))

is injective.

Proof. The exact sequence

H2(X,Z(1)) −→ H2(Y,Zf (1)) −→ H3(Y,Z(1))

coincides with

CH1(X) −→ Ĉ
β∗

f

−→ Br(Y ),

therefore, β∗
f is injective.

The diagram

Ĉ ∗ Ĉ //

%%❑❑
❑❑

❑❑
❑
❑❑

❑❑
❑

(Ĉ
L
⊗ Ĉ)[−1]

��

Id
L
⊗βf // Ĉ(1)[2]

��

T̂ ⊗ Ĉ
Id

L
⊗βf // T̂ (1)[3]

with the commutative triangle and anti-commutative square, where T is a split
maximal torus of G, yields the anti-commutative diagram

Ĉ ∗ Ĉ //
� _

��

// H2(Y, Ĉ(1))

��

T̂ ⊗ Ĉ � �
∪β∗

f // H3(Y, T̂ (1)) T̂ ⊗ Br(Y ).

It follows that the top arrow in the last diagram is injective. �

6c. Balanced elements. Let V be a representation of G as in Section 5a.
We consider the étale cohomology with coefficients in the complex Q/Z(2)
defined in [6]. Write H i(F (V ),Q/Z(j))bal for the subgroup of elements in
H i(F (V ),Q/Z(j)) whose images in H i(F (V ×V ),Q/Z(j)) under the two nat-
ural embeddings of F (V ) into F (V × V ) coincide.

Lemma 6.7. Let V be a finite dimensional vector space over F . Then the
natural map H i(F,Q/Z(j))→ H i(F (V ),Q/Z(j))bal is an isomorphism for all
i and j.

Proof. We prove by induction on n = dim(V ). Write F (V ) as F (P1 × An−1).
By [1, Proposition A.9], every element a ∈ H i(F (V ),Q/Z(j))bal is unramified
with respect to every point in P1 × An−1 of codimension 1. Therefore, a is
unramified with respect to all discrete valuations of L(P1) over L = F (An−1).
By [1, Proposition 5.1], a comes from an element b ∈ H i(L,Q/Z(j)) which is
balanced as H i is injective for purely transcendental extensions. By induction,
b comes from an element in H i(F,Q/Z(j)). �
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Let U ⊂ V be an open subvariety as in Section 5a. Write H4(U,Z(2))bal
for the subgroup of elements a ∈ H4(U,Z(2)) such that q∗1(a) = q∗2(a), where
qi : U × U → U are two projections.

Lemma 6.8. The natural map H4(F,Z(2)) → H4(U,Z(2))bal is an isomor-
phism.

Proof. By [6, Theorem 1.1], there is an exact sequence

0 −→ CH2(U) −→ H4(U,Z(2)) −→ H0
Zar(U,H

3(Q/Z(2))).

It follows from (5.3) that CH2(U) = 0, so the last arrow in the sequence is an
injection. Moreover, by [1, Proposition A.10], the natural homomorphism

H0
Zar(U,H

3(Q/Z(2))) −→ H4(F (U),Q/Z(2)) = H4(F (V ),Q/Z(2))

is also injective. Thus, H4(U,Z(2)) injects into H4(F (V ),Q/Z(2)). The
balanced elements in H4(U,Z(2)) correspond to the balanced elements in
H4(F (V ),Q/Z(2)) which are constant by Lemma 6.7. �

6d. The maps H i(Y, Ĉ(1))→ H i+3(Y,Z(2)). We will prove that the compo-
sition

(6.4) Ĉ(1)
ρf
−→ τ≤3Zf (2)[2] −→ Zf(2)[2] −→ ZY (2)[3]

that defines the map H1(Y, Ĉ(1)) → H4(Y,Z(2)) is equal to the composition
(5.2) after localizing at l and (l), where l is the characteristic exponent of F .

Case 1: We localize at l all sheaves and groups below. Choose a positive

integer n prime to l such that n · Ĉ = 0 and let µ⊗i
n,f be the cone of the natural

morphism µ⊗i
n,Y → Rf∗(µ

⊗i
n,Y ). Write µn,f for µ⊗1

n,f .

Recall (see [8] and [9]) that for i = 1, 2, µ⊗i
n is the cone of the morphism

Z(i)
n
−→ Z(i) of multiplication by n. It follows that µ⊗i

n,f is the cone of

Zf (i)
n
−→ Zf (i). By (4.4),

Hq(µn,f) =

{
0, if q ≤ 0;

Ĉ, if q = 1.

Denote by β ′ : Ĉ → µn,Y [2] the composition in the top row of the diagram

Ĉ
∼ // τ≤1µn,f [1] //

��

µn,f [1] //

��
−1

µn,Y [2]

��
Ĉ

∼ // τ≤2Zf (1)[2] // Zf (1)[2] // ZY (1)[3]

with the right square anti-commutative. It follows that the composition of β ′

with the morphism µn,Y [2]→ ZY (1)[3] coincides with −βf .
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Moreover, there is a diagram of horizontal exact triangles (with µn = µn,Y )

µn

L
⊗ µn

//

��

Rf∗(µn,X)
L
⊗ µn

//

��

µn,f

L
⊗ µn

//

��

(µn

L
⊗ µn)[1]

��

µ⊗2
n

//

��

Rf∗(µ
⊗2
n,X)

//

��

µ⊗2
n,f

//

��
−1

µ⊗2
n [1]

��
ZY (2)[1] // Rf∗(ZX(2))[1] // Zf (2)[1] // ZY (2)[2]

with the bottom right square anti-commutative and the other squares commu-
tative.

Hence we have the diagram

Ĉ
L
⊗ µn

��

H1(µn,f)
L
⊗ µn

//

��

(µn,f

L
⊗ µn)[1] //

��

(µn

L
⊗ µn)[2]

��

Ĉ ⊗ µn H1(µ⊗2
n,f)

//

��

µ⊗2
n,f [1]

//

��
−1

µ⊗2
n [2]

��
Ĉ ∗ µ H2(Zf (2)) // Zf (2)[2] // ZY (2)[3].

The composition of the morphism Ĉ(1) → Ĉ
L
⊗ µn, the morphisms in the left

column and the bottom row coincides with (6.4). The composition in the first
row is equal to β ′ ⊗ Id. It follows that (6.4) coincides with the negative of the
composition

(6.5) Ĉ(1) −→ Ĉ
L
⊗ µn

β′⊗Id
−−−→ (µn

L
⊗ µn)[2] −→ ZY (2)[3].

In the commutative diagram

Ĉ
L
⊗ ZY (1)

β′⊗Id //

��

(µn

L
⊗ ZY (1))[2]

∂⊗Id //

��

(
Z(1)

L
⊗ ZY (1)

)
[3]

��
Ĉ

L
⊗ µn

β′⊗Id // (µn

L
⊗ µn)[2] // ZY (2)[3]

(see [8, Remark 2.6]) the composition in the upper row coincides with (−βf )⊗
Id, hence the compositions (5.2) and (6.5) also coincide.
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Case 2: Now we localize at the ideal (l). It follows immediately from the
commutativity of the diagram

Ĉ
L
⊗ ZY (1) H2(Zf(1))

L
⊗ ZY (1) //

��

(
Zf(1)

L
⊗ ZY (1)

)
[2] //

��

(
ZY (1)

L
⊗ ZY (1)

)
[3]

��
Ĉ

L
⊗ ZY (1) // H3(Zf (2))[−1] // Zf (2)[2] // ZY (2)[3]

that the compositions (5.2) and (6.4) coincide.

6e. The map D(G) → H2(Y, Ĉ(1)). We prove that this map is equal to

θ∗G + λ∗
f . For a geometrically irreducible variety Y write Ã1(G× Y,K2) for the

cokernel of the product homomorphism

Ĉ ⊗ A0(Y,K1) = CH1(G)⊗A0(Y,K1) −→ A1(G× Y,K2)/A
1(Y,K2).

By Proposition 3.5, if G is split, there is a natural exact sequence

0 −→ Ĉ ∗ CH1(Y ) −→ Ã1(G× Y,K2) −→ D(G) −→ 0.

This sequence is split canonically by the pull-back with respect to the projec-
tion G× Y → G, hence

Ã1(G× Y,K2) ≃
(
Ĉ ∗ CH1(Y )

)
⊕D(G).

Proposition 6.9. Let G be a split semisimple group and let X → SpecF be a
trivial G-torsor with the action morphism a : G×X → X. Then the diagram

A1(X,K2)

a∗

��

γ // D(G)

(κ

Id)��

Ã1(G×X,K2)
∼ // (Ĉ ∗ Ĉ)⊕D(G)

is commutative.

Proof. We may assume that F = Fsep. The natural morphism c : GF (X) →
G×X yields the diagram

A1(X,K2)

γ

��

a∗ // A1(G×X,K2)/A
1(X,K2)

c∗ // A1(GF (X), K2)

γ

��
D(G) = D(G)

that is commutative by Proposition 3.3. It follows that the second components
of both compositions in the diagram of the statement of the proposition are
equal.

In order to prove that the first components of both compositions in the
diagram are equal, we may assume thatX = G. Let T be a split maximal torus
of G and Z := G/T . Considering spectral sequences for the two projections
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G×G→ G×Z andG→ Z as in Section 3a, we have the following commutative
diagram

A1(G,K2)

a∗

��

A1(Z,M
(−1)
2 )/Λ2(T̂ ) //

b∗

��

A1(Z, T̂ ⊗K1)/Λ
2(T̂ )

b∗

��

A1(G×X,K2) A1(G× Z,M
(−1)
2 )/Λ2(T̂ ) // A1(G× Z, T̂ ⊗K1)/Λ

2(T̂ ),

where b : G × Z → Z is the action morphism. The homomorphism b∗ :

A1(Z, T̂ ⊗K1)→ A1(G× Z, T̂ ⊗K1) coincides with T̂ ⊗ ϕ, where

ϕ : T̂ sc = CH1(Z) −→ CH1(G× Z) = CH1(G)⊕ CH1(Z) = Ĉ ⊕ T̂ sc,

is given by the pull-back with respect to b. The first component ϕ1 of ϕ is

the pull-back with respect to the morphism ι : GG(Z) → G × Z
b
−→ Z of the

action on the generic point of Z. As the functor CH1 is homotopy invariant,
by Lemma 6.2, ι can be replace by the canonical morphism GG(Z) → G→ Z,

hence ϕ1 coincides with the canonical map p : T̂ sc → Ĉ. The commutativity
of the diagram

D(G)
κ //

� _

��

Ĉ ∗ Ĉ� _

��

(T̂ ⊗ T̂ sc)/Λ2(T̂ )
Id⊗p // T̂ ⊗ Ĉ.

proves the statement. �

Let (C•, d•) ∈ D+ Shét(F ). For an integer n, the exact sequence of ΓF -
modules

(6.6) 0 −→ Hn(C•) −→ Cn/ Im(dn−1)
dn
−→ Ker(dn+1) −→ Hn+1(C•) −→ 0

yields a morphism

η(C•) : Hn+1(C•) −→ Hn(C•)[2]

in D+ Shét(F ).
Let X be a smooth variety over F and f : X → SpecF the structure

morphism. By (4.1) and (4.2), we have for i = 1 and 2,

Rqf∗(ZX(i)) = Hq(Xsep,Z(i)) =

{
A0(Xsep, Ki), if q = i;
A1(Xsep, Ki), if q = i+ 1.

Thus, applying the construction above to the complex Rf∗(Z(i)) and n = 1 or
2, we get the morphisms

η
(i)
X := η(Rf∗(Z(i))) : A

1(Xsep, Ki) −→ A0(Xsep, Ki)[2].

Lemma 6.10. Let f : X → SpecF be a G-torsor. Then A0(Xsep, K1) = F×
sep,

A1(Xsep, K1) = Ĉ and the morphism η
(1)
X : Ĉ → F×

sep[2] = Z(1)[3] coincides
with βf .
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Proof. Let Gm,X → E• be an injective resolution. Then the complex Gm,F →
f∗(E

•) coincides with Zf (1) (with Gm of degree zero). It follows that the first
three terms of the exact sequence (6.6) for the complex C• = Rf∗(ZX(1)) and

n = 1 coincides with τ≤2Zf (1). It follows that the morphism η
(1)
X = θ(C•)

is equal to the composition Ĉ ≃ H2(Zf (1)) ≃ τ≤2Zf (1)[2] −→ Gm,F [2] =
ZF (1)[3], and hence is equal to βf . �

The Rost complex C•(X,Ki) (see Section 1a) also yields a morphism

η(C•(X,Ki)) : A
1(Xsep, Ki)→ A0(Xsep, Ki)[2].

Lemma 6.11. The morphisms η
(i)
X and η(C•(X,Ki)) coincide for i = 1 and

2.

Proof. Let A be the category of ΓF -equivariant Zariski sheaves of abelian
groups on Xsep. The functor Rf∗ is the composition of the functors

D+ Shét(X)
α
−→ A

δ
−→ D+ Shét(F ),

where α is the change of the site functor and δ is the functor of global sections.
By [6, Lemma 1.4], Riα(Z(i)) = Ki, so that we have the following morphisms
in A:

Rα(Z(i))←− τ≤iRα(Z(i)) −→ Ki.

Applying Rδ, we get the morphisms

Rf∗(Z(i))←− Rδ(τ≤iRα(Z(i)))
ϕ
−→ Rδ(Ki).

Note that the left morphism induces isomorphisms on the homology in di-
mensions ≤ i, hence the morphism η for the complex Rδ(τ≤iRα(Z(i))) co-

incides with η
(i)
X . On the other hand, Rδ(Ki) coincides with the Rost com-

plex (Gersten’s resolution, see [12, §7]), hence ϕ yields the equality η
(i)
X =

θ(C•(X,Ki)). �

Example 6.12. Let f : X → SpecF be a G-torsor. The Rost complex for
i = 1 coincides with Fsep(X) → Div(Xsep). It follows from Lemmas 6.10 and
6.11 that the morphism βf is induced by the exact sequence

1 −→ F×
sep −→ Fsep(X)× −→ Div(Xsep) −→ Ĉsep −→ 0.

Now consider the case i = 2. We first prove the statement for torsors over
SpecF .

Lemma 6.13. Let f : X → SpecF be a G-torsor. Then

(1) θf = θG + λf .

(2) If G is split, then θG induces the trivial homomorphismD(G)→ H2(F, Ĉ(1)).

Proof. We drop the subscript “sep” in the proof. As before, write C•(X,K∗)

for the Rost complex of a variety X and C
•
(X,K∗) for the “reduced” complex

Coker
(
C•(SpecF,K∗) −→ C•(X,K∗)

)
= C•(X,K∗)/K∗(F ).
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The reduced complex C
•
(G,K1) coincides with PDiv(G) →֒ Div(G) and

hence is isomorphic to Ĉ[−1]. The complex C•(X,K1) is equal to F (X)× →
Div(X) and hence by Lemmas 6.10 and 6.11, fits into an exact triangle

ZX(1)[1] −→ C•(X,K1) −→ Ĉ[−1]
βf [−1]
−−−−→ ZX(1)[2].

Write C•
1 for the tensor product C

•
(G,K1)⊗C

•(X,K1) ≃ Ĉ[−1]⊗C•(X,K1).
Thus, we have the exact triangles

Ĉ[−1]
L
⊗ ZX(1)[1] −→ C•

1 −→ Ĉ[−1]
L
⊗ Ĉ[−1]

(Id
L
⊗βf )[−1]

−−−−−−−→ Ĉ[−1]
L
⊗ ZX(1)[2]

and therefore

Ĉ(1) −→ C•
1 −→ (Ĉ

L
⊗ Ĉ)[−2]

(Id
L
⊗βf )[−2]

−−−−−−−→ Ĉ(1)[1].

Note that τ≤−1(Ĉ
L
⊗ Ĉ) = (Ĉ ∗ Ĉ)[1]. It follows that the triangle

(6.7) Ĉ(1) −→ τ≤1(C
•
1) −→ (Ĉ ∗ Ĉ)[−1]

π[−1]
−−−→ Ĉ(1)[1],

where π is the composition

π : Ĉ ∗ Ĉ −→ (̂C
L
⊗ Ĉ)[−1]

(Id
L
⊗βf )[−1]

−−−−−−−→ C(1)[2],

is exact. Note that π ◦ κ = λf by the definition of λf in (5.1).
Write C•

2 for the complex

Coker
(
C•(X,K2) −→ C•(G×X,K2)

)

induced by the projection G×X → X . The external product of cycles gives
a morphism of complexes χ : C•

1 → C•
2 . The action morphism a : G×X → X

yields the composition of complexes

C
•
(X,K2)

a∗
−→ C

•
(G×X,K2) −→ C•

2 .

Similarly, the projection p : G×X → G yields the morphism of complexes
p∗ : C

•
(G,K2)→ C•

2 .
We have then the following diagram of morphisms of complexes

(6.8) C•
1

χ

��
C

•
(X,K2)

a∗ // C•
2 C

•
(G,K2).

p∗oo

Note that all the morphisms in the diagram are isomorphisms on H0 = Ĉ ∗ µ.
We prove the proposition after localizing at l or (l), where l is the charac-

teristic exponent of F .
First localize at l. In particular, we have Ĉ ⊗ F× = 0 as F is separably

closed.
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By Proposition 3.5, we have H1(C•
2 ) = (Ĉ ∗ Ĉ)⊕D(G) and H1 = D(G) for

the other two complexes in the bottom row of the diagram (6.8). By Lemma

6.11, θf = η
(2)
X = η

(
C

•
(X,K2)

)
and θG = η

(2)
G = η

(
C

•
(G,K2)

)
.

It follows from (6.7) that H1(C•
1) = Ĉ ∗ Ĉ. Moreover, the morphism χ :

C•
1 → C•

2 induces the identity on H0 and the canonical inclusion on H1. By

(6.7), the morphism η(C•
1) : Ĉ ∗ Ĉ → Ĉ(1)[2] coincides with π. Hence the

composition of the inclusion Ĉ ∗ Ĉ →֒ (Ĉ ∗ Ĉ)⊕D(G) and η(C•
2) also coincides

with π.
The map p∗ induces the canonical inclusion D(G) →֒ (Ĉ ∗ Ĉ)⊕D(G) on H1

and a∗ induces the map
(
κ
Id

)
: D(G) →֒ (Ĉ ∗ Ĉ)⊕D(G) by Proposition 6.9.

We have the following commutative diagram

(6.9) D(G) θG

��

� _

( 0
Id) ��

π : Ĉ ∗ Ĉ � � // (Ĉ ∗ Ĉ)⊕D(G)
η(C•

2 ) // Ĉ(1)[2]

D(G) θf

??

(κ
Id)

OO

It follows that θf = θG + λf .
If G is split, by Corollary 3.6, the rows of the diagram

Z1(G,K2)

��

// D(G)

��

// 0

0 // (Ĉ ∗ µ)(Fsep) // K2Fsep(G) // Z1(Gsep, K2) // D(Gsep) // 0

are exact. As G is split, the right vertical homomorphism is an isomorphism.
It follows that the map Z1(Gsep, K2)

ΓF → D(Gsep)
ΓF = D(G) is surjective.

Hence the connecting homomorphism for the exact sequence in the diagram

D(G) = D(Gsep)
ΓF −→ H2(F, Ĉ ∗ µ) = H2(F, Ĉ(1))

is trivial.
Now localize at the ideal (l). We have Ĉ ∗ µ = 0 and Ĉ(1) = (Ĉ ⊗F×)[−1].

It follows from (6.7) that there is an exact sequence

0 −→ Ĉ ⊗ F× −→ H1(C•
1 ) −→ Ĉ ∗ Ĉ −→ 0.

By Proposition 3.5, the H1-cohomology of all the complexes in the diagram
(6.8) contain Ĉ⊗F× and all the morphisms in the diagram induce the identity

morphism on Ĉ ⊗ F×. As above, the diagram (6.8) yields the diagram (6.9)
with the morphism η(C•

2) replaced by the one induced by the exact sequence

0 −→ Ĉ ⊗ F× −→ H1(C•
2 ) −→ (Ĉ ∗ Ĉ)⊕D(G) −→ 0.

Therefore, again θf = θG + λf .
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The last statement, when G is split, is proved in a similar manner using the
commutative diagram

A1(G,K2)

��

// D(G) //

��

0

0 // Ĉ ⊗ F×
sep

// A1(Gsep, K2) // D(Gsep) // 0

with the exact rows. �

Now consider the map

εf : D(G) −→ H2(Y, Ĉ(1))

for an arbitrary G-torsor f : X → Y . We prove that εf = θ∗G + λ∗
f .

Choose a generically free representation V of G such that there is a G-
equivariant open subset U ⊂ V with the property codimV (V \ U) ≥ 2 and
a G-torsor g : U → Z with Z(F ) 6= ∅ (see Section 5a). By assumption on
codimension, we have F [U ]× = F× and CH1(U) = 0. It follows from (1.1)
that F [Z]× = F× and CH1(Z) = 0. By Corollary 6.4, the map

(6.10) H2(Z, Ĉ(1))→ H2(F (Z), Ĉ(1))

is injective.
Let h : E → SpecF (Z) be the generic fiber of g. By Lemma 6.13 applied to

the G-torsor h, εh = θ∗G + λ∗
h. Therefore,

(εg)F (Z) = εh = θ∗G + λ∗
h = (θ∗G + λ∗

g)F (Z).

The injectivity of the map (6.10) implies that

(6.11) εg = θ∗G + λ∗
g.

Consider the G-torsor k : X ×U →W := (X ×U)/G. We have the natural
projections p : W → Y and W → Z. The inverse images of the G-torsors
f : X → Y and g : U → Z to W are both isomorphic to k. It follows that

(6.12) (εf)W = εk = (εg)W and (λ∗
f)W = λ∗

k = (λ∗
g)W .

Note that W is an open subvariety in the vector bundle (X × V )/G over
Y with the closed complement of codimension at least 2. Hence by the ho-
motopy invariance property for vector bundles, the natural maps F [Ysep]

× →
F [Wsep]

× and CH1(Ysep) → CH1(Wsep) are isomorphisms. Moreover, W is an
open subset in the vector bundle (X × V )/G → Y , hence the field exten-
sion F (Wsep)/F (Ysep) is purely transcendental and therefore, the natural map

Br(Ysep)→ Br(Wsep) is injective. By Lemma 6.5, the map p∗ : H2(Y, Ĉ(1))→

H2(W, Ĉ(1)) is injective. By (6.11) and (6.12), we have

(εf)W = εk = (εg)W = (θ∗G + λ∗
g)W = (θ∗G + λ∗

f)W .

The injectivity of p∗ implies that εf = θ∗G + λ∗
f .
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