
PSEUDO-REFLECTION GROUPS AND ESSENTIAL DIMENSION

ALEXANDER DUNCAN AND ZINOVY REICHSTEIN

Abstract. Given a pseudo-reflection group, we give a simple formula for the essential
dimension at a prime p. Additionally, we determine the absolute essential dimension
in most cases. We also study the “poor man’s essential dimension” of an arbitrary
finite group, an intermediate notion between the absolute essential dimension and the
essential dimension at a prime p.

1. Introduction

Let k be a field and G be a finite group. Throughout, we assume that char(k) does
not divide the order of G. Our finite groups will be viewed as split algebraic groups
over k. We will denote by k̄ the algebraic closure of k and by ζd a primitive dth root of
unity in k̄ where d is a positive integer coprime to char(k). By a variety we will mean a
separated reduced scheme of finite type over k, not necessarily irreducible.

We will be interested in the essential dimension ed(G) and the relative essential di-
mension ed(G; p), where p is a prime. For the definition of essential dimension, a survey
of its properties and further references, see [R10].

A theorem of N. A. Karpenko and A. S. Merkurjev [KM08] asserts that

(1.1) ed(G; p) = ed(Gp) = rdim(Gp) .

Here Gp is any Sylow p-subgroup of G, and for a finite group H, rdim(H) denotes the
minimal dimension of a faithful representation of H defined over k, and we assume that
ζp ∈ k. However, note that, since [k(ζp) : k] is prime to p, ed(G; p) is the same over k or
k(ζp).

The Karpenko-Merkurjev theorem (1.1) shows that ed(G; p) is a purely representation-
theoretic quantity. It can be computed, at least in principle, if one has a description
of the irreducible representations of Gp over k(ζp). In contrast, the “absolute” essential
dimension ed(G) is more mysterious; in particular, it is unknown for many groups. By
definition, ed(G; p) 6 ed(G) for every prime p, and the best known lower bound for
ed(G) is usually deduced from this inequality.

The case where G = Sn is the symmetric group, is of particular interest because it
relates to classical questions in the theory of polynomials; see [BR97, BR99]. Here the
relative essential dimension is known exactly for every prime p,

(1.2) ed(Sn; p) =

⌊
n

p

⌋

;
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see [MR09, Corollary 4.2]. The absolute essential dimension ed(Sn) is largely unknown.
In characteristic zero we know only that

(1.3) max
p

ed(Sn; p) =
⌊n

2

⌋

6

⌊
n+ 1

2

⌋

6 ed(Sn) 6 n− 3

for any n > 6; see [BR97], [Dun10] and [Mac11]. We know even less about ed(Sn) in
prime characteristic.

M. MacDonald [Mac11, Section 5.1] recently computed ed(G; p), for all irreducible
Weyl groups G, extending (1.2). He also computed the absolute essential dimension
ed(G) when G is not isomorphic to Sn or W (E6), the Weyl group of the root system of
type E6. His proofs are based on case-by-case analysis.

The aim of this paper is twofold. First, we will generalize MacDonald’s results to
all finite groups generated by pseudo-reflections, with a uniform statement and proof.
Second, we will investigate a new intermediate notion between maxp ed(G; p) and ed(G),
which we call “poor man’s essential dimension.”

We will adopt the following notational conventions inspired by [Spr74]. Let φ : G →֒
GL(V ) be a faithful representation of G and m be a positive integer prime to the char-
acteristic of k. Choosing a primitive mth root of unity ζm ∈ k̄, we define V (g, ζm) :=
ker(ζmI − φ(g)) as the ζm-eigenspace of g and let

aφ(m) := max
g∈G

dimV (g, ζm) .

Note that V (g, ζm) is defined over k(ζm) but may not be defined over k. Replacing g by
suitable powers, we see that aφ(m) depends only on φ and m and not on the choice of
the primitive mth root of unity ζm. If the reference to φ is clear from the context, we
will write g in place of φ(g) and a(m) in place of aφ(m). By convention, we set a(m) = 0
if m is a multiple of the characteristic of k.

Recall that an element g ∈ GL(V ) is a pseudo-reflection if it is conjugate to a diagonal
matrix of the form diag(1, . . . , 1, ζ), where ζ 6= 1 is a root of unity.

Theorem 1.1. Let G be a finite subgroup of GL(V ). Assume that the characteristic of
the base field k does not divide |G|. Then

(a) ed(G; p) 6 a(p) for every prime p.

(b) Moreover, if G is generated by pseudo-reflections then ed(G; p) = a(p) for every
prime p.

Suppose that φ : G →֒ GL(V ) is generated by pseudo-reflections with n = dim(V ).
Then k[V ]G = k[f1, . . . , fn] for some homogeneous polynomials f1, . . . , fn such that di =
deg(fi). The integers d1 . . . , dn are called the degrees of the fundamental invariants of φ.
These numbers are uniquely determined by φ up to reordering. They are independent of
the choice of f1, . . . , fn and can be recovered directly from the Poincaré series of k[V ]G;
see, e.g., [Kan01] or [LT09]. T. A. Springer [Spr74, Theorem 3.4(i)] showed that

(1.4) a(m) = |{i | di is divisible by m}|

Note that while the base field k is assumed to be the field of complex numbers C in [Spr74,
Theorem 3.4(i)], the above formula remains valid under our less restrictive assumptions
on k; see, e.g., [Kan01, Section 33-1].

Complex groups generated by pseudo-reflections have been classified by G. C. Shep-
hard and J. A. Todd [ST54]. Their classification lists d1, . . . , dn in every case; Springer’s
theorem (1.4) makes it possible to read a(m) directly off their table for every G and
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every m. The same can be done for other base fields k, as long as char(k) does not
divide |G|; for details and further references, see Section 4.

Example 1.2. For G =W (E8) (group number 37 in the Shephard-Todd classification),
the values of d1, . . . , d8 are

2, 8, 12, 14, 18, 20, 24 and 30,

respectively; see, e.g., [LT09, Appendix D]. Counting how many of these numbers are
divisible by each prime p and applying Theorem 1.1(b) in combination with (1.4), we
recover the following values from [Mac11, Table IV].

p 2 3 5 7 > 7
ed(W (E8); p) 8 4 2 1 0

We will leverage Theorem 1.1 to compute the absolute essential dimension for most
irreducible pseudo-reflection groups. Recall that, in the Shephard-Todd classification
there are three infinite families: the symmetric groups, the family G(m, l, n) depending
on three integer parameters (m, l, n), and the cyclic groups. In addition, there are 34
exceptional groups.

Theorem 1.3. Let G ⊂ GL(V ) be an irreducible representation of a finite group gen-
erated by pseudo-reflections. Suppose G is not isomorphic to a symmetric group Sn and
char(k) does not divide |G|. Then

(a) ed(G) = dim(V )− 2 = 4, if G =W (E6),

(b) ed(G) = dim(V )− 1 = n− 1, if G ≃ G(m,m,n) with m, n relatively prime,

(c) ed(G) = dim(V ) in all other cases.

As we mentioned above, the exact value of ed(Sn) is not known; see (1.3). The value
of the essential dimensions G = W (E6) is new; see [Mac11, Remark 5.2]. The proof of
part (a) relies on a geometric construction suggested to us by I. Dolgachev.

We now recall that ed(G) is the minimal dimension of a versal G-variety and ed(G; p)
is the minimal dimension of a p-versal G-variety; see [Ser03, Section 5] and [DR13, Re-
mark 2.5]. Poor man’s essential dimension, denoted pmed(G), is defined as the minimal
dimension of a G-variety which is simultaneously p-versal for every prime p. We have

(1.5) max
p

ed(G; p) 6 pmed(G) 6 ed(G) .

The term “poor man’s essential dimension” is meant to suggest that pmed(G) is a more
accessible substitute for ed(G). Where exactly it fits between maxp ed(G; p) and ed(G),
is a key motivating question for this paper.

Theorem 1.4. Let G be a finite subgroup of GL(V ). Assume that the base field k is
infinite and char(k) does not divide |G|. Then

(a) pmed(G) 6 maxp a(p).

(b) Moreover, if G is generated by pseudo-reflections then pmed(G) = maxp a(p) =
maxp ed(G; p).

In both parts the maximum is taken over all prime integers p.

In particular, pmed(Sn) =
⌊n

2

⌋

for every n, assuming char(k) = 0, a result we found

somewhat surprising, considering that ed(Sn) >
⌊n

2

⌋

for every odd n ≥ 7; see (1.3).
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In view of Theorem 1.4(b), it is natural to ask if

(1.6) pmed(G) = max
p

ed(G; p)

for every finite group G. In addition to the case of pseudo-reflection groups covered by
Theorem 1.4(b), we will also prove that this is the case for alternating groups (Exam-
ple 10.1) and for groups all of whose Sylow subgroups are abelian (Proposition 11.1).
A conjectural approach to proving (1.6) for other finite groups is outlined at the end of
Section 11.

2. Proof of Theorem 1.1(a)

Throughout this section we fix a prime p and assume that the base field k is of
characteristic 6= p.

Lemma 2.1. Let V be a finite-dimensional k-vector space, and Gp ⊂ GL(V ) be a finite
p-group. Assume ζp ∈ k and V ′ is a minimal (with respect to inclusion) faithful Gp-
subrepresentation of V . Then there exists a central element g ∈ Gp of order p such that
V ′ ⊂ V (g, ζp), where ζp is a primitive pth root of unity.

Proof. Let C be the socle of Gp; i.e., the p-torsion subgroup of the centre Z(Gp).
Decompose V ′ = V1⊕· · ·⊕Vr as a direct sum of irreducible Gp-representations. Each

Vi decomposes into a direct sum of character spaces for C. Since C is central, each of
these character spaces is Gp-invariant. As Vi is irreducible as a Gp-module, there is only
one such component. That is, C acts on each Vi by scalar multiplication via a character
χi : C → k∗.

We will view the characters χi as elements of the dual group C∗ = Hom(C, k∗). Note
that since C is an elementary abelian p-group, C∗ has the natural structure of an Fp-
vector space. An easy argument shows that χ1, . . . , χr form an Fp-basis of C

∗; see [MR10,
Lemma 2.3]. Consequently, there is a unique element g ∈ C such that χi(g) = ζp for
every i = 1, . . . , r. In other words, V ′ ⊂ V (g, ζp), as desired. �

Proof of Theorem 1.1(a). Neither ed(G; p) nor a(p) will change if we replace k by k(ζp).
Hence, we may assume without loss of generality that k contains ζp. Let Gp be a Sylow
p-subgroup of G and define V ′ and g as in Lemma 2.1. Then V ′ ⊂ V (g, ζp). Thus

ed(G; p) = ed(Gp; p) 6 ed(Gp) 6 dim(V ′) 6 dim V (g, ζp) 6 a(p) ,

as desired. Note that the inequality ed(Gp) 6 dim(V ′) is an immediate consequence of
the definition of essential dimension; see, e.g., [R10, (2.3)]. �

We conclude this section with a refinement of Lemma 2.1 which will be used in the
proofs of both Theorem 1.1(b) and Corollary 5.1.

Lemma 2.2. Let V be a finite-dimensional k-vector space, G ⊂ GL(V ) be a finite group
generated by pseudo-reflections, and Gp be a p-Sylow subgroup of G. Assume that ζp ∈ k
and V ′, g are as in statement of Lemma 2.1. Then dimV (g, ζp) = a(p).

Proof. By a theorem of Springer [Spr74, Theorem 3.4(ii)] there exists an h ∈ G such that
dimV (h, ζp) = a(p) and V ′ ⊂ V (g, ζp) ⊂ V (h, ζp); see [Spr74, Theorem 3.4(ii)]. Springer
originally proved this result over C; a proof over an arbitrary base field (containing ζp)
can be found in [Kan01, Chapter 33].

After replacing h by a suitable power, we may assume that the order of h is a power
of p. Let N = {x ∈ G |x(V ′) = V ′} be the stabilizer of V ′ in G. Note that Gp ⊂ N
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and thus Gp is a p-Sylow subgroup of N . Moreover, we also have h ∈ N . Since the
order of h is a power of p, there exists an element n ∈ N such that h′ = nhn−1 is
in Gp. Since h acts on V ′ as ζp idV ′ , so does h′. Now, h′ and g both lie in Gp and
have identical actions on V ′, which is a faithful representation of Gp. Thus h′ = g, and
a(p) = dimV (h, ζp) = dimV (h′, ζp) = dimV (g, ζp), as desired. �

3. Proof of Theorem 1.1(b): First reductions

We now turn to the proof of Theorem 1.1(b). In view of part (a), it suffices to show
that ed(G; p) > a(p). Since edk(G; p) > edl(G; p), for any field extension l/k, we may
assume without loss of generality that k is algebraically closed, and, in particular, that
ζp ∈ k.

Our proof of Theorem 1.1(b) will proceed by contradiction. We begin by studying a
minimal counterexample, with the ultimate goal of showing that it cannot exist.

Proposition 3.1. Let φ : G →֒ GL(V ) be a counterexample to Theorem 1.1(b) of min-
imal dimension. That is, V is a vector space of minimal dimension such that there
exists a finite group G with an embedding φ : G →֒ GL(V ), where φ(G) is generated by
pseudo-reflections, and

(3.1) ed(G; p) < aφ(p)

for some prime p. Then

(a) dim(V ) > 2.
(b) φ is irreducible.
(c) Some element g ∈ G of order p acts on V as a scalar. In particular, aφ(p) =

dim(V ).
(d) G contains no elements of order p with exactly two eigenvalues.
(e) G contains no pseudo-reflections of order p.
(f) If p = 2 then g = − idV is the unique element of order 2 in G.
(g) Gp is contained in the commutator subgroup [G,G]. Here, as usual, Gp denotes

a p-Sylow subgroup of G.
(h) Let g ∈ G be as in part (c) and φ′ : G→ GL(V ′) be an irreducible representation

such that φ′(g) 6= 1. Then dim(V ′) is a multiple of p. In particular, dim(V ) is a
multiple of p.

(i) dim(V ) > 2p.

Proof. (a) Assume the contrary: dim(V ) = 1. In this case G is a cyclic group. If |G|
is divisible by p then ed(G; p) = a(p) = 1; otherwise ed(G; p) = a(p) = 0. In both
cases, (3.1) fails, a contradiction.

(b) Assume the contrary: V = V1⊕V2, where V1 and V2 are proper G-stable subspaces.
Each pseudo-reflection g ∈ G acts non-trivially on exactly one summand Vi. For i = 1, 2,
let Gi be the subgroup of G generated by those reflections that act non-trivially on Vi.
Then G is isomorphic to the direct product G1 ×G2, and φ = φ1 ⊕ φ2, where φ restricts
to φi : Gi → GL(Vi), and φ1(G1), φ2(G2) are generated by pseudo-reflections. Note that
aφ(p) = aφ1(p) + aφ2(p). In addition, by [KM08, Theorem 5.1],

ed(G; p) = ed(G1; p) + ed(G2; p) .

By minimality of φ, we have that ed(G1; p) > aφ1(p) and ed(G2; p) > aφ2(p). Thus
ed(G; p) > aφ(p), a contradiction.
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(c) Choose V ′ and g as in Lemmas 2.1 and 2.2. Recall that g is a central element of
Gp of order p and aφ(p) = dim V (g, ζp). Set W := V (g, ζp). The element g acts on W
as a scalar; our goal is to show that W = V .

Let S = {s ∈ G | sW = W} be the stabilizer of W in G and let S0 be the subgroup
of S consisting of elements that fix W pointwise. Note that since g is central in Gp, we
have Gp ⊂ S. Moreover, since Gp acts faithfully on V ′ ⊂ W , we have Gp ∩ S0 = {1}.
Restricting the action of S to W , we obtain a faithful representation of H = S/S0 on
W , which we will denote by ψ. By [LM03, Theorem 1.1], ψ(H) ⊂ GL(W ) is generated
by pseudo-reflections. (Note that, while [LM03, Theorem 1.1] assumes k = C, its proof
goes through under our less restrictive assumptions on k.) By our construction,

aφ(p) = dim(W ) = aψ(p) .

Since Gp ⊂ S and Gp ∩ S0 = {1}, the quotient H = S/S0 contains an isomorphic image
of Gp, which is a Sylow p-subgroup of H, so that

ed(G; p) = ed(Gp; p) = ed(H; p) .

Thus by (3.1), ed(H; p) = ed(G; p) < aφ(p) = aψ(p). By the minimality of φ, we see
that dim(V ) = dim(W ), i.e., V =W = V (g, ζp). This proves part (c).

(d) Assume the contrary: an element h of G of order p has exactly two distinct

eigenvalues, ζ ip and ζjp. After replacing h by a suitable power of hg−i, where g is the
central element we constructed in part (c), we may assume that i = 0 and j = 1. Then
V is the direct sum of eigenspaces V0 ⊕ V1, where Vi = V (h, ζ ip). Let G1 (resp. G0) be
the subgroup of G consisting of elements which fix V0 (resp. V1) pointwise (note the
reversed indices).

Given a finite group of order prime to the characteristic of k, any invariant subspace has
a unique invariant complement. Note that V0 is the unique 〈gh

−1〉-invariant complement
to V1. Since 〈gh−1〉 ⊂ G0, we see that V0 is, in fact, the G0-invariant complement.
Similarly, since h ∈ G1, the G1-invariant complement to V0 is V1. We now see that G0

and G1 commute and G0 ∩ G1 = {1}. Hence, G0 and G1 generate a subgroup of G
isomorphic to G0 ×G1. By abuse of notation we shall denote this group by G0 ×G1.

Note that φ restricts to faithful representations φ0 : G0 → GL(V0) and φ1 : G1 →
GL(V1). Since φ0(gh

−1) = ζp idV0 and φ1(h) = ζp idV1 , we have

aφ0(p) = dim(V0) and aφ1(p) = dim(V1).

We now recall that by a theorem of R. Steinberg [Ste64, Theorem 1.5], G0 and G1 ⊂
GL(V ) are both generated by pseudo-reflections. (In positive characteristic this is due
to J.-P. Serre [Ser68]; cf. [DK01, Proposition 3.7.8].) Since G1 acts trivially on V0 and
G0 acts trivially on V1, we conclude that φ0(G0) and φ1(G1) are also generated by
pseudo-reflections.

By the minimality of φ, Theorem 1.1(b) holds for φ0 and φ1. Thus

ed(G; p) > ed(G0 ×G1; p) = ed(G0; p) + ed(G1; p) =

aφ0(p) + aφ1(p) = dim(V0) + dim(V1) = dim(V ) = aφ(p).

Here the first equality is [KM08, Theorem 5.1], and the second follows from the mini-
mality of φ. The resulting inequality contradicts (3.1).

(e) By part (a), dim(V ) > 2. Hence, a pseudo-reflection has exactly two distinct
eigenvalues, and (e) follows from (d).
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(f) Every element of GL(V ) of order 2, other than − idV , has exactly two distinct
eigenvalues and thus cannot lie in G by (d).

(g) By (e), G does not have any pseudo-reflections of order p, and hence of any
order divisible by p. The finite abelian group G/[G,G] is generated by the images of
the pseudo-reflections. All of these images have order prime to p. Hence, the order of
G/[G,G] is prime to p. We conclude that Gp ⊂ [G,G].

(h) Since g is central, φ′(g) = λ idV ′ , where λ is a primitive pth root of unity. Thus

det φ′(g) = λdim(V ′). On the other hand, by part (g), g ∈ Gp ⊂ [G,G] and hence,
detφ′(g) = 1. Thus dim(V ′) is divisible by p.

(i) Let C = 〈g〉, where g is as in part (c). Applying [R10, Theorem 4.1] (with r = 1)
to the central exact sequence 1 → C → G→ G/C → 1 we obtain the inequality

(3.2) ed(G; p) > gcd
φ′

dim(φ′) ,

where φ′ : G → GL(V ′) runs over all irreducible representations of G such that the
restriction of φ′ to C is non-trivial, or equivalently, φ′(g) 6= 1. Note that the statement
of [R10, Theorem 4.1] only gives this inequality for ed(G). However, it remains valid for
ed(G; p); see [R10, Section 5] or the proof of [LMMR13, Theorem 3.1].

By part (h), dim(φ′) is divisible by p for every such φ′. Thus ed(G; p) > p. As-
sumption (3.1) now tells us that dim(V ) > p. Since dim(V ) is divisible by p by (h), we
conclude that dim(V ) > 2p. �

4. Conclusion of the proof of Theorem 1.1(b)

The remainder of the proof of Theorem 1.1(b) relies on the classification of irreducible
pseudo-reflection groups due to Shephard and Todd [ST54]. Shephard and Todd worked
over the field k = C of complex numbers. We are working over a base field k such that
char(k) does not divide |G|. As we explained at the beginning of the previous section,
we may (and will) assume that k is algebraically closed. Before we proceed with the
proof of Theorem 1.1(b), we would like to explain how the Shephard-Todd classification
applies in this more general situation.

If k is an algebraically closed field of characteristic zero, then any representation
of a finite group over k descends to Q ⊂ k; see [Ser77, Section 12.3]. Hence, this
representation is defined over C, and the entire Shephard-Todd classification remains
valid over k.

Now suppose k is an algebraically closed field of positive characteristic. Let A =W (k)
be its Witt ring. Recall that A is a complete discrete valuation ring of characteristic
zero, whose residue field is k. Denote the fraction field of A by K and the maximal
ideal by M . It is well known that if char(k) does not divide |G| (which is our standing
assumption) then every n-dimensional k[G]-module V lifts to a unique A[G]-module VA,
which is free of rank n over A.

It is shown in [Ser77, Section 15.5] that the lifting operation V 7→ VK := VA ⊗K and
the “reduction mod M” operation VK 7→ V give rise to mutually inverse bijections be-
tween the representation rings Rk(G) and RK(G) of G. These bijections send irreducible
k-representations to irreducible K-representations of the same dimension, and they are
functorial in both V and G. In particular, if g ∈ G and ζd ∈ k is a primitive dth root
of unity then the eigenspace V (g, ζd), viewed as a representation of the cyclic subgroup
〈g〉 ⊂ G, lifts to VK(g, ηd) for some primitive dth root of unity ηd ∈ A such that

(4.1) ζd = ηd (mod M)
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Taking d = 1, we see that if g ∈ G acts on V as a pseudo-reflection if and only if it acts
on VK as a pseudo-reflection.

This shows that for every pseudo-reflection group φ : G →֒ GL(V ) over k there is
an abstractly isomorphic pseudo-reflection group φK : G →֒ GL(VK) over K. For each
g ∈ G, the eigenvalues of φ(g) and φK(g) are the same, modulo M , in the sense that
if ηd is an eigenvalue of φK(g) then ζd is an eigenvalue of φ(g), as in (4.1). Thus
dimk V (g, ζd) = dimK V (g, ηd) and consequently,

aφ(d) = max
g∈G

dimk V (g, ζd) = max
g∈G

dimK VK(g, ηd) = aφK (d)

for every d ≥ 1. Note also that the degrees of the fundamental invariants are the same
since they can be recovered from the a(d)’s as d varies; cf. (1.4).

We conclude that if k is an algebraically closed field satisfying the above assumptions,
then many properties of irreducible pseudo-reflection groups, whose orders are prime to
char(k), are the same over k as they are over C: their isomorphism types, the numbers
a(d) for each d ≥ 1, the numbers of pseudo-reflections of each order, the number of
central elements of each order, and the degrees of the fundamental invariants. This
allows us to use the Shephard-Todd classification (e.g., from [LT09, Appendix D], where
k is assumed to be C) in our setting; cf. [Kan01, Section 15.3].

We now proceed with the proof of Theorem 1.1(b). Let φ : G →֒ GL(V ) be a minimal
counterexample, as in the statement of Proposition 3.1. Then by Proposition 3.1, φ is
irreducible. By the Shephard-Todd classification, there are three infinite families and 34
exceptional groups. We will denote the infinite families by ST1, ST2 and ST3, and the
exceptional groups ST4 through ST37, following the numbering in [ST54].

The infinite families ST1 – ST3.

Case ST1: Here V is the natural (n − 1)-dimensional representation of G := Sn. For
n ≥ 3, G has trivial center and hence, cannot be minimal by Proposition 3.1(c). For
n = 2, dim(V ) = 1, contradicting Proposition 3.1(a).

Case ST2: Here G = G(m, l, n) ⊂ GLn, where m,n > 1, l divides m, and (m, l, n) 6=
(2, 2, 2). Here G(m, l, n) is defined as a semidirect product of the diagonal subgroup

A(m, l, n) = {diag(ζa1m , . . . , ζ
an
m ) | a1 + · · ·+ an ≡ 0 (mod l)} ⊂ GLn

and the symmetric group Sn, whose elements are viewed as permutation matrices in
GLn; see [LT09, Chapter 2]. (Note that [LT09] assumes k = C, but the same con-
struction works in our more general context.) By Proposition 3.1(c), G(m, l, n) con-
tains the scalar matrix ζp id. This matrix has to be contained in A(m, l, n); hence,
p divides m. Moreover by Proposition 3.1(i), we may assume n > 2p. Consider

g = diag(ζ
m/p
m , . . . , ζ

m/p
m , 1, . . . , 1) ∈ A(m, l, n) ⊂ G(m, l, n), where ζ

m/p
m occurs p times.

This element has order p and exactly two eigenvalues, contradicting Proposition 3.1(d).
Case ST3: Here G is cyclic and V is a 1-dimensional. Once again, this contradicts

Proposition 3.1(a).

The exceptional cases ST4 – ST37.

All of the exceptional cases satisfy dim(V ) 6 8. On the other hand, by Proposi-
tion 3.1(i), dim(V ) = mp, where m > 2. We conclude that either (I) p = 2 and
dim(V ) = 4, 6 or 8, or (II) p = 3 and dim(V ) = 6.

Case I: We need to consider the groups ST28–ST32, ST34, ST35, and ST37, with p = 2.
With the exception of ST32, each of these groups has a reflection of order 2 and thus
is ruled out by Proposition 3.1(e). The group ST32 is isomorphic to Z/3Z × Sp4(F3)
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(see [LT09, Theorem 8.43]). The group Sp4(F3) has non-central elements of order 2,
contradicting Proposition 3.1(f).

Case II: We only need consider two groups, ST34 and ST35. The group ST35 has
trivial centre and thus is ruled out by Proposition 3.1(c). (Recall that the order of the
centre is the greatest common divisor of the degrees d1, . . . , d6. For ST35 = W (E6)
these are, 2, 5, 6, 8, 9, and 12.) This leaves us with G = ST34, otherwise known as
the Mitchell group. The structure of this group was investigated by J. H. Conway and
N. J. A. Sloane. In [CS83, Section 2] they constructed four isomorphic lattices, Λ(i),
where i = 2, 3, 4 and 7, whose automorphism group is ST34. In subsection 2.3 they
showed that ST34 ≃ Aut(Λ(3)) contains the group (2×35)⋊S6, which, in turn, contains,
the non-exceptional group G(3, 3, 6). Thus

ed(G(3, 3, 6); 3) 6 ed(ST34; 3) < a(3) = 6 ,

where the second inequality follows from our assumption that ST34, with its natural
6-dimensional representation, is a counterexample to Theorem 1.1(b) of minimal dimen-
sion. (Here p = 3). Then G(3, 3, 6), with its natural 6-dimensional representation and
p = 3, is also a counterexample of minimal dimension. Since we have ruled out every
non-exceptional group as a counterexample of minimal dimension, this is a contradiction.
The proof of Theorem 1.1(b) is now complete. �

5. A representation-theoretic corollary

Before proceeding further we record a representation-theoretic corollary of our proof
of Theorem 1.1(b), which, to the best of our knowledge, has not been previously noticed.
As before, rdim(H) the minimal dimension of a faithful representation of a finite group
H over the base field k.

Corollary 5.1. Suppose ζp ∈ k. Let G ⊂ GL(V ) be a finite subgroup generated by
pseudo-reflections, Gp be a p-Sylow subgroup of G, and V ′ ⊂ V be a minimal (with
respect to inclusion) faithful k-subrepresentation of Gp. Then dim(V ′) = rdim(Gp).

Proof. Since ζp ∈ k, rdim(Gp) = ed(G; p) by the Karpenko-Merkurjev theorem (1.1).
Choose g as in Lemma 2.1. Then, by Lemma 2.2,

ed(G; p) = rdim(Gp) 6 dim(V ′) 6 dim V (g, ζp) = a(p) .

By Theorem 1.1(b), ed(G; p) = a(p) and thus the above inequalities are all equalities.
This completes the proof of Corollary 5.1. �

The following example shows that Corollary 5.1 fails if G ⊂ GL(V ) is not assumed to
be generated by pseudo-reflections.

Example 5.2. Let p > 2 be a prime, H be a non-abelian group of order p3, and
ψ : H →֒ GL(U) be a faithful p-dimensional representation of H. Set G = H ×H and

φ = ψ1 ⊗ ψ2 ⊕ ψ1 : G→ GL(U ⊗ U ⊕ U) ,

where for i = 1, 2, ψi is the composition of ψ with the projection G → H to the ith
factor. Both ψ1 ⊗ ψ2 and ψ1 are irreducible representations of G; the irreducibility of
ψ1 ⊗ ψ2 follows from [Ser77, Theorem 3.2.10(i)]. These irreducible representations are
distinct, because dim(ψ1 ⊗ ψ2) = p2 and dim(ψ1) = p.

Note that G = Gp is a group of order p6, and V = U⊗U⊕U is a faithful representation
of G. Since it is a direct sum of two distinct irreducibles, neither of which is faithful, the
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only faithful Gp-subrepresentation V
′ of V is V itself. On the other hand, G has a 2p-

dimensional faithful representation ψ1⊕ψ2; hence, rdim(G) 6 2p. In summary, G = Gp,
V = V ′ and dim(V ′) = p2+p > 2p > rdim(Gp). Thus the assertion of Corollary 5.1 fails
for φ(G) ⊂ GL(V ).

6. Proof of Theorem 1.3(a)

The degrees of the fundamental invariants of W (E6) are 2, 5, 6, 8, 9 and 12; see,
e. g., [LT09, p. 275]. Thus by Theorem 1.1(b), ed(W (E6); 2) = 4. This shows that
ed W (E6) > 4.

Recall that ed W (E6) is the minimal value of dim(Y ) such that there exists a dom-
inant rational W (E6)-equivariant map V 99K Y defined over k, where V is a linear
representation of W (E6), and Y is a a k-variety with a faithful action of W (E6); see,
e.g., [R10, Section 2]. To prove the opposite inequality, ed W (E6) 6 4, it thus suffices
to establish the following lemma suggested to us by I. Dolgachev.

Lemma 6.1. Let k be a field of characteristic 6= 2, 3. There exists a dominant W (E6)-
equivariant map

f : A6 99K Y

where A6 is a linear representation of W (E6) and Y is a 4-dimensional variety with a
faithful action of W (E6).

Proof. First, we construct Y . Consider the space (P2)6 of ordered 6-tuples of points
in the projective plane, and let U ⊂ (P2)6 be the dense open consisting of 6-tuples
(a1, . . . , a6) such that no two of the points ai lie on the same line, and no six lie on the
same conic. This open subset is invariant under the natural (diagonal) PGL3-action on
(P2)6. Moreover, U is contained in the stable locus of (P2)6 for this action; see, e.g.,
[DO88, p. 116]. Thus there exists a geometric quotient q : U → Y := U/PGL3. The
explicit description in [DO88, Example I.3] show that Y and q are defined over k. Note
that

dim(Y ) = dim(U)− dim(PGL3) = dim (P2)6 − dim(PGL3) = 12− 8 = 4,

as desired.
Now, we construct the affine space A6 and its map to Y . Let x, y, z be projective

coordinates on P2 and C ⊂ P2 be the cubic yz2 = x3. Note that C has a cusp at
(0 : 1 : 0). The smooth locus Csm = C \ {(0 : 1 : 0)} is an algebraic group isomorphic to
the additive group Ga. Indeed, we identify Ga ≃ A1 with Csm via t 7→ (t : t3 : 1). Thus
the space C6

sm is isomorphic to affine space A6.
This yields a rational map

φ : C6
sm → C6 →֒ (P2)6 .

Three points in t1, t2, t3 ∈ Csm lie on a line if and only if t1 + t2 + t3 = 0; six points
t1, . . . , t6 ∈ Csm lie on a conic if and only t1+ · · ·+ t6 = 0. Thus for general (t1, . . . , t6) ∈
C6
sm, we have φ(t1, . . . , t6) ∈ U . In other words, we may view φ as a rational map

C6
sm 99K U . We now define the map f : C6

sm 99K Y as the composition

f : C6
sm

φ
99K U

q
→ Y .

By [Sh95, Lemma 13], over the algebraic closure, if (t1, . . . , t6) is a 6-tuple of points in
general position in P2 then there is a cuspidal cubic C ′ ⊂ P2 such that t1, . . . , t6 lie in
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the smooth locus of C ′. Since any two cuspidal cubics in P2 are projectively equivalent
(recall our assumptions on the characteristic), we conclude that f is dominant.

It remains to construct actions of W (E6) on A6 and Y , and to show that f is equi-
variant. Recall that blowing up 6 points in P2 produces a cubic surface X with the 6
exceptional divisors of the blow-up corresponding to a “sixer”: 6 pairwise disjoint lines
in X. Conversely, any sixer can be blown down to produce 6 points on P2. Over an
algebraically closed field, the elements of W (E6) act freely and transitively on the set of
sixers in X (where we keep track of the ordering of the 6 lines). This produces a faithful
action of W (E6) on Y which is defined over k. This action of the Weyl group W (E6)
on Y is sometimes called the Cremona representation or the Coble representation. For
more details, see [Dol83, Section 7], [Dol08, Section 6], and [DO88, Chapter 6].

We recall how W (E6) acts on the Picard group N of a smooth cubic surface X ⊂ P3

over an algebraically closed field; see, e.g., [Dol83, Sections 4 and 5] or [Man86, Section
IV.26]. The Picard group N ≃ Z7 with its intersection form is a lattice with a symmetric
bilinear form given by diag(1,−1, . . . ,−1) with respect to the basis e0, . . . , e6, where e0
is the hyperplane section of X and e1, . . . , e6 is a collection of 6 mutually disjoint lines
on X.

We consider a set of fundamental roots in N given by

α1 = e0 − e1 − e2 − e3, α2 = e2 − e1, . . . α6 = e6 − e5 .

The reflections associated to these roots generate a group isomorphic to W (E6). Note
that the reflections associated to α2, . . . , α6 generate a subgroup isomorphic to S6 which
permute the basis elements e1, . . . , e6. The symmetric group S6 naturally acts on C6

sm

and (P2)6 by permutations; thus f is S6-equivariant. It remains to consider the reflection
g ∈W (E6) associated to the root α1.

First, we identify the action of g on Y . Suppose π : X → P2 is the blowup of 6 points
a1, . . . , a6. Identifying each ei with the class of each exceptional divisor Ei := π−1(ai) in
the cubic surface X we may determine the action of g. Indeed, for i 6= j 6= k taken from
{1, 2, 3}, the line Ei is taken to the strict transform of the line between aj and ak; while
E4, E5, E6 are all left fixed. Recall that the standard quadratic transform s : P2 99K P2

at the points a1, a2, a3 is the map obtained by blowing up the points and then blowing
down the strict transforms of the lines between them. In this language, g : Y → Y is
given by

[a1, . . . , a6] 7→ [s(a′1), s(a
′
2), s(a

′
3), s(a4), s(a5), s(a6)]

where a′1 is any point on the line between a2 and a3 (and similarly for a′2 and a′3).
We now construct an action of g on C6

sm following H. Pinkham [P80]. If C ⊂ P2 is a
cuspidal cubic, then, for any three points u1, u2 and u3 in the smooth locus Csm of C,
C ′ = s(C) is also a cuspidal cubic in P2. Since any two cuspidal cubics in P2 are linear
translates of each other, there exists an l ∈ PGL3 such that l(C ′) = C. Composing s with
l, one obtains a rational map l · s : Csm 99K Csm which is regular on Csm \ {u1, u2, u3}.
Let u′1 be the unique third intersection point of C with the line passing through u2 and
u3 (and similarly for u′2 and u′3). We define a map g : C6

sm → C6
sm via

(u1, . . . , u6) → (l · s(u′1), l · s(u
′
2), l · s(u

′
3), l · s(u4), l · s(u5), l · s(u6)) .

By construction, we see that f is g-equivariant.
Note that the choice of l and thus of the map l · s : Csm 99K Csm above is not

unique. Pinkham’s observation [P80, pp. 196–197] is that there is a choice of l such
that the resulting map g gives rise to a linear representation of W (E6) = 〈g,S6〉 on
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C6
sm ≃ A6. In fact, C6

sm can be identified with a Cartan subalgebra of the Lie algebra
of type E6 with the standard action of the Weyl group. This construction is valid over
any field k of characteristic 6= 2, 3. This completes the proof of Lemma 6.1 and thus of
Theorem 1.3(a). �

7. Proof of Theorem 1.3(b) and (c)

As we have previously pointed out, ed(G) 6 dim(V ); see, e.g., [R10, (2.3)]. In the
case where G = G(m,m,n) and m > 2 and (m,n) are relatively prime, no element of
G acts as a scalar on V . The natural G-equivariant dominant rational map V 99K P(V )
tells us that ed(G) 6 dim(V )− 1.

It now suffices to show that for every irreducible G ⊂ GL(V ) generated by pseudo-
reflections there exists a prime p such that

a(p) =

{

dim(V )− 1, if G ≃ G(m,m,n) with m, n relatively prime,

dim(V ), otherwise.

Indeed, Theorem 1.1(b) will then tell us that ed(G) > ed(G; p) > a(p) > dim(V ) − 1
in the first case and ed(G) > ed(G; p) > a(p) > dim(V ) in the second. Since we have
established the opposite inequalities, this will complete the proof in both cases.

By Springer’s theorem (1.4), a(p) is equal to the number of invariant degrees di which
are divisible by p. In the case where G = G(m,m,n), m > 2 and (m,n) are relatively
prime, the degrees di are m, 2m, . . . , (n− 1)m, and n. Taking p to be a prime divisor of
m, we see that a(p) = n− 1 = dim(V )− 1, as desired.

For all other groups of the form G = G(m, l, n), with m > 2 the degrees di are

m, 2m, . . . , (n − 1)m, and
mn

l
. All of them are divisible by every prime factor p of

gcd(m, mnl ) > 1. Hence, in this case a(p) = n = dim(V ), as desired.
Finally, in the case where m = 1, G(m, l, n) = G(1, 1, n) = Sn is excluded by our

hypothesis.
This leaves us with the exceptional groups ST4 – ST37. If G 6= ST25,ST35 then every

degree di of G is divisible by 2. If G = ST25 then every degree di of G is divisible by 3.
Finally, ST35 =W (E6) was treated in part (a). �

Remark 7.1. Our proof shows that for every G in the statement of Theorem 1.3 there
is a prime p such that ed(G) = a(p) = ed(G; p).

Remark 7.2. Pinkham’s construction applies in greater generality than the case of
W (E6) used in Lemma 6.1. In particular, one can use it to construct a dominant rational
W (E7)-equivariant map A7 99K Z, where Z is a dense open subset of the 6-dimensional
variety (P2)7ss//PGL3. Here the subscript ss denotes the semistable locus. Since we
know from part (c) that ed W (E7) = 7, this gives an alternative (indirect) proof of the
classical fact that the Coble representation of W (E7) on (P2)7ss//PGL3 is not faithful;
see [Dol83, p. 293] or [DO88, p. 122].

8. Proof of Theorem 1.4: preliminaries

First we observe that part (b) is an immediate consequence of part (a). Indeed,
combining the first inequality in (1.5) with part (a), we have

max
p

ed(G; p) 6 pmed(G) 6 max
p

a(p) ,

Theorem 1.1(b) now tells us that a(p) = ed(G; p) for each prime p, and part (b) follows.
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We now proceed with the proof of Theorem 1.4(a). Let G be a finite group and
G →֒ GL(V ) be a linear representation defined over k. We will assume throughout that
char(k) does not divide |G|. Consider the closed subscheme

B :=
⋃

g∈G, ζ 6=1

V (g, ζ) or equivalently, B =
⋃

g ∈ G, ζp = 1

ζ 6= 1, p prime

V (g, ζ) ,

where ζ ranges over the roots of unity in k̄. Note that, although each V (g, ζ) is defined
only over k(ζ), their union B is defined over k.

The following lemma may be viewed as a variant of [Spr74, Proposition 3.2].

Lemma 8.1. Let m ≥ |G| be an integer. Suppose v ∈ V has the property that f(v) = 0
for every G-invariant homogeneous polynomial f of degree m. Then v ∈ B.

Proof. We may assume v 6= 0. Let v ∈ P(V ) be the projective point associated to v.
Denote the G-orbit of v by v1 = v, v2, . . . , vr ∈ P(V ). Note that r ≤ |G| ≤ m.

We claim that there exists a homogeneous polynomial h ∈ k[V ] of degree m such that
h(v1) 6= 0 but h(vi) = 0 for any i = 2, . . . , r. To construct h, for every i = 2, . . . , r choose
a linear form li ∈ V ∗ such that li(vi) = 0 but li(v1) 6= 0. Now set h = lm+2−r

2 l3 . . . lr.
This proves the claim.

We now define a G-invariant homogeneous polynomial f of degree m by summing the
translates of h over G:

(8.1) f(v′) =
∑

g∈G

h(g · v′) ∀v′ ∈ V .

By our assumption, f(v) = 0.
Let S ⊂ G be the stabilizer of v, i.e., the subgroup of elements s ∈ G such that v is

an eigenvector for s. Then s(v) = χ(s)v for some multiplicative character χ : S → k∗. It
now suffices to show that χ(s) 6= 1 for some s ∈ S. Indeed, if we denote χ(s) by ζ, for
this s, then v ∈ V (s, ζ) ⊂ B, as desired.

To show that χ(s) 6= 1 for some s ∈ S, recall that by our choice of h, h(g · v) = 0
unless g ∈ S. Thus

0 = f(v) =
∑

s∈S

h(s · v) =
∑

s∈S

h(χ(s)v) =
∑

s∈S

χ(s)mh(v) .

If χ(s) = 1 for every s ∈ S, this yields 0 = |S| · h(v). This is a contradiction since
h(v) 6= 0, and we are assuming that char(k) does not divide |G|. Thus χ(s) 6= 1 for some
s ∈ S, as claimed. �

Denote the direct sum of V and the trivial 1-dimensional representation of G by
W := V × k. We will identify V with V × {0} ⊂ W and P(V ) with the hyperplane
P(V × {0}) in P(W ). Set n := dim(V ) = dim(P(W )).

Lemma 8.2. Consider the rational map

ψm : P(W ) 99K PN

given by the linear system k[W ]Gm of G-invariant homogeneous polynomials of degree m
on W . Denote the closure of the image of ψm by Y ⊂ PN . Assume m > |G|. Then

(a) The map ψm is regular away from P(B).

(b) ψm : P(W ) 99K Y induces an isomorphism between k(Y ) and the field of G-
invariant rational functions on P(W ).
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(c) Let 1 ≤ i ≤ N − 1, Gr(i,N) be the Grassmannian of (projective) i-dimensional
linear subspaces L ⊂ PN , and I = {(y, L) | y ∈ L} ⊂ Y × Gr(i,N) be the incidence
correspondence. Then I is irreducible over k̄. Furthermore, if k is infinite then k-points
are dense in I.

Proof. Let z be the coordinate along the second factor of k in W = V × k.
(a) We may assume without loss of generality that k is algebraically closed. Since

zm ∈ k[W ]Gm, we see that the indeterminacy locus of ψm consists of points (v : a) ∈ P(W )
with a = 0 and f(v) = 0 for every f ∈ k[V ]Gm, where k[V ]Gm denotes the k-vector space
of G-invariant homogeneous polynomial on V of degree m. By Lemma 8.1, v ∈ B. Thus
(v : a) ∈ P(B) ⊂ P(V × {0}) ⊂ P(W ), as claimed.

(b) We see that ψ∗
m : k(Y ) →֒ k(P(W ))G. To show that this inclusion is an isomor-

phism, we restrict ψm to the dense open subset V ⊂ P(W ) given by z = 1. This
restriction is the morphism

V → AN

v 7→ (f1(v), . . . , fN (v)) ,

where f1, . . . , fN form a basis of the vector space of k[V ]G6m of G-invariant polynomials

of degree 6 m. Consequently, f1, . . . , fN ∈ ψ∗
m k(Y ). By the Noether bound, k[V ]G

is generated by polynomials of degree 6 |G| as a k-algebra; see [DK01, Section 3.8].
Since |G| 6 m, we conclude that ψ∗

m k(Y ) contains k[V ]G and thus its fraction field
k(V )G. Since V is a G-invariant dense open subset of P(W ), we have k(V ) = k(P(W )).
Therefore, ψ∗

m k(Y ) ⊃ k(V )G = k(P(W ))G, as desired.
(c) The fiber of any y ∈ Y (k̄) under the natural projection π1 : I → Y is k̄-isomorphic

to a smaller Grassmannian Gr(i−1, N −1). Irreducibility of I now follows from the fact
that Y is irreducible and the fibers of π1 are all of the same dimension.

To prove the second assertion, let U ⊂ I be a dense open subset defined over k. Our
goal is to show that U contains a k-point. Let π1|U : U → Y be the restriction of the
natural projection π1 : I → Y to the first factor. By Chevalley’s theorem, the image of
π1|U contains a dense open subset U ′ of Y . Note that k-points are dense in Y since they
are dense in PN and φm : PN 99K Y is dominant. Thus, there exists a k-point y0 in
U ′. The fiber I0 := π−1

1 (y0) = {(y0, L) | y0 ∈ L} intersects U non-trivially. Since I0 is
isomorphic to the Grassmannian Gr(i − 1, N − 1) defined over k, k-points are dense in
I0. Hence, there is a k-point in I0 ∩ U . �

Remark 8.3. E. Noether showed that k[V ]G is generated by polynomials of degree 6 |G|
as a k-algebra under the assumption that char(k) = 0. The more general variant of the
Noether bound used in the proof of Lemma 8.2(b) (where char(k) > 0 is allowed, as long
as char(k) does not divide |G|) is due to P. Fleischmann, J. Fogarty, and D. Benson. For
details and further references, see [DK01, Section 3.8].

9. Conclusion of the proof of Theorem 1.4(a)

Set d := dim(B) = maxp a(p). Our goal is to construct a d-dimensional irreducible G-
variety X0 which is p-versal for every prime p. This would imply pmed(G) 6 dim(X0) =
d, as desired.

To construct X0, let q be a prime integer such that q > |G| and q 6= char(k), and let
ψq : P(W ) 99K Y ⊂ PN be the rational map given by the linear system of G-invariant
homogeneous polynomials of degree q. By part (a) of Lemma 8.2, ψq is regular away
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from B, and by part (b), ψq is generically a G-torsor. Let Y0 be a dense open subset of
Y over which ψq is a G-torsor (and in particular, etale).

Recall that n = dim(V ) = dim(P(W )). Let L be a linear subspace of PN of codi-
mension n − d defined over k (we will impose further conditions on L soon). Let X
be the preimage in P(W \ B) of the set L ∩ Y ⊂ PN ; similarly, let X0 be the preim-
age of L ∩ Y0. In other words, X is the scheme-theoretic intersection of G-invariant
hypersurfaces H1, . . . ,Hn−d of degree q in P(W \B),

(9.1) X = (H1 ∩ · · · ∩Hn−d) \ P(B) .

Note that, by the fiber dimension theorem dim(X) = dim(X0) = d. We think of L as a
k-point in Gr(N − (n− d), N). We will choose it subject to the following conditions:

(i) X is irreducible,

(ii) X0 is smooth,

(iii) L passes through a k-point of Y0.

We claim that there exists a k-point L of Gr(N − n + d,N) satisfying (i), (ii) and (iii).
Indeed, by variants of Bertini’s theorem [Zha95, Corollaire 1.7] and [Jou83, Corollaire
6.11], conditions (i) and (ii) are satisfied by all L contained in dense open subsets U1 ⊂
Gr(N − n+ d,N) and U2 ⊂ Gr(N − n+ d,N) respectively.

Let I = {(y, L) | y ∈ L} ⊂ Y × Gr(N − n + d,N) be the incidence correspondence.
Both natural projections π1 : I → Y and π2 : I → Gr(N−n+d,N) are dominant. Hence,
π−1
2 (U1), π

−1
2 (U2) and π

−1
1 (Y0) are non-empty open dense subsets of I. By Lemma 8.2(c),

there exists a k-point (y, L) in their intersection. Thus L ∈ Gr(N − n + d,N) satisfies
conditions (i), (ii) and (iii). This proves the claim.

We now fix L and X = π−1(Y ∩ L), X0 = π−1(Y ∩ L) for the rest of the proof. Note
that by our choice of Y0, G acts faithfully on π−1(y) ∈ X0, and hence, on X0. It remains
to show that the G-action on X0 is p-versal for every prime p.

Case 1: p = q. Recall that the G-action on X0 is p-versal if and only the Gp-action
on X0 is p-versal, where Gp is a Sylow p-subgroup of G; see [DR13, Corollary 8.6]. Since
q > |G|, we have Gq = {1}. Thus to show that X0 is q-versal it suffices to show that X0

has a 0-cycle of degree prime to q; see [DR13, Lemma 8.2 and Theorem 8.3].
To construct this 0-cycle, recall that by (iii) there exists a k-point x ∈ L ∩ Y0. By

Lemma 8.2(b) the preimage ψ−1
q (x) is a 0-cycle in X0 of degree |G|, which is prime to q,

since q > |G|.

Case 2: p 6= q. To show that the G-action on X0 is p-versal it suffices to prove that
for every field extension K/k and every G-torsor T → Spec(K), the twisted K-variety
TX0 contains a 0-cycle Z of degree qn−d over K; see [DR13, Section 8].

Since the G-action on P(W ) lifts to a linear G-action on W , Hilbert’s Theorem 90
tells us that TP(W ) = P(WK) is a projective space over K; see, e.g., [DR13, Lemma
10.1]. Note that

dim TP(B) = dim P(B) = d− 1

and, since dim(X) = d and X is irreducible,

dim( TX \ TX0) = dim(X \X0) 6 d− 1 .

Thus, a linear subspace M of codimension d in P(WK) in general position misses both
TP(B) and TX \TX0. Let Z be the intersection cycle obtained by intersecting TX0 with
the linear subspace M . By (9.1),

TX = ( TH1 ∩ · · · ∩ THn−d) \
TP(B) .
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Thus,
M ∩ TH1 ∩ · · · ∩ THn−d =M ∩ TX =M ∩ TX0 = Z .

By [DR13, Lemma 10.1(c)], each THi is a hypersurface of degree q in P(WK). We
may think of M has an intersection of d hyperplanes M1, . . . ,Md. Hence, by Bezout’s
theorem [Ful85, Proposition 8.4],

degK(Z) = deg( TH1) · · · deg(
THn−d) · deg(M1) · · · deg(Md)

= q · · · q
︸ ︷︷ ︸

n− d times

· 1 · · · 1
︸ ︷︷ ︸

d times

= qn−d ,

as claimed. �

10. Examples

In this section we illustrate Theorem 1.4(b) with two examples. Example 10.1 shows
that the inequality of Theorem 1.4(a) is in fact an equality, for the natural n-dimensional
representation V of the alternating group An. Note that Theorem 1.4(b) cannot be ap-
plied to An ⊂ GL(V ), since An contains no pseudo-reflections. Nevertheless, the conclu-
sion of Theorem 1.4(b) continues to hold in this case. On the other hand, Example 10.2
shows that for G = Z/5Z ⋊ Z/4Z the inequality of Theorem 1.4(a) is strict for every
faithful representation G →֒ GL(V ).

Example 10.1. pmed(An) = ed(An; 2) = 2
⌊n

4

⌋

for any n > 4.

Proof. Since An contains an elementary abelian subgroup of rank 2
⌊n

4

⌋

generated by

(12)(34), (13)(24), (56)(78), etc., we have pmed(An) > ed(An; 2) = 2
⌊n

4

⌋

; see [BR97,

Theorem 6.7(c)].
We will now deduce the opposite inequality,

(10.1) pmed(An) ≤ 2
⌊n

4

⌋

from Theorem 1.4(a). Let V = kn be the natural representation of Sn. One checks that
for any g ∈ Sn and any prime p, the dimension of the eigenspace V (g, ζp) is the number
of cycles of length divisible by p in the cycle decomposition of g. Thus

a(p) = max
g∈An

dim V (g, ζp) =

{

⌊n/p⌋, if p is odd, and

2 ⌊n/4⌋, if p = 2,

Since we are assuming that n ≥ 4, the maximal value of a(p) is attained at p = 2. The
inequality (10.1) now follows from Theorem 1.4(a), as desired. �

Example 10.2. Let G = Z/5Z ⋊ Z/4Z, where Z/4Z acts faithfully on Z/5Z. Assume
ζ20 ∈ k. Then

(a) pmed(G) = 1, but

(b) aφ(2) > 2 for every faithful representation φ : G →֒ GL(V ).

Proof. Since the Sylow subgroups of G are Z/5Z and Z/4Z, part (a) follows from Propo-
sition 11.1.

(b) Each of the four characters Z/4Z → k∗ induces a 1-dimensional representation
G → GL1. We will denote these representations by φ0 = id, φ1, φ2, and φ3. Let
φ4 = IndGZ/5Z(χ), where χ is a non-trivial multiplicative character Z/5Z → k∗. We
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see that φ4 is a faithful irreducible 4-dimensional representation of G (irreducibility
follows, e.g, from Mackey’s criterion) and aφ4(2) = 2. Since dim(φ0)

2+ · · ·+dim(φ4)
2 =

4 ·12+42 = 20 = |G|, φ0, . . . , φ4 are the only irreducible representations of G. Moreover,
since Z/5Z lies in the kernel of φ0, . . . , φ3, every faithful representation φ : G →֒ GL(V )
must contain a copy of φ4. Thus aφ(2) > aφ4(2) = 2. �

Remark 10.3. A. Ledet showed that ed(Z/5Z ⋊ Z/4Z) = 2; see [Le02, p. 426]. Note
that in [Le02] this group is denoted by C5.

11. A-groups

Let G be a finite group, p be a prime and Gp be a Sylow p-subgroup of G. Recall
that G is called an A-group if Gp is abelian for every p; see, e.g., [Itô52, Wal69, Bro71].
For the rest of this section, with the exception of Conjecture 11.5 below, we will assume
that the base field k is of characteristic zero and ζe ∈ k, where e is the exponent of G.

Proposition 11.1. Let G be an A-group. Then

pmed(G) = max
p

ed(G; p) = max
p

rank(Gp)

where the maximum is taken over all primes p.

Here, as usual, by the rank of a finite abelian group H we mean the minimal number
of generators of H.

Proof. The second equality is well known; see, e.g., [RY00, Corollary 7.3]. Note also that
this is a very special case of (1.1). In view of (1.5), in order to prove the first equality,
we only need to show that pmed(G) 6 maxp rank(Gp).

Let p1, . . . , pr be the prime divisors of |G| and d = max rank(Gpi), as i ranges from 1
to r. By [RY01, Theorem 8.6] there exists a faithful primitive d-dimensional G-variety
Y with smooth k-points y1, . . . , yr such that Gpi ⊂ StabG(yi) for i = 1, . . . , r.

Recall that “primitive” means thatG transitively permutes the irreducible components
of Yk̄. We claim that any such Y is, in fact, absolutely irreducible. Let us assume this
claim for a moment. The G-orbit of yi is a zero cycle of degree prime to pi. Thus for
any given prime p, the degree of one of these orbits is prime to p. By [DR13, Corollary
8.6(b)], this implies that Y is p-versal for every p. Hence, pmed(G) ≤ dim(Y ) = d, and
the proposition follows.

It remains to show that Y is absolutely irreducible. After replacing k by its algebraic
closure k̄, we may assume that k is algebraically closed. Let Y0 be an irreducible com-
ponent of Y and H be the stabilizer of Y0 in G. Our goal is to prove that H = G. Since
G acts transitively on the irreducible components of Y , this will imply that Y = Y0.

Since yi is a smooth point of Y , it lies on exactly one irreducible component of Y ,
say on gi(Y0) for some gi ∈ G. Since yi is Gpi-invariant, yi also lies on ggi(Y0) for
every g ∈ Gpi . In other words, ggi(Y0) = gi(Y0) for every g ∈ Gpi or equivalently,

g−1
i Gpigi ⊂ H for every i = 1, . . . , s. This shows that H contains a Sylow pi-subgroup
of G for i = 1, . . . , r. Hence, |H| is divisible by |Gpi | for every i = 1, . . . , r. We conclude
that |H| is divisible by |G| = |Gp1 | · · · · · |Gps | and hence, H = G. �

Remark 11.2. The above argument relies, in a key way, on [RY01, Theorem 8.6]. This
theorem is proved in [RY01] over an algebraically closed field of characteristic 0 but the
proof goes through for any k as above. The condition that ζe ∈ k, is necessary; it is not
mentioned in [RY01, Remark 9.9] due to an oversight.
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Example 11.3. If G is a non-abelian group of order pq, where p and q are odd primes.
Then Proposition 11.1 tells us that pmed(G) = 1. On the other hand, ed(G) > 2;
see [BR97, Theorem 6.2]. This is, perhaps, the simplest example where pmed(G) <
ed(G).

Remark 11.4. Non-abelian simple A-groups are classified in [Bro71, Theorem 3.2]: they
are J1, the first Janko group, and PSL2(q) for q > 3 and q ≡ 0, 3, or 5 (mod 8). By
Proposition 11.1,

pmed(G) =

{

3, if G ≃ J1,

2, if G ≃ PSL2(q), with q as above.

On the other hand, by [Bea11], ed(G) > 4 for any of these groups, except forG ≃ PSL2(5)
and (possibly) PSL2(11).

It is natural to conjecture the following generalization of [RY01, Theorem 8.6].

Conjecture 11.5. Let d be a positive integer. Suppose G is a finite group with sub-
groups H1, . . . ,Hr such that rdimk(Hi) ≤ d for all i = 1, . . . , r. Then there exists a
d-dimensional k-variety X with a faithful G-action and smooth k-points x1, . . . , xr ∈ X
such that Hi fixes xi for each i = 1, . . . , r.

Here we are not imposing any restrictions on the base field k. Note that each Hi must
act faithfully on the tangent space of the corresponding xi and so the condition that the
representation dimension of each Hi should be ≤ d is necessary.

Of particular interest is the special case where p1, . . . , pr are the distinct primes divid-
ing |G|, each Hi is a Sylow pi-subgroup, and d is the maximum of edk(G; p) = rdimk(Hi).
If Conjecture 11.5 could be established in this special case, then the argument we used
in the proof of Proposition 11.1 would show that the G-action on X is p-versal for every
prime p and, consequently, that (1.6) holds for G. We have not been able to prove (1.6)
by this method beyond the case of A-groups.
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