THE LIE ALGEBRA OF TYPE G_2 IS RATIONAL OVER ITS QUOTIENT BY THE ADJOINT ACTION

DAVE ANDERSON, MATHIEU FLORENCE, AND ZINOVY REICHSTEIN

ABSTRACT. Let G be a split simple group of type G_2 over a field k, and let \mathfrak{g} be its Lie algebra. Answering a question of J.-L. Colliot-Thélène, B. Kunyavskii, V. L. Popov, and Z. Reichstein, we show that the function field $k(\mathfrak{g})$ is generated by algebraically independent elements over the field of adjoint invariants $k(\mathfrak{g})^G$.

RÉSUMÉ. Soit G un groupe algébrique simple et déployé de type G_2 sur un corps k. Soit \mathfrak{g} son algèbre de Lie. On démontre que le corps des fonctions $k(\mathfrak{g})$ est transcendant pur sur le corps $k(\mathfrak{g})^G$ des invariants adjoints. Ceci répond par l'affirmative à une question posée par J.-L. Colliot-Thélène, B. Kunyavskii, V. L. Popov et Z. Reichstein.

I. Introduction. Let G be a split connected reductive group over a field k and let \mathfrak{g} be the Lie algebra of G. We will be interested in the following natural question:

Question 1. Is the function field $k(\mathfrak{g})$ purely transcendental over the field of invariants $k(\mathfrak{g})^G$ for the adjoint action of G on \mathfrak{g} ? That is, can $k(\mathfrak{g})$ be generated over $k(\mathfrak{g})^G$ by algebraically independent elements?

In [5], the authors reduce this question to the case where G is simple, and show that in the case of simple groups, the answer is affirmative for split groups of types A_n and C_n , and negative for all other types except possibly for G_2 . (The standing assumption in [5] is that char(k) = 0, but here we work in arbitrary characteristic.)

The purpose of this note is to settle Question 1 for the remaining case $G = G_2$.

Theorem 2. Let k be an arbitrary field and G be the simple split k-group of type G_2 . Then $k(\mathfrak{g})$ is purely transcendental over $k(\mathfrak{g})^G$.

Apart from settling the last case left open in [5], we were motivated by the (still mysterious) connection between Question 1 and the Gelfand-Kirillov (GK) conjecture [9]. Here char(k) = 0. A. Premet [11] recently showed that the GK conjecture fails for simple Lie algebras of any type other than A_n , C_n and G_2 . His paper relies on the negative results of [5] and their characteristic p analogues (proved in [11]). It is not known whether a positive answer to Question 1 for \mathfrak{g} implies the GK conjecture for \mathfrak{g} . The GK conjecture has been proved for algebras of type A_n (see [9]), but remains open for types C_n and G_2 . While Theorem 2 does not settle the GK conjecture for type G_2 , it puts the remaining two open cases—for algebras of type C_n and G_2 —on equal footing vis-à-vis Question 1.

II. Twisting. Temporarily, let W be a linear algebraic group over k.

Let X be a quasi-projective variety with a (right) W-action defined over k, and let ζ be a (left) W-torsor over k. The diagonal left action of W on $X \times_{\text{Spec}(k)} \zeta$ (by $g.(x,z) = (xg^{-1},gz)$) makes $X \times_{\text{Spec}(k)} \zeta$ into the total space of a W-torsor $X \times_{\text{Spec}(k)} \zeta \to B$. The base space B of this torsor is usually called the *twist* of X by ζ . We denote it by ζX .

Date: August 26, 2013.

D.A. was partially supported by NSF Grant DMS-0902967. Z.R. was partially supported by National Sciences and Engineering Research Council of Canada grant No. 250217-2012.

It is easy to see that if ζ is trivial then ζX is k-isomorphic to X. Hence, ζX is a k-form of X, i.e., X and ζX become isomorphic over an algebraic closure of k.

The twisting construction is functorial in X: a W-equivariant morphism $X \to Y$ (or rational map $X \dashrightarrow Y$) induces a k-morphism $\zeta X \to \zeta Y$ (resp., rational map $\zeta X \dashrightarrow \zeta Y$). For details, see [7, Section 3], [8, Section 2], or [5, Section 2].

III. The split group of type G_2 . We fix notation and briefly review the basic facts, referring to [13], [1], or [2] for more details. Over any field k, a simple split group G of type G_2 has a faithful seven-dimensional representation V. Following [2, (3.11)], one can fix a basis f_1, \ldots, f_7 , with dual basis X_1, \ldots, X_7 , so that G preserves the nonsingular quadratic norm $N = X_1X_7 + X_2X_6 + X_3X_5 + X_4^2$. (See [1, §6.1] for the case char(k) = 2. In this case V is not irreducible, since the subspace spanned by f_4 is invariant; the quotient $V/(k \cdot f_4)$ is the minimal irreducible representation. However, irreducibility will not be necessary in our context.) The corresponding embedding $G \hookrightarrow GL_7$ yields a split maximal torus and Borel subgroup $T \subset B \subset G$, by intersecting with diagonal and upper-triangular matrices. Explicitly, the maximal torus is

(1)
$$T = \operatorname{diag}(t_1, t_2, t_1 t_2^{-1}, 1, t_1^{-1} t_2, t_2^{-1}, t_1^{-1});$$

cf. [2, Lemma 3.13].

The Weyl group W = N(T)/T is isomorphic to the dihedral group with 12 elements, and the surjection $N(T) \to W$ splits. The inclusion $G \hookrightarrow \operatorname{GL}_7$ thus gives rise to an inclusion $N(T) = T \rtimes W \hookrightarrow D \rtimes S_7$, where $D \subset \operatorname{GL}_7$ is the subgroup of diagonal matrices. On the level of the dual basis X_1, \ldots, X_7 , we obtain an isomorphism $W \cong S_3 \times S_2$ realized as follows: S_3 permutes the pairs $(X_1, X_7), (X_2, X_6)$ and (X_3, X_5) , and S_2 exchanges the triples (X_1, X_5, X_6) and (X_2, X_3, X_7) . The variable X_4 is fixed by W. For details, see [2, §A.3].

The subgroup $P \subset G$ stabilizing the isotropic line spanned by f_1 is a maximal standard parabolic, and the corresponding homogeneous space $P \setminus G$ is isomorphic to the five-dimensional quadric $\mathcal{Q} \subset \mathbb{P}(V)$ defined by the vanishing of the norm, i.e., by the equation

(2)
$$X_1X_7 + X_2X_6 + X_3X_5 + X_4^2 = 0.$$

An easy tangent space computation shows that P is smooth regardless of the characteristic of k.

Lemma 3. The group P is special, i.e., $H^1(l, P) = \{1\}$ for every field extension l/k. Moreover, P is rational, as a variety over k.

Proof. Since the split group of type G_2 is defined over the prime field, we may replace k by the prime field for the purpose of proving this lemma, and in particular, we can assume k is perfect. We begin by briefly recalling a construction of Chevalley [4]. The isotropic line $E_1 \subset V$ stabilized by P is spanned by f_1 , and P also preserves an isotropic 3-space E_3 spanned by f_1, f_2, f_3 ; see, e.g., [2, §2.2]. There is a corresponding map $P \to \operatorname{GL}(E_3/E_1) \cong \operatorname{GL}_2$, which is a split surjection thanks to the block matrix described in [10, p. 13] as the image of "B" in GL_7 . The kernel is unipotent, and we have a split exact sequence corresponding to the Levi decomposition:

(3)
$$1 \to R_u(P) \to P \to \operatorname{GL}_2 \to 1.$$

Combining the exact sequence in cohomology induced by (3) with the fact that both $R_u(P)$ and GL_2 are special (see [12, pp. 122 and 128]), shows that P is special.

Since P is isomorphic to $R_u(P) \times \text{GL}_2$ as a variety over k, and P is smooth, so is $R_u(P)$. A smooth connected unipotent group over a perfect field is rational [6, IV, §2(3.10)]; therefore $R_u(P)$ is k-rational, and so is P.

 $\mathbf{2}$

IV. Proof of Theorem 2. Let G be the split simple group of type G_2 over $k, T \subset G$ be a split maximal torus and W = N(T)/T be the Weyl group. We begin by reducing Theorem 2 to a statement about rationality of a twisted quotient of the quadric Q.

Proposition 4. Consider the following assertions:

(a) The twisted variety $\zeta(G_K/T_K)$ is rational over K, for any W-torsor ζ over any field K/k.

(b) The twisted variety $\zeta(\mathcal{Q}_K/T_K)$ is rational over K, for any W-torsor ζ over any field K/k.

Then $(b) \Longrightarrow (a) \Longrightarrow$ Theorem 2.

A dominant rational map $\mathcal{Q} \dashrightarrow Y$ induced by the inclusion of fields $k(\mathcal{Q})^T \hookrightarrow k(\mathcal{Q})$ is called the *rational quotient map* for the *T*-action on \mathcal{Q} . After replacing *Y* by a dense open subset, we may assume that the *W*-action on \mathcal{Q} descends to *Y*. The resulting variety *Y* is unique up to a *W*-equivariant birational isomorphism; this is the *W*-variety \mathcal{Q}/T in the statement of part (b) (and similarly for \mathcal{Q}_K/T_K). We will construct an explicit birational model for \mathcal{Q}/T below.

Proof. (a) \implies Theorem 2: Let \mathfrak{g}_{reg} and \mathfrak{t}_{reg} denote the open subsets of regular semisimple elements in the Lie algebras of G and T, respectively. The following diagram commutes:

Here π is the categorical quotient map, and the top horizontal map, given by $(g,t) \mapsto \operatorname{ad}(g) \cdot t$, is *G*-equivariant. The Weyl group acts on $\mathfrak{t}_{\operatorname{reg}}$ and G/T (on the right), and diagonally on $G/T \times \mathfrak{t}_{\operatorname{reg}}$. The horizontal maps are *W*-torsors; see [5, Proposition 2.9]. Thus we have the following diagram of inclusions of fields:

Setting $L = k(\mathfrak{t})$ and $K = k(\mathfrak{t})^W$ and noting that

$$k(G/T \times_{\operatorname{Spec}(k)} \mathfrak{t}_{\operatorname{reg}})^W = K((G/T)_K \times_{\operatorname{Spec}(K)} \operatorname{Spec} L),$$

the field extension on the left can be rewritten as $K(\zeta(G/T))/K$, where ζ is the *W*-torsor Spec *L*. By part (a) this field extension is purely transcendental. Hence, so is the vertical extension on the right of the diagram, i.e., Theorem 2 holds.

(b) \implies (a): For the purpose of proving this implication, we may we may view K as a new base field and replace it with k.

We claim that the left action of P on G/T is generically free. By the (characteristic-free) argument at the beginning of the proof of [5, Lemma 9.1], in order to establish this claim it suffices to show that the right T-action on $\mathcal{Q} = P \setminus G$ is generically free. The latter action, given by restricting the linear action (1) of T on \mathbb{P}^6 to the quadric \mathcal{Q} given by (2), is clearly generically free.

The W-equivariant rational map $G/T \to Q/T$ induced by the projection $G \to P \setminus G = Q$ is the rational quotient map for the left P-action on G/T; cf. [5, p. 458]. Since the P-action is generically free, this map is a P-torsor over the generic point of Q/T; see [3, Theorem 4.7]. By the functoriality of the twisting operation, after twisting by a W-torsor ζ , we obtain a rational map $\zeta(G/T) \to \zeta Q/T$, which is a P-torsor over the generic point of $\zeta Q/T$. This torsor has a rational section, since P is special; in particular, $\zeta(G/T)$ is k-birationally isomorphic to $P \times \zeta(Q/T)$. Since P is k-rational, $\zeta(G/T)$ is rational over $\zeta(Q/T)$, and we conclude that $(b) \Longrightarrow$ (a), as desired. \Box

It remains to show that the assertion of Proposition 4(b) always holds. As before, we may replace the field K with k. The following lemma completes the proof of Theorem 2.

Lemma 5. The twisted variety $\zeta(Q/T)$ is rational over k, for any W-torsor ζ over k.

Proof. We begin by constructing an explicit birational model for the W-variety \mathcal{Q}/T . The affine open subset $\mathcal{Q}^{\text{aff}} = \{x_1x_7 + x_2x_6 + x_3x_5 + 1 = 0\} \subset \mathbb{A}^6$ (where $X_4 \neq 0$) is N(T)-invariant. Here the affine coordinates on \mathbb{A}^6 are $x_i := X_i/X_4$, for $i \neq 4$. The field of invariant rational functions for the T-action on \mathcal{Q}^{aff} is $k(y_1, y_2, y_3, z_1, z_2)$, where the variables

$$y_1 = x_1 x_7$$
, $y_2 = x_2 x_6$, $y_3 = x_3 x_5$, $z_1 = x_1 x_5 x_6$, and $z_2 = x_2 x_3 x_7$

are subject to the relations $y_1 + y_2 + y_3 + 1 = 0$ and $y_1y_2y_3 = z_1z_2$. In other words, the rational quotient Q^{aff}/T (or equivalently, Q/T) is W-equivariantly birationally isomorphic to the affine subvariety Λ_1 of \mathbb{A}^5 given by these two equations, where $W = S_2 \times S_3$ acts on the coordinates as follows: S₂ permutes z_1, z_2 , and S₃ permutes y_1, y_2, y_3 . We claim that Λ_1 is W-equivariantly birationally isomorphic to

$$\begin{split} \Lambda_2 &= \{ (Y_1:Y_2:Y_3:Z_0:Z_1:Z_2) : Y_1 + Y_2 + Y_3 + Z_0 = 0 \text{ and } Y_1Y_2Y_3 = Z_1Z_2Z_0 \} \subset \mathbb{P}^5, \\ \Lambda_3 &= \{ (Y_1:Y_2:Y_3:Z_1:Z_2) : Y_1Y_2Y_3 + (Y_1 + Y_2 + Y_3)Z_1Z_2 = 0 \} \subset \mathbb{P}^4, \text{ and} \\ \Lambda_4 &= \{ (Y_1:Y_2:Y_3:Z_1:Z_2) : Z_1Z_2 + Y_2Y_3 + Y_1Y_3 + Y_1Y_2 = 0 \} \subset \mathbb{P}^4, \end{split}$$

where W acts on the projective coordinates $Y_1, Y_2, Y_3, Z_1, Z_2, Z_0$ as follows: S_2 permutes Z_1, Z_2, S_3 permutes Y_1, Y_2, Y_3 , and every element of W fixes Z_0 . Note that $\Lambda_2 \subset \mathbb{P}^5$ is the projective closure of $\Lambda_1 \subset \mathbb{A}^5$; hence, using \simeq to denote W-equivariant birational equivalence, we have $\Lambda_1 \simeq \Lambda_2$. The isomorphism $\Lambda_2 \simeq \Lambda_3$ is obtained by eliminating Z_0 from the system of equations defining Λ_2 . Finally, the isomorphism $\Lambda_3 \simeq \Lambda_4$ comes from the Cremona transformation $\mathbb{P}^4 \dashrightarrow \mathbb{P}^4$ given by $Y_i \to 1/Y_i$ and $Z_j \to 1/Z_j$ for i = 1, 2, 3 and j = 1, 2.

The resulting W-equivariant birational isomorphism $Q/T \simeq \Lambda_4$ gives rise to a birational isomorphism $\zeta(Q/T) \simeq \zeta \Lambda_4$ of k-varieties, for any W-torsor ζ over k. Since Λ_4 is a W-equivariant quadric hypersurface in \mathbb{P}^4 , and the W-action on \mathbb{P}^4 is induced by a linear representation $W \to \mathrm{GL}_5$, Hilbert's Theorem 90 tells us that $\zeta \mathbb{P}_4$ is k-isomorphic to \mathbb{P}^4 , and $\zeta \Lambda_4$ is isomorphic to a quadric hypersurface in \mathbb{P}^4 defined over k; see [7, Lemma 10.1]. It is easily checked that Λ_4 is smooth over k, and therefore so is $\zeta \Lambda_4$. The zero-cycle of degree 3 given by (1:0:0:0:0) + (0:1:0:0) = 0 + (0:1:0:0) + (0:1:0:0) = 0 + (0:1:0:0) = 0 + (0:0:1:0) = 0.

Acknowledgement. We are grateful to J.-L. Colliot-Thélène for stimulating conversations.

References

- [1] D. Anderson, Degeneracy loci and G₂ flags, Ph. D. thesis, University of Michigan, 2009.
- [2] D. Anderson, "Chern class formulas for G₂ Schubert loci," Trans. Amer. Math. Soc. 363 (2011), no. 12, 6615–6646.
- [3] G. Berhuy, G. Favi, Essential Dimension: A Functorial Point of View (after A. Merkurjev), Documenta Math. 8 (2003), 279–330.
- [4] C. Chevalley, "Les Groupes de type G₂," Séminaire Claude Chevalley, tome 2 (19561958), reprinted in Classification des Groupes Algébriques Semi-Simples, Springer, 2005.
- [5] J.-L. Colliot-Thélène, B. Kunyavskii, V. L. Popov, and Z. Reichstein, "Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?" Compositio Math. 147 (2011), 428-466.

THE LIE ALGEBRA OF TYPE G_2 IS RATIONAL OVER ITS QUOTIENT BY THE ADJOINT ACTION 5

- [6] M. Demazure and P. Gabriel, Groupes algébriques, Tome I, Masson & Cie, Paris, 1970.
- [7] A. Duncan, Z. Reichstein, "Versality of algebraic group actions and rational points on twisted varieties," J. Alg. Geom., to appear, arXiv:1109.6093
- [8] M. Florence, "On the essential dimension of cyclic *p*-groups," Invent. Math. 171 (2008), no. 1, 175–189.
- [9] I. M. Gelfand, A. A. Kirillov, "Sur les corps liés aux algèbres enveloppantes des algèbres de Lie," *IHES Publ.* Math. 31 (1966), 5–19.
- [10] J. Heinloth, "Bounds for Behrend's conjecture on the canonical reduction," Int. Math. Res. Not. IMRN (2008), no. 14, Art. ID rnn045, 17 pp.
- [11] A. Premet, "Modular Lie algebras and the Gelfand-Kirillov conjecture," Invent. Math. 181 (2010), no. 2, 395–420.
- [12] J.-P. Serre, *Galois cohomology*, Springer-Verlag, Berlin, 1997.
- [13] T. A. Springer and F. D. Veldkamp, Octonions, Jordan Algebras, and Exceptional Groups, Springer, 2000.

INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADA, RIO DE JANEIRO, RJ 22460-320 BRASIL E-mail address: dave@impa.br

INSTITUT DE MATHÉMATIQUES DE JUSSIEU, UNIVERSITÉ PARIS 6, PLACE JUSSIEU, 75005 PARIS, FRANCE *E-mail address:* florence@math.jussieu.fr

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, BC, CANADA V6T 1Z2 E-mail address: reichst@math.ubc.ca