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Abstract. Let G be a split simple group of type G2 over a field k, and let g be its Lie algebra.
Answering a question of J.-L. Colliot-Thélène, B. Kunyavskĭi, V. L. Popov, and Z. Reichstein, we
show that the function field k(g) is generated by algebraically independent elements over the field
of adjoint invariants k(g)G.

Résumé. Soit G un groupe algébrique simple et déployé de type G2 sur un corps k. Soit g son
algèbre de Lie. On démontre que le corps des fonctions k(g) est transcendant pur sur le corps k(g)G

des invariants adjoints. Ceci répond par l’affirmative à une question posée par J.-L. Colliot-Thélène,
B. Kunyavskĭi, V. L. Popov et Z. Reichstein.

I. Introduction. Let G be a split connected reductive group over a field k and let g be the Lie
algebra of G. We will be interested in the following natural question:

Question 1. Is the function field k(g) purely transcendental over the field of invariants k(g)G for
the adjoint action of G on g? That is, can k(g) be generated over k(g)G by algebraically independent
elements?

In [5], the authors reduce this question to the case where G is simple, and show that in the case
of simple groups, the answer is affirmative for split groups of types An and Cn, and negative for all
other types except possibly for G2. (The standing assumption in [5] is that char(k) = 0, but here
we work in arbitrary characteristic.)

The purpose of this note is to settle Question 1 for the remaining case G = G2.

Theorem 2. Let k be an arbitrary field and G be the simple split k-group of type G2. Then k(g)
is purely transcendental over k(g)G.

Apart from settling the last case left open in [5], we were motivated by the (still mysterious)
connection between Question 1 and the Gelfand-Kirillov (GK) conjecture [9]. Here char(k) = 0.
A. Premet [11] recently showed that the GK conjecture fails for simple Lie algebras of any type
other than An, Cn and G2. His paper relies on the negative results of [5] and their characteristic p
analogues (proved in [11]). It is not known whether a positive answer to Question 1 for g implies
the GK conjecture for g. The GK conjecture has been proved for algebras of type An (see [9]),
but remains open for types Cn and G2. While Theorem 2 does not settle the GK conjecture for
type G2, it puts the remaining two open cases—for algebras of type Cn and G2—on equal footing
vis-à-vis Question 1.

II. Twisting. Temporarily, let W be a linear algebraic group over k.
Let X be a quasi-projective variety with a (right) W -action defined over k, and let ζ be a (left)

W -torsor over k. The diagonal left action of W on X ×Spec(k) ζ (by g.(x, z) = (xg−1, gz)) makes
X ×Spec(k) ζ into the total space of a W -torsor X ×Spec(k) ζ → B. The base space B of this torsor

is usually called the twist of X by ζ. We denote it by ζX.
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It is easy to see that if ζ is trivial then ζX is k-isomorphic to X. Hence, ζX is a k-form of X,
i.e., X and ζX become isomorphic over an algebraic closure of k.

The twisting construction is functorial in X: a W -equivariant morphism X → Y (or rational
map X 99K Y ) induces a k-morphism ζX → ζY (resp., rational map ζX 99K

ζY ). For details,
see [7, Section 3], [8, Section 2], or [5, Section 2].

III. The split group of type G2. We fix notation and briefly review the basic facts, referring
to [13], [1], or [2] for more details. Over any field k, a simple split group G of type G2 has a
faithful seven-dimensional representation V . Following [2, (3.11)], one can fix a basis f1, . . . , f7,
with dual basis X1, . . . ,X7, so that G preserves the nonsingular quadratic norm N = X1X7 +
X2X6 + X3X5 + X2

4 . (See [1, §6.1] for the case char(k) = 2. In this case V is not irreducible,
since the subspace spanned by f4 is invariant; the quotient V/(k · f4) is the minimal irreducible
representation. However, irreducibility will not be necessary in our context.) The corresponding
embedding G →֒ GL7 yields a split maximal torus and Borel subgroup T ⊂ B ⊂ G, by intersecting
with diagonal and upper-triangular matrices. Explicitly, the maximal torus is

(1) T = diag(t1, t2, t1t
−1
2 , 1, t−1

1 t2, t
−1
2 , t−1

1 );

cf. [2, Lemma 3.13].
The Weyl group W = N(T )/T is isomorphic to the dihedral group with 12 elements, and the

surjection N(T ) → W splits. The inclusion G →֒ GL7 thus gives rise to an inclusion N(T ) =
T ⋊W →֒ D ⋊ S7, where D ⊂ GL7 is the subgroup of diagonal matrices. On the level of the dual
basis X1, . . . ,X7, we obtain an isomorphism W ∼= S3 × S2 realized as follows: S3 permutes the pairs
(X1,X7), (X2,X6) and (X3,X5), and S2 exchanges the triples (X1,X5,X6) and (X2,X3,X7). The
variable X4 is fixed by W . For details, see [2, §A.3].

The subgroup P ⊂ G stabilizing the isotropic line spanned by f1 is a maximal standard parabolic,
and the corresponding homogeneous space P\G is isomorphic to the five-dimensional quadric Q ⊂
P(V ) defined by the vanishing of the norm, i.e., by the equation

(2) X1X7 +X2X6 +X3X5 +X2
4 = 0.

An easy tangent space computation shows that P is smooth regardless of the characteristic of k.

Lemma 3. The group P is special, i.e., H1(l, P ) = {1} for every field extension l/k. Moreover,
P is rational, as a variety over k.

Proof. Since the split group of type G2 is defined over the prime field, we may replace k by the
prime field for the purpose of proving this lemma, and in particular, we can assume k is perfect.
We begin by briefly recalling a construction of Chevalley [4]. The isotropic line E1 ⊂ V stabilized
by P is spanned by f1, and P also preserves an isotropic 3-space E3 spanned by f1, f2, f3; see, e.g.,
[2, §2.2]. There is a corresponding map P → GL(E3/E1) ∼= GL2, which is a split surjection thanks
to the block matrix described in [10, p. 13] as the image of “B” in GL7. The kernel is unipotent,
and we have a split exact sequence corresponding to the Levi decomposition:

(3) 1 → Ru(P ) → P → GL2 → 1.

Combining the exact sequence in cohomology induced by (3) with the fact that both Ru(P ) and
GL2 are special (see [12, pp. 122 and 128]), shows that P is special.

Since P is isomorphic to Ru(P ) × GL2 as a variety over k, and P is smooth, so is Ru(P ). A
smooth connected unipotent group over a perfect field is rational [6, IV, §2(3.10)]; therefore Ru(P )
is k-rational, and so is P . �
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IV. Proof of Theorem 2. Let G be the split simple group of type G2 over k, T ⊂ G be a
split maximal torus and W = N(T )/T be the Weyl group. We begin by reducing Theorem 2 to a
statement about rationality of a twisted quotient of the quadric Q.

Proposition 4. Consider the following assertions:

(a) The twisted variety ζ(GK/TK) is rational over K, for any W -torsor ζ over any field K/k.

(b) The twisted variety ζ(QK/TK) is rational over K, for any W -torsor ζ over any field K/k.

Then (b) =⇒ (a) =⇒ Theorem 2.

A dominant rational map Q 99K Y induced by the inclusion of fields k(Q)T →֒ k(Q) is called
the rational quotient map for the T -action on Q. After replacing Y by a dense open subset, we
may assume that the W -action on Q descends to Y . The resulting variety Y is unique up to a
W -equivariant birational isomorphism; this is the W -variety Q/T in the statement of part (b) (and
similarly for QK/TK). We will construct an explicit birational model for Q/T below.

Proof. (a) =⇒ Theorem 2: Let greg and treg denote the open subsets of regular semisimple elements
in the Lie algebras of G and T , respectively. The following diagram commutes:

G/T ×Spec(k) treg
//

��

greg

π

��

treg
π // greg//G.

Here π is the categorical quotient map, and the top horizontal map, given by (g, t) 7→ ad(g) · t, is
G-equivariant. The Weyl group acts on treg and G/T (on the right), and diagonally on G/T × treg.
The horizontal maps are W -torsors; see [5, Proposition 2.9]. Thus we have the following diagram
of inclusions of fields:

k(G/T ×Spec(k) treg)
W k(g)

∼oo

k(t)W k(g)G.
∼oo

Setting L = k(t) and K = k(t)W and noting that

k(G/T ×Spec(k) treg)
W = K((G/T )K ×Spec(K) SpecL),

the field extension on the left can be rewritten as K(ζ(G/T ))/K, where ζ is the W -torsor SpecL.
By part (a) this field extension is purely transcendental. Hence, so is the vertical extension on the
right side of the diagram, i.e., Theorem 2 holds.

(b) =⇒ (a): For the purpose of proving this implication, we may we may view K as a new base
field and replace it with k.

We claim that the left action of P on G/T is generically free. By the (characteristic-free)
argument at the beginning of the proof of [5, Lemma 9.1], in order to establish this claim it suffices
to show that the right T -action on Q = P\G is generically free. The latter action, given by
restricting the linear action (1) of T on P

6 to the quadric Q given by (2), is clearly generically free.
The W -equivariant rational map G/T 99K Q/T induced by the projection G → P\G = Q is

the rational quotient map for the left P -action on G/T ; cf. [5, p. 458]. Since the P -action is
generically free, this map is a P -torsor over the generic point of Q/T ; see [3, Theorem 4.7]. By the
functoriality of the twisting operation, after twisting by a W -torsor ζ, we obtain a rational map
ζ(G/T ) 99K ζQ/T , which is a P -torsor over the generic point of ζQ/T . This torsor has a rational
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section, since P is special; in particular, ζ(G/T ) is k-birationally isomorphic to P × ζ(Q/T ). Since
P is k-rational, ζ(G/T ) is rational over ζ(Q/T ), and we conclude that (b) =⇒ (a), as desired. �

It remains to show that the assertion of Proposition 4(b) always holds. As before, we may replace
the field K with k. The following lemma completes the proof of Theorem 2.

Lemma 5. The twisted variety ζ(Q/T ) is rational over k, for any W -torsor ζ over k.

Proof. We begin by constructing an explicit birational model for the W -variety Q/T . The affine
open subset Qaff = {x1x7 + x2x6 + x3x5 + 1 = 0} ⊂ A

6 (where X4 6= 0) is N(T )-invariant. Here
the affine coordinates on A

6 are xi := Xi/X4, for i 6= 4. The field of invariant rational functions
for the T -action on Qaff is k(y1, y2, y3, z1, z2), where the variables

y1 = x1x7, y2 = x2x6, y3 = x3x5, z1 = x1x5x6, and z2 = x2x3x7

are subject to the relations y1 + y2 + y3 + 1 = 0 and y1y2y3 = z1z2. In other words, the rational
quotient Qaff/T (or equivalently, Q/T ) is W -equivariantly birationally isomorphic to the affine
subvariety Λ1 of A

5 given by these two equations, where W = S2 × S3 acts on the coordinates
as follows: S2 permutes z1, z2, and S3 permutes y1, y2, y3. We claim that Λ1 is W -equivariantly
birationally isomorphic to

Λ2 = {(Y1 : Y2 : Y3 : Z0 : Z1 : Z2) : Y1 + Y2 + Y3 + Z0 = 0 and Y1Y2Y3 = Z1Z2Z0} ⊂ P
5,

Λ3 = {(Y1 : Y2 : Y3 : Z1 : Z2) : Y1Y2Y3 + (Y1 + Y2 + Y3)Z1Z2 = 0} ⊂ P
4, and

Λ4 = {(Y1 : Y2 : Y3 : Z1 : Z2) : Z1Z2 + Y2Y3 + Y1Y3 + Y1Y2 = 0} ⊂ P
4 ,

where W acts on the projective coordinates Y1, Y2, Y3, Z1, Z2, Z0 as follows: S2 permutes Z1, Z2, S3
permutes Y1, Y2, Y3, and every element of W fixes Z0. Note that Λ2 ⊂ P

5 is the projective closure
of Λ1 ⊂ A

5; hence, using ≃ to denote W -equivariant birational equivalence, we have Λ1 ≃ Λ2.
The isomorphism Λ2 ≃ Λ3 is obtained by eliminating Z0 from the system of equations defining Λ2.
Finally, the isomorphism Λ3 ≃ Λ4 comes from the Cremona transformation P

4
99K P

4 given by
Yi → 1/Yi and Zj → 1/Zj for i = 1, 2, 3 and j = 1, 2.

The resulting W -equivariant birational isomorphism Q/T ≃ Λ4 gives rise to a birational iso-
morphism ζ(Q/T ) ≃ ζΛ4 of k-varieties, for any W -torsor ζ over k. Since Λ4 is a W -equivariant
quadric hypersurface in P

4, and theW -action on P
4 is induced by a linear representation W → GL5,

Hilbert’s Theorem 90 tells us that ζ
P4 is k-isomorphic to P

4, and ζΛ4 is isomorphic to a quadric
hypersurface in P

4 defined over k; see [7, Lemma 10.1]. It is easily checked that Λ4 is smooth over
k, and therefore so is ζΛ4. The zero-cycle of degree 3 given by (1 : 0 : 0 : 0 : 0) + (0 : 1 : 0 : 0 :
0)+(0 : 0 : 1 : 0 : 0) in Λ4 is W -invariant, so it defines a zero-cycle of degree 3 in ζΛ4. By Springer’s
theorem, the smooth quadric ζΛ4 has a k-rational point, hence is k-rational. �
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