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Abstract. Let K be a complete discretely valued field with residue field κ and F

the function field of a curve over K. Let p be the characteristic of κ and ℓ a prime
not equal to p. If the Brauer ℓ-dimensions of all finite extensions of κ are bounded
by d and the Brauer ℓ-dimensions of all extensions of κ of transcendence degree
at most 1 are bounded by d + 1, then it is known that the Brauer ℓ-dimension of
F is at most d + 2 ([S1], [HHK1]). In this paper we give a bound for the Brauer
p-dimension of F in terms of the p-rank of κ. As an application, we show that if
κ is a perfect field of characteristic 2, then any quadratic form over F in at least
9 variables is isotropic. If κ is a finite field, this is a result of Heath-Brown/Leep
([HB], [Le]).

LetK be a field. For a central simple algebra A over K, the period of A is the order
of its class in the Brauer group of K and the index of A is the degree of the division
algebra Brauer equivalent to A. The index of A is denoted by ind(A) and period of
A by per(A). Let K be a p-adic field and F the function field of a curve over K.
The question whether the index of a central simple algebra over F divides the square
of its period has remained open for a while. For indices which are coprime to p, an
affirmative answer to this question is a theorem of Saltman ([S1]). To complete the
answer, one needs to understand the relationship between the period and the index
for algebras of period p over F . One of the main results proved in this paper is the
following

Theorem 1. Let K be a p-adic field and F a function field of a curve over K. Then
the index of any central simple algebra over F divides the square of its period.

Let K be any field. For a prime p, we define the Brauer p-dimension of K, denoted
by Brpdim(K), to be the smallest integer d ≥ 0 such that for every finite extension
L of K and for every central simple algebra A over L of period a power of p, ind(A)
divides per(A)d. The Brauer dimension of K, denoted by Brdim(K), is defined as
the maximum of the Brauer p-dimension of K as p varies over all primes. Suppose
the characteristic of K is p > 0. If [K : Kp] = pn, then n is called the p-rank of K.
A field of characteristic p > 0 is perfect if and only if its p-rank is 0. A theorem of
Albert asserts that the Brauer p-dimension of a field K of characteristic p > 0 is at
most the p-rank of K (cf. (1.2)).

In this paper, we discuss more generally the Brauer p-dimension of function fields
of curves over a complete discretely valued field of characteristic 0 with residue field
of characteristic p > 0.

We begin by bounding the Brauer dimension of complete discretely valued fields.
Let K be a complete discretely valued field and κ its residue field. Suppose that
char(K) = 0 and char(κ) = p > 0. Let ℓ be a prime. Suppose that Brℓdim(κ) ≤ d.
If ℓ 6= p, then it is well known that Brℓdim(K) ≤ d + 1 (cf. [GS], Corollary 7.1.10).
There seems to be no good connections between the Brauer p-dimension of K and
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the Brauer p-dimension of κ. For any n ≥ 0, we give an example of a complete
discretely valued field K with Brpdim(K) ≥ n and Brpdim(κ) = 0. However there
are bounds for the Brauer p-dimension of K in terms of the p-rank of κ and we prove
the following

Theorem 2. Let K be a complete discretely valued field with residue field κ. Suppose
that char(κ) = p > 0 and the p-rank of κ is n. Then Brpdim(K) ≤ 1 if n = 0 and
n
2
≤ Brpdim(K) ≤ 2n if n ≥ 1.

Let F be the function field of a curve over K. Let ℓ be a prime. Suppose that
there exists d such that Brℓdim(κ) ≤ d and Brℓdim(κ(C)) ≤ d+ 1 for every curve C
over κ. It was proved in [HHK1] that if char(κ) 6= ℓ, then Brℓdim(F ) ≤ d + 2. For
ℓ =char(κ), we prove the following

Theorem 3. Let K be a complete discretely valued field with residue field κ. Suppose
that char(K) = 0 and char(κ) = p > 0. Let F be the function field of a curve over
K. If the p-rank of κ is n, then Brpdim(F ) ≤ 2n + 2.

We use the description of the Brauer group of a complete discretely valued field
in the mixed characteristic case due to Kato ([K], [CT]) and the patching techniques
of Harbater-Hartman-Krashen ([HHK1]) to prove our main results.

In the last section, we derive some consequences for the u-invariant of fields. The
u-invariant of a field L is the maximum dimension of anisotropic quadratic forms over
L. Let K be a complete discretely valued field with residue field κ. It is a theorem
of Springer that u(K) = 2u(κ). Let F be a function field of a curve over K. Suppose
that char(κ) 6= 2. If u(L) ≤ d for every finite extension L of κ and u(κ(C)) ≤ 2d
for every function field κ(C) of a curve C over κ, then in ([HHK1]), it is proved that
u(F ) ≤ 4d. For a p-adic field K, this was proved in ([PS2]). Suppose κ is a field of
characteristic 2 with [κ : κ2] = n. Then u(κ) ≤ 2n ([MMW], Corollary 1). Let L be
a finite extension of κ. Since [L : L2] = n, we have u(L) ≤ 2n. If C is a curve over κ,
then [κ(C) : κ(C)2] = 2n and hence u(κ(C)) ≤ 4n. If char(K) = 2, [F : F ∗2] = 4n
and hence u(F ) ≤ 8n ([MMW]. Corollary 1). Suppose that char(K) = 0. If κ is
a finite field, then results of Heath-Brown ([HB) and Leep ([Le]) lead to u(F ) = 8.
However very little is known about u(F ) for general κ. We prove the following

Theorem 4. Let K be a complete discretely valued field with residue field κ. Suppose
that char(K) = 0 and char(κ) = 2. Let F be a function field of a curve over K. If
κ is a perfect field, then u(F ) ≤ 8.

This leads us to the following

Conjecture. Suppose K is a complete discretely valued field of characteristic 0 with
residue field κ of characteristic 2. If F is a function field of a curve over K, then
u(F ) ≤ 8[κ : κ2].

Acknowledgements. We thank Asher Auel for his several critical comments on the text.

1. Module of differentials and Milnor k-groups

We begin by recalling two well-known results (1.1, 1.2) concerning the Brauer ℓ-
dimension of a field. Lemma 1.1 reduces the computation of the Brauer ℓ-dimension
to bounding indices of prime exponent algebras. Corollary 1.2 computes the Brauer
p-dimension for fields of characteristic p > 0.
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Lemma 1.1. Let k be any field and ℓ a prime. If for every central simple algebra A
of period ℓ over a finite extension K of k, ind(A) divides ℓd, then Brℓdim(k) ≤ d.

Proof. Let k′ be a finite extension of k and A a central simple algebra over k′ of period
ℓn for some n. We prove by induction on n that ind(A) divides (ℓn)d. The case n = 1
is the given hypothesis. Suppose that the lemma holds for n − 1. Let A′ = A⊗ℓ.
Then per(A′) = ℓn−1. By the induction hypothesis ind(A′) divides (ℓn−1)d. Thus
there exists a finite extension K of k′ of degree dividing (ℓn−1)d such that A′⊗k′ K is
a matrix algebra. In particular per(A⊗k′ K) = ℓ and by the hypothesis ind(A⊗k′ K)
divides ℓd. Thus there exists a finite extension L of K of degree dividing ℓd such that
A⊗k′ L is a matrix algebra. Since [L : k′] = [L : K][K : k′] divides ℓd(ℓn−1)d = (ℓn)d,
ind(A) divides (ℓn)d. �

Corollary 1.2. (Albert) Let κ be a field of characteristic p > 0. Suppose that the
p-rank of κ is n. Then Brpdim(κ) ≤ n.

Proof. Let k′ be a finite extension of k and A be a central simple algebra over k′ of
period p. By (1.1), it is enough to show that ind(A) divides pn. By ([A], Chap. VII.
Theorem 32), A ⊗k′ k

′1/p is a matrix algebra and hence ind(A) divides [k′1/p : k′].
Since [k′1/p : k′] = [k′ : k′p] = [k : kp] = pn ([B], A.V.135, Corollary 3), ind(A) divides
pn. �

Let κ be a field of characteristic p > 0. Let Ω1
κ be the module of differentials

on κ. Then the dimension of Ω1
κ as a κ-vector space is equal to the p-rank of κ.

Let Ω2
κ be the second exterior power of Ω1

κ. Let K2(κ) be the Milnor K-group and
k2(κ) = K2(κ)/pK2(κ). Then there is an injective homomorphism (cf., [CT], 3.0)

h2
p : k2(κ) → Ω2

κ

given by

(a, b) 7→ da

a
∧ db

b
.

Suppose κ = κp(a1, · · · , an). Then every element in Ω2
κ is a linear combination of

elements dai∧daj . In fact if a1, · · · , an is a p-basis of κ, then dai∧daj , 1 ≤ i < j ≤ n
is a basis of Ω2

κ over κ.

We now record a few facts about Ω2
κ and k2(κ).

Lemma 1.3. Let a, b ∈ κ∗ be p-dependent. Then (a, b) = 0 ∈ k2(κ).

Proof. If a is a pth power in κ, then da = 0. Suppose a =
∑

λp
i b

i for some λi ∈ κ.
Then da = (

∑

λp
i ib

i−1)db and da ∧ db = 0. In particular da
a
∧ db

b
= 0 ∈ Ω2

κ. Since

h2
p((a, b)) =

da
a
∧ db

b
and h2

p is injective, we have (a, b) = 0 ∈ k2(κ). �

Lemma 1.4. Suppose that κ = κp(a1, · · · an). Then the natural homomorphism
k2(κ) → k2(κ( p

√
a1, · · · , p

√
an−1)) is zero.

Proof. Let (a, b) ∈ k2(κ). Let κ′ = κ( p
√
a1, · · · , p

√
an−1). If a is a pth power in κ′,

then the image of (a, b) ∈ k2(κ
′) is zero. Suppose that a is not a pth power in κ′.

Since κ′p = κp(a1, · · · , an−1), κ = κ′p(an) and hence [κ : κ′p] ≤ p. Since a 6∈ κ′p, we
have κ = κ′p(a) = κp(a1, · · · , an−1, a). In particular a and b are p-dependent over κ′

and hence, by (1.3), (a, b) = 0 ∈ k2(κ
′). Since every element in k2(κ) is a sum of

elements of the form (a, b), the image of k2(κ) in k2(κ
′) is zero. �
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Lemma 1.5. Let a1, · · · , an ∈ κ∗ be p-independent over κ and κ′ = κ( pr1
√
a1, · · · , prn

√
an).

Then every element in the kernel of the natural homomorphism Ω2
κ → Ω2

κ′ is of the
form da1 ∧ f1 + · · ·+ dan ∧ fn for some fi ∈ Ω1

κ.

Proof. Let B ⊂ κ∗ be such that B∩{a1, · · · an} = ∅ and B∪{a1, · · · , an} is a p-basis
of κ. Then B ∪ { pr1

√
a1, · · · , prn

√
an} is a p-basis of κ′. Let α ∈ Ω2

κ be in the kernel
of Ω2

κ → Ω2
κ′ . Then α =

∑

λijdai ∧ daj with 1 ≤ i < j ≤ m and an+1, · · · , am ∈ B,
λi ∈ κ. Since the image of dai ∧ daj in Ω2

κ′ is zero for 1 ≤ i ≤ n and the image of α
in Ω2

κ′ is zero, the image of
∑

λijdai ∧ daj, n+ 1 ≤ i < j ≤ m, in Ω2
κ′ is zero. Since

B is p-independent over κ′ and an+1, · · · , am ∈ B, dai ∧ daj, n + 1 ≤ i < j ≤ m
are linearly independent over κ′ and hence λij = 0 for n + 1 ≤ i < j ≤ m. Thus
α =

∑

λijdai ∧ daj with 1 ≤ i < j ≤ n. �

Lemma 1.6. Let a1, · · · , a2n ∈ κ∗ be p-independent in κ. Let κ′ be an extension of
κ of degree d and λ1, · · · , λn ∈ κ∗. If d < pn, then the image of λ1da1 ∧ da2 + · · ·+
λnda2n−1 ∧ da2n in Ω2

κ′ is non-zero.

Proof. Since Ω2
κ → Ω2

κ1
is injective for any separable extension κ1 of κ, by replacing

κ by the separable closure of κ in κ′, we assume that κ′ is purely inseparable over
κ. Then κ′ = κ( pr1

√
b1, · · · , prn

√
bm) for some bi ∈ κ∗ with {b1, · · · , bm} p-independent

over κ. Since the kernels of the homomorphisms Ω2
κ → Ω2

κ′ and Ω2
κ → Ω2

κ( p
√
b1,··· , p

√
bm)

are equal by (1.5), we assume that κ′ = κ( p
√
b1, · · · , p

√
bm). Since [κ′ : κ] = pm < pn,

we have m ≤ n− 1. Without loss of generality we assume that m = n− 1.
Suppose that {a1, · · · , a2n} is a p-basis of κ. Let r be the maximum such that

{b1, · · · , bn−1, ai1 , ai2 · · · , air} is p-independent with no two ais in {a2j−1, a2j}. By
reindexing, we assume that {b1, · · · , bn−1, a1, a3, · · · , a2r+1} is p-independent. Then,
for each i ≥ 2r+3, {b1, · · · , bn−1, a1, a3, · · · , a2r+1, ai} is p-dependent. Since {a1, · · · ,
a2n} is p-basis of κ, there exists 1 ≤ t1 < t2 < · · · < tq ≤ r + 1 such that
{b1, · · · , bn−1, a1, a3, · · · , a2r+1, a2t1 , · · · , a2tq} is a p-basis of κ. After reshuffling the
indices, we assume that t1 = 1, · · · , tq = q andB = {b1, · · · , bn−1, a1, a3, · · · , a2r+1, a2,

a4, · · ·a2q, } is a p-basis of κ with q ≤ r+1. Then { p
√
b1, · · · , p

√

bn−1, a1, a3, · · · , a2r+1,
a2, a4, · · · , a2q} is a p-basis of κ′

Since B is a p-basis of κ, every element of Ω2
κ can be written as a linear combination

of dx ∧ dy, x, y ∈ B. We now compute the coefficient of da1 ∧ da2 in the expansion
of da2i+1 ∧ da2i+2 as a linear combination of dx ∧ dy, x, y ∈ B. Let 1 ≤ i ≤ r. Since
a2i+1 ∈ B, the coefficient of da1 ∧ da2 in the expansion of da2i+1 ∧ da2i+2 is zero. Let
i > r. Since a2i+1 and a2i+2 are p-dependent over {b1, · · · , bn−1, a1, a3, · · · , a2r+1}, in
the expansion of da2i+1 and da2i+2 there is no da2 term. Hence, there is no da1∧ da2
term in the expansion of da2i+1 ∧ da2i+2.

Thus, the coefficient of da1 ∧ da2 in the expansion of α = λ1da1 ∧ da2 + · · · +
λnda2n−1 ∧ da2n as a linear combination of dx ∧ dy with x, y ∈ B is λ1. Since
{ p
√
b1, · · · , p

√

bn−1, a1, a3, · · · , a2r+1, a2, a4, · · · , a2q} is a p-basis of κ′, the image of α
in Ω2

κ′ is non-zero.
Let {a1, · · · , a2n} be any p-independent subset of κ. Let B′ ⊂ κ be such that

B′∪{a1, · · · , a2n} is a p-basis of κ and B′∩{a1, · · · , a2n} = ∅. Let κ1 be the extension

of κ obtained by adjoining pd
√
b for all b ∈ B′ and d ≥ 1. Then {a1, · · · , a2n} is a

p-basis of κ1. Then κ1κ
′ is an extension of κ1 of degree < pn. Hence the image of

λ1dc1 ∧ dc2 + · · ·+ λndc2n−1 ∧ dc2n in Ω2
κ′κ1

is non-zero. In particular, the image of
λ1dc1 ∧ dc2 + · · ·+ λndc2n−1 ∧ dc2n in Ω2

κ′ is non-zero. �
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2. Brauer p-dimension of a complete discretely valued field

In the section we give a bound for the Brauer p-dimension of a complete discrete
valued field of characteristic zero with residue of characteristic p > 0, in terms of the
p-rank of the residue field.

Let R be a complete discrete valuation ring with field of fractions K and residue
field κ. Let ν be the discrete valuation on K given by R and π a parameter in R.
Suppose that char(K) = 0 and char(κ) = p > 0 and that K contains a primitive
pth root of unity. Fixing a primitive pth root of unity ζ ∈ K∗, for a, b ∈ K∗, let
(a, b) ∈ pBr(K) be the class of the cyclic K-algebra defined by xp = a, yp = b
and xy = ζyx. Let N = ν(p)p/(p − 1). Let br(K)0 = pBr(K). For i ≥ 1, let
Ui = {u ∈ R∗ | u ≡ 1 mod (π)i} and br(K)i be the subgroup of pBr(K) generated
by cyclic algebras (u, a) with u ∈ Ui and a ∈ K∗. Since R is complete, for n > N ,
every element in Un is a pth power and br(K)n = 0.

Let Ω1
κ be the module of differentiales on κ. For any c ∈ κ, let c̃ ∈ R be a lift of

c. For i ≥ 1, the maps
Ω1

κ → br(K)i/ br(K)i+1

given by xdy
y
7→ (1 + x̃πi, ỹ) and

κ → br(K)i/ br(K)i+1

given by z 7→ (π, 1 + z̃πi) yield a surjective homomorphism

ρi : Ω
1
κ ⊕ κ → br(K)i/ br(K)i+1

([K], Thm. 2, cf. [CT], 4.3.1).
Let K2(κ) be the Milnor K-group and k2(κ) = K2(κ)/pK2(κ). The maps

k2(κ) → br(K)0/ br(K)1

given by (x, y) 7→ (x̃, ỹ) and

κ∗/κ∗p → br(K)0/ br(K)1

given by (z) 7→ (π, z̃) yield an isomorphism

ρ0 : k2(κ)⊕ κ∗/κ∗p → br(K)0/ br(K)1

([K], Thm.2, cf. [CT], 4.3.1).

Lemma 2.1. Let R, K and κ be as above. Suppose that κ = κp(a1, · · · , an)
for some a1, · · · , an ∈ κ. Let u1, · · · , un ∈ R be lifts of a1, · · · , an. Let α ∈
pBr(K). Then, there exists u ∈ R∗ such that (α − (π, u))⊗K( p

√
u1, · · · , p

√
un−1) ∈

br(K( p
√
u1, · · · , p

√
un−1))1.

Proof. Since ρ0 is surjective, there exists xi, yi, a ∈ κ∗ such that ρ0(
∑

i(xi, yi)−(a)) =
α ∈ br(K)0/ br(K)1. In particular, if u is a lift of a in R,

ρ0(
∑

i

(xi, yi)) = α− (π, u) ∈ br(K)0/ br(K)1.

Let K ′ = K( p
√
u1, · · · , p

√
un − 1). Then K ′ is also a complete discretely valued field

with residue field κ′ = κ( p
√
a1, · · · , p

√
an−1). By the functoriality of the map ρ0, we

have ρ0(
∑

(xi, yi)) = α− (π, u) ∈ br(K ′)0/ br(K
′)1. By (1.4), the image of

∑

i(xi, yi)
is zero in k2(κ

′). Hence α − (π, u) = ρ0(
∑

(xi, yi)) = 0 ∈ br(K ′)0/ br(K
′)1. In

particular, α− (π, u) ∈ br(K ′)1. �
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Proposition 2.2. Let R, K, κ and π be as above. Suppose that κ = κp(a1, · · · , an)
for some a1, · · · , an ∈ κ. Let u1, · · · , un ∈ R be lifts of a1, · · · , an. Let α ∈ br(K)1.
Then there exist λ, λ1, · · · , λn ∈ R∗ such that

α = (λ1, u1) + · · ·+ (λn, un) + (π, λ).

Proof. Let α ∈ br(K)1. First we show, by induction on i, that for each i ≥ 0, there
exist xi1, · · · , xin, xi ∈ R∗ such that α− (xi1, u1)− · · · (xin, un)− (π, xi) ∈ br(K)i+1.
Since α ∈ br(K)1, we take x0j = x0 = 1, 1 ≤ j ≤ n. Suppose that i ≥ 1 and there
exist xi1, · · · , xin, xi ∈ R∗ such that α− (xi1, u1)− · · · (xin, un)− (π, xi) ∈ br(K)i+1.
Since the homomorphism ρi+1 : Ω1

κ ⊕ κ → br(K)i+1/ br(K)i+2 is surjective, there
exist w ∈ Ω1

κ and a ∈ κ such that

ρi+1(w, a) = α− (xi1, u1)− · · · (xin, un)− (π, xi) ∈ br(K)i+1/ br(K)i+2.

Since κ = κp(a1, · · · , an), Ωκ is generated by dai
ai
, 1 ≤ i ≤ n and hence w =

∑

i bi
dai
ai

for some bi ∈ κ. Thus

ρi+1(w, a) = (1 + b̃1π
i+1, u1) + · · · (1 + b̃nπ

i+1, un) + (π, 1 + ãπi+1).

In particular, α − (xi1, u1) − · · · − (xin, un) − (π, xi) − (1 + b̃1π
i+1, u1) − · · · − (1 +

b̃nπ
i+1, un) − (π, 1 + ãπi+1) ∈ br(K)i+2. Let x(i+1)j = xij(1 + b̃jπ

i+1) for 1 ≤ j ≤
n and xi+1 = xi(1 + ãπi+1). Since (x, yz) = (x, y) + (x, z) ∈ pBr(K), we have
α− (x(i+1)1, u1)− · · · − (x(i+1)n, un)− (π, xi+1) ∈ br(K)i+2.

Since br(K)i = 0 for i > N , we have α = (x(N+1)1, u1) + · · · + (x(N+1)n, un) +
(π, xN+1). �

Corollary 2.3. Let K and κ be as above. Suppose that the p-rank of κ is n. Let D
be a central simple algebra over K of period p. If D represents an element in br(K)1,
then ind(D) divides pn+1.

Proof. Let α ∈ br(K)1 be the class of D. By (2.2), there exist λ, λ1, · · · , λn ∈ R∗

such that α = (λ1, u1) + · · ·+ (λn, un) + (π, λ). Hence α⊗K( p
√
u1, · · · p

√
un, p

√
π) = 0

and the index of D divides pn+1. �

Theorem 2.4. Let K be a complete discretely valued field with residue field κ. Let
R be the valuation ring of K and π ∈ R be a parameter. Suppose that char(K) =
0, char(κ) = p and the p-rank of κ is n. Let a1, · · · , an ∈ κ be such that κ =
κp(a1, · · · , an) and u1, · · · , un ∈ R be lifts of a1, · · · , an. Let D be a central simple
algebra over K of period p. If n = 0, then D ⊗ K( p

√
π) is a matrix algebra and if

n ≥ 1, then D ⊗K( p2
√
u1, · · · p2

√
un−1, p

√
un, p

√
π) is a matrix algebra.

Proof. Let ζ be a primitive pth root of unity and K ′ = K(ζ). Since [K ′ : K] is
coprime to p, ind(D) = ind(D ⊗ K ′). Since K ′ is finite extension of a complete
discretely valued field K, K ′ is also a complete discrete valued field with residue
field κ′ a finite extension of κ. In particular, p-rank(κ′) = p-rank(κ). Thus, by
replacing, K by K ′, we assume that K contains a primtiive pth root of unity. Let
α ∈ pBr(K) be the class of D.

Suppose n = 0. Then κ = κp and k2(κ) = 0. Since ρ0 : k2(κ) ⊕ κ∗/κ∗p →
br(K)0/ br(K)1 is an isomorphism, pBr(K) = br(K)1. Thus, by (2.2), α = (π, u).
In particular D ⊗K( p

√
π) is a matrix algebra.

Suppose that n ≥ 1. Since p-rank(κ) = n, there exist a1, · · · , an ∈ κ∗ such that
κ = κp(a1, · · · , an). Let u1, · · · , un ∈ R be lifts of a1, · · · , an and π ∈ R a parameter.
Let K1 = K( p

√
u1, · · · , p

√
un−1). Then K1 is also a complete discrete valued field with
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residue field κ1 = κ( p
√
a1, · · · , p

√
an−1). Let R1 be the valuation ring of K1. Then π

is a parameter in R1. By (2.1), there exists u ∈ R∗ such that (α − (π, u)) ⊗ K1 ∈
br(K1)1. Since κp

1 = κp(a1, · · · , an−1), we have κ1 = κp
1( p
√
a1, · · · , p

√
an−1, an). Since

α− (π, u) ∈ br(K1)1, by (2.2), there exist λ1, · · · , λn, λ ∈ R1 such that

α− (π, u) = (λ1, p
√
u1) + · · ·+ (λn−1, p

√
un−1) + (λn, un) + (π, λ).

Hence
α = (λ1, p

√
u1) + · · ·+ (λn−1, p

√
un−1) + (λn, un) + (π, uλ).

In particular D ⊗K( p2
√
u1, · · · p2

√
un−1, p

√
un, p

√
π) is a matrix algebra. �

Corollary 2.5. Let K, κ and n be as in (2.4). Then Brpdim(K) is 1 if n = 0 and
Brpdim(K) ≤ 2n if n ≥ 1.

Proof. Let K ′ be a finite extension of K. Let D be a central simple algebra over K ′

of period p. Since K ′ is also a complete discretely valued field with the p-rank of the
residue field equal to n, corollary follows by (2.4) and (1.6). �

Lemma 2.6. Let K be a complete discretely valued field with residue field κ. Suppose
that char(K) = 0, char(κ) = p > 0 and [κ : κp] ≥ 2n. Then Brpdim(K) ≥ n.

Proof. Let a1, · · · , a2n ∈ κ∗ be p-independent. Let u1, · · · , u2n ∈ K∗ be the lifts of
a1, · · · , a2n. Let D = (u1, u2) + · · ·+ (u2n−1, u2n). We claim that ind(D) = pn. This
would show that Brpdim(K) ≥ n.

Let K1 be an extension of K of degree at most pn−1. Since K is a complete
discretely valued field, K1 is also a complete discretely valued field with residue
field κ1 and [κ1 : κ] ≤ [L : K] ≤ pn−1. Then, by ( 1.6), the image of da1 ∧
da2 + · · ·+ da2n−1 ∧ da2n in Ω2

κ1
is non-zero. Since h2

p((a1, a2) + · · ·+ (a2n−1, a2n)) =

da1 ∧ da2 + · · · + da2n−1 ∧ da2n is nonzero in Ω2
κ1
, (a1, a2) + · · · + (a2n−1, a2n) is

non-zero in k2(κ1). Since ρ0((a1, a2) + · · · + (a2n−1, a2n)) is the class of D ⊗K K1

in br(K1)0/ br(K)1 and ρ0 is injective, D ⊗K K1 is non-trivial in pBr(K1). Hence
ind(D) ≥ pn. Since D is a product of n cyclic algebras, ind(D) = pn. �

Combining (2.4) and (2.6), we have the following

Theorem 2.7. Let K be a complete discretely valued field with residue field κ. Sup-
pose that char(K) = 0, char(κ) = p > 0 and the p-rank of κ is n. If n = 0, then
Brpdim(K) ≤ 1 and if n ≥ 1, then n

2
≤ Brpdim(K) ≤ 2n.

Example 2.8. Let k be a purely transcendental extension of the finite field Fp of
transcendence degree 2n and κ the separable closure of k. Let K be a complete
discretely valued field of characteristic 0 with residue field κ. Then the Brauer p-
dimension of κ is 0 ([A], Ch.IV, §7, Theorem 18) and Brpdim(K) ≥ n (2.6). Note
that the p-rank of κ is 2n. Thus in the mixed characteristic case, the bound on
the Brauer dimension of the residue field should be replaced by the bound on the
p-rank of the residue field in order to get a good bound on the Brauer dimension of
a complete discretely valued field.

3. The main theorem

Let R be an integral domain and K its field of fractions. Let A be a central simple
algebra over K. We say that A is unramified on R if there exists an Azumaya algebra
A over R such that A ⊗R K is Brauer equivalent to A. If P is a prime ideal of R
and A is unramified on RP , then we say that A is unramified at P . If ν is a discrete
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valuation of K with R as the valuation ring at ν and A is unramified on R, then we
also say that A is unramified at ν.

Let X be a regular integral scheme with function field K and A a central simple
algebra over K. Let x ∈ X be a point. If A is unramified on the local ring OX ,x

at x, then we say that A is unramified at x. If A is not unramified at x, then we
say that A is ramified at x. The ramification divisor of A on X is the divisor

∑

x,
where sum is taken over the codimension one points x of X with A ramified at x.
The support of the ramification divisor of A is simply the union of codimension one
points of X where A is ramified.

Let T be a complete discrete valuation ring with field of fractions K and t ∈ T a
parameter. Let X be an excellent regular, integral, proper scheme over Spec(T ) of
dimension 2 with function field F and reduced special fibre Y . For a closed point P
of X , let OX ,P denote the local ring at P , ÔX ,P the completion of the regular local

ring OX ,P at its maximal ideal and FP the field of fractions of ÔX ,P . For an open
subset U of an irreducible component of Y , let RU be the ring consisting of elements
in F which are regular on U . Then T ⊂ RU . Let R̂U be the (t)-adic completion of

RU and FU the field of fractions of R̂U (cf. [HHK1]). In this section we give a bound
for the Brauer p-dimension of F in terms of the p-rank of the residue field of T .

We begin with the following results (3.1, 3.2, 3.3 and 3.4) which are well-known
and we include them for the sake of completeness.

Lemma 3.1. Let B be a regular local ring with field of fractions K, residue field
κ and maximal ideal m. Let n be a natural number and u ∈ B a unit such that
[κ( n

√
u) : κ] = n. Then B[ n

√
u] is a regular local ring with residue field κ( n

√
u).

Proof. Since [κ( n
√
u) : κ] = n, B[ n

√
u]/mB[ n

√
u] ≃ κ( n

√
u) is a field. Thus m generates

the maximal ideal of B[ n
√
u]. Since the dimension of B[ n

√
u] is equal to the dimension

of B, B[ n
√
u] is a regular local ring. �

Lemma 3.2. Let B be a regular local ring with field of fractions K, residue field κ
and maximal ideal m. Let π ∈ m be a regular prime and n a natural number. Then
B[ n

√
π] is a regular local ring with residue field κ.

Proof. Since B is a regular and π ∈ m is a regular prime, there exist π2, · · · , πd ∈ m
such thatm = (π, π2, · · · , πd), where d is the dimension ofB. Let m̃ = ( n

√
π, π2, · · · , πd)

⊂ B[ n
√
π]. Then m̃ is the maximal ideal of B[ n

√
π] and B[ n

√
π]/m̃ ≃ κ. Since the

dimension of B[ n
√
π] is n, B[ n

√
π] is a regular local ring. �

Corollary 3.3. Let B be a regular local ring with field of fractions K, residue
field κ and maximal ideal m. Let n1, · · · , nr be natural numbers and u1, · · · , ur ∈
B units such that [κ( n1

√
u1, · · · , nr

√
ur) : κ] = n1 · · ·nr. Let π1, · · · , πs ∈ m be

a system of regular parameters in B and d1, · · · , ds be natural numbers. Then
B[ n1

√
u1, · · · , nr

√
ur, d1

√
π1, · · · , ds

√
πs] is a regular local ring with residue field

κ( n1
√
u1, · · · , nr

√
ur).

Proof. Proof follows by induction using (3.1) and (3.2). �

Lemma 3.4. (cf. [LPS], 2.4) Let R be a discrete valuation ring with field of fractions

K. Let R̂ be the completion of R at the discrete valuation and K̂ the field of fractions
of R̂. Then a central simple algebra D over K is unramified at R if and only if
D ⊗K K̂ is unramified at R̂.
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Proposition 3.5. Let A be a complete regular local ring of dimension 2 with field of
fractions F , residue field κ and maximal ideal m = (π, δ). Suppose that char(F ) = 0
and char(κ) = p > 0 with p-rank(κ) = n. Let a1, · · · , an ∈ κ be a p-basis of κ and
u1, · · · , un ∈ A be lifts of a1, · · · , an. Suppose that F contains a primitive pth root
of unity. Let D be a central simple algebra over F of period p. Suppose that D is
ramified on A at most at (π) and (δ). Then D ⊗F F ( p2

√
u1, · · · , p2

√
un, p

√
π, p

√
δ) is a

matrix algebra. In particular, index(D) divides p2n+2.

Proof. Let

E = F ( p2
√
u1, · · · , p2

√
un,

p
√
π,

p
√
δ)

and

B = A[ p2
√
u1, · · · , p2

√
un,

p
√
π,

p
√
δ] ⊂ E.

By (3.3), B is a complete regular local ring of dimension 2 with field of fractions E
and residue field κ( p2

√
a1, · · · p2

√
an).

We first show that D ⊗F E is unramified on B. Since B is a regular local ring of
dimension 2, it is enough to show thatD⊗FE is unramified at every height one prime
ideal of B ([AG], 7.4). Let Q be a height one prime ideal of B and P = Q∩A. Since
B is integral over A, the height of P is 1. If P 6= (π) or (δ), then D is unramified at
P and hence D ⊗F E is unramified at Q. Suppose that P = (π). Then Q = ( p

√
π).

Suppose that char(A/P ) 6= p. Since E/F is ramified at P and char(κ(P )) 6= p,
D⊗FE is unramified atQ. Suppose that char(A/P ) = p. Since A is complete regular
local ring with maximal ideal m = (π, δ), A/(π) is a complete discrete valuation ring
with residue field κ and char(A/P ) = char(κ) = p. In particular, A/(π) ≃ κ[[δ]],
where δ is the image of δ in A/(π). Let κ(P ) be the field of fractions of A/P .
Then κ(P ) ≃ κ((δ)). Since a1, · · · , an is a p-basis of κ and u1, · · · , un ∈ A are
lifts of a1, · · · , an, the images of u1, · · · , un, δ in κ(P ) is a p-basis of κ(P ). Let
FP be the completion of F at P and EQ the completion of E at Q. Since EQ ≃
FP ( p2

√
u1, · · · , p2

√
un,

p
√
δ, p
√
π) and the residue field of FP is κ(P ), by (2.4), D⊗F EQ

is split and hence unramified. Thus, by (3.4), D ⊗F E is unramified at Q.
By ([AG], 7.4), there exists an Azumaya B-algebra D such that D⊗BE ≃ D⊗F E.

Since D ⊗ EQ is split and B̂Q is a discrete valuation ring, D ⊗B B̂Q is zero in the

Br(B̂Q) ([AG], 7.2). In particular the image D ⊗B κ(Q) of D ⊗B B̂Q in Br(κ(Q))
is zero. Since κ(Q) is the field of fractions of regular local ring B/Q, by ([AG],
7.2), D ⊗B B/Q is zero in Br(B/Q). Hence D ⊗B B/m̃ is zero in Br(B/m̃), where
m̃ is the maximal ideal of B. Since B is a complete regular local ring, D = 0 ∈
Br(B) ([C], [KOS]). In particular D ⊗B E ≃ D ⊗F E is zero and index(D) divides
[E : F ] = p2n+2. �

Theorem 3.6. Let K be a complete discretely valued field with residue field κ. Sup-
pose that char(K) = 0, char(κ) = p > 0 and p-rank(κ) = n. Let F be a finitely
generated field extension of K of transcendence degree 1 and D a central simple
algebra over F of period p. Then ind(D) divides p2n+2.

Proof. As in the proof of (2.4), we assume without loss of generality that F contains
a primitive pth root of unity. Let K ′ be a finite extension of K. Then K ′ is also
a complete discretely valued field with the p-rank of the residue field is n. Thus,
replacing K by a finite extension of K, we assume that F is the function field of a
geometrically integral smooth projective curve X over K.
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We choose a proper regular model X of F over T such that the support of the
ramification divisor of D and the components of the reduced special fibre are a union
of regular curves with normal crossings on X . Let Y be the special fibre of X .

Let η be a generic point of an irreducible component of Y and Fη the completion
of F at the discrete valuation given by η. Then the residue field κ(η) of Fη is
function field of transcendence degree one over κ. Since [κ : κp] = pn, we have
[κ(η) : κ(η)p] = pn+1. By (2.4), ind(D ⊗F Fη) divides p2n+2. By ([HHK2], 5.8 and
[KMRT], 1.17), there exists an irreducible open set Uη of Y containing η such that
ind(D ⊗F FUη

) = ind(D ⊗F Fη). In particular ind(D ⊗F FUη
) divides p2n+2.

Let S0 be a finite set of closed points of X containing all the points of intersection
of the components of Y and the support of the ramification divisor of D. Let S be
a finite set of closed points of X containing S0 and Y \ (∪ Uη), where η varies over
generic points of Y . Then, by ([HHK1], 5.1),

ind(D) = l.c.m{ind(D ⊗ Fζ},
where ζ running over S and irreducible components of Y \ S.

Suppose ζ = U for some irreducible component U of Y \ S. Let η be the generic
point of U . Then U ⊂ Uη and RUη

⊂ RU . Since FUη
⊂ FU , ind(D ⊗F FU) divides

p2d+2.
Suppose ζ = P ∈ S. Let AP be the regular local ring at P . Then, by the

choice of X , the maximal ideal mP of AP is generated by π and δ such that A is
ramified on AP at most possibly at (π) and (δ). Since the residue field κ(P ) at P
is a finite extension of κ, we have p-rank(κ(P )) = p-rank(κ) = pn. Thus, by (3.5),
ind(D ⊗F FP ) divides p

2n+2. Hence ind(D) divides p2n+2. �

Corollary 3.7. Let F and n be as in (3.6). Then Brpdim(F ) ≤ 2n+ 2.

Proof. Let F ′ be a finite extension of F and D a central simple algebra of period
p. Since the transcendence degree of F ′ over K is 1, by (3.6), ind(D) divides p2n+2.
Corollary follows from (1.6). �

Corollary 3.8. Let K be a complete discretely valued field with residue field κ.
Suppose that κ is finitely generated field of transcendence degree n over a perfect
field of characteristic p > 0. If F is a function field of a curve over K, then the
Brauer p-dimension of F is at most 2n+ 2.

Proof. Since κ is a finitely generated field of transcendence degree d over a perfect
field, we have [κ : κp] = pn ([B], A.V.135, Corollary 3). Hence the result follows from
(3.6). �

Let K be a p-adic field and F the function field of curve over K. Let A be a
central simple algebra over F . If the period of A is coprime to p, then a theorem of
Saltman ([S1]) asserts that ind(A) divides per(A)2. If the period of A is a power of p,
then it is proved in ([LPS]) that the ind(A) divides per(A)3. We have the following

Corollary 3.9. Let F be the function field of a curve over a p-adic field K. Then
for every central simple algebra over F , the index divides the square of the period.

Proof. Let A be a central simple algebra over F of period a power of p. Since the
residue field κ of K is a finite field, [κ : κp] = 1. Thus, by (3.6), ind(A) divides
per(A)2. �
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4. u-invariant

Let K be a complete discretely valued field with residue field κ and F the function
field of a curve over K. In this section we compute the u-invariant of F when κ is a
perfect field of characteristic 2 and char(K) = 0.

For any field L of characteristic not equal to 2, let W (L) be the Witt ring of
quadratic forms over L and In(L) be the nth power of the fundamental ideal I(L) of
W (L).

Let R be an integral domain with field of fractions F . A quadratic form q over R
is non-singular if the associated quadric is smooth over R. We say that a quadratic
form q over F is defined over R if there exists a non-singular quadratic form q′ over
R such that q′ ⊗R F ≃ q.

In the rest of this section, until (4.7), A denotes a complete regular local ring of
dimension two with field of fractions F and residue field κ. Suppose that char(F ) = 0,
char(κ) = 2 and κ is a perfect field. Suppose that the maximal ideal m = (π, δ) and
2 = u0π

iδj for some u0 ∈ A∗ and i, j ≥ 0.

Lemma 4.1. Let A, F , κ, m = (π, δ) as above. Let α ∈ H2(F, µ2). If α is
unramified on A except possibly at (π) and (δ). Then α = (uc, π) + (vcπǫ, δ) for
some units u, v ∈ A, c ∈ A not divisible by π, δ and ǫ = 0 or 1.

Proof. Since α is unramified except at (π) and (δ) and κ is perfect, by (3.5), α ⊗
F (

√
π,

√
δ) is zero. In particular, by a theorem of Albert, α = (a, π)+(b, δ) for some

a, b ∈ F ∗. Without loss of generality we assume that a, b ∈ A and square free. Since
(−d, d) = 0 for any d ∈ F ∗, we assume that π does not divide a and δ does not
divide b. Since A is a regular local ring, it is a unique factorisation domain ([AB]).
We write a = ca1δ

ǫ1 and b = cb1π
ǫ2 with c, a1, b1 ∈ A square free, a1 and b1 are

coprime, π and δ do not divide ca1b1 and 0 ≤ ǫ1, ǫ2 ≤ 1.
Let θ be a prime in A which divides a1. Write a1 = θa2. Then θ does not divide

cb1πδ. In particular, the characteristic of the residue field κ(θ) at θ is not equal
to 2 and α is unramified at θ. Since the residue of α at θ is the image π of π in
κ(θ)/κ(θ)∗2, π is a square in κ(θ). Let L = F [

√
π] and B = A[

√
π]. Then B is a

regular local ring of dimension 2 (cf. (3.2)) and hence a unique factorisation domain
([AB]). Since π is a square in κ(θ) and char(κ(θ)) 6= 2, we have θB = Q1Q2 with Q1

and Q2 two distinct prime ideals of B. In particular NL/F (Q1) = θA. Since B is a
unique factorisation domain, Q1 = (η) for some η ∈ B and hence there exists a unit
u ∈ A such that NL/F (η) = uθ. We have

(a, π) = (auθ, π)
= (ca1δ

ǫ1uθ, π)
= (cθa2δ

ǫ1uθ, π)
= (ca2δ

ǫ1u, π).

Thus by induction on the number of primes dividing a1, we conclude that (a, π) =
(ucδǫ1, π) for some unit u ∈ A. Similarly (b, δ) = (vcπǫ2, δ) for some unit v ∈ A.
Thus we have α = (ucδǫ1, π) + (vcπǫ2, δ). Suppose that ǫ1 = 1. Then

α = (ucδ, π) + (vcπǫ2, δ)
= (uc, π) + (δ, π) + (vcπǫ2, δ)
= (uc, π) + (vcπǫ2+1, δ)
= (uc, π) + (vcπǫ, δ),

where ǫ = ǫ2 + 1 (mod 2). �
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For any field K and i ≥ 1, let H i
2(F ) be the Kato cohomology groups ([K2], §0). If

char(K) 6= 2, we have H i
2(F ) = H i(F, µ2). If char(K) = 2, we have H2

2 (K) = 2Br(K)
and H1

2 (K) = H1(K,Z/2Z). For a ∈ K∗, let [a) ∈ H1
2 (K) be the element defined

by K[X ]/(X2 + X + a). Note that [a) is K × K or a separable extension of K of
degree 2. Let b ∈ K. Let [a) · (b) be the quaternion algebra over K generated by i
and j with i2 + i+ a = 0, j2 = b and ji = −(1 + i)j.

Let A, F , κ be as above. Let θ ∈ A be a prime. Suppose θ does not divide
2 = u0π

iδj. Then the characteristic of the residue field κ(θ) at θ is 0. Suppose θ
divides 2. Then (θ) = (π) or (θ) = (δ) and A/(θ) is a complete discrete valuation
ring. Since the residue field κ of A is a perfect field, we have [κ(θ) : κ(θ)2] = 2. By
([K2], §1), we have residue homomorphisms ∂θ : H

3(F, µ2) → H2
2 (κ(θ)) ≃ 2Br(κ(θ))

and ∂ : H2
2 (κ(θ)) → H1

2 (κ).

Lemma 4.2. (cf. [Su], 1.1) Let A, F , κ, m = (π, δ) be as above. Then, for any
unit u ∈ A∗, ∂π([u) · (δ) · (π)) = [u) · (δ) and ∂([u) · (δ)) = [u), where for any a ∈ A,
a denotes the image modulo π and a denotes the image modulo m.

Proof. Suppose that [u) is trivial in H1
2 (κ). Since u is a unit in A and A is complete,

[u) is trivial in H1(F, µ2). In particular [u) · (π) · (δ) and [u) · (δ) are trivial.
Suppose that [u) is non-trivial. Let κ′ = κ[X ]/(X2+x+u). Then κ′ is a separable

quadratic extension of κ and [u) is the only non-trivial element of the kernel of the
restriction homomorphism from H1

2 (κ) to H1
2 (κ

′).
Let κ(π)′ = κ(π)[X ]/(X2 + X + u). Then κ(π)′ is a complete discretely valued

field with residue field κ′ and δ as a parameter. Thus κ(π)′/κ(π) is unramified and
δ ∈ κ(π) is not a norm from κ(π)′ and hence [u) · (δ) is non-trivial. Since ∂ is
an isomorphism ([K2], Lemma 1.4(3)), ∂([u) · (δ)) is non-trivial in H1

2 (κ). Since
[u) · (δ) is trivial over κ(π)′, by the functoriality of ∂, the image of ∂([u) · (δ)) in
H1

2 (κ
′) is trivial. Since the only non-trivial element of the kernel of the restriction

homomorphism from H1
2 (κ) to H1

2 (κ
′) is [u), ∂([u) · (δ)) = [u).

Let Fπ be the completion of F at π. Since u and δ are units at π, [u) · (δ) is
a quaternion algebra defined over A(π). If π is a reduced norm from [u) · (δ) over

Fπ, [u) · (δ) is a split algebra over κ(π), contradicting the non-triviality of [u) · (δ)
in H2

2 (κ(π)). Hence π is not a reduced norm form of the quaternion algebra ([u) ·
(δ))⊗F Fπ and [u) · (δ) · (π) is non-trivial in H3(Fπ, µ2). Let L = F [X ]/(X2+X+u).
Let B be the integral closure of A in L. Then B is a complete regular local ring
with maximal ideal (π, δ) and residue field κ′. Since the image of [u) · (δ) · (π) in
H3(L, µ2) is zero, by the functoriality of the residue homomorphisms, the image of
∂(∂π([u) · (δ) · (π))) in H1

2 (κ
′) is zero. Since [u) · (δ) · (π) is non-trivial in H3(Fπ, µ2)

and ∂π : H3(Fπ, µ2) → H2
2 (κ(π)) and ∂ : H2

2 (κ(π)) → H1
2 (κ) are isomorphisms (

[K2], Lemma 1.4(3)), ∂(∂π([u) · (δ) · (π)) is non-trivial and hence equal to [u). Since
∂([u) · (δ) = [u) and ∂ is an isomorphism, we have ∂π([u) · (δ) · (π)) = [u) · (δ). �

The following is a result of Kato ([K2], 1.7)

Proposition 4.3. Let A, F and κ be as above. Then

H3(F, µ2)
⊕∂γ→ ⊕γ∈Spec(A)(1)H

2
2 (κ(γ))

∑
∂γ→ H1

2 (κ)

is a complex.
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We define H3
nr(F/A, µ2) to be the kernel of residue homomorphism

H3(F, µ2)
⊕∂γ→ ⊕γ∈Spec(A)(1)H

2
2 (κ(γ))).

Proposition 4.4. Let A, F and κ be as above. Then H3
nr(F/A, µ2) = 0.

Proof. Since cd2(F ) ≤ 3 ([GO]), I4(F ) = 0 ([AEJ], Cor.2. p.653) and e3 : I3(F ) →
H3(F, µ2) is an isomorphism ([AEJ], Thm. 2. p.653). Let ζ ∈ H3

nr(F/A, µ2).
Suppose that ζ 6= 0. Let q be an anisotropic quadratic form over F such that
q ∈ I3(F ) and e3(q) = ζ . Let θ ∈ A be a prime and Fθ be the completion of F
at θ. Since A/(θ) is a complete local ring of dimension one with residue field per-
fect of characteristic 2, H3

2 (κ(θ)) = 0 ([GO]). Suppose that char(κ(θ)) 6= 2. Since
H3(κ(θ), µ2) = H3

2 (κ(θ)) = 0, ∂θ : H3(Fθ, µ2) → H2
2 (κ(θ)) is an isomorphism. Sup-

pose that char(κ(θ)) = 2. Since the 2-rank of κ(θ) is 1, by ([K2], Lemma 1.4(3)),
∂ : H3(Fθ, µ2) → H2

2 (κ(θ)) is an isomorphism. Since ζ ∈ H3
nr(F/A, µ2), the image of

ζ in H3(Fθ, µ2) is zero. In particular, q is hyperbolic over Fθ. Thus q comes from a
non-singular quadratic form over the localisation A(θ) of A at the prime ideal (θ) (cf.
[O], Thm,8). Since A is a two dimensional regular ring, there exists a non-singular
quadratic forn q′ over A such that q′ ⊗A F ≃ q ([CTS], Cor.2.5, cf. [APS], 4.2 ).

Since q ∈ I3(F ) and q is anisotropic, the rank of q, and hence the rank of q′, is at
least 8. Since κ is a perfect field, q′ ⊗A κ is isotropic ([MMW], Corollary 1). Since
A is a complete regular local ring and q′ is a non-singular quadratic form over A
with q′ ⊗A κ is isotropic, q′ is isotropic ([Gr], Theorem 18.5.17). Thus q is isotropic,
leading to a contradiction. �

Lemma 4.5. Let A, F , κ and m = (π, δ) be as be above. Let ζ ∈ H3(F, µ2). Suppose
that ζ is ramified at most along (π) and (δ). Then ζ = [u) · (π) · (δ) for some unit u
in A.

Proof. Let α = ∂π(ζ) ∈ H2
2 (κ(π)) and β = ∂δ(ζ) ∈ H2

2 (κ(δ)). Then, by (4.3),
∂(α) = ∂(β) ∈ H1

2 (κ). Let a ∈ κ∗ be such that [a) = ∂(α) = ∂(β) ∈ H1
2 (κ). Let

u ∈ A∗ be a lift of a. Since ∂(α) = [a) = ∂([u)·(δ)) (cf. 4.2) and ∂ is an isomorphism,
we have α = [u) · (δ). and β = [u) · (π). Let ζ ′ = [u) · (π) · (δ) ∈ H3(F, µ2). Then ζ ′ is
unramified on A except at π and δ. By (4.2), ∂π(ζ

′) = ∂π(ζ) and ∂δ(ζ
′) = ∂δ(ζ). Since

ζ is unramified on A except at π and δ, ζ − ζ ′ ∈ H3
nr(F, µ2). Since H3

nr(F, µ2) = 0
by (4.4), we have ζ = ζ ′ = [u) · (π) · (δ). �

Proposition 4.6. Let A, F , κ and m = (π, δ) be as above. Let q =< a1, · · · , a9 >
be a quadratic form over F of rank 9 with only prime factors of a1a2 · · · a9 are at
most π and δ. Then q is isotropic.

Proof. Let c(q) ∈ H2(F, µ2) be the Clifford invariant of q. Since the prime factors of
a1a2 · · · a9 are at most π and δ, c(q) is unramified on A except possibly at (π) and
(δ). By (4.1), we have c(q) = (uc, π) + (vcπǫ, δ) for some units u, v ∈ A, c ∈ A not
divisible by π and δ, and ǫ = 0 or 1. Let q1 =< 1, ucπ,−π,−ucδ, uvπǫδ >. Since
−ucq1 is a rank five subform of the Albert form associated to c(q) = (uc, π)+(vcπǫ, δ),
c(q1) = c(q) (cf. [L], p. 118). Since q is isotropic if and only if λq is isotropic for any
λ ∈ F ∗, by scaling q we assue that d(q) = d(q1). We note that we only need to scale
by λ ∈ A with prime factors at most π and δ. Hence, after scaling, we still have
q =< a1, · · · , a9 > with only prime factors of a1a2 · · · a9 at most π and δ. Since the
dimension of q is odd, we have c(λq) = c(q). Thus, after scaling, we have c(q) = c(q1)
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and d(q) = d(q1). Since the rank of q ⊥ −q1 is 14, it follows that q − q1 ∈ I3(F )
([M]).

Let ζ = e3(q − q1) ∈ H3(F, µ2). Let θ ∈ A be a prime. Suppose that θ does not
divide πδ. Then char(κ(θ)) is 0. Hence we have the second residue homomorphism
∂2
θ : W (F ) → W (κ(θ)) with ∂2

θ (I
3(F )) ⊂ I2(κ(θ)). Since q =< a1, · · · , a9 > with

a1a2 · · · a9 having only π and δ as possible prime factors and θ does not divide πδ,
∂2
θ (q) = 0. Since q1 =< 1, ucπ,−π,−ucδ, uvπǫδ >, the rank of ∂2

θ (q1) is at most two.
Since ∂2

θ (q − q1) ∈ I2(κ(θ)) and is of rank at most 2, ∂2
θ (q − q1) = 0. In particular

q− q1 is unramified at θ and hence ζ = e3(q− q1) is unramified at θ. Thus, by (4.5),
we have ζ = [w) · (π) · (δ) for some unit w ∈ A. Since [w) · (w′) is unramified on A for
any unit w′ ∈ A, we have [w) · (w′) = 0. In particular, we have ζ = [w) · (π) · (w′δ)
for any unit w′ in A.

Suppose that ǫ = 0. Since uv is a unit, we have ζ = [w) · (π) · (−uvπǫδ). Suppose
that ǫ = 1. Since ζ = [w) · (π) · (−uvδ) and (π) · (−π) = 1, we have ζ = [w) · (π) ·
(−uvπδ). Thus in either case, we have ζ = e3(q − q1) = [w) · (π) · (−uvπǫδ).

Since char(F ) = 0, we have [w) = (w′) for some unit w′ ∈ A. Let q2 =< 1,−w′ ><
1,−π >< 1, uvπǫδ >∈ I3(F ). Then e3(−q2) = e3(q2) = (w′) · (π) · (−uvπǫδ) =
[w) · (π) · (−uvπǫδ) = e3(q− q1). Since H

4(F, µ2) = 0 ([AEJ], Cor.2. p.653), we have
I4(F, µ2) = 0 and e3 is an isomorphism ([AEJ], Thm. 2. p.653). Hence

q − q1 = − < 1,−w′ >< 1,−π >< 1, uvπǫδ > .

In particular,

q = q1− < 1,−w′ >< 1,−π >< 1, uvπǫδ > .

Since < 1,−π, uvπǫδ > is a subform of both q1 and < 1,−w′ >< 1,−π ><
1, uvπǫδ >, the anisotropic rank of q1− < 1,−w′ >< 1,−π >< 1, uvπǫδ > is at
most 7. Since the rank of q is 9, q is isotropic. �

Theorem 4.7. Let K be a complete discretely valued field with residue field κ and
F a function field of a curve over K. If char(K) = 0 and κ is a perfect field of
characteristic 2, then u(F ) ≤ 8.

Proof. Let q =< a1, · · · , a9 > be a quadratic form over F rank 9. Let X be a
regular proper scheme over the valuation ring of K with function field F and the
support of the principle divisor (2a1 · · · a9) on X is a union of regular curves with
normal crossings. Let C1, · · · , Cr be the irreducible components of the special fibre
of X and let ν1, · · · , νr be the corresponding discrete valuations on F . Let Fνi

be the completion F at νi and the residue field κ(νi). Then char(κ(νi)) = 2 and
2-rank(κ(νi)) = 1. Hence, by ([MMW], Corollar 1), u(κ(νi)) ≤ 4 and by ([Sp]),
u(Fνi) ≤ 8. In particular q is isotropic over Fνi . By ([HHK2], 5.8), there exists an
affine open subset Ui of Ci such that Ui does not intersect Cj for j 6= i and q is
isotropic over FUi

.
Let P be a finite set of closed points of X containing all those points which are

not in Ui for any i. Let P ∈ P. Then ÂP is a complete two dimensional local ring
with residue field perfect of characteristic 2. By the choice of X and (4.6), q is
isotropic over FP . By ([HHK1], 4.2), q is isotropic over F and u(F ) ≤ 8. �

Corollary 4.8. ([Le]) Let K be a 2-adic field and F the function field of a curve
over K. Then u(K) = 8.
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