THE KAPLANSKY RADICAL OF A QUADRATIC FIELD EXTENSION

KARIM JOHANNES BECHER AND DAVID B. LEEP

ABSTRACT. The radical of a field consists of all nonzero elements that are represented by every binary quadratic form representing 1. Here, the radical is studied in relation to local-global principles, and further in its behaviour under quadratic field extensions. In particular, an example of a quadratic field extension is constructed where the natural analogue to the square-class exact sequence for the radical fails to be exact. This disproves a conjecture of Kijima and Nishi.

Keywords: quadratic form, local-global principle, quasi-pythagorean field, function field, power series field, quadratic field extension

Classification (MSC 2010): 11E04, 11E81, 12D15, 12F05, 13J05, 14H05

1. INTRODUCTION

Let K be a field of characteristic different from 2. Let K^{\times} denote the multiplicative group of K, $\sum K^{\times 2}$ the subgroup of nonzero sums of squares in K, and $D_K \langle 1, a \rangle$ the subgroup of K^{\times} consisting of the nonzero elements represented by the binary quadratic form $X^2 + aY^2$, for any $a \in K^{\times}$. The object of study in this article is the subgroup

$$\mathbf{R}(K) = \bigcap_{a \in K^{\times}} D_K \langle 1, a \rangle$$

of K^{\times} , called the (*Kaplansky*) radical of K. This object was first studied by I. Kaplansky for fields over which there exists a unique quaternion division algebra [7]. It was investigated in more generality by C.M. Cordes [4], who baptized it the *Kaplansky radical* and observed that in several statements about quadratic forms over K one can replace $K^{\times 2}$ by R(K). We refer to [11, Chap. XII, Sect. 6 & 7] for an introduction to the Kaplansky radical. By [11, Chap.XII, (6.1)] the radical is further characterized as $R(K) = \{c \in K^{\times} \mid D_K \langle 1, -c \rangle = K^{\times}\}.$

In this article we continue the study of the radical. In Section 2 we consider the position of the radical within the inclusions $K^{\times 2} \subseteq \mathbb{R}(K) \subseteq \sum K^{\times 2}$. In Section 3 we study fields satisfying a local-global principle for quadratic forms and derive a determination of the radical as the set of elements that are locally squares. In Section 4 we revisit the behavior of the radical under quadratic field extensions and disprove a conjecture by D. Kijima and M. Nishi discussed in [8], [9], and [6].

Date: 16 July, 2013.

2. Position of the radical

We have the inclusions $K^{\times 2} \subseteq \mathbf{R}(K) \subseteq D_K(1,1) \subseteq \sum K^{\times 2}$. We first consider the two extremal cases for the position of the radical with respect to these inclusions. We say that K is radical-free if $R(K) = K^{\times 2}$.

2.1. **Proposition.** Assume that $|K^{\times}/K^{\times 2}| \geq 4$ and there exists $t \in K^{\times}$ such that $D_K \langle 1, t \rangle = K^{\times 2} \cup tK^{\times 2}$ and $D_K \langle 1, -t \rangle = K^{\times 2} \cup -tK^{\times 2}$. Then K is radical-free.

Proof. We may choose an element $a \in K^{\times} \setminus (K^{\times 2} \cup tK^{\times 2})$. Then $a \notin D_K \langle 1, t \rangle$ and thus $-t \notin D_K \langle 1, -a \rangle$, whereby $\mathcal{R}(K) \subseteq D_K \langle 1, -t \rangle \cap D_K \langle 1, -a \rangle = K^{\times 2}$. \Box

By a \mathbb{Z} -valuation we mean a valuation with value group \mathbb{Z} . For a \mathbb{Z} -valuation v on K we denote by K_v the corresponding completion.

2.2. Corollary. Assume that K is henselian with respect to a \mathbb{Z} -valuation whose residue field is of characteristic different from 2 and not quadratically closed. Then K is radical-free.

Proof. It follows from the hypotheses that $|K^{\times}/K^{\times 2}| \geq 4$. Moreover, any $t \in$ K^{\times} that has odd value with respect to the given valuation will be such that $D_K\langle 1,t\rangle = K^{\times 2} \cup tK^{\times 2}$ and $D_K\langle 1,-t\rangle = K^{\times 2} \cup -tK^{\times 2}$. Hence, the statement follows from (2.1).

By [11, Chap. XII, Sect. 6], if K is a finite extension of the field of p-adic numbers \mathbb{Q}_p for a prime number p, then K is radical-free; for $p \neq 2$ this can be seen from (2.2).

2.3. **Proposition.** The following are equivalent:

- (i) $R(K) = \sum K^{\times 2};$ (ii) $R(K) = D_K \langle 1, 1 \rangle;$

$$(iii) I_t^2 K = 0;$$

(iv) every torsion 2-fold Pfister form over K is hyperbolic.

Proof. This follows from [11, Chap. XI, (4.1) and (4.5)] for n = 2.

Condition (iv) corresponds to Property (A_2) in the terminology of [5], treated also in [11, Chap. XI, Sect. 4]. Following [9] we say that the field K is quasipythagorean if it satisfies the equivalent conditions in (2.3). By [11, [Chap. XI, (6.26) this is further equivalent to having that the *u*-invariant of K is at most 2. For example, by [11, Chap. XI, (4.10)], any extension of transcendence degree one of a real closed field is quasi-pythagorean.

In [4] Cordes gave an example of a field K with $K^{\times 2} \subsetneq \mathbb{R}(K) \subsetneq \sum K^{\times 2}$ and asked whether one can have such examples where $K^{\times}/K^{\times 2}$ is finite. M. Kula [10] and L. Berman [2] independently constructed such examples. We give another example where K is a nonreal algebraic extension of \mathbb{Q} having 8 square classes.

2.4. Example. The integers -2, -5 and 7 are squares in \mathbb{Q}_3 . Hence, \mathbb{Q}_3 contains the field $\mathbb{Q}(\sqrt{-2}, \sqrt{-5})$. Moreover, 7 is not a square in $\mathbb{Q}(\sqrt{-2}, \sqrt{-5})$. Consider the set of subfields of \mathbb{Q}_3 that are algebraic extensions of $\mathbb{Q}(\sqrt{-2}, \sqrt{-5})$ and in which 7 is not a square. By Zorn's Lemma, we may choose a maximal element K in this set. Then K is a field whose unique quadratic extension contained in \mathbb{Q}_3 is $K(\sqrt{7})$. As the four square classes of \mathbb{Q}_3 are represented by 1, 2, 3 and 6, it follows that the classes of 2, 3, 7 form an \mathbb{F}_2 -basis of the square class group $K^{\times}/K^{\times 2}$. In particular $|K^{\times}/K^{\times 2}| = 8$.

As $\mathbb{Q}_3^{\times} = K^{\times} \mathbb{Q}_3^{\times 2}$ we conclude that $\mathrm{R}(K) \subseteq \mathrm{R}(\mathbb{Q}_3)$. As \mathbb{Q}_3 is radical-free, we obtain that $\mathrm{R}(K) \subseteq K^{\times} \cap \mathbb{Q}_3^{\times 2} = K^{\times 2} \cup 7K^{\times 2}$. Since $2 = 3^2 - 7$, $3 = (\sqrt{-2} \cdot \sqrt{-5})^2 - 7$ and $2 \cdot 3 \cdot 7 = 7^2 - 7$, we see that $D_K \langle 1, -7 \rangle = K^{\times}$. This shows that $\mathrm{R}(K) = K^{\times 2} \cup 7K^{\times 2}$.

The number of square classes in (2.4) is minimal for having a nontrivial radical, by the following statement.

2.5. **Proposition.** If
$$K^{\times 2} \subsetneq \mathbb{R}(K) \subsetneq \sum K^{\times 2}$$
 then $|K^{\times}/K^{\times 2}| \ge 8$.

Proof. By [11, Chap. XII, (6.10)], if R(K) has index two in K^{\times} , then K is real and thus $R(K) = \sum K^{\times 2}$. Hence, if $R(K) \subsetneq \sum K^{\times 2}$ then $|K^{\times}/R(K)| \ge 4$. \Box

3. The radical as the group of local squares

In certain fields satisfying a local-global principle for isotropy of quadratic forms, the radical consists of the elements that are squares locally.

3.1. **Proposition.** Let $(K_{\wp})_{\wp \in \mathcal{P}}$ be a family of extension fields of K such that $K_{\wp}^{\times} = K^{\times}K_{\wp}^{\times 2}$ for every $\wp \in \mathcal{P}$. Then

$$\mathbf{R}(K) \subseteq \bigcap_{\wp \in \mathcal{P}} (K^{\times} \cap \mathbf{R}(K_{\wp})) \,.$$

This inclusion is an equality if every 3-dimensional anisotropic quadratic form φ over K stays anisotropic over K_{\wp} for some $\wp \in \mathcal{P}$.

Proof. For $c \in \mathbf{R}(K)$ and $\wp \in \mathcal{P}$, one has $K_{\wp}^{\times} = K^{\times}K_{\wp}^{\times 2} = D_{K}\langle 1, -c\rangle K_{\wp}^{\times 2}$ and thus $c \in \mathbf{R}(K_{\wp})$. This shows that $\mathbf{R}(K) \subseteq \bigcap_{\wp \in \mathcal{P}} (K^{\times} \cap \mathbf{R}(K_{\wp}))$.

Consider now $c \in K^{\times} \setminus \mathbb{R}(K)$. As $D_K \langle 1, -c \rangle \subsetneq K^{\times}$ there exists $b \in K^{\times}$ such that the form $\langle 1, -c, -b \rangle$ over K is anisotropic. If $\wp \in \mathcal{P}$ is such that $\langle 1, -c, -b \rangle$ stays anisotropic over K_{\wp} , then we conclude that $c \notin \mathbb{R}(K_{\wp})$. Therefore, if every 3-dimensional anisotropic quadratic form φ over K stays anisotropic over K_{\wp} for some $\wp \in \mathcal{P}$, we obtain that $\mathbb{R}(K) = \bigcap_{\wp \in \mathcal{P}} (K^{\times} \cap \mathbb{R}(K_{\wp}))$.

3.2. **Proposition.** Let Ω be a set of \mathbb{Z} -valuations of K whose residue fields are of characteristic different from 2 and not quadratically closed. The following hold: (a) One has $\mathbb{R}(K) \subseteq \bigcap_{v \in \Omega} (K^{\times} \cap K_v^{\times 2})$.

(b) If $\bigcap_{v \in \Omega} (K^{\times} \cap K_v^{\times 2}) = K^{\times 2}$, then K is radical-free.

(c) If for every 3-dimensional anisotropic quadratic form φ over K there exists $v \in \Omega$ such that φ stays anisotropic over K_v , then $\mathbb{R}(K) = \bigcap_{v \in \Omega} (K^{\times} \cap K_v^{\times 2})$.

Proof. For $v \in \Omega$, we have $K_v^{\times} = K^{\times} K_v^{\times 2}$ as well as $R(K_v) = K_v^{\times 2}$ by (2.2). Therefore (3.1) applies and yields (a) and (c). Moreover (a) implies (b). \Box

Using (3.2) we retrieve the well-known fact that any number field is radical-free:

3.3. **Example.** Let K be a global field of characteristic different from 2 and let Ω denote the set of all non-dyadic \mathbb{Z} -valuations of K. As K has only finitely many archimedean and non-archimedean dyadic places, the Global-Square-Theorem (cf. [13, (65:15)]) implies that $\bigcap_{v \in \Omega} (K^{\times} \cap K_v^{\times 2}) = K^{\times 2}$. Hence, (3.2) yields that K is radical-free.

3.4. **Proposition.** Assume that K is a rational function field in one variable over a field k. Let Ω denote the set of \mathbb{Z} -valuations on K that are trivial on k. Then

$$\bigcap_{v\in\Omega} (K^{\times} \cap K_v^{\times 2}) = K^{\times 2} \,.$$

Moreover, if $k(\sqrt{-1})$ is not quadratically closed then K is radical-free.

Proof. Let $T \in K$ be such that K = k(T). Any square class of K is given by a square-free polynomial $f \in k[T]$. Note that v(f) is 0 or 1 for every $v \in \Omega$ corresponding to an irreducible monic polynomial in k[T]. If v(f) = 1 for one such v, then $f \notin K_v^{\times 2}$. If v(f) = 0 for all such v, then $f \in k$. Finally, if $f \in k^{\times} \setminus k^{\times 2}$, then $f \notin K_v^{\times 2}$ where v is the valuation given by T. This together yields the claimed equality.

Assume now that $k(\sqrt{-1})$ is not quadratically closed. It follows that no finite extension of k is quadratically closed. In fact, if there were a finite field extension k'/k such that k' is quadratically closed, then k' would contain $k(\sqrt{-1})$ and [11, Chap. VIII, (5.11)] would imply that $k(\sqrt{-1})$ is quadratically closed. In particular, for $v \in \Omega$, the residue field of v is not quadratically closed. Thus K is radical-free, by (3.2).

3.5. Corollary. Assume that K contains a subfield k such that K/k is purely transcendental of transcendence degree at least two. Then K is radical-free.

Proof. Let \mathcal{X} be a transcendence basis of K/k with $K = k(\mathcal{X})$. Choose $x \in \mathcal{X}$ and put $\mathcal{X}' = \mathcal{X} \setminus \{x\}$ and $K_0 = k(\mathcal{X}')$. Then $K = K_0(x)$. As $\mathcal{X}' \neq \emptyset$ by the hypothesis, we have that $K_0(\sqrt{-1}) = k(\sqrt{-1})(\mathcal{X}')$ is not quadratically closed. Hence, we conclude from (3.4) that $R(K) = K^{\times 2}$.

3.6. Question. Assume that K is a finitely generated field extension of transcendence degree at least two of another field k. Is then K radical-free? Is every non-square in K a non-square in the completion of a \mathbb{Z} -valuation on K that is trivial on k and whose residue-field is an algebraic function field over k?

4

3.7. **Theorem.** Assume that $K = k((X_1, \ldots, X_n))$ for a field k of characteristic different from 2. Let Ω denote the set of \mathbb{Z} -valuations on K corresponding to the localizations of $k[X_1, \ldots, X_n]$ at its height one prime ideals. Then

$$\bigcap_{v\in\Omega} (K^{\times} \cap K_v^{\times 2}) = K^{\times 2}$$

In particular, K is radical-free unless k is quadratically closed and n = 1.

Proof. Let $A = k[X_1, \ldots, X_n]$. Note that A is a unique factorization domain by [12, (20.3) and (20.8)], and noetherian by [1, (10.27)]. In particular, by [12, (20.1)] any height one prime ideal in A is principal.

Consider an arbitrary element $a \in K^{\times}$. We may write $a = u \cdot p_1 \dots p_r \cdot x^2$ where $u \in A^{\times}$, $x \in K^{\times}$, $r \ge 0$, and where p_1, \dots, p_r are pairwise non-associate prime elements of A. Let c denote the constant term of u as a power series. Then $c^{-1}u$ is a 1-unit in A, and therefore a square in A. Note that, for $v \in \Omega$, we have that v(a) is odd if v is associated to one of the prime elements p_1, \dots, p_r , and v(a) is even otherwise. Assume now that $a \in \bigcap_{v \in \Omega} (K^{\times} \cap K_v^{\times 2})$. Then v(a)is even for every $v \in \Omega$, whereby r = 0, $a = ux^2$, and $aK^{\times 2} = cK^{\times 2}$. Let wbe the \mathbb{Z} -valuation associated to the irreducible element X_n in A. Note that $K_w = k((X_1, \dots, X_{n-1}))((X_n))$. It follows that $c \in k^{\times} \cap K_w^{\times 2} = k^{\times 2}$, whereby $a \in K^{\times 2}$. This argument shows that $\bigcap_{v \in \Omega} (K^{\times} \cap K_v^{\times 2}) = K^{\times 2}$.

Furthermore, if n = 1, then $K = k((X_1))$ and it follows by (2.2) that K is radical-free unless k is quadratically closed. Assume now that $n \ge 2$. The residue field of any valuation $v \in \Omega$ is k-isomorphic to a finite extension of $k((X_1, \ldots, X_{n-1}))$ and therefore is not quadratically closed. Using (3.2) the proven equality yields that K is radical-free. \Box

4. The radical complex for a quadratic extension

We consider a finite field extension L/K and ask about the relations between R(K) and R(L). After a first general result, we shall focus on the case of a quadratic extension. Let $N_{L/K} : L^{\times} \longrightarrow K^{\times}$ be the group homomorphism given by the norm map.

4.1. **Proposition.** We have $N_{L/K}(\mathbb{R}(L)) \subseteq \mathbb{R}(K)$.

Proof. For $a \in K^{\times}$, as $\mathbb{R}(L) \subseteq D_L \langle 1, a \rangle$ we have that $N_{L/K}(\mathbb{R}(L)) \subseteq D_K \langle 1, a \rangle$, by [11, Chap. VII, (4.3)]. Hence, $N_{L/K}(\mathbb{R}(L)) \subseteq \bigcap_{a \in K^{\times}} D_K \langle 1, a \rangle$.

For the remainder of this section we consider the case where L/K is a quadratic field extension. We denote by $\iota_{L/K}$ the inclusion homomorphism $K^{\times} \longrightarrow L^{\times}$.

4.2. **Proposition.** Assume that $L \simeq K(\sqrt{a})$ where $a \in K^{\times}$. For any $b \in K^{\times}$ we have that

$$D_L\langle 1, -b \rangle \cap K^{\times} = D_K\langle 1, -b \rangle \cdot D_K\langle 1, -ab \rangle.$$

Proof. See e.g. [3, (2.4)].

The following was shown in [4, Cor. of Prop. 3; Prop. 5] as a partial analogue to the square-class exact sequence in [11, Chap. VII, (3.8)].

4.3. **Proposition.** We have $R(K) \subseteq R(L)$ and $N_{L/K}(K^{\times}R(L)) \subseteq R(K)$. In particular, the maps $\iota_{L/K}$ and $N_{L/K}$ induce a complex

$$K^{\times}/\mathrm{R}(K) \longrightarrow L^{\times}/\mathrm{R}(L) \longrightarrow K^{\times}/\mathrm{R}(K),$$

which is exact if and only if $K^{\times} \mathbb{R}(L) = N_{L/K}^{-1}(\mathbb{R}(K))$.

Proof. Consider $b \in K^{\times}$. By the Norm Principle [11, Chap. VII (5.10)] we have that

$$N_{L/K}^{-1}(D_K\langle 1, -b\rangle) = K^{\times}D_L\langle 1, -b\rangle$$

Hence, if $D_K \langle 1, -b \rangle = K^{\times}$, then $D_L \langle 1, -b \rangle = L^{\times}$. This shows that $\mathbb{R}(K) \subseteq \mathbb{R}(L)$. Since $N_{L/K}(\mathbb{R}(L)) \subseteq \mathbb{R}(K)$ by (4.1) and $N_{L/K}(K^{\times}) \subseteq K^{\times 2}$, it follows that $N_{L/K}(K^{\times}\mathbb{R}(L)) \subseteq \mathbb{R}(K)$. The statement follows from this.

There are examples of quadratic field extensions L/K where K is radicalfree whereas L is not. For example, in [2, Section 2], for any positive integer n a real pythagorean field K is constructed such that $L = K(\sqrt{-1})$ satisfies $|L^{\times}/\mathbf{R}(L)| = 4$ and $|\mathbf{R}(L)/L^{\times 2}| = 2^n$.

D. Kijima and M. Nishi [8] raised the question whether the complex in (4.3) is always exact. We will show that the answer is negative by providing a construction that produces counter-examples. To simplify the discussion of the problem, we say that the quadratic field extension L/K is *radical-exact* if the equality $K^{\times}\mathbf{R}(L) = N_{L/K}^{-1}(\mathbf{R}(K))$ holds, that is, if the complex in (4.3) is exact.

4.4. Corollary. Let L/K be a quadratic field extension such that $N_{L/K}$ is surjective. Then $R(K) = K^{\times} \cap R(L)$ and the maps $\iota_{L/K}$ and $N_{L/K}$ induce a complex

$$1 \longrightarrow K^{\times}/\mathbf{R}(K) \longrightarrow L^{\times}/\mathbf{R}(L) \longrightarrow K^{\times}/\mathbf{R}(K) \longrightarrow 1\,,$$

which is exact on the left and on the right. In particular, this is an exact sequence provided that L/K is radical-exact.

Proof. Let $a \in K^{\times}$ be such that $L = K(\sqrt{a})$. As $N_{L/K}$ is surjective, the norm form $\langle 1, -a \rangle$ of L/K is universal over K, whereby $a \in \mathbb{R}(K)$. This further shows that the complex is exact on the right.

Consider an arbitrary element $b \in K^{\times}$. As $a \in \mathbb{R}(K)$, by [11, Chap. XII, (6.3)] we have that $D_K \langle 1, -b \rangle = D_K \langle 1, -ab \rangle$. Using (4.2) we thus obtain that $D_K \langle 1, -b \rangle = K^{\times} \cap D_L \langle 1, -b \rangle$. Therefore, if the form $\langle 1, -b \rangle$ is universal over L, it is also universal over K. This shows that $K^{\times} \cap \mathbb{R}(L) \subseteq \mathbb{R}(K)$. Since by (4.3) the opposite inclusion also holds, we obtain that $\mathbb{R}(K) = K^{\times} \cap \mathbb{R}(L)$. In particular, the complex is exact on the left.

The rest follows from (4.3).

The following recovers [9, (2.13)].

4.5. **Proposition.** Assume that $L \simeq K(\sqrt{d})$ with $d \in \sum K^{\times 2}$. Then K is quasipythagorean if and only if L quasi-pythagorean, and in this case L/K is radicalexact.

Proof. This claimed equivalence is [5, (4.10); (4.5)] for n = 2. Assume now that K and L are quasi-pythagorean. Using the Norm Principle [11, Chap. VII, (5.10)], we obtain that

$$N_{L/K}^{-1}(\mathbf{R}(K)) = N_{L/K}^{-1}(D_K \langle 1, 1 \rangle) = K^* D_L \langle 1, 1 \rangle = K^* \mathbf{R}(L) ,$$

showing that L/K is radical-exact.

4.6. **Proposition.** Let L/K be a quadratic field extension with $\mathbb{R}(L) = L^{\times 2}$. Then $\mathbb{R}(K) \subseteq K^{\times} \cap L^{\times 2}$ and $K^{\times}\mathbb{R}(L) \subseteq N_{L/K}^{-1}(\mathbb{R}(K))$, and exactly one of the two inclusions is strict.

Proof. Since $R(L) = L^{\times 2}$ we have that

$$K^{\times} \mathbf{R}(L) = K^{\times} L^{\times 2} = N_{L/K}^{-1}(K^{\times 2}).$$

By (4.3) we obtain that $R(K) \subseteq K^{\times} \cap R(L) = K^{\times} \cap L^{\times 2}$. Let $a \in K^{\times}$ be such that $L = K(\sqrt{a})$. Then $K^{\times} \cap L^{\times 2} = K^{\times 2} \cup aK^{\times 2}$. Hence, either $R(K) = K^{\times 2}$ or $R(K) = K^{\times 2} \cup aK^{\times 2}$.

If $R(K) = K^{\times 2}$, then $R(K) \subsetneq K^{\times} \cap L^{\times 2}$ and from the above we obtain that $K^{\times}R(L) = N_{L/K}^{-1}(R(K))$. Assume now that $R(K) = K^{\times 2} \cup aK^{\times 2}$. Then in particular $a \in D_K \langle 1, -a \rangle = N_{L/K}(L^{\times})$. Hence, we obtain that

$$K^{\times} \mathbf{R}(L) = N_{L/K}^{-1}(K^{\times 2}) \subsetneq N_{L/K}^{-1}(K^{\times 2} \cup aK^{\times 2}) = N_{L/K}^{-1}(\mathbf{R}(K)).$$

4.7. Lemma. Let $a \in K^{\times} \setminus K^{\times 2}$. Let \mathcal{C} be the set of isomorphism classes of smooth conics over K having a $K(\sqrt{a})$ -rational point. For $C \in \mathcal{C}$ let K(C) denote the corresponding function field, determined by C up to K-isomorphism. Let K' be a field composite of all K(C) with $C \in \mathcal{C}$. Then $K^{\times} \subseteq D_{K'}\langle 1, -a \rangle$ and the extension $K'(\sqrt{a})/K(\sqrt{a})$ is purely transcendental.

Proof. The field $K'(\sqrt{a})$ is the compositum of the function fields $K(\sqrt{a})(C)$ for all $C \in \mathcal{C}$. Since every $C \in \mathcal{C}$ is rational over $K(\sqrt{a})$, the field $K'(\sqrt{a})$ is a compositum of rational function fields in one variable over $K(\sqrt{a})$, thus a purely transcendental extension of $K(\sqrt{a})$.

By construction, every smooth conic over K that has a $K(\sqrt{a})$ -rational point has a K'-rational point. Hence, for any $b \in K^{\times}$ the ternary quadratic form $\langle 1, -a, -b \rangle$ becomes isotropic over K'. Thus $K^{\times} \subseteq D_{K'} \langle 1, -a \rangle$.

4.8. **Theorem.** Let L/K be a quadratic field extension. There exists a field extension K'/K that is linearly disjoint to L/K and such that LK' is radical-free, $R(K') = K'^{\times} \cap (LK')^{\times 2}$, and LK'/K' not radical-exact.

Proof. Let $L = K(\sqrt{a})$ with $a \in K^{\times}$. We define a tower of extension fields $(K_i)_{i \in \mathbb{N}}$ of K by letting $K_0 = K$ and, K_{i+1} the field composite over K_i of all $K_i(C)$ where C runs over the isomorphism classes of conics over K_i having a $K_i(\sqrt{a})$ -rational point. Let K' denote the direct limit of the tower of fields $(K_i)_{i \in \mathbb{N}}$. For $i \in \mathbb{N}$, then K'/K_i is linearly disjoint to any algebraic extension of K_i and, moreover, by (4.7) $K_{i+1}(\sqrt{a})/K_i(\sqrt{a})$ is purely transcendental and every element of K_i^{\times} is represented over K_{i+1} by the form $\langle 1, -a \rangle$. It follows that K'/K is linearly disjoint to L/K, that the form $\langle 1, -a \rangle$ is universal over K', and that $K'L = K'(\sqrt{a})$ is a purely transcendental extension of $K(\sqrt{a})$, whereby K'L is radical-free by (3.5). Note that $K'^{\times} \cap (K'L)^{\times 2} = K'^{\times 2} \cup aK'^{\times 2} \subseteq \mathbb{R}(K')$. Using (4.6) we conclude that $\mathbb{R}(K') = K'^{\times} \cap (K'L)^{\times 2}$ and that K'L/K' is not radical-exact.

References

- M.F. Atiyah, I.G. Macdonald. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
- [2] L. Berman. Pythagorean fields and the Kaplansky radical. J. Algebra 61 (1979): 497–507.
- [3] K.J. Becher, J. Van Geel. Sums of squares in function fields of hyperelliptic curves. Math. Z. 261 (2009): 829–844.
- [4] C.M. Cordes. Kaplanskys radical and quadratic forms over nonreal fields. Acta Arith. 28 (1975): 253–261.
- [5] R. Elman, T. Y. Lam. Quadratic forms under algebraic extensions. Math. Ann. 219 (1976): 21–42.
- [6] T. Iwakami, D. Kijima, M. Nishi. Kaplansky's radical and Hilbert theorem 90. III. *Hiroshima Math. J.* 15 (1985): 81–88.
- [7] I. Kaplansky. Fröhlich's local quadratic forms. J. Reine Angew. Math. 239-240 (1969): 74–77.
- [8] D. Kijima, M. Nishi. Kaplansky's radical and Hilbert theorem 90. *Hiroshima Math. J.* 11 (1981): 443–456.
- [9] D. Kijima, M. Nishi. Kaplansky's radical and Hilbert theorem 90. II. *Hiroshima Math. J.* 13 (1983): 29–37.
- [10] M. Kula. Fields with non-trivial Kaplansky's radical and finite square class number. Acta Arith. 38 (1980/1981): 411–418.
- [11] T.Y. Lam. Introduction to quadratic forms over fields. Graduate Studies in Mathematics, 67, American Mathematical Society, Providence, RI, 2005.
- [12] H. Matsumura. Commutative ring theory. Cambridge Studies in Advanced Mathematics Vol. 8, Cambridge University Press, Cambridge, 1986.
- [13] O.T. O'Meara. Introduction to quadratic forms. Reprint of the 1973 edition (Grundlehren der Mathematischen Wissenschaften, 117). Classics in Mathematics. Springer-Verlag, Berlin, 2000.

Departement Wiskunde–Informatica, Universiteit Antwerpen, Belgium / Zukunftskolleg, Universität Konstanz, Germany.

E-mail address: becher@maths.ucd.ie

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KY 40506-0027, USA.

E-mail address: leep@email.uky.edu