NOTE ON THE FILTRATIONS OF THE K-THEORY

NOBUAKI YAGITA

ABSTRACT. Let X be a (colimit of) smooth algebraic variety over a subfield of \mathbb{C} . Let $K^0_{alg}(X)$ (resp. $K^0_{top}(X(\mathbb{C}))$) be the algebraic (resp. topological) K-theory of k (resp. complex) vector bundles over X (resp. $X(\mathbb{C})$)). When $K^0_{alg}(X) \cong K^0_{top}(X(\mathbb{C}))$, we study the differences of its three (gamma, geometrical and topological) filtrations. In particular, we consider the cases X = BG for an algebraically closed field k, and $X = \mathbb{G}_k/T_k$ the twisted form of flag varieties G/T for non-algebraically closed field k.

1. Introduction

Let X be a (colimit of) smooth algebraic variety over a subfield k of \mathbb{C} . We consider the cases that

$$(1.1) \quad K^0_{alg}(X) \cong K^0_{top}(X(\mathbb{C}))$$

where $K^0_{alg}(X)$ (resp. $K^0_{top}(X(\mathbb{C}))$) is the algebraic (resp. topological) K-theory generated by algebraic k-bundles (complex bundles) over X (resp. $X(\mathbb{C})$). In this assumption, we study the typical three filtrations

$$F_{\gamma}^{i}(X) \subset F_{qeo}^{i}(X) \subset F_{top}^{i}(X(\mathbb{C}))$$

namely, the gamma and the geometric filtrations defined by Grothendieck [Gr], and the topological filtration defined by Atiyah [At]. Namely, we study induced maps of associated rings

$$gr_{\gamma}^*(X) \to gr_{geo}^*(X) \to gr_{top}^*(X(\mathbb{C})).$$

Atiyah showed that $gr_{top}^*(X(\mathbb{C}))$ is isomorphic to the infitite term $E_{\infty}^{*,0}$ of the AHss (Atiyah-Hirzebruch spectral sequence) converging to K-theory $K^*(X(\mathbb{C}))$. Moreover he showed that $gr_{top}^*(X(\mathbb{C})) \cong gr_{\gamma}^*(X)$ if and only if $E_{\infty}^{*,0}$ is generated by Chern classes in $H^*(X(\mathbb{C}))$. We will see that similar facts hold for $gr_{geo}^*(X)$. Namely, $gr_{geo}^{2*}(X) \cong AE_{\infty}^{2*,*,0}$ of the motivic AHss converging to motivic K-theory $AK^{*,*'}(X)$. Moreover we show that $gr_{geo}^*(X) \cong gr_{\gamma}^*(X)$ if and only if $AE_{\infty}^{2*,*,0}$ is generated by Chern classes in the Chow ring $CH^*(X) \cong H^{2*,*}(X)$.

Let G be a compact Lie group (e.g., a finite group) and G_k be the corresponding algebraic group over an algebraically closed field k. Then by Merkurjev and Totaro ([To]), we have the isomorphisms

$$K_{alg}^0(BG_k) \cong R(G_k)^{\wedge} \cong R(G)^{\wedge} \cong K_{top}^0(BG),$$

where $R(G_k)^{\wedge}$ (resp. $R(G)^{\wedge}$) is the k-representation (resp. complex representation) ring completed by the augmentation ideal, and BG_k and BG are their classifying spaces.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11E72, Secondary 12G05. Key words and phrases. γ -filtration, K-theory, representation ring.

Atiyah had conjectured in [At] that $F_{\gamma}^{i}(BG) = F_{top}^{i}(BG)$ for all finite groups. Weiss [Th] showed this does not hold for $G = A_4$. For counter examples of p-groups were given by Leary-Yagita [Le-Ya] when G is $rank_p(G) = 2$ of class 3 with $p \ge 5$. We will see for the same group G, $F_{\gamma}^{2p+2}(BG_k) \neq F_{geo}^{2p+2}(BG_k) = F_{top}^{2p+2}(BG_k)$. We study these filtrations detailedly for connected groups $(O_n, SO_n, ...)$. In

particular we show

Theorem 1.1. (Let k be an algebraically closed field.) For $G = Spin_7$, there is an element x in $K_{alg}^0(BG_k)$ such that

$$0 \neq x \in gr_{\gamma}^4(BG_k), \quad 0 \neq x \in gr_{qeo}^6(BG_k), \quad 0 \neq x \in gr_{top}^8(BG).$$

These facts also hold for the extraspecial 2-group 2^{1+6}_{+} .

We consider the different type of examples, which satisfy (1.1). (See also [Ga-Za], [Za].) Here we do not assume that k is algebraically closed. Let us write by M(X) the (pure) motive of X, and by $M_a = (M_n)$ the Rost motive for a nonzero pure symbol $a \in K_{n+1}^M(k)/p$ ([Ro1,2], [Su-Jo]). We consider the cases X such that

$$(1.2) \quad M(X) \cong M_n \otimes A(X)$$

where A(X) is a sum of k-Tate motives. Then we can see that (1.1) is satisfied by the result from([Vi-Ya],[Ya]).

Some cases of flag manifolds G/P satisfy (1.2) ([Ca-Pe-Se-Za], [Ni-Se-Za], [Pe-Se-Za]). In particular (for p=2) $X=\mathbb{G}_{2,k}/T_k$ is a such example, where $\mathbb{G}_{2,k}$ is the nontrivial $G_{2,k}$ -torsor (induced from a Rost cohomological invariant $0 \neq a \in$ $K_3^M(k)/2$, [Ga-Me-Se]) for the exceptional Lie group G_2 , and T a maximal torus in G ([Bo], [Pe-Se-Za]). (Namely, $\mathbb{G}_{2,k}/T_k$ is a twisted form of G_2/T .) Note that $H^*(G_2/T)$ is torsion free, and we have

$$gr_{geo}^*(G_{2,k}/T_k) \cong gr_{top}^*(G_2/T) \cong H^*(G_2/T).$$

By using the fact that $CH^*(\mathbb{G}_{2,k}/T_k)$ is generated by Chern classes, we can show

Theorem 1.2. Let $\mathbb{G}_{2,k}$ be the nontrivial $G_{2,k}$ -torsor for the Rost cohomological invariant in $K_3^M(k)/2$. Then we have

$$gr_{\gamma}^{2*}(G_2/T) \cong gr_{geo}^{2*}(\mathbb{G}_{2,k}/T_k) \cong CH^*(\mathbb{G}_{2,k}/T_k).$$

From (1.1), the gamma filtration is defined purely topologically. Thus we see that this topological invariant is isomorphic to a purely algebraic geometric object such as the Chow ring of twisted form.

2. FILTRATIONS

We first recall the topological filtration defined by Atiyah. Let Y be a topological space (e.g., finitely generated CW-complex). Let $K^*(Y)$ be the complex K-theory ; the Grothendieck group generated by complex bundles over Y. Let Y^i be an i-dimensional skeleton of Y. Define the topological filtration of $K^*(Y)$ by

$$F_{ton}^{i}(Y) = Ker(K^{*}(Y) \rightarrow K^{*}(Y^{i}))$$

and the associated graded algebra $gr_{top}^i(Y) = F_{top}^i(Y)/F_{top}^{i+1}(Y)$. We consider the long exact sequence (exact couple)

$$\ldots \to K^*(Y^i/Y^{i-1}) \to K^*(Y^i) \to K^*(Y^{i-1}) \overset{\delta}{\to} K^{*+1}(Y^i/Y^{i-1}) \to \ldots$$

Here we have $K^*(Y^i/Y^{i-1}) \cong K^* \otimes H^*(Y^i/Y^{i-1})$, which induces the (well known) AHss

$$E_2^{*,*'}(Y) \cong H^*(Y) \otimes K^* \Longrightarrow K^*(Y).$$

By the construction of the spectral sequence, we have

Lemma 2.1. (Atiyah [At])
$$gr_{top}^*(Y) \cong E_{\infty}^{*,0}(Y)$$
.

Next we consider the geometric filtration. Let X be a smooth algebraic variety over a subfield k of \mathbb{C} . Let $K_{alg}^0(X)$ be the algebraic K-theory which is the Grothendiek group generated by k-vector bundles over X. It is also isomorphic to the Grothendieck group genrated by coherent sheaves over X (we assumed X smooth). This K -theory can be written by the motivic K-theory $AK^{*,*}(Y)$ ([Vo1,2], i.e.,

$$K^i_{alg}(X) = \bigoplus_* AK^{2*-i,*}(X).$$

In particular $K^0_{alg}(X) = \bigoplus_* AK^{2*,*}(X)$.

The geometric filtration ([Gr]) is defined as

$$F_{geo}^{i}(X) = \{ [O_V] | codim_X V \ge i \}$$

(and $F_{geo}^{2i-1}(X)=F_{geo}^{2i}(X)$) where O_V is the structural sheaf of closed subvariety V of X.

We recall the algebraic cobordism $MGL^{*,*'}(-)$ [Vo1] and let us write $MGL^{2*,*}(X) =$ $\Omega^*(X)$, in fact, this is isomorphic to the algebraic cobordism defined by Levine and Morel ([Le-Mo1,2], [Vo1,2]). Recall

$$\Omega^*(Spec(k)) = \Omega^*(pt.) \cong MU^{2*}(pt.) = MU^*.$$

Then we have the isomorphism

$$\Omega^*(X) \otimes_{MU^*} \mathbb{Z} \cong CH^*(X), \quad \Omega^*(X) \otimes_{MU^*} K^* \cong K^0_{alg}(X)$$

where the MU^* module structure of K^* is given by Todd genus (see § below). Each element $x \in \Omega^*(X)$ is represented by a projective map $x = [f: M \to X]$ with $codim_X M = i$ and M smooth ([Le-Mo1,2]), namely, $x = f_*(1_M)$ for $1_M \in \Omega^0(M)$ and f_* is the Gysin map. Then the geometric filtration is also defined as

$$F_{qeo}^{2i}(X)=\{f_*(1_M)|f:M\to X\ and\ codim_XM\ge i\}.$$

Here we recall the motivic AHss ([Ya2, 4])

$$AE_{2}^{*,*',*''}(X) \cong H^{*,*'}(X;K^{*''}) \Longrightarrow AK^{*,*'}(X).$$

(Of course this spectral sequence is not defined using skeleton as the topological case. But we assume the existence of the AHss converging to the motivic K-theory $AK^{*,*'}(X)$.) Note that

$$AE_2^{2*,*,*''}(X) \cong H^{2*,*}(X;K^{*''}) \cong CH^*(X) \otimes K^{*''}.$$

Hence $AE_{\infty}^{2*,*,0}(X)$ is a quotient of $CH^*(X)$ by dimensional reason of degree of differential d_r (i.e., $d_rAE_r^{2*,*,*''}(X)=0$). Thus we have

Lemma 2.2.
$$gr_{qeo}^{2*}(X) \cong AE_{\infty}^{2*,*,0}(X)$$
.

Proof. Let $q: \Omega^*(X) \otimes K^* \to K^*(X)$. Then

$$F_{aeo}^{2i}(X) = q\{f_*(1_M) \in \Omega^*(X) | f: M \to X \text{ and } codim_X M \ge i\}.$$

Let $q': \Omega^*(X) \to CH^*(X)$ and $q'': CH^*(X) \to E_{\infty}^{2*,*,0}$. Then $q|(\Omega^*(X) \otimes 1) = q''q'$. Thus we have

$$F_{qeo}^{2i}(X)/F_{qeo}^{2i+2}(X) = q''CH^{i}(X)$$

since q' is an epimorphism.

Lemma 2.3. Let $t_{\mathbb{C}}: K^0_{alg}(X) \to K^0_{top}(X(\mathbb{C}))$ be the realization map. Then $F^i_{aeo}(X) \subset (t_{\mathbb{C}}^*)^{-1} F^i_{top}(X(\mathbb{C})).$

Proof. Let us write $K^0_{top}(X(\mathbb{C}))$ simply by K(X). The Gysin map $f_*:K(M)\to K(X)$ is defined by using Thom isomorphism

$$K(M) \cong K(Th_X(M)) \to K(X).$$

Let $codim_X M \geq i$. For an 2*i*-skeleton X^{2i} of $X(\mathbb{C})$, we can show that the map

$$K(Th_X(M)) \to K(X) \to K(X^{2i})$$

is zero. Because the above composition map is rewritten

$$K(Th_X(M)) \to K(Th_X(M)^{2i}) \to K(X^{2i}).$$

Its first map is zero, because $H^*(Th_X(M)) = 0$ for * < 2i and the exact sequence (exact couple) for K-theory for skeletons of X (see the definition of the AHss). \square

At last, we consider the gamma filtration. Let $\lambda^i(x)$ be the exterior power of the vector bundle $x \in K^0_{alg}(X)$ and $\lambda_t(x) = \sum \lambda^i(x)t^i$. Let us denote

$$\lambda_{t/(1-t)}(x) = \gamma_i(x) = \sum \gamma^i(x)t^i.$$

The Gamma filtration is defined as

$$F_{\gamma}^{2i}(X) = \{ \gamma^{i_1}(x_1) \cdot \ldots \cdot \gamma^{i_m}(x_m) | i_1 + \ldots + i_m \ge i, x_j \in K_{alg}^0(X) \}.$$

Then we can see $F_{\gamma}^{i}(X) \subset F_{geo}^{i}(X)$ (Proposition 12.5 in [At], Atiyah proved $F_{\gamma}^{i}(X) \subset F_{top}^{i}(X)$ in $K_{top}(X)$. However the arguments work also in $K_{alg}^{0}(X)$ and this fact is well known.) Let $\epsilon: K_{alg}^{0}(X) \to \mathbb{Z}$ be the augmentation map and $c_{i}(x) \in H^{2i,i}(X)$ the Chern class. Recall $q'': CH^{*}(X) \to E_{\infty}^{2*,*,0}$ be the quotient map. Then (p. 63 in [At]) we have

$$q''(c_n(x)) = [\gamma^n(x - \epsilon(x))].$$

Lemma 2.4. (Atiyah) The condition $F_{\gamma}^{2*}(Y) = F_{top}^{2*}(Y)$ (resp. $F_{\gamma}^{2*}(X) = F_{geo}^{2*}(X)$) is equivalent to that $E_{\infty}^{2*,0}(Y)$ (resp. $AE_{\infty}^{2*,*,0}(X)$) is (multiplicatively) generated by Chern classes in $H^{2*}(BG)$ (resp. $CH^*(BG)$).

3. Morava K-theory (K-theory localized at p)

In this paper, we assume that p is a fixed prime number and consider only cohomology theories (Chern rings) localized at this prime p. Namely, for the notation $A^*(X)$ means $A^*(X)_{(p)}$ in this paper. In particular, \mathbb{Z} always means $\mathbb{Z}_{(p)}$ and $MU^*(-)$ means $MU^*(X)_{(p)}$ throughout this paper.

Let $AMU^{*,*'}(X) = MGL^{*,*'}(X)$ and recall $MU^* = \mathbb{Z}[x_1, ..., x_n, ..]$, $deg(x_i) = (-2i, -i)$. Given a sequence $S = (x_{i_1}, x_{i_2}, ...)$ of generators, we can construct generalized cohomology theory (in the \mathbb{A}^1 -homotopy category) such that

$$t_{\mathbb{C}}AMU(S)^{*,*'}(X) = MU(S)^{*}(X(\mathbb{C}))$$
 with $MU(S)^{*} = MU^{*}/(S)$.

In particular letting $x_{p^n-1} = v_n$ and $S = (x_i | i \neq p^n - 1)$, we have the motivic BP-theory ([Ya2,4])

$$ABP^{*,*'}(X)$$
 with $MU^*/(S) \cong BP^* = \mathbb{Z}[v_1, v_2, ...].$

Then we have the isomorphisms ([Ya])

$$ABP^{*,*'}(X) \cong MGL^{*,*'}(X) \otimes_{MU^*} BP^*,$$

$$MGL^{*,*'}(X) \cong ABP^{*,*'}(X) \otimes_{BP^*} MU^*.$$

Similarly, we can construct the motivic connective Morava K-theory such that

$$Ak(1)^{*,*'}(X)$$
 with $k(1)^* = \mathbb{Z}/p[v_n],$

and the integral connected K-theory $A\tilde{k}(1)^{*,*'}(X)$ with $\tilde{k}(n) = \mathbb{Z}[v_n]$. Moreover let the (usual) motivic Morava K-theory

$$AK(n)^{*,*'}(X) = Ak(n)^{*,*'}(X)[v_n^{-1}], \quad A\tilde{K}(n)^{*,*'}(X) = A\tilde{k}(n)^{*,*'}(X)[v_n^{-1}].$$

By the Landweber exact functor theorem ([Ra], [Ha]), it is well known that

$$AK^{*,*'}(X) \cong (AMU^{*,*'}(X) \otimes_{MU^*} \mathbb{Z}) \otimes \mathbb{Z}[B, B^{-1}]$$

where the MU^* -module structure of \mathbb{Z} is given by the Todd genus, and B is the Bott periodicity with deg(B) = (-2, -1). Since the Todd genus of v_1 (resp. v_i , i > 1) is 1 (resp. 0), we can write

$$AK^{*,*'}(X) \cong ABP^{*,*'}(X) \otimes_{BP^*} \mathbb{Z}[B,B^{-1}]$$
 identifying $B^{p-1} = v_1$.

Then we have

Lemma 3.1. There is a natural isomorphism

$$A\tilde{K}^{*,*'}(X) \cong A\tilde{K}(1)^{*,*'}(X) \otimes_{\tilde{K}(1)^*} \mathbb{Z}[B,B^{-1}] \quad identifying \ v_1 = B^{p-1}.$$

Proof. Recall that there is the natural map (by the construction of AMU(S))

$$\rho: ABP^{*,*'}(X) \otimes_{BP^*} \mathbb{Z}[B,B^{-1}] \to A\tilde{K}(1)^{*,*'}(X) \otimes_{\tilde{K}(1)^*} \mathbb{Z}[B,B^{-1}].$$

Of course, the functor

$$A \mapsto A \otimes_{\tilde{K}(1)^*} \mathbb{Z}[B, B^{-1}] \cong A \otimes \mathbb{Z}\{1, B, ..., B^{p-2}\}$$

is exact, and we have the spectral sequence

$$E_2^{*,*',*''}(A\tilde{K}(1)) \otimes_{\tilde{K}(1)^*} \mathbb{Z}[B,B^{-1}] \Longrightarrow A\tilde{K}(1)^{*,*'}(X) \otimes_{\tilde{K}(1)^*} \mathbb{Z}[B,B^{-1}].$$

Since for a $BP^*(BP)$ module A, the functor

$$A \mapsto A \otimes_{BP^*} \mathbb{Z}[B, B^{-1}]$$

is exact from the Landweber exact functor theorem, we have the spectral sequence from the AHss for $ABP^{*,*'}(X)$

$$E_2^{*,*',*''}(ABP) \otimes_{BP^*} \mathbb{Z}[B,B^{-1}] \Longrightarrow ABP^{*,*'}(X) \otimes_{BP^*} \mathbb{Z}[B,B^{-1}],$$

which is compatible with the map ρ . The E_2 -term of the both spectral sequences are isomorphic to

$$H^{*,*'}(X;\mathbb{Z})\otimes\mathbb{Z}[B,B^{-1}].$$

Therefore the two spectral sequences are isomorphic.

We also note from the arguments in the above proof.

Lemma 3.2. Let $E(ABP)_r^{*,*',*''}$ (resp. $E(A\tilde{K}(1))_r^{*,*',*''}$) be the AHss coverging to $ABP^{*,*'}(X)$ (resp. $A\tilde{K}(1)^{*,*'}(X)$). Then we have

$$E(ABP)_{r}^{*,*',*''} \otimes_{BP^{*}} \tilde{K}(1)^{*} \cong E(A\tilde{K}(1))_{r}^{*,*',*''}).$$

From above lemma, it is sufficient to consider the Morava K-theory $A\tilde{K}(1)^{*,*'}(X)$ when we want to study $AK^{*,*'}(X)$. Hereafter of this paper, we only consider the theories $A\tilde{K}(1)^{*,*'}(X)$ and $A\tilde{k}(1)^{*,*'}(X)$ instead of $AK^{*,*'}(X)$ or $K^*_{alg}(X)$. (We only consider the cohomology theories and Chow rings localied at p.)

We assume the following assumption

(*)
$$K_{alg}^0(X) \cong K_{top}^0(X(\mathbb{C}))$$
 (and $K_{top}^1(X(\mathbb{C})) = 0$).

That is equivalent to

$$(*) \quad A\tilde{K}(1)^{2*,*}(X) \cong \tilde{K}(1)^{2*}(X(\mathbb{C})) \quad (and \ \tilde{K}(1)^{2*+1}(X(\mathbb{C})) = 0).$$

From Lemma 2.3, we have

$$F_{\gamma}(X) \subset F_{qeo}^{i}(X) \subset F_{top}^{i}(X(\mathbb{C})).$$

Here we note that the gamma filtrations of topogical and algebraic geometrical are same, i.e., $F_{\gamma}^{*}(X) \cong F_{\gamma}^{*}(X(\mathbb{C}))$. So we have the maps of associated graded rings

$$gr_{\gamma}^*(X) \to gr_{geo}^*(X) \to gr_{top}^*(X(\mathbb{C})).$$

Lemma 3.3. $gr_{\gamma}^{2}(X) = gr_{qeo}^{2}(X)$.

Proof. If $0 \neq x \in gr_{\gamma}^2(X)$, then $x_1 = c_1(\xi) \in A\tilde{K}(1)^{2*,*}(X)$ for some bundle ξ . In $CH^*(X)$, we know $c_1(\xi) = c_1(det(\xi))$ which is determined by the line bundle $det(\xi)$. Line bundles are determined by $Pic(X) = CH^1(X)$. So $0 \neq x \in CH^1(X)$.

Lemma 3.4. If an element $y \in A\tilde{K}(1)^{2*,*}(X)$ is represented by $0 \neq y'$ (resp. y'', y''') $\in gr^i_{\gamma}(X)$ (resp. $gr^j_{geo}(X), gr^k_{top}(X(\mathbb{C}))$), then

$$i \leq j \leq k$$
, and $i = k = j \mod(2(p-1))$.

Proof. The element y is represented

$$y = v_1^s y' \in A\tilde{K}(1)^{2*,*}(X)/F_{\gamma}^{2i+1} \quad y = v_1^t y'' \in A\tilde{K}(2)^{2*,*}(X)/F_{geo}^{2j+1}$$

for some $s, t \in \mathbb{Z}/p$.

Remark. The above fact does not hold for $y \in K^0_{top}(X)$ (which is a sum of $\tilde{K}(1)^{2*,*}(X)$, $0 \le * \le p-2$). Let us write

$$y = B^k y_k + B^{k+1} y_{k+1} + \dots + B^{k+p-2} y_{k+p-2},$$

with $y_i \in \tilde{K}(1)^{2i}(Y)$ and, $y_i \in F_{top}^{2i}(Y)$. Suppose j > k. Then this means that there is s such that $0 \neq y_s \in gr_{geo}^{s'}(X)$ with $s - s' = 0 \mod(2p - 2)$. Of course if $s \neq k$, then $k - s' \neq 0 \mod(2p - 2)$.

To study the difference of $F_{geo}^*(X)$ and $F_{top}^*(X(\mathbb{C}))$, we consider AHss $E_r^{*,*'}(BP)$ converging to $BP^*(X)$. Suppose that

$$[v_1 \otimes x] \in BP^{*'} \otimes H^*(X(\mathbb{C})) \cong E(BP)_2^{*,0}$$

is an permanent cycle, but $[x] \in H^*(X(\mathbb{C}))$ itself is not (i.e., $d_r(x) \neq 0$ for some r). Let $x' \in BP^*(X(\mathbb{C}))$ be a corresponding element for $[v_1 \otimes x]$ in $E_{\infty}^{*,*'}$

Lemma 3.5. Let $x \in H^{2*}(X(\mathbb{C}))$ and $x' \in BP^{*'}(X(\mathbb{C}))$ be elements with the assumption above. Suppose that

$$0 \neq x' \in BP^{*'}(X(\mathbb{C})) \otimes_{BP^*} \mathbb{Z}[v_1, v_1^{-1}] \cong \tilde{K}(1)^*(X(\mathbb{C}))$$

and that $x' \in BP^{*'}(X(\mathbb{C})) \otimes_{BP^*} \mathbb{Z}$ is in the image of the Totaro cycle map

$$CH^{*'}(X) \to BP^{2*'}(X(\mathbb{C})) \otimes_{BP^*} \mathbb{Z}.$$

Then $0 \neq x' \in gr_{top}^{2*}(X(\mathbb{C}))$, but $0 \neq x' \in gr_{geo}^{2(*-p+1)}(X)$).

Proof. This case *' = * - (p-1) in the above arguments. Let $x \in H^{2i}(X(\mathbb{C}))$. In fact $x' \in Im(CH^{i-p+1}(X))$ and $0 \neq x' \in gr_{geo}^{2(i-p+1)}(X(\mathbb{C}))$, but $0 \neq x' = [v_1 \otimes x] \in gr_{top}^{2i}(X(\mathbb{C}))$.

Next we consider the cases $gr_{\gamma}^*(X) \cong gr_{top}(X(\mathbb{C}))$. From the Atiyah theorem (Lemma 2.4), the following lemma is immediate.

Lemma 3.6. Suppose (*) and suppose that the infinity term $E_{\infty}^{2*,0}(\tilde{K}(1))$ (of the AHss for $\tilde{K}(1)^*(X(\mathbb{C}))$) is generated by Chern classes in $H^*(X)$ for all $* \geq N$. Then for all $* \geq N$, we have

$$gr_{\gamma}^{2*}(X) \cong E_{\infty}^{2*,0}(\tilde{K}(1)^*(X(\mathbb{C}))) \quad for \ all \ * \geq N.$$

Lemma 3.7. (Lemma 2.8 in [Ya3]) Suppose (*) and that $H^*(X(\mathbb{C}))$ is generated by Chern classes. Then we have

$$CH^*(X) \cong H^*(X(\mathbb{C}))$$
 for $* \leq p - 1$.

Moreover if $X(\mathbb{C})$ is simply connected (resp. 3-connected), then we have the isomorphisms for $* \leq p$ (resp. $* \leq p + 1$)

$$CH^*(X) \otimes \mathbb{Z}_p \cong H^{2*}(X(\mathbb{C}); \mathbb{Z}_p).$$

Proof. By the assumption, we see

$$gr_{\gamma}^{2*}(X) \cong gr_{geo}^{2*}(X) \cong gr_{top}^{2*}(X(\mathbb{C})).$$

To compute the last graded ring, we consider AHss

$$E_2^{*,*'}(\tilde{K}(1)) \cong H^*(X; \tilde{K}(1)^{*'}) \Longrightarrow \tilde{K}(1)^*(X(\mathbb{C})).$$

Here $\tilde{K}(1)^* \cong \mathbb{Z}[v_1, v_1]$ with $|v_1| = -2p + 2$. It is well known that the first non zero differential is

$$d_{2p-1}(x) = v_1 \otimes Q_1(x) \mod(p).$$

So each element in $H^{2*}(X(\mathbb{C}))$ is not tergent of any differential d_r when $* \leq p-1$. (Of course $d_r(x) = 0$ for Chern classes x.) Hence we have

$$gr_{top}^{2*}(X(\mathbb{C})) \cong H^{2*}(X(\mathbb{C}))$$
 for $* \leq p - 1$.

Similarly, considering AHss converging to $A\tilde{K}(1)^{*,*'}(X)$, we have the isomorphism

$$gr_{geo}^{2*}(X) \cong CH^{2*}(X)$$
 for $* \leq p - 1$.

Here we use the fact $E_2^{2*,*,0}(A\tilde{K}(1)) \cong CH^*(X)$. Thus the isomorphism of the geometric and toplogical filtrations, gives the first statements.

From the isomorphism

$$H^{1,1}(X; \mathbb{Z}/p) \cong H^1(X(\mathbb{C}); \mathbb{Z}/p) = 0.$$

we see that $H^{1,1}(X;\mathbb{Z})$ is p-divisible. Since the image of the differential of p-divisible elements are also p-divisible,

$$H^{2p}(X(\mathbb{C})) \cong gr_{top}^{2p}(X)$$

$$\cong gr_{aeo}^{2p}(X) \cong CH^{2p}(X)/(p-divisible).$$

Hence we have the second isomorphism. The third isomorphism is seen similarly.

Remark. The first statement in the above lemma is also proved by the Riemann-Roch formula without denominators, namely, the composition map

$$CH^i(X) \to gr^i_{geo}(X) \stackrel{c_i}{\to} CH^i(X)$$

is multiplication by $(-1)^{i-1}(i-1)!$. Hence we get $CH^i(X) \cong gr^i_{geo}(X)$ for $i \leq p$. Moreover we know that $CH^i(X)$ is represented by the *i*-th Chern class $c_i(\xi)$ for some bundle ξ .

Remark. The assumption of Lemma 2.8 in [Ya3] is not sufficient, and it should be changed as above.

4. Classifying spaces BG for finite groups

Let G be a compact Lie group (e.g., a finite group) and G_k be the corresponding algebraic group over an algebraically closed field k in \mathbb{C} . Then by Merkurjev and Totaro ([To]), we have the isomorphisms

$$(1.1) \quad K_{alg}^0(BG_k) \cong R(G_k)^{\wedge} \cong R(G)^{\wedge} \cong K_{top}^0(BG),$$

where $R(G_k)^{\wedge}$ (resp. $R(G)^{\wedge}$) is the k-representation (resp. complex representation) ring completed by the augmentation ideal and $K^0_{alg}(BG_k)$ (resp. $K^0_{top}(BG)$) is the K-theory generated by k-bundles (resp. complex bundles) of the classifying space BG_k (resp. BG).

When k is algebraically closed, we write BG_k by BG simply. For Section 4-6, we assume k is algebraically closed.

In this section, we consider cases that G are finite groups. At first, we consider the case $G = \mathbb{Z}/p^r$. Then $H^*(BG) \cong \mathbb{Z}[y]/(p^ry), |y| = 2$ and $y_1 = c_1(e)$ for a nonzero linear representation e. So all three filtrations are the same. The similar fact holds for its product.

Theorem 4.1. (p=2,r=1 case by Atiyah [At]) Let $q=p^r$ and $G=\oplus^n \mathbb{Z}/q$. Then $gr_{top}^*(BG)\cong \mathbb{Z}[y_1,...,y_n]/(qy_i,y_i^qy_j-y_iy_i^q)$.

Hence the three filtrations are the same.

Proof. Let $Q'_0 = \beta_q$ be the higher Bockstein. The integral cohomology is isomorphic to a subring of the mod q cohomology

$$H^*(BG) \subset H^*(BG; \mathbb{Z}/q), \quad when * > 0.$$

Here $H^*(BG; \mathbb{Z}/q) \cong \mathbb{Z}/q[y_1,...,y_n] \otimes \Lambda(x_1,...,x_n)$ with $Q'_0(x_i) = y_i$, and we know

$$H^*(BG) \cong \mathbb{Z}/q[y_1, ..., y_n] \{ Q_0'(x_{i_1}...x_{i_s}) | 1 \le i_1 < ..., i_s \le n \}$$

with
$$Q'_0(x_{i_1}...x_{i_s}) = \sum_k (-1)^{k-1} y_{i_k} x_{i_1}...\hat{x}_{i_k}...x_{i_s}$$
.

We consider the AHss converging to $\tilde{K}(1)^*(BG)$. We define the weight degree for elements in this AHss by

$$w(v_1) = 0$$
, $w(y_i) = 0$, $w(x_i) = 1$

so that $w(Q'_0(x_{i_1}...x_{i_s})) = s - 1$. We will prove

(1)
$$(weight = 0) \cap E_{2q}^{*,*'} \cong \mathbb{Z}/q[y_1,...,y_n]/(y_i^q y_j - y_i y_j^q)$$
 for $* > 0$,

(2)
$$(weight = 1) \cap E_{2q}^{*,*'} = 0.$$

Then we can prove this theorem by the following arguments.

We consider the AHss converging to the motivic $A\tilde{K}(1)^*(BG)$. The weight w(x) of an element $x \in H^{*,*'}(X : \mathbb{Z}/q)$ is defined as 2 *' -*. Since $x_i \in H^{1,1}(BG; \mathbb{Z}/q)$ and $y_i \in H^{2,1}(BG; \mathbb{Z}/q)$, their weights are in fact $w(x_i) = 1$ and $w(y_i) = 0$. The degree of the motivic AHss is

$$deg(d_{2r-1}) = (2r-1, r-1, -2(r-1))$$
 with $(r-1) = 0$ mod $(p-1)$,

namely, $w(d_{2r-1}) = -1$ which means

$$d_{2r-1}(weight = s) = (weight = s - 1).$$

From (2), (weight = 0)-parts are not a target of any diffrential d_{2r-1} for r > q. By the naturality of realization map from the motivic AHss to the usual AHss, we get the same fact for the AHss for $\tilde{K}(1)^*(BG)$. Since $\tilde{K}(1)^*(BG)$ is generated by only weght = 0 elements, we have the theorem.

The first nonzero differential is known $d_{2q-1}(x_i)=v_1^{1+p+\ldots+p^{r-1}}y_i^q$ [Ya2]. We see (1) from

$$d_{2q-1}(Q_0'(x_1x_2)) = d_{2q-1}(y_1x_2 - y_2x_1) = y_1y_2^q - y_1^qy_2.$$

Now we prove (2). Let $x \in Ker(d_{2s-1})$ and $x = \sum a_{ij}Q'_0(x_ix_j)$. Then (since d_r is a derivation)

$$d_{2q-1}(x) = \sum a_{ij}(y_i y_j^q - y_i^q y_j) = 0$$
 in $\mathbb{Z}/q[y_1, ..., y_n]$.

Here we consider them in $mod(x_i, y_i|i \ge 4)$. Then we see $a_{12} = a'_{12}y_3$ and we see (by dividing $y_1y_2y_3$)

$$a_{12}'(y_1^{q-1}-y_2^{q-1})+a_{23}'(y_2^{q-1}-y_2^{q-1})+a_{31}'(y_3^{q-1}-y_1^{q-1})=0.$$

This implies that $a'_{12} \in ideal(y_1^{q-1}, y_2^{q-1}, y_3^{q-1})$. Moreover we see that a_{12} contains y_3^q . Similarly a_{23}, a_{13} contains y_1^q and y_2^q respectively.

On the other hand, we see

$$d_{2q-1}(Q_0'(x_1x_2x_3)) = d_{2q-1}(\sum y_1x_2x_3)$$

$$= \sum y_1y_2^qx_3 - \sum y_1x_2y_3^q = \sum y_1y_2^qx_3 - \sum y_3x_1y_2^q$$

$$= \sum y_2^q(y_1x_3 - y_3x_1) = -\sum y_1^qQ_0'(x_2x_3)$$

Taking off $a''d_{2r-1}Q'_0(x_1x_2x_3)$ for some adequate $a'' \in \mathbb{Z}/q[y_1,...,y_n]$, we can prove (2).

Recall that a group G is called an extraspecial p-group if its center $Z(G) \cong \mathbb{Z}/p$ and there is a central extension

$$0 \to \mathbb{Z}/p \to G \to \oplus^{2n}\mathbb{Z}/p \to 0.$$

For each prime p, such groups have only two types, namely, p_+^{1+2n}, p_-^{1+2n} . (e.g., $2_+^{1+2} \cong D_8$ the dihedral group (of order 8), $p_-^{1+2} \cong Q_8$ the quaternion group). We here only write down the case p_+^{1+2} for $p \geq 3$. The cohomology is known ([Ya1,3])

$$H^{even}(BG) \cong (Y \oplus B) \otimes \mathbb{Z}[c_p]/(p^2c_p)$$

where $Y = \mathbb{Z}[y_1, y_2]/(py_i, y_1y_2^p - y_1^p y_2)$, $B = \mathbb{Z}/p\{c_2, ..., c_{p-1}\}$ and $|y_i| = c_1(e_i)$ and $c_i = c_i(\xi)$ for some linear representations e_i and p-dimensional representation ξ . Hence the even dimensional part of this cohomology is generated by Chern classes and all three filtrations are the same. The odd degree part is

$$H^{odd}(BG) \cong Y \otimes \mathbb{Z}/p[c_p]\{a_1, a_2\}/(y_2a_1 - y_1a_2, y_2^pa_1 - y_1^pa_2) \quad |a_i| = 3.$$

Theorem 4.2. Let $G = p_{\perp}^{1+2}$ and $p \geq 3$. Then

$$gr_{top}^*(BG) \cong Y \oplus (\mathbb{Z}\{c_p\} \oplus B) \otimes \mathbb{Z}[c_p]/(p^2c_p).$$

Proof. We know the Milnor cohomology operation

$$v_1^{-1}d_{2p-1} = Q_1 : H^{odd}(BG) \to H^{even}(BG)$$

is injective and $Q_1(a_i) = y_i c_p$. Hence we see

$$gr\tilde{K}(1)^*(BG) \cong E_{\infty}^{*,*'} \cong \tilde{K}(1)^* \otimes H^{even}(BG)/(Q_1H^{odd}(BG))$$

 $\cong \tilde{K}(1)^* \otimes H^{even}(BG)/(y_ic_p).$

When $p \geq 5$, the groups of $rank_pG = 2$ are classified by Blackburn. When groups are of class 2 (i.e., [G, [G, G]] = 1), cohomology rings are generated by Chern classes ([Le-Ya],[Ya1]), and hence all three filtrations are the same. Define the class 3 p-group (i.e., $[G, [G, G]] \neq 1$) by

$$G(4,1) = \langle a, b, c | a^p = b^p = c^{p+1} = [b, c] = 1,$$

 $[a, b^{-1}] = c^p, [a, c] = b \rangle.$

Let G = G(4,1). Then there is an element $x_{p+1} \in H^{2p+2}(BG)$ [Le-Ya],[Ya] such that it is permanent in AHss for $\tilde{K}(1)^*(BG)$ and x_{p+1} is not represented by Chern class. But all elements in $H^{even}(BG)$ is represented by transfers of Chern classes [Ya]. Of course Chow rings have the transfer map. Hence we have

Theorem 4.3. Let $p \geq 5$ and G = G(4,1). Then $gr_{top}^*(BG) \cong gr_{geo}^*(BG)$ but $gr_{\gamma}^i(BG) \not\cong gr_{geo}^i(BG)$ for i = 4, 2p + 2.

Proof. The first isomorphism follows from that all elements in $H^{even}(BG)$ is represented by transfer of Chern classes. The second statement follows from x_{p+1} is not represented by Chern classes and the element $x_{p+1} \in E_{\infty}^{2p+2,0}$ represents a nonzero element in $gr_{\gamma}^{4}(BG)$ from Lemma 3.4.

5. Connected groups with p=2

Throughout this section, let p = 2. At first we consider the case $G = O_n$. The mod 2 cohomology of the classifying space BO_n of the n-th orthogonal group is

$$H^*(BO_n; \mathbb{Z}/2) \cong H^*((B\mathbb{Z}/2)^n; \mathbb{Z}/2)^{S_n} \cong \mathbb{Z}/2[w_1, ..., w_n]$$

where S_n is the *n*-th symmetry group, w_i is the Stiefel-Whiteney class which restricts the elementary symmetric polynomial in $\mathbb{Z}/2[x_1,...,x_n]$. Each element w_i^2 is represented by Chern class c_i of the induced representation $O_n \subset U_n$. Let us write w_i^2 by c_i .

Recall the Milnor operation Q_i which is defined $Q_0 = \beta$ and $Q_i = [Q_{i-1}, P^{p^{i-1}}]$. Let us write by Q(i) the exteria algebra $\Lambda(Q_0, ..., Q_i)$. W.S.Wilson ([Wi],[Ko-Ya]) found a good Q(i)-module decomposition for BO_n , namely,

$$H^*(BO_n; \mathbb{Z}/2) = \bigoplus_{i=-1} Q(i)G_i \quad with \ Q_0...Q_iG_i \in \mathbb{Z}/2[c_1,...,c_n].$$

Let us write by $P(n)^* = BP^*/(p,...,v_{i-1})$. The BP^* -theory is then computed

$$grBP^*(BG)/p \cong \oplus P(i+1)^*Q_0...Q_iG_i.$$

Hence we have $K(1)^*(BG) \cong P(1)^*(G_{-1} \oplus Q_0G_0)$.

Moreover, by Wilson, it is known that

$$BP^*(BO_n) \cong BP^*[[c_1, ..., c_n]]/(c_1 - c_1^*, ..., c_n - c_n^*)$$

where c_i^* is the conjugation of c_i . Hence $\tilde{K}(1)^*(BG)$ is generated by Chern classes from $H^*(BG)$. Thus from Lemma 2.4, all filtrations are same.

Here G_{k-1} is quite complicated (see for details [Wi]), namely, it is generated by symmetric functions

$$\sum x_1^{2i_1+1}...x_k^{2i_k+1}x_{k+1}^{2j_1}...x_{k+q}^{2j_q}, \quad k+q \leq n,$$

with $0 \le i_1 \le ... \le i_k$ and $0 \le j_1 \le ... \le j_q$; and if the number of j equal to j_u is odd, then there is some $s \le k$ such that $2i_s + 2^s < 2j_u < 2i_s + 2^{s+1}$.

Thus when $k \leq 1$, there is not above j_u , that means numbers of $j = j_u$ are always even.

Theorem 5.1. Let $G = O_n$. Then all three fitrations are the same, and $gr_{top}^*(BG) \cong A \oplus B/2$ with $(y_i = x_i^2 \text{ so that } \sum y_1 = c_1)$

$$A = \mathbb{Z}\left\{\sum (y_1y_2)^{j_1}...(y_{2s-1}y_{2s})^{j_s}\right\} \quad B = \mathbb{Z}\left\{\sum y_1^i(y_2y_3)^{j_1}...(y_{2s}y_{2s+1})^{j_s}\right\}.$$
(Note $A/2 = G_{-1}$ and $B/2 = Q_0G_0$.)

Example. When $G = O_2$, we have the isomorphism $gr_{top}^*(BG) \cong \mathbb{Z}[c_2] \oplus \mathbb{Z}/2[c_1]$.

When $G = SO_{odd}$, (since $SO_{odd} \times \mathbb{Z}/2 \cong O_{odd}$), the situations are same. Let $G = SO_{2n}$. Then from Field, we have ([Fi], [Ma-Vi], [In-Ya])

$$CH^*(BG) \cong \mathbb{Z}[c_2, ... c_{2n}]\{y_{2n}\} \oplus CH^*(BO_{2n})/(c_1),$$

 $BP^*(BG) \cong BP^*[c_2, ..., c_{2n}]\{y_{2n}\} \oplus BP^*(BO_{2n})/(F_1)$

where $F_1 = ker(Bdet^*)$ and $y_{2n}^2 = (-1)^n 2^{2n-2} c_{2n}$. Hence

$$y_{2n} = (-1)^* 2^{n-1} w_{2n} \in H^*(BG)_{(2)}.$$

By Field, it is shown that just $(n-1)!y_{2n}$ (for n>2) is represented by Chern classes (Theorem 8, Corollary 2 in [Fi]). Thus we have

Theorem 5.2. Let $G = SO_{2n}$ and $n \geq 3$. Then

$$gr_{top}^*(BG) = gr_{geo}^*(BG) \cong \mathbb{Z}[c_2, c_4, ..., c_{2n}]\{y_{2n}\} \oplus gr_{top}^*(BO_{2n})/(c_1).$$

However we have $gr_{\gamma}^{2n}(BG) \ncong gr_{qeo}^{2n}(BG)$.

We note when $G = SO_4$, all the three filtrations are same, since y_4 is represented by Chern classes.

Proposition 5.3. Let $G = SO_{2(n+1)}$ and $p \neq 2$. Then

$$gr_{\gamma}^*(BG) \cong \mathbb{Z}_{(p)}[c_2, ..., c_{2p+2}] \otimes (\mathbb{Z}_{(p)}\{1, y'\} \oplus \mathbb{Z}/p\{y\})$$

with
$$|y'| = 2(p+1)$$
 and $|y| = 4$.

We consider the exceptional Lie group G_2 . Let $G = G_2$. Its mod(2) cohomology is well known

$$H^*(BG; \mathbb{Z}/2) \cong \mathbb{Z}/2[w_4, w_6, w_7]$$

and integral cohomology is

$$H^*(BG) \cong \mathbb{Z}[w_4, c_6] \otimes (\mathbb{Z}\{1\} \oplus \mathbb{Z}/2[w_7]\{w_7\}).$$

We can compute the AHss for $BP^*(BG)$ ([Ko-Ya], [Sc-Ya])

$$grBP^*(BG) \cong \mathbb{Z}[c_4, c_6] \otimes (BP^*\{1, 2w_4\} \oplus P(3)^*[c_7]\{c_7\}).$$

Here we can show the element $\{2w_4\}$ is represented by a Chern class c_2' . We see $\tilde{K}(1)^*(BG) \cong \tilde{K}(1)^*[c_4, c_6] \otimes \{1, 2w_4\}$, and ([Ya2], [Gu])

$$CH^*(BG) \cong BP^*(BG) \otimes_{BP^*} \mathbb{Z} \cong \mathbb{Z}[c_2', c_4, c_6, c_7]/((c_2')^2 - 4c_4, 2c_7).$$

Theorem 5.4. Let $G = G_2$. Then all three filtrations are the same

$$gr_{top}^*(BG) \cong CH^*(BG)/(c_7) \cong \mathbb{Z}[c_2', c_4, c_6]/((c_2')^2 - 4c_4).$$

Next we study the case $G = Spin_7$. Its mod(2) cohomology is

$$H^*(BG; \mathbb{Z}/2) \cong \mathbb{Z}/2[w_4, w_6, w_7, w_8].$$

The infinity term of the AHss for $BP^*(BG)$ is still computed

$$grBP^*(BG) \cong \mathbb{Z}[c_4, c_6] \otimes (BP^*[c_8]\{1, 2w_4, 2w_8, 2w_4w_8, v_1w_8\} \oplus P(3)^*[c_7]\{c_7\} \oplus P(4)^*[c_7, c_8]\{c_7c_8\}).$$

Hence we see

$$gr\tilde{K}(1)^*(BG) \cong \tilde{K}(1)^*[c_4, c_6, c_8]\{1, 2w_4, 2w_8, 2w_4w_8, v_1w_8\}.$$

Here it is known that $2w_4, 2w_8, 2w_4w_8$ are represented by Chern classes, and write them c_2', c_4', c_6' . But it is proved (Theorem 6.2 in [Sc-Ya]) that v_1w_8 is not represented by (transfer) of Chern classes while it is in the image of cycle map. Let $cl(\xi) = [v_1w_8]$ ([Gu], Lemma 9.6 in [Ya], §9 in [Ka-Te-Ya]). Totraro's conjecture also holds this case

$$CH^*(BG) \cong BP^*(BG) \otimes_{BP^*} \mathbb{Z}$$

 $\cong \mathbb{Z}[c_4, c_6, c_8] \otimes (\mathbb{Z}\{1, c_2', c_4', c_6'\} \oplus \mathbb{Z}/2\{\xi\} \oplus \mathbb{Z}/2[c_7]\{c_7\})$

with $|\xi| = 6$. Moreover, we can prove

Lemma 5.5. Let $G = Spin_7$. Any element $x \in BP^*(BG)$ such that

$$0 \neq x = [v_1 w_8] a \in BP^*(BP)$$
 with $a \in \mathbb{Z}[c_4, c_6, c_8],$

can not be generated by Chern classes of BP*-theory.

Proof. Let $N = Z(G) \cong \mathbb{Z}/2$ be the center of G and $N \oplus A$ is a maximal elementary abelian 2-subgroup of G, so $A \cong (\mathbb{Z}/2)^3$. A representation ξ of G is said to be a spin representation, if $\xi | N \neq 0$. For a nonspin representation η , we know the total Chern class

$$\eta|_{N \oplus A} = \eta|_A \in BP^*[c_4, c_6, c_7].$$

For a spin representation χ , we have

$$(\chi)|_{N} = (1+u)^{s} \in BP^{*}(BN) \cong BP^{*}[u]/([2](u)) \quad |u| = 2$$

where $[2](u) = 2u + v_1u^2 + ...$ is the 2-th product of the BP^* -formal group laws. Here we note s = 8s' since $c_8|_N = u^8$. It is known that $v_1w_8|_N = v_1u^4$ [Sc-Ya]. Then

$$c(\chi)|_{N} = (1 + 8u + 28u^{2} + \dots + u^{8})^{s}.$$

Here we can compute

$$8u = 4v_1u^2 = 2v_1^2u^3 = v_1^3u^4$$
, $28u^2 = 14v_1u^3 = 7v_1^2u^4$,

Thus we see that v_1u^4 is not represented by the restriction of Chern classes. (However $v_1^2u^4$ has its possibily, infact $|v_1w_8| = 4$ and it is represented by the Chern class c_2 .)

Of course
$$c(\chi \oplus \eta) = c(\chi)c(\eta)$$
, we get the lemma.

Theorem 5.6. Let $G = Spin_7$. Then

$$gr_{top}^*(BG) \cong \mathbb{Z}[c_4, c_6, w_8]\{1, c_2'\},$$

$$gr_{\alpha}^{*}(BG) \cong \mathbb{Z}[c_4, c_6, c_8](\mathbb{Z}\{1, c_2', c_4', c_6'\} \oplus \mathbb{Z}/2\{\xi\})$$

where
$$deg(\xi) = 6$$
 (resp. = 4) if $\alpha = geo$ (if $\alpha = \gamma$).

Recall that 2^{1+2n}_+ is the extraspecial 2-group, which is isomorphic to the central product of n-copies of the dihedral group D_8 of order 8. Let $G=2^{1+6}_+$. There is an inclusion $i:G\subset Spin_7$ and its induced map $i^*:H^*(BSpin_7;\mathbb{Z}/2)\to H^*(BG;\mathbb{Z}/2)$ is also injective by Quillen [Qu]. Let $j:\mathbb{Z}/2\cong Z(G)\subset G$. Then it is know [Qu], [Sc-Ya] $j^*i^*(w_8)=u^4\in\mathbb{Z}[u]/(2u)\subset H^*(BZ(G))$. Hence we have in $\tilde{K}(1)^*$ -theory

$$i^*i^*(v_1w_8) = v_1u^4 \neq 0 \in \tilde{K}(1)^*(BZ(G)) \cong \tilde{K}(1)^*[u]/(2u - v_1u^2).$$

This element $v_1 \otimes w_8$ is not generated by Chern classes also in $H^*(BG)$. Hence we have

Corollary 5.7. Let $G = 2^{1+6}_+$. Then there is an element $x \in A\tilde{K}(1)^*(BG)$ such that

$$0 \neq x \in gr_{\gamma}^4(BG), \quad x = \xi \in gr_{geo}^6(BG), \quad and \quad x = w_8 \in gr_{top}^8(BG).$$

6. Connected groups for p odd

In this section, we assume $p \geq 3$. At first we consider the case $G = PGL_p$. Its mod p cohomology is given by Vistoli and Kameko-Yagita ([Vi], [Ka-Ya]), namely, there is a short exact sequence

$$0 \to M/p \to H^*(BG) \to N \to 0$$

where $M \cong Z[x_4, x_6, ..., x_{2p}]$ additively (but not as rings), and $N \cong N' \otimes \Lambda(Q_0, Q_1)\{u_2\}$, $|u_2| = 2$ for some \mathbb{Z}/p -module N'. The BP-theory $BP^*(BG)$ is also studied There is a short exact sequence

$$0 \to BP^* \otimes M \to grBP^*(BG) \to N'' \to 0$$

where $grN'' \cong P(3)^* \otimes N' \otimes Q_0Q_1(u)$. Therefore we see $gr^*\tilde{K}(1)^*(BG) \cong M$ additively. Totaro's conjecture also holds this case. Thus we have

Theorem 6.1. Let $G = PGL_p$. Then

$$gr_{top}^*(BG) \cong gr_{geo}^*(BG) \ (\cong M \ additively).$$

When p=3, it is known (page 2274 in [Ka-Ya]) that $M/3 \cong \mathbb{Z}/3[c_2, c_3, c_6]/(c_2^3 - c_6^2)$. Hence the gamma filtration is the same when p=3. However, for $p \geq 5$, it seems unknown that M above is generated by Chern classes or not.

For exceptional Lie groups, we can compute $BP^*(BG)$ except for $(G,p) = (E_8, p = 3)$. So we know $gr^*_{top}(BG)$, but it seems not so easy to compute $CH^*(BG)$ now, and $gr^*_{geo}(BG)$ seems unknown. For example, when $G = F_4$ we can compute $BP^*(BG)$. The mod(3) cohomology is generated by $x_4, x_8, x_9, x_{20}, x_{21}, \ldots$ (by Toda). The BP-theory is also computed

$$grBP^*(BG) \cong BP^*[c_{18}, c_{24}]\{1, 3x_4\} \oplus BP^* \otimes E \oplus P(3)^*[x_{26}]\{x_{26}\}$$

where $E = \mathbb{Z}[x_4, x_8]\{ab|a, b \in \{x_4, x_8, x_{20}\}\}$. Hence we have

$$gr\tilde{K}(1)^*(BG) \cong \tilde{K}(1)^* \otimes (\mathbb{Z}[c_{18}, c_{24}]\{1, 3x_4\} \oplus E).$$

It is now unknown whether the element $x_8^2 \in E$ is in the image of the cycle map. If it is so, then $gr_{geo}^*(BG) \cong gr_{top}^*(BG)$, otherwise $gr_{geo}^i(BG) \not\cong gr_{top}^i(BG)$ for i=12,16.

7. Rost motives

In this section, we do not assume that k is algebraically closed. At first, we recall the (generalized) Rost motive ([Ro1,2]). Let M(X) be the motive of (smooth) variety X. For a non zero symbol $a = \{a_0, ..., a_n\}$ in the mod 2 Milnor K-theory $K_{n+1}^M(k)/2$, let $\phi_a = \langle \langle a_0, ..., a_n \rangle \rangle$ be the (n+1)-fold Pfister form. Let X_{ϕ_a} be the projective quadric of dimension $2^{n+1}-2$ defined by ϕ_a . The Rost motive $M_a(=M_{\phi_a})$ is a direct summand of the motive $M(X_{\phi_a})$ representing X_{ϕ_a} so that $M(X_{\phi_a}) \cong M_a \otimes M(\mathbb{P}^{2^n-1})$.

Moreover for an odd prime p and nonzero symbol $0 \neq a \in K_{n+1}^M/p$, we can define ([Ro2],[Vo4,5],[Su-Jo]) the generalized Rost motive M_a , which is irreducible and is split over K/k if and only if $a|_K = 0$ (as the case p = 2).

The Chow group of the Rost motive is well known. Let \bar{k} be an algebraic closure of k, $X|_{\bar{k}} = X \otimes_k \bar{k}$, and $i_{\bar{k}} : CH^*(X) \to CH^*(X|_{\bar{k}})$ the restriction map.

Lemma 7.1. (Rost [Ro1,2],[Vo4], [Vi-Ya], [Ya3,4]) The Chow group $CH^*(M_a)$ is only dependent on n. There are isomorphisms

$$CH^*(M_a) \cong \mathbb{Z}\{1\} \oplus (\mathbb{Z}\{c_0\} \oplus \mathbb{Z}/p\{c_1, ..., c_{n-1}\})[y]/(c_i y^{p-1})$$

and
$$CH^*(M_a|_{\bar{k}}) \cong \mathbb{Z}[y]/(y^p)$$

where $2deg(y) = |y| = 2(p^{n-1} + ... + p + 1)$ and $|c_i| = |y| + 2 - 2p^i$. Moreover the restriction map is given by $i_{\bar{k}}(c_0) = py$ and $i_{\bar{k}}(c_i) = 0$ for i > 0.

Remark. The element y does not exist in $CH^*(M_a)$ while c_iy exists. Usually $CH^*(M_a)$ is defined only additively, however when $CH^*(M_a)$ has the natural ring structure (e.g., p=2), the multiplications are given by $c_i \cdot c_j = 0$ for all $0 \le i, j \le n-1$.

For the simplicity of notation, hereafter we always write by $\Omega^*(X)$ the BP^* -version of the algebraic cobordism

$$\Omega^*(X) \otimes_{MU^*} BP^* \cong ABP^{2*,*}(X).$$

Hence we mean $\Omega^* = BP^*$.

Let I_n be the ideal in Ω^* generated by $v_0, ..., v_{n-1}$, i.e.,

$$I_n = (p = v_0, v_1, ..., v_{n-1}) \subset \Omega^*.$$

Then it is well known that I_n and I_{∞} are the only prime ideals stable under the Landweber-Novikov cohomology operations ([Ra]) in Ω^* .

The category of cobordism motives is defined and studied in [Vi-Ya]. In particular, we can define the algebraic cobordism of motives. The following is the main result in [Vi-Ya] (in [Ya4] for odd primes).

Lemma 7.2. ([Vi-Ya], [Ya4]) The restriction map

$$i_{\bar{k}}: \Omega^*(M_a) \to \Omega^*(M_a|_{\bar{k}}) \cong \Omega^*[y]/(y^p)$$

is injective and there is an Ω^* -module isomorphism

$$\Omega^*(M_a) \cong \Omega^*\{1\} \oplus I_n\{y, ..., y^{p-1}\} \subset \Omega^*[y]/(y^p)$$

such that $v_i y = c_i$ in $\Omega^*(M_a) \otimes_{\Omega^*} \mathbb{Z} \cong CH^*(M_a)$.

We consider the following assumption for X

Assumption (*). There is an isomorphism of motives

$$M(X) \cong M_n \otimes A(X)$$
 with $A(X) \cong \bigoplus_s \mathbb{T}^{i_s}$

where \mathbb{T} is the k-Tate module.

Lemma 7.3. Suppose Assumption (*). Then

$$K^0_{alg}(X) \cong K^0_{alg}(X|_{\bar{k}}) \cong K^0_{top}(X(\mathbb{C})).$$

Proof. Since $M(X|_{\bar{k}})$ is a sum of \bar{k} -Tate modules, we have the isomorphism $K^0_{alg}(X|_{\bar{k}}) \cong K^0_{top}(X(\mathbb{C}))$ from

$$K^0_{alg}(\mathbb{T})\cong K^0_{alg}(S^{2,1}|_{\bar{k}})\cong K^0_{top}(S^2).$$

For the first isomorphism, we only need to show $K_{ala}^0(M_n) \cong K_{ala}^0(M_n|_{\bar{k}})$. Recall

$$\Omega^*(M_n) \cong (BP^* \oplus Ideal(p, v_1, ..., v_{n-1})\{\rho\})$$

by $c_i \mapsto v_i \rho$. Hence $v_i c_1 = v_1 c_i$. Therefore for i > 1, we see $c_i = 0$ in $A\tilde{K}(1)^{2*,*}(M_n)$ where $v_i = 0$. So we have

$$A\tilde{K}(1)^{2*,*}(M_n) \cong \tilde{K}(1)^*\{1, c_0, c_1\}/(v_1c_0 = pc_1) \cong A\tilde{K}(1)^{2*,*}\{1, c_1\}$$

$$\cong A\tilde{K}(1)^{2*,*}\{1, v_1\rho\} \cong A\tilde{K}(1)^{2*,*}\{1, \rho\} \cong A\tilde{K}(1)^{2*,*}(M|_{\bar{k}}).$$

8. Flag manifolds G/T

Now we consider the flag variety G/T. Let G be a simply connected Lie group and T the maximal torus. Moreover we assume its cohomology is

$$H^*(G; \mathbb{Z}/p) \cong \mathbb{Z}/p[y]/(y^p) \otimes \Lambda(x_1, ..., x_\ell)$$

with |y| = 2(p+1) and $|x_i| = odd$. Then it is well known that the cohomology of G/T is torsion free ([Tod]) and

$$H^*(G/T) \cong \mathbb{Z}[y, t_1, ..., t_{\ell}]/(f_y, b_1, ..., b_{\ell})$$

where $f_y = y^p \mod Ideal(t_i)$ and $(b_1, ..., b_\ell)$ is a regular sequence in $\mathbb{Z}[t_1, ..., t_\ell]$.

Let k be a subfield of \mathbb{C} which contains primitive p-th root of the unity. Let us denote by G_k the split reductive group over k which corresponds G. By definition, a G_k -torsor \mathbb{G}_k over k is a variety over k with a free G_k -action such that the quotient variety is Spec(k). A G_k -torsor over k is called trivial, if it is isomorphic to G_k or equivalently it has a k-rational point. In this paper by \mathbb{G}_k , we mean the nontrivial torsor at any finite extension K/k coprime to p.

Let H be a subgroup of G. Given a torsor \mathbb{G}_k over k, we can form the twisted form of G/H by

$$(\mathbb{G}_k \times G_k/H_k)/G_k \cong \mathbb{G}_k/H_k.$$

Letting X = G/T, we consider cases such that Assumption hold. By [Pe-Se-Za], exceptional Lie groups $(G_2, p = 2)$ and $(F_4, p = 3)$ are such cases. The filtrations of such spaces are also studied by Gabrier and Zainouline ([Ga-Za], [Za], [Ju]) as the twisted gamma filtrations.

At first, we consider the case $(G, p) = (G_2, 2)$. We recall the cohomology from Toda-Watanabe [To-Wa]

$$H^*(G/T; \mathbb{Z}) \cong \mathbb{Z}[t_1, t_2, y]/(t_1^2 + t_1t_2 + t_2^2, t_2^3 - 2y, y^2)$$

with $|t_i| = 2$ and |y| = 6. Let P be the maximal parabolic subgroup such that G/P is isomorphic to a quadric. Then from (3.6) and $H^*(P/T) \cong \mathbb{Z}\{1, t_1\}$ ([To-Wa])

$$H^*(G/P; \mathbb{Z}) \cong \mathbb{Z}[t_2, y]/(t_2^3 - 2y, y^2) \cong \mathbb{Z}\{1, y\} \otimes \{1, t_2, t_2^2\}$$

Of course this is isomorphic to $gr_{top}^*(G/P)$.

Since G/P is a quadric, we have the decomposition ([Bo], §7 in [Pe-Se-Za])

$$M(\mathbb{G}_k/P_k) \cong M_2 \oplus M_2(1) \oplus M_2(2).$$

Theorem 8.1. (Theorem 5.2 in[Ya5]) There is a ring isomorphism

$$gr_{\gamma}^*(G/P) \cong gr_{qeo}^*(\mathbb{G}_k/P_k) \cong CH^*(\mathbb{G}_k/P_k)$$

$$\cong \mathbb{Z}_{(2)}[t_2, u]/(t_2^6, 2u, t_2^3u, u^2) \cong \mathbb{Z}_{(2)}[t_2]/(t_2^6) \oplus \mathbb{Z}/2[t_2]/(t_2^3)\{u\}$$

with $|t_2| = 2$, |u| = 4.

Proof. Recall that

$$\Omega^*(M_2) \cong \Omega^*\{1, 2y, vy\} \subset \Omega^*\{1, y\}.$$

From the decomposition of the motive, we have the Ω^* -module isomorphism

$$\Omega^*(\mathbb{G}_k/P_k) \cong \Omega^*\{1, v_1y, 2y\} \otimes \{1, t_2, t_2^2\} \subset \Omega^*(G_k/P_k).$$

Since $CH^*(X) \cong \Omega^*(X) \otimes_{\Omega^*} \mathbb{Z}$, we have the isomorphism

$$CH^*(\mathbb{G}_k/P_k) \cong \mathbb{Z}\{1,2y\}\{1,t_2,t_2^2\} \oplus \mathbb{Z}/2\{v_1y\}\{1,t_2,t_2^2\}.$$

(Note $2v_1y = v_1(2y) \in \Omega^{<0}\Omega^*(\mathbb{G}_k/P_k)$.)

Here the multiplications are given as follows. Since $2y = t_2^3 \mod(\Omega^{<0})$ in $\Omega^*(G_k/T_k)$, we can take $2y = t_2^3 \in CH^*(\mathbb{G}/P_k)$ so that

$$\mathbb{Z}\{1,2y\}\{1,t_2,t_2^2\} = \mathbb{Z}[t_2]/(t_2^6) \subset CH^*(\mathbb{G}/P_k).$$

Let us write $u = v_1 y$ in $CH^*(\mathbb{G}_k/T_k)$. Then $t_2^3 u = 2yv_1 y = 0$ and $u^2 = v_1^2 y^2 = 0$ in $\Omega^*(\mathbb{G}_k/T_k) \otimes_{\Omega^*} \mathbb{Z}$. Hence we have the second isomorphism for in the theorem.

Since |u|=4, the element u is represented by Chern classes, we see the first isomorphism. \Box

Remark. The space \mathbb{G}_k/T_k is isomorphic to the quadric defined by the maximal neighbor of the 3-Pfister form. Hence its Chow ring is computed in [Ya5].

It is well known that the representations (over \mathbb{C})) are written as

$$R(G/T) \cong R(T)/R(G)$$
.

Therefore each element which is represented by Chern classes is written as an element in $\Omega^*(\mathbb{G}_k/T_k)$

$$c(\xi) = \prod (1 + \lambda_1 t_1 + \lambda_2 t_2) \in \Omega^*[t_1, t_2] \quad \lambda_i \in \mathbb{Z}/2$$

modulo $((t_1, t_2)\Omega^{<0}\Omega^*(G_k/T_k))$. By the similar arguments, we have (see Theorem 5.3 in [Ya5])

Theorem 8.2. There are ring isomorphisms

$$gr_{\gamma}^*(G/T) \cong CH^*(\mathbb{G}_k/T_k) \cong \mathbb{Z}[t_1, t_2]/(t_2^6, 2u, t_2^3u, u^2)$$

where $u = t_1^2 + t_1 t_2 + t_2^2$.

Proof. The Chow ring is isomorphic to

(*)
$$CH^*(\mathbb{G}_k/T_k) \cong CH^*(\mathbb{G}_k/P_k)\{1, t_1\}$$

$$\cong (\mathbb{Z}\{1,2y\} \oplus \mathbb{Z}/2\{v_1y\})\{1,t_2,t_2^2\}\{1,t_1\}.$$

Here $2y = t_2^3$. Since $v_1y \in (t_1, t_2)$ and $v_1y = 0 \in CH^*(G_k/T_k)$, we see

$$v_1 y = \lambda(t_1^2 + t_1 t_2 + t_2^2) \mod((t_1, t_2)\Omega^{<0}\Omega^*(G_k/T_k))$$

for $\lambda \in \mathbb{Z}$. We can take $\lambda = 1 \ mod(2)$. Otherwise $v_1 y = 0 \in \Omega^*(G_k/T_k)/2$, which is an $\Omega^*/2$ -free, and this is a contradiction. Hence we can take $t_1^2 + t_1 t_2 + t_2^2$ as $v_1 y$. Hence in $CH^*(\mathbb{G}_k/T_k)$ we have the relation

$$(t_2^3)^2 = 0$$
, $(t_2^3)u = 0$, $u^2 = 0$, $2u = 0$.

Next we consider the case $(G, p) = (F_4, 3)$. Let \mathbb{G}_k be a nontrivial G_k -torsor at 3 as previous sections. Let P_k be a maximal parabolic subgroup of G_k given by the the first three vertexes

of the Dynkin diagram. Then Nikolenko- Semenov-Zainoulline ([Ni-Se-Za]) showed that there is an isomorphism

$$M(\mathbb{G}_k/P_k) \cong \bigoplus_{i=0}^7 M_2(i).$$

We first recall the ordinary cohomology of G/P ([Is-To], [Du-Za]).

$$H^*(G/P)_{(3)} \cong \mathbb{Z}[t,y]/(r_8,r_{12}), \quad |t|=2, \ |y|=8$$

where $r_8 = 3y^2 - t^8$ and $r_{12} = 26y^3 - 5t^{12}$. Hence we can rewrite

$$H^*(G/P) \cong \mathbb{Z}\{1, t, ..., t^7\} \otimes \{1, y, y^2\}.$$

Recall the Rost motive $CH^*(M_2|_{\bar{k}}) \cong \mathbb{Z}[y]/(y^3)$,

$$CH^*(M_2) \cong \mathbb{Z}\{1\} \oplus \mathbb{Z}\{3y, 3y^2\} \oplus \mathbb{Z}/3\{v_1y, v_1y^2\}.$$

Of course, the above $y \in CH^*(M_a)$ can be identified with the same named element in $H^*(G_k/P_k)$ by the restriction map $CH^*(M_a) \to CH^*(M_a|_{\bar{k}}) \subset CH^*(G_k/P_k)$. From the above theorem, we have the decomposition

(*)
$$CH^*(\mathbb{G}_k/P_k) \cong \mathbb{Z}\{1, t, ..., t^7\} \otimes (\mathbb{Z}\{1, 3y, 3y^2\} \oplus \mathbb{Z}/3\{v_1y, v_1y^2\}).$$

The ring structure is given as follows.

Proposition 8.3. (Theorem 6.2 in [Ya5])

$$gr_{qeo}^*(\mathbb{G}_k/P_k) \cong CH^*(\mathbb{G}_k/P_k)$$

$$\cong \mathbb{Z}[t, b, a_1, a_2]/(t^{16}, t^8b, b^2 = 3t^8, ba_i, 3a_i, t^8a_i, a_1a_2)$$

$$\cong \mathbb{Z}\{1, t, ..., t^7\} \otimes (\mathbb{Z}\{1, \sqrt{3}t^4, t^8\} \oplus \mathbb{Z}/3\{a_1, a_2\})$$

where |b| = 8 and $|a_1| = 4$, $|a_2| = 12$.

Proof. From the relation r_8 in $CH^*(G/P)$, we have

$$3y^2 = t^8 + vx \in \Omega^*(G/P) \quad for \ v \in \Omega^{<0}.$$

Hence we can take t^8 instead of $3y^2$ in (*). Of course

$$(3y)^2 = 3t^8 + 3vx \in \Omega^*(G_k/P_k).$$

Hence we write by $b = \sqrt{3}t^4$ the element 3y. Write by a_1, a_2 the elements v_1y, v_1y^2 respectively. Elements in $I_{\infty}\Omega^{<0} \subset \Omega(G_k/P_k)$ reduces to zero in $CH^*(\mathbb{G}_k/T_k)$. Therefore we have the desired multiplicative results.

The element b=3y is represented by a Chern class $c_4(\xi)$ for some ξ by the Riemann-Roch theorem without denominators. Unfortunately, we do not know if $a_2 = v_1 y^2$ are Chern classes in $CH^*(BG)$ or not.

Proposition 8.4. If $a_2 = v_1 y^2 \in CH^*(\mathbb{G}_k/P_k)$ is not represented by a Chern class, then

$$gr_{\gamma}(G/P) \cong \mathbb{Z}[t, b, a_1]/(t^{16}, t^8b, b^2 = 3t^8, ba_1, 3a_1, t^8a_1, a_1^3)$$

where |b| = 8 and $|a_1| = 4$.

Proof. If v_1y^2 is not represented by Chern class of $CH^*(\mathbb{G}_k/P_k)$ (or $\Omega^*(\mathbb{G}_k/P_k)$), then the corresponding nonzero element in $gr_{\gamma}(G/T)$ is $v_1^2y^2$, which is written as $(v_1y)^2=(a_1)^2$.

9. Filtrations of the Morava K-theory

For most groups G in the preceding sections, it is known that $K(n)^{odd}(BG) = 0$ (while Kriz gave some examples with $K(n)^{odd}(BG) \neq 0$). Hereafter, we only consider spaces X such that

(9.1)
$$K(n)^{odd}(X(\mathbb{C})) = \tilde{K}(n)^{odd}(X(\mathbb{C})) = 0,$$

(9.2) $K(n)^*(X(\mathbb{C})) \cong AK(n)^{2*,*}(X)$

Then we can define the three filtrations for the Morava K(n)-theory.

$$F(n)_{top}^{2i} = Ker(K(n)^*(X(\mathbb{C}) \to K(n)^*(X(\mathbb{C})^{2i}),$$

$$F(n)_{geo}^{2i} = \{f_*(1_M)|f: M \to X \text{ and } codim_X M \ge i\}$$

$$F(n)_{\gamma}^{2i} = \{c_{i_1}^{K(n)}(x_1) \cdot \dots \cdot c_{i_m}^{K(n)}(x_m)|i_1 + \dots i_m \ge i\}.$$

Here $c_{i_s}^{K(n)}(x_s)$ is the Chern class for $AK(n)^{*,*'}$ -theory for some k-representation $x_s: X \to BGL_N$. This Chern class is induced from the isomorphism

$$AK(n)^{2*,*}(BGL_N) \cong K(n)^* \otimes_{BP^*} \Omega^*(BGL_N),$$

in fact, it is well known that in $\Omega^*(X)$, we can define Chern classes canonically (see [Mo-Le] for example). However each element in $K(n)^*(X(\mathbb{C}))$ (for $n \geq 2$) need not to be represented by $K(n)^*$ -theory Chern classes. Hence we need the assumption

(9.3)
$$F_{\gamma}^{0} = K(n)^{*}(X).$$

(We also consider the cases where (9.3) does not hold.) Of course the assumptions are satisfied for $K(1)^*$ -theory, if they are so for $\tilde{K}(1)^*$ -theory.

Recall $P(n)^*(X)$ be the cohomology theory with the coefficient

$$P(n)^* = BP^*/(p, v_1, ..., v_{n-1}).$$

It is well known, for all X,

$$P(n)^*(X) \otimes_{BP^*} K(n)^* \cong K(n)^*(X).$$

Let us write by $E(P(n))_r^{*,*'}$ (resp. $E(K(n))_r^{*,*'}$) the AHss converging to $P(n)^*(X)$ (resp. $K(n)^*(X)$). Then we have

$$E(P(n))_r^{*,*'} \otimes_{BP^*} K(n)^* \cong E(K(n))_r^{*,*'}.$$

If (9.1)-(9.3) are satisfied, then K(n)-version (exchanging $BP^*(X)$ to $P(n)^*(X)$). of all lemmas in §2 also hold.

Lemma 9.1. Suppose that $\Omega^*(X)/p \cong BP^*(X(\mathbb{C}))/p$ and it is generated by (BP^*-) Chern classes. Then (9.1)-(9,3) are satisfied.

Proof. We consider the maps

$$\Omega^*(X) \otimes_{BP^*} K(n)^* \xrightarrow{\rho_1} AK^{2*,*}(X) \xrightarrow{\rho_2} K(n)^*(X(\mathbb{C})).$$

Here the map ρ_1 is an epimorphism because $\Omega^*(X)$ (resp. $AK(n)^{2*,*}(X)$) is generated as a BP^* -module (resp. $K(n)^*$ -module) by elements in $CH^*(X)$.

On the other hand by Ravenel-Wilson-Yagita [Ra-Wi-Ya], we know that (1.2) implies

$$K(n)^*(X(\mathbb{C})) \cong K(n)^* \otimes_{BP^*} BP^*(X(\mathbb{C})).$$

From the supposion in the theorem, we see that $\rho_2\rho_1$ is an isomorphism. This means that ρ_1, ρ_2 are also isomorphisms.

For X = BG, G = finite abelian, p_{\pm}^{1+2} , O_n , G_2 and PSL_3 (p = 3) satisfy the assumptions in the above lemma.

Of course $gr_{top}^*(X)$ and $gr(n)_{top}^*(X)$ are quite different. Let $G = \mathbb{Z}/p$. Then

$$K(n)^*(BG) \cong K(n)^*(y]/(y^{p^n}).$$

and this is generated by Chern classes in $H^*(BG; \mathbb{Z}/p)$.

Theorem 9.2. Let $G = \bigoplus^s \mathbb{Z}/p$. Then all three filtrations of $K(n)^*(BG)$ are same

$$gr(n)_{top}^*(BG) \cong \mathbb{Z}/p[y_1,...,y_s]/(y_1^{p^n},...,y_s^{p^n}).$$

Similarly, we have

Theorem 9.3. Let $G = O_m$. Then all three filtrations of $K(n)^*(BG)$ are same

$$gr(n)_{top}^*(BG) \cong \{ \sum y_1^{i_1} ... y_s^{i_s} (y_{s+1}y_{s+2})^{j_{s+1}} ... (y_{2k+1}y_{2k+2})^{j_{2k+1}} \}$$

where $0 \le i_1 \le ... \le i_s < 2^n \le i_s \le ... \le i_k$.

For example, $gr(n)_{top}^* \cong \mathbb{Z}/2[c_2] \oplus \mathbb{Z}/2\{c_1^i c_2^j | i+2j<2^n\}$. Next we consider the case $G=SO_{2m}$ Recall for $m\geq 3$, y_{2m} is not represented by Chern classes

Theorem 9.4. Let $G = SO_{2m}$ and m > 2. Then

$$gr(n)_{qeo}^*(BG) \cong \mathbb{Z}[c_2, c_4, ..., c_{2m}]\{y_{2m}\} \oplus gr(n)_{qeo}^*(BO_{2m})/(c_1).$$

However $gr(n)^*_{\gamma}(BG) \ncong gr(n)^*_{geo}(BG) \ncong gr(n)^*_{ton}(BG)$.

Proof. We only need the second nonisomorphism of the second statement. Since $y_{2m} = (-1)^* 2^{m-1} w_{2m} \in H^*(BG)$ is zero in $H^*(BG; \mathbb{Z}/2)$. Hence $0 \neq y_{2m} \in$ $P(n)^*(BG)$ is represented in the AHss converging to $P(n)^*(BG)$ as element in $E_{\infty}^{*,*'}$ with *' < 0 and * > 2m.

Next consider the case $G = G_2$ (and p = 2). By the computation of the AHss for $P(1)^*(BG) (= BP^*(BG; \mathbb{Z}/2))$, we have

$$K(1)^*(BG) \cong K(1)^*[c_4, c_6]\{1, v_1w_6\}.$$

By the direct computation of the AHss for $K(2)^*(BG)$, we see

$$K(2)^*(BG) \cong K(1)^*[c_4, c_6]\{1, w_4w_6\}.$$

Therefore we have

Theorem 9.5. Let $G = G_2$. Then

$$gr(i)^*_{\alpha}(BG) \cong \mathbb{Z}/2[c_4, c_6]\{1, a\}$$

where
$$a^2 = \begin{cases} c_4 c_6 & |a| = 10 & if \ i = 2. \ \alpha = top \\ c_6 & |a| = 6 & if \ i = 1. \ \alpha = top \\ 0 & |a| = 4 & if \ i = 1, 2. \ \alpha \neq top. \end{cases}$$

Proof. The above a is represented as $a = w_4w_6$ (resp. $w_6, v_1w_6, v_2w_4w_6$) when $i=2, \ \alpha=top \ (resp. \ i=1, \ \alpha=top, \ i=1 \ \alpha\neq top), \ and \ i=2 \ \alpha\neq top)).$

When $n \geq 1$, the geometric and topological filtrations are quite different.

Theorem 9.6. Let G be a simply connected simple Lie group such that $H^*(G)$ has p-torsion. Then for $n \ge 1$

$$gr(n)_{aeo}^4(BG) \neq 0$$
 but $gr(n)_{top}^4(BG) = 0$.

Proof. The space BG is 3-connected and $H^4(BG) \cong \mathbb{Z}$. Let us write by x its 4-dimensional generator. By [Ka-Ya2], it is known that $px \in H^4(BG)$ is represented as the Chern class c_2 for some representation. Hence $gr(n)_{qeo}^4(BG) \neq 0$.

To see $gr(n)_{top}^4(BG) = 0$, we only need to show

$$(*) \quad d_{2p^n-1}(x) = v_n \otimes Q_n(x) \neq 0$$

in the AHss converging to $K(n)^*(BG)$.

For these groups, it is well known that there are embedding $G_2 \subset G$ for p = 2, $(F_4 \subset G \text{ for } p = 3 \text{ and } G = E_8 \text{ for } p = 5)$. We will prove (*) for $G = F_4$ and p = 3, then we can see (*) the other groups when p = 3. (The other primes cases are similar).

Let $G = F_4$ and p = 3. Then G has a maximal elementary p-group $A \cong (\mathbb{Z}/3)^3$. We consider the restriction map for $i : A \subset G$,

$$i^*: H^*(BG; \mathbb{Z}/p) \to H^*(BA; \mathbb{Z}/p) \cong \mathbb{Z}/p[y_1, y_2, y_3] \otimes \Lambda(x_1, x_2, x_3).$$

The restriction image is $i^*(x) = Q_0(x_1x_2x_3)$ (see [Ka-Te-Ya]). Hence we show

$$i^*(Q_n(x)) = Q_n Q_0(x_1 x_2 x_3) = \sum y_1^{p^n} y_2 x_3 \neq 0.$$

Now we recall arguments for quadrics. Let m = 2m' + 1. and let us write the quadratic form q(x) defined by

$$q(x_1,...,x_m) = x_1x_2 + ... + x_{m-2}x_{m-1} + x_m^2$$

and the projective quadric X_q defined by the quadratic form q. Then it is well known that (in fact SO(m) acts on the affine quadric in $\mathbb{A}^m - 0$)

$$X_q \cong SO(m)/(SO(m-2) \times SO(2)).$$

Let G = SO(m) and $P = SO(m-2) \times SO(2)$. Then the quadric q is always split over k and we know $CH^*(G_k/P_k) \cong CH^*(X_q)$.

In particular we consider the case $m=2^{n+1}-1$. Let $\rho=\{-1\}\in K_1^M(k)/2=k^*/(k^*)^2$. We consider fields k such that

$$0 \neq \rho^{n+1} \in K_{n+1}^M(k)/2.$$

Define the quadratic form q' by

$$q'(x_1, ..., x_m) = x_1^2 + ... + x_m^2.$$

Then this q' is a subform of

$$\langle \langle -1, ..., -1 \rangle \rangle = \phi_{\rho^{n+1}}$$

the (n+1)-th Pfister form associated to ρ^{n+1} . (That is, q' is the maximal neighbor of the (n+1)-th Pfister form.) Of course $q|_{\bar{k}}=q'|_{\bar{k}}$ and we can identify $\mathbb{G}_k/P_k\cong X_{q'}$. From Lemma 7.2 (or Rost's result), we know

$$CH^*(X_{q'}|_{\bar{k}}) \cong \mathbb{Z}[t, y]/(t^{2^n-1} - 2y, y^2).$$

As stated in §7, there is a decomposition of motives

$$M(X_{a'}) \cong M_n \otimes \mathbb{Z}/2[t]/(t^{2^n-1}).$$

Hence we have the additive isomorphism

$$CH^*(X_{\phi'_a}) \cong \mathbb{Z}[t]/(t^{2^n-1}) \otimes (\mathbb{Z}\{1, c_{n,0}\} \oplus \mathbb{Z}/2\{c_{n,1}, ..., c_{n,n-1}\}).$$

With identification $t^{2^{n}-1} = 2y = c_{n,0}$, and $u_i = c_{n,i}$ for i > 0, we also get the ring isomorphism

Theorem 9.7. ([Ya5]) Let G_k/P_k be the above quadric $X_{q'}$. Then there is a ring isomorphism

$$CH^*(\mathbb{G}_k/P_k) \cong \mathbb{Z}[t]/(t^{2^{n+1}-2}) \oplus \mathbb{Z}/2[t]/(t^{2^n-1})\{u_1, ..., u_{n-1}\}$$

where $u_i = v_i y \in \Omega^*(\mathbb{G}_k/p) \otimes_{\Omega^*} Z_{(2)}$ so $u_i u_j = 0$. Hence we have for $1 \le i \le n-1$

$$gr(i)_{geo}(\mathbb{G}_k/P_k) \cong \mathbb{Z}[t]/(t^{2^{n+1}-2}) \oplus \mathbb{Z}/2[t]/(t^{2^n-1})\{u_i\}.$$

Proof. In $K(i)^*(X)$, we see $v_j = 0$ for $i \neq j$. Since $v_j u_i = v_i u_j$, we see $u_j = 0$ for $i \neq j$.

References

- [Ad] J. F. Adams. Lectures on exceptional Lie groups, Univ. Chicago Press, Chicago, IL, 1996.
- [At] M. Atiyah. Chatracters and the cohomology of finite groups. Publ. Math. IHES, 9 (1961) 23-64.
- [Bo] J.Bonnet. Un isomorphisme motivique entre deux variétés homogénes projective sous l'action d'un groupe de type G_2 . Doc. Math. 8 (2003) 247-277.
- [Ca-Pe-Se-Za] B.Calmès, V.Petrov, N.Semenov and K.Zainoulline. Chow motives of twisted flag varieties. Compositio Math. 142 (2006) 1063-1080.
- [Du-Za] H.Duan and X.Zhao The Chow ring of generalized Grassmanianns. Found. Comput. Math. 10 (2010) 245-274.
- [Ga-Me-Se] S.Garibaldi, A.Merkurjev, and J.P.Serre. Cohomological invariants in Galois cohomology. University lect. series vol(28) AMS (2003).
 [Fi] R. Field. The Chow ring of the classifying space BSO(2n, C). J. Algebra 349 (2012)
- [Fi] R. Field. The Chow ring of the classifying space $BSO(2n, \mathbb{C})$. J. Algebra **349** (2012) 330-339.
- [Ga-Za] S. Garbardi and K.Zainoulline. The gamma filktration and the Rost invariant. to appear in J. Reine Angew. Math. Math. arXiv:1007. 3482 (2010) 19pp. .
- [Gr] A. Grothendieck. Torsion homologique et sections rationnelles. Sem. C. Chevalley, ENS 1958, expose 5, Secreatariat Math., IHP, Paris (1958).
- [Gu] P.Guillot. The Chow ring of G_2 and Spin(7). J. Reine angew. Math. **604** (2007) 137-158.
- [Ha] M.Hazewinkel. Formal groups and applications. Pure and Applied Math. 78, Academic Press Inc. (1978) xxii+573pp.
- [Is-To] K. Ishitoya, and H. Toda. On the cohomology of irreducible symmetric spaces of exceptional type. J.Math. Kyoto Univ. 17 (1977), 225-243.
- [Ju] C. Junkins. The J-invariant and Tits algebras for groups of inner type E_6 .

 manuscripta math. 140 (2013), 249-261.
- [Ka-Ya1] M.Kameko and N.Yagita. The Brown-Peterson cohomology of the classifying spaces of the projective unitary groups PU(p) and exceptional Lie group. Trans. Amer. Math. Soc. 360 (2008), 2265-2284.
- [Ka-Ya2] M.Kameko and N.Yagita. Chern subrings. Proc. Amer. Math. Soc. 138 (2010) 367-373
- [Ko-Ya] A. Kono and N. Yagita. Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups, Trans. Amer. Math. Soc. 339 (1993), no. 2, 781–798.
- [Le-Ya] I. Leary and N. Yagita. Some examples in the integral and Brown-Peterson cohomology of p-groups. Bull. London Math. Soc. 24 (1992) 165-168.
- [Le-Mo 1] M. Levine and F. Morel. Cobordisme algébrique I. C. R. Acad. Sci. Paris 332 (2001), 723-728.

- [Le-Mo 2] M. Levine and F. Morel. Cobordisme algébrique II. C. R. Acad. Sci. Paris 332 (2001), 815-820.
- [Mo-Vi] L.Molina and A.Vistoli. On the Chow rings of classifying spaces for classical groups. Rend. Sem. Mat. Univ. Padova 116 (2006), 271-298.
- [Ni-Se-Za] S. Nikolenko, N.Semenov and K.Zainoulline. Motivic decomposition of anisotropic varieties of type F₄ into generalized Rost motives. J. K-theory 3 (2009), 85-102.
- [Pe-Se-Za] V.Petrov, N.Semenov and K.Zainoulline. J-invariant of linear algebraic groups. Ann. Sci. Ec. Norm Super. 41 (2008) 1023-1053.
- [Qu] D. Quillen Themod 2 cohomology rings of extra-special 2-groups and the spinor groups. Math. Ann. 194 (1971) 197-212.
- [Ra] D.Ravenel. Complex cobordism and stable homotopy groups of spheres. Pure and Applied Mathematics, 121. Academic Press (1986).
- [Ro1] M.Rost. Some new results on Chowgroups of quadrics. preprint (1990).
- [Ro2] M.Rost. On the basic correspondence of a splitting variety. preprint (2006)
- [Sc-Ya] B. Schuster and N. Yagita, Transfers of Chern classes in BP-cohomology and Chow rings, Trans. Amer. Math. Soc. 353 (2001), no. 3, 1039–1054 (electronic).
- [Su-Jo] A.Suslin and S.Joukhovitski. Norm Variety. J.Pure and Appl. Algebra 206 (2006) 245-276
- [Th] C. Thomas. Filtrations on the representation ring of a finite group. Contempt. math. 19 (1983), 397-405.
- [Tod] H.Toda. On the cohomology ring of some homogeneous spaces. J. Math. Kyoto Univ. 15 (1975), 185-199.
- [Tod-Wa] H.Toda and T.Watanabe. The integral cohomology ring of F_4/T and E_6/T . J. Math. Kyoto Univ. 14 (1974), 257-286.
- [To] B. Totaro. The Chow ring of classifying spaces. Proc. of Symposia in Pure Math. "Algebraic K-theory" (1997:University of Washington, Seattle) 67 (1999), 248-281.
- [Vi-Ya] A.Vishik and N.Yagita. Algebraic cobordisms of a Pfister quadric. J. London Math. Soc. 76 (2007) 586-604.
- [Vit] A. Vistoli. On the cohomology and the Chow ring of the classifying space PGL_p . J. Reine Angew. Math. **610** (2007), 181-227.
- [Vol] V. Voevodsky. The Milnor conjecture. www.math.uiuc.edu/K-theory/0170 (1996).
- [Vo2] V. Voevodsky (Noted by C.Weibel). Voevodsky's Seattle lectures: K-theory and motivic cohomology Proc. of Symposia in Pure Math. "Algebraic K-theory" (1997: University of Washington, Seattle) 67 (1999), 283-303.
- [Vo3] V. Voevodsky. Motivic cohomology with $\mathbb{Z}/2$ coefficient. *Publ. Math. IHES* **98** (2003), 59-104.
- [Vo4] V.Voevodsky. Reduced power operations in motivic cohomology. Publ.Math. IHES 98 (2003),1-57.
- [Vo5] V.Voevodsky. On motivic cohomology with Z/l-coefficients. Ann. Math. 174 (2011) 401-438.
- [Wi] S. Wilson. The complex cobordism of BO(n). J. London Math. Soc. 29 (1984), 352-366.
- [Ya1] N. Yagita Chomology for groups of $rank_pG=2$ and Brown-Peterson cohomology. J. Math. Soc. Japan 45 (1993), 627-644.
- [Ya2] N. Yagita. Applications of Atiyah-Hirzebruch spectral sequence for motivic cobordism. Proc. London Math. Soc. 90 (2005) 783-816.
- [Ya3] N. Yagita. Chow rings of nonabelian p-groups of order p^3 . J. Math. Soc. Japan. **64** (2012) 507-531.
- [Ya4] N. Yagita. Algebraic BP-theory and norm varieties. Hokkaido J. Math. J. 41 (2012), 275-316.
- [Ya5] N. Yagita. Note on Chow rings of nontrivial G-torsors over a field. Kodai Math. J. 34 (2011), 446-463.
- [Za] K. Zainoulline. Twisted gamma filtration of a linear algebraic group. Compositio math. 148 (2012), 1645-1654.

FACULTY OF EDUCATION, IBARAKI UNIVERSITY, MITO, IBARAKI, JAPAN E-mail address: yagita@mx.ibaraki.ac.jp,