

ORTHOGONAL PFISTER INVOLUTIONS IN CHARACTERISTIC


TWO


ANDREW DOLPHIN


Abstract. We show that over a field of characteristic 2 a central simple alge-
bra with orthogonal involution that decomposes into a product of quaternion
algebras with involution is either anisotropic or metabolic. We use this to
define an invariant of such orthogonal involutions in characteristic 2 that com-
pletely determines the isotropy behaviour of the involution. We also give an
example of a non-totally decomposable algebra with orthogonal involution that
becomes totally decomposable over every splitting field of the algebra.


Keywords: Central simple algebras; quaternion algebras; involutions; Pfister
forms; characteristic two, Pfister Factor Conjecture.


Mathematics Subject Classification (MSC 2010): 11E39, 11E81, 12F05, 12F10.


1. Introduction


Over fields of characteristic different from 2 it is well-known that a quadratic
form of dimension equal to a power of two is anisotropic or hyperbolic over any
field extension if and only it is similar to a Pfister form. Using the correspondence
between quadratic and bilinear forms over fields of characteristic different from 2,
we can associate an orthogonal involution on a split central simple algebra to every
quadratic form. It is then natural to consider whether there are central simple
algebras with involution with analogous properties to Pfister forms. One potential
type of algebra with involution to consider is the algebras with involution that are
isomorphic to a product of quaternion algebras with involution. That is, totally
decomposable algebras with involution.


Let (A, σ) be a central simple algebra of degree equal to a power of two with
orthogonal involution over a field F . We denote the central simple algebra (resp.
the algebra with involution) obtained by extending scalars over a field extension
K/F as AK (resp. (A, σ)K).


Assuming that the characteristic of F is different from 2, in [2] it is asked whether
the following are equivalent:


(1) (A, σ) is totally decomposable.
(2) For all field extensions K/F such that AK is split, there exists a Pfister


form π over K such that (A, σ)K is isomorphic to the adjoint algebra with
involution of π.


(3) For any field extension K/F , (A, σ)K is either anisotropic or hyperbolic.


The implication (1) ⇒ (2) is known as the Pfister Factor Conjecture, and was
proven in [3]. The implication (1) ⇒ (3), and the equivalence (2) ⇔ (3), follows
from the Pfister Factor Conjecture and the non-hyperbolic splitting result of [8].
The converse implication, (2) or (3) ⇒ (1), is still open in general.


Analogous questions may be asked when we consider fields of characteristic 2.
Firstly, we may replace (A, σ) with a quadratic pair (see [11, Section 5]). The
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analogous result to the Pfister Factor Conjecture is shown in [6]. Otherwise the
problem is open.


Alternatively we may formulate the question in terms of algebras with orthogonal
involution and symmetric bilinear forms over a field of characteristic 2. The theory
of symmetric bilinear forms in characteristic 2 has several features that mean we
must be slightly more careful in our formulation of the analogous question to that
posed in [2]. Over fields of characteristic different from 2, all 2-dimensional isotropic
symmetric bilinear forms are isometric to the hyperbolic plane. This is not true
in characteristic 2, and the wider variety of isotropic 2-dimensional forms means
that we must use the weaker property of metabolicity rather than hyperbolicity in
the formulation of our problem and be more restrictive with our statement. For
example, there exist metabolic bilinear forms of dimension equal to a power of 2 that
are not similar to bilinear Pfister forms (see (2.6)). That is, they are not isometric
to a tensor product of 2-dimensional bilinear forms. Metabolicity for algebras with
involution is studied in [4], and we recall the definitions and basic results that we
use in Section 4.


Conversely however, the isotropy behaviour of symmetric bilinear forms over
quadratic separable extensions is particularly simple (see (3.1)). We can often
exploit this to investigate symmetric bilinear forms over fields of characteristic 2
with much simpler methods than those needed over fields of characteristic different
from 2.


We therefore ask the following question, in analogy with the implication (1) ⇒
(3) above. Let F be a field of characteistic 2 and let (A, σ) be a totally decomposable
F–algebra with orthogonal involution. For every field extension K/F , is (A, σ)K
either anisotropic or metabolic? In (5.2) we shall show that this question has a
positive answer.


We shall also consider potential analogues of the other implications from the
quesion asked in [2]. That a split totally decomposable F–algebra with orthogonal
involution is adjoint to a bilinear Pfister form in charactersitic 2, an analogue of
(1) ⇒ (2), can be shown with relatively simple arguments (see (6.7)). We shall
give another slightly less direct proof of this result in (6.5) which allows us to
determine the bilinear Pfister form in the statement explicitly. This result has also
been independently shown using different methods in [15].


Natural analgoues of the equivalence (2) ⇔ (3) and the implication (2) ⇒ (1)
do not hold in general in characteristic 2, and we discuss this in Section 7. In (8.4)
we give an explicit example in characteristic 2 of an F–algebra with orthogonal
involution that is not totally decomposable, but that becomes totally decomposable
over every splitting field of the algebra.


2. Bilinear forms


In this section we recall the basic terminology and results we use from bilinear
form theory. We refer to [7, Chapter 1] as a general reference on bilinear forms.


Let F be a field. Let char(F ) denote the characteristic of F . A bilinear form
over F is a pair (V, b) where V is a F–vector space and b is a F -bilinear map
b : V × V → F . We say that a bilinear form (V, b) is symmetric if b(x, y) = b(y, x)
for all x, y ∈ V . We call a bilinear form (V, b) alternating if b(x, x) = 0 for all
x ∈ V . If (V, b) is an alternating form then we have that b(x, y) = −b(y, x) for all
x, y ∈ V , that is, (V, b) is skew-symmetric. In particular every alternating form over
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a field of characteristic 2 is symmetric. We say (V, b) is nondegenerate if b(x, y) = 0
for all y ∈ V implies that x = 0.


An isometry of bilinear forms over F is a map φ : (V, b1) → (W, b2), where (V, b1)
and (W, b2) are bilinear forms over F , such that φ : V → W is F–linear bijective
F–vector space homomorphism and b1(v, w) = b2(φ(v1), φ(v2)) for all v1, v2 ∈ V .
If such an isometry exists, we say (V, b1) are (W, b2) are isometric as bilinear forms
and we write (V, b1) ≃ (W, b2). The orthogonal sum of the symmetric or alternating
bilinear forms (V, b1) and (W, b2) is defined to be the map b : (V ⊕W )×(V ⊕W ) →
F given by b(v1 ⊕ w1, v2 ⊕ w2) = b1(v1, v2) + b2(w1, w2) for all v1, v2 ∈ V and
w1, w2 ∈W , and we write (V ⊕W, b) = (V, b1) ⊥ (W, b2). The tensor product of the
symmetric or alternating bilinear forms (V, b1) and (W, b2) is defined to be the map
b′ : (V ⊗W )× (V ⊗W ) → F given by b′(v1 ⊗w1, v2 ⊗w2) = b1(v1, v2) · b2(w1, w2)
for all v1, v2 ∈ V and w1, w2 ∈W and we write (V ⊗W, b′) = (V, b1)⊗ (W, b2).


We say a bilinear form (V, b) represents and element a ∈ F if there exists and
x ∈ V \{0} such that b(x, x) = a. A bilinear form (V, b) is said to be isotropic if it
represents 0, and anisotropic otherwise. Given a nondegenerate bilinear form (V, b)
we call a subspace W ⊂ V totally isotropic (with respect to b) if b|W = 0. We call
(V, b)metabolic if it has a totally isotropic subspaceW with dimF (W ) = 1


2dimF (V ).
Note that an alternating form is always metabolic. We say two bilinear forms (V, b)
and (W, b′) are similar if there exists an a ∈ F× such that (V, b) ≃ (W,ab′).


We now fix (V, b) to be a nondegenerate bilinear form over a field F for the rest
of this section. Note that (V, b) can be decomposed as (V, b) ≃ (W1, b1) ⊥ (W2, b2)
with (W1, b1) anisotropic and (W2, b2) metabolic. In this decomposition (W1, b1)
is uniquely determined up to isometry (see [7, (1.27)]), whereas (W2, b2) is not in
general. We call (W1, b1) the anisotropic part of (V, b), which we denote by (V, b)an.


We denote H = (F 2, h) where


h : F 2 × F 2 → F is given by (x, y) 7→ xt
(


0 1
1 0


)
y


and call this the hyperbolic plane over F . We call a bilinear form (V, b) that is
isometric to an orthogonal sum of hyperbolic planes hyperbolic. Over a field of
characteristic 2, a bilinear form is hyperbolic if and only if it is alternating (see [7,
(1.8)]).


For a1, . . . , an ∈ F× we denote by 〈a1, . . . , an〉 the symmetric bilinear form
(Fn, b) where


b : Fn × Fn → F is given by (x, y) 7→


n∑


i=1


xiaiyi.


We call such a form a diagonal form. A symmetric bilinear space that is isometric
to a diagonal form is called diagonalisable. By [7, (1.17)], a nondegenerate sym-
metric bilinear form is diagonalisable if and only if it is not alternating. For a
nondegenerate symmetric bilinear form ϕ over F we denote the metabolic bilinear
form ϕ⊥ϕ by M(ϕ).


We frequently use the following isometry.


Lemma 2.1. Assume that char(F ) = 2. Take a ∈ F×. Then 〈a〉⊥H ≃ 〈a, a, a〉.


Proposition 2.2. Assume that char(F ) = 2. Let ϕ be a nondegenerate symmetric
bilinear form over F . Then there exist n,m ∈ N and elements a1, . . . , an ∈ F×
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such that


ϕ ≃ ϕan⊥M(〈a1, . . . , an〉)⊥m×H


with the condition that ϕan⊥〈a1, . . . , an〉 is anisotropic. Further ϕan⊥M(〈a1, . . . , an〉)
is unique up to isometry and n is uniquely determined.


Proof. See [13, (2.1)]. �


We call the integer m in (2.2) the hyperbolicity index of ϕ.
For a ∈ F× be denote the bilinear form 〈1,−a〉 over F by 〈〈a〉〉. For a1, . . . , an ∈


F×, we denote the 〈〈a1〉〉⊗ . . .⊗〈〈an〉〉 by 〈〈a1, . . . , an〉〉. We call a bilinear form over
F isometric to some 〈〈a1, . . . , an〉〉 for some a1, . . . , an ∈ F×, an n-fold Pfister form.


Lemma 2.3. Let π be a Pfister form over F and a ∈ F× an element represented
by π. Then π ≃ aπ.


Proof. See [7, (6.2)]. �


The following result is well known, but we include a proof for convenience.


Corollary 2.4. Let ϕ be a symmetric bilinear form over F . If ϕ represents 1 and
is similar to a Pfister form π then ϕ ≃ π.


Proof. Let a ∈ F be such that aϕ ≃ π. Then since ϕ represents 1, we have that π
represents a. Hence ϕ ≃ a2ϕ ≃ aπ ≃ π by (2.3). �


Proposition 2.5. Let π be a nondegenerate symmetric bilinear form over F . If
π is similar to a Pfister form then πK is either anisotropic or metabolic for every
field extension K/F . The converse holds if π is non-metabolic.


Proof. For the first statement see [7, (6.3)]. For the converse see [12, (5.5)] if
char(F ) = 2 and [7, (23.4)] otherwise. �


Lemma 2.6. Assume that char(F ) = 2. Let ϕ be a nondegenerate metabolic sym-
metric bilinear form over F . Then ϕ is a Pfister form if and only if there exists
and anisotropic Pfister form π such that


ϕ ≃ M(π)⊥n×H ≃ π ⊗ 〈〈1, . . . , 1〉〉


for some integer n such that 2dimFπ + 2n = 2m for some integer m.


Proof. For a Pfister form π over F , the isomorphism M(π)⊥n×H ≃ π⊗〈〈1, . . . , 1〉〉
follows from repeated use of (2.1). Therefore that ϕ is a Pfister form if ϕ ≃
M(π)⊥n ×H is clear. For the converse, see [1, (A.8)] and the comments following
it. �


By a quadratic form over F we mean a pair (V, q) of a finite-dimensional F -vector
space V and a map q : V → F such that


• q(λx) = λ2ϕ(x) for all x ∈ V and λ ∈ F ,
• bq : V ×V → F, (x, y) 7−→ q(x+ y)− q(x)− q(y) is an bilinear form over F ,
• if v ∈ V is such that q(v) = 0 and bq(v, w) = 0 for all w ∈ V , then v = 0.


We say ϕ is isotropic if q(x) = 0 for some x ∈ V \ {0} and anisotropic otherwise.
For any bilinear form (V, b) over F we call the quadratic form consisting of the
F–vector space V and a map qb : V → F where qb(x) = b(x, x) for all x ∈ V the


associated quadratic form to (V, b). We denote this pair by (̃V, b).
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Let (V, q) and (W, q′) be quadratic forms over F . We denote the orthogonal
sum of (V, q) and (W, q′) by (V, q)⊥(W, q′). By an isometry of quadratic forms
φ : (V, q) → (W, q′) we mean an isomorphism of F–vector spaces φ : V −→W such
that q = q′ ◦ φ. If such an isometry exists, we say (V, q) and (W, q′) are isometric
and write (V, q) ≃ (W, q′).


3. Bilinear forms and separable extensions


In this section we recall some results on the behaviour of bilinear forms over
separable extensions in characteristic 2 and derive some corollaries that we need.


Throughout, assume that char(F ) = 2. Let K/F be a field extension. Then we
write (V, b)K = (V ⊗F K, bK) where bK is the extension of b is a bilinear form on
V ⊗F K given by bK(x⊗ k1, y ⊗ k2) = k1k2b(x, y) for all x, y ∈ V and k1, k2 ∈ K.


Proposition 3.1. Let L/F be a separable extension. Let ϕ be a nondegenerate
symmetric bilinear form over F . Then ϕL is isotropic if and only if ϕ is isotropic.


Proof. See [9, (10.2.1)]. �


Corollary 3.2. Let L/F be a separable extension. Let ϕ and ψ be nondegenerate
symmetric bilinear forms over F that are either anisotropic or metabolic. If ϕL ≃
ψL then ϕ ≃ ψ.


Proof. Assume that first that ϕ and ψ are anisotropic. Then (ϕ⊥ψ)L is metabolic,
and hence so is ϕ⊥ψ by (3.1) and therefore ϕ ≃ ψ by Witt Cancellation (see [7,
(1.28)]).


Now assume that ϕ and ψ are metabolic. By (2.2) we have ϕ ≃ M(β1)⊥n×H and
ψ ≃ M(β2)⊥m×H for anisotropic bilinear forms β1 and β2 over F and n,m ∈ N.
Since (β1)L and (β2)L are anisotropic by (3.1), it immediately follows from ϕL ≃ ψL


that n = m by (2.2). Further, we have that M(β1)L ≃ M(β2)L by (2.2).
Let x = dimFβ1 = dimFβ2. Using (2.1), adding β1 to each side of M(β1)L ≃


M(β2)L gives


(β1⊥M(β1))L ≃ (β1)L⊥x×H ≃ (β1)L⊥M(β2)L.


If follows from (2.2) that (β1⊥β2)L is isotropic, and hence that (β1)L and (β2)L
represent a comment element a ∈ L×. That is (β1)L ≃ 〈a〉⊥β′


1 and β2 ≃ 〈a〉⊥β′


2


for some anisotropic bilinear forms β′


1 and β′


2 over L. By (2.1) this gives


(β1⊥M(β2))L ≃ β′


1⊥〈a〉⊥M(β′


2⊥〈a〉) ≃ β′


1⊥〈a〉⊥M(β′


2)⊥H.


It follows from (2.2) that we can cancel hyperbolic planes, and hence


(β1)L⊥(x− 1)×H ≃ β′


1⊥M(β′


2).


Inducting on x now gives that (β1⊥β2)L is metabolic. It follows that β1 ≃ β2 as in
the anisotropic case above, and hence the result. �


Lemma 3.3. Let L/F be a separable field extension and ϕ be a symmetric bilinear
form over F . If ϕL ≃ π, where π is a Pfister form over L, then ϕ is similar to a
Pfister form over F .


Proof. First assume that ϕ is anisotropic and let be any field extension K/F such
that ϕK is isotropic. Let K ′ be a separable extension of K such that L is a subfield
of K ′. It follows that πK′ ≃ ϕK′ and hence ϕK′ is metabolic by (2.5). Therefore
ϕK is metabolic by (3.1). Therefore ϕ is similar to a Pfister form by (2.5).
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Now assume that ϕ is isotropic. Since ϕ is isotropic, it follows from (2.5) that
π is metabolic. It then follows that ϕ is metabolic by (3.1). By (2.1) we have that
π ≃ M(β)⊥n × H for some natural number n and some anisotropic Pfister form β
over L.


By (2.2), there exists an anisotropic symmetric bilinear form α and natural
number m such that ϕ ≃ M(α)⊥m × H. We may scale ϕ to assume that that α
represents 1. Take a1, . . . , al ∈ L× such that α ≃ 〈1, a1, . . . , al〉. It follows from
(3.1) that αL is anisotropic and the uniqueness of the decomposition in (2.2) implies
that m = n and M(αL) ≃ M(β). In particular dimF (α) = dimF (β).


It follows from (2.2) and [13, (2.6)] that α̃L ≃ β̃. Consider the field L(α) =


F (X1, . . . , Xl)(
√
a1X2


1 + . . .+ alX2
l ), where X1, . . . , Xl are indeterminates. Then


βL(α) is isotropic as α̃L ≃ β̃ and clearly αL(α) is isotropic, and hence βL(α) meta-


bolic by (2.5). It then follows from [12, (5.3)] that aαL ≃ β for some a ∈ L× as
dimF (α) = dimF (β). Since α represents 1, this implies that αL ≃ β by (2.4) .


Hence αL is isometric to a Pfister form, and hence α is similar to a Pfister form
over F by the anisotropic case above. Since m = n and dimF (α) = dimF (β) it
follows from (2.1) that ϕ ≃ 〈〈1, . . . , 1〉〉 ⊗ α. �


4. Algebras with involution


In this section we recall the basic definitions and results we use on central simple
algebras with involution. We refer to [16] for a general reference on central simple
algebras.


Let A be a finite-dimensional F–algebra. If A is simple (i.e. it has no non-
trivial two sided ideals) and E is the centre of A, we can view A as an E–algebra
and by Wedderburn’s Theorem (see [11, (1.1)]) we have that A ≃ EndD(V ) for an
F–division algebra D with centre E and a right D–vector space V . In this case
dimE(A) is a square, and the positive root of this integer is called the degree of A
and is denoted deg(A). The degree of D is called the index of A and is denoted
ind(A). We call A split if ind(A) = 1. If E = F , then we call the F–algebra A
central simple. An F–quaternion algebra is a central simple F -algebra of degree 2.
For any field extension K/F we will use the notation AK = A ⊗F K. We call a
field extension K/F a splitting field of A if AK is split.


Lemma 4.1. If F is separably closed, then all central simple F–algebras are split.


Proof. See [5, (9.2)]. �


For an F–algebra A and b ∈ A× we denote by Int(b) the inner automorphism
A→ A given by c 7→ bcb−1.


An F–involution on A is an F–linear map σ : A→ A such that σ(xy) = σ(y)σ(x)
for all x, y ∈ A and σ2 = idA. We call an F–involution of the first kind if F = E,
the centre of A. We do not consider F–involutions of the second kind here (see
[11, Section 2.B] for more details on this kind of involution). By an F–algebra
with involution we mean a pair (A, σ) of a finite-dimensional F–algebra A and an
F–involution σ on A of the first kind.


A homomorphism of F–algebras with involution is a map ϕ : (A, σ) → (B, τ),
where (A, σ) are (B, τ) F–algebras with involution, such that ϕ : A→ B is an F–
algebra homomorphism and ϕ◦σ = τ◦ϕ; if ϕ is bijective then this is an isomorphism.
If an isomorphism ϕ : (A, σ) → (B, τ) exists, then we say we say (A, σ) and (B, τ)
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are isomorphic as F–algebras with involution and we write (A, σ) ≃ (B, τ). For
any field extension K/F we will use the notations σK = σ ⊗ idK and (A, σ)K =
(AK , σK).


We call an F -algebra with involution totally decomposable if is it isomorphic to
the tensor product of F–quaternion algebras with involution.


To every nondegenerate symmetric or alternating bilinear form (V, b) over F we
can associate an algebra with involution in the following way. Let A = EndF (V ).
Then there is a unique involution σ on A such that


b(x, f(y)) = b(σ(f)(x), y) for all x, y ∈ V and all f ∈ A.


We call (A, σ) the adjoint involution to (V, b) and we denote it by Ad(V, b). More-
over, for every split F–algebra with involution (A, σ), there exists a nondegenerate
symmetric or alternating bilinear form (V, b) such that Ad(V, b) ≃ (A, σ) (see [11,
(2.1)]).


Proposition 4.2. Let (V, b) and (V ′, b′) be nondegenerate symmetric bilinear forms
over F . Then Ad(V, b) ≃ Ad(V ′, b′) if and only if there exists an λ ∈ F× such that
(V, λb) ≃ (V ′, b′).


Proof. See [11, (4.2)]. �


Let (A, σ) be an F–algebra with involution. Then it is well known (see [11,
(2.1)]) that in the case where the algebra A is split, that is A ∼= EndF (V ) for some
F -vector space V , each F -involution on A is adjoint to a nondegenerate symmetric
or alternating bilinear space on V . An F–algebra with involution of the first kind
is said to be symplectic if it becomes adjoint to an alternating bilinear form over a
splitting field of the F–algebra, and orthogonal otherwise. Note that this does not
depend on the choice of splitting field (see [11, (2.5)]).


Let (A, σ) be an F–algebra with involution. We call (A, σ) isotropic if there
exists a ∈ A\{0} such that σ(a)a = 0, and anisotropic otherwise. We call an
element e ∈ A idempotent if e2 = e. An idempotent e ∈ A is called metabolic with
respect to σ if σ(e)e = 0 and dimF eA = 1


2dimFA; by [4, (4.3)], we may substitute


the condition dimF eA = 1
2dimFA for the condition that (1−e)(1−σ(e)) = 0 in this


definition. We call (A, σ) metabolic if A contains a metabolic idempotent element
with respect to σ.


Proposition 4.3. Let (V, b) be a nondegenerate alternating or symmetric bilinear
form over F . Then (V, b) is isotropic (resp. metabolic) if and only if Ad(V, b) is
isotropic (resp. metabolic).


Proof. See [4, (4.8)]. �


Note that, in particular, it follows from the definition of symplectic involutions
that any split F–algebra with involutions (A, σ) is isomorphic to Ad(n × H) for
some integer n.


Let (A, σ) be an F–algebra with involution. Let


Sym(A, σ) = {a ∈ A | σ(a) = a} and Alt(A, σ) = {a− σ(a) | a ∈ A}.


These are F–linear subspaces of A.
An F–algebra with involution (B, τ) is called a part of (A, σ) if there exists an


idempotent e ∈ Sym(A, σ) and an F–algebra isomorphism ϕ : B → eAe such that
ϕ◦τ = σ◦ϕ. In this case, we say that the idempotent e ∈ Sym(A, σ) defines the part
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(B, τ). Let (B, τ) be a part of of (A, σ) defined by an idempotent e ∈ Sym(A, σ).
Then we call the part of (A, σ) defined by the idempotent 1 − e ∈ Sym(A, σ) a
counterpart of (B, τ) in (A, σ) and we say that (A, σ) is an orthogonal sum of
(B, τ) and its counterpart. Note however that the counterpart of a part (B, τ) of
an algebra with involution is not uniquely determined by (B, τ) (see [5, (4.2)])


Parts of F–algebras with involution correspond to subforms of hermitian forms
whose adjoint involution is isomorphic to those F–algebras with involution (see [11,
(4.2)]). We state this more precisely for the split case.


Lemma 4.4. Let ϕ be a nondegenerate symmetric or alternating bilinear form over
F . An F–algebra with involution (B, τ) is a part of Ad(ϕ) if and only if there exist
bilinear forms ϕ′ and ϕ′′ over F such that ϕ′⊥ϕ′′ ≃ ϕ and (B, τ) ≃ Ad(ϕ′). Let
e ∈ Sym(A, σ) be the idempotent that defines (B, τ) in (A, σ). Then the idempotent
(1− e) ∈ Sym(A, σ) defines a part of Ad(ϕ) that is isomorphic to Ad(ϕ′′).


Proof. See [5, (4.1)]. �


If char(F ) 6= 2, then a part of an F–algebra with involution (A, σ) must be of
the same type as (A, σ). This is not the case if char(F ) = 2 (see [5, (4.6)]).


Lemma 4.5. Assume that char(F ) = 2. Let (A, σ) be an orthogonal F–algebra
with involution. Let (B, τ) be a part of (A, σ). Then if (B, τ) is symplectic, any
counterpart of (B, τ) is orthogonal.


Proof. Let K be a separable closure of F and let (C, γ) be a counterpart of (B, τ).
Then AK , BK and CK are split by (4.1) and hence there exists a bilinear form ϕ
over F such that (A, σ)K ≃ Ad(ϕ). By (4.4) there exists forms ϕ1 and ϕ2 such
that ϕ ≃ ϕ1⊥ϕ2 and Ad(ϕ1) ≃ (B, τ)K and Ad(ϕ2) ≃ (C, γ)K . By definition,
(B, τ) symplectic implies that ϕ1 is hyperbolic. Since (A, σ) is orthogonal ϕ is not
hyperbolic, and therefore we must have that ϕ2 is not hyperbolic. Hence (C, γ) is
not symplectic. �


We call a part (B, τ) of (A, σ) the anisotropic part of (A, σ) if (B, τ) is direct and
its counterpart is metabolic. This part is unique up to isomorphism by [4, (3.6)]
and we denote it by (A, σ)an.


Assume that char(F ) = 2. We say (A, σ) is direct if for all a ∈ A such that
σ(a)a ∈ Alt(A, σ), it follows that a = 0. If A is split, then an algebra with
involution is direct if and only if it is anisotropic (see [5, (7.1)]). We call a part
(C, γ) of (A, σ)an the direct part of (A, σ) if (C, γ) is direct and its counterpart in
(A, σ)an is symplectic. This part is unique up to isomorphism by [5, (7.5)], as is its
counterpart, which we call the even part of (A, σ), denoted (A, σ)ev.


Lemma 4.6. Assume that char(F ) = 2. Let L be the separable closure of F . Let
(A, σ) be an F–algebra with involution and let ϕ be a nondegenerate symmetric
bilinear form over L such that (A, σ)L ≃ Ad(ϕ). If (A, σ) has a non-trivial even
part, then the hyperbolicity index of ϕ is strictly positive.


Proof. This follows from (4.4) since split algebras with symplectic involutions are
adjoint to hyperbolic bilinear forms by definition. �


In characteristic 2, the direct part of an F–algebra with involution classifies the
isotropy behaviour of the involution when extending scalars to a separable extension
of F that splits the algebra.
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Proposition 4.7. Assume that char(F ) = 2. Let (A, σ) be an F–algebra with
involution and let L/F be a separable algebraic field extension such that AL is split.
Then ((A, σ)L)an ≃ ((A, σ)dir)L.


Proof. See [5, (9.3)]. �


5. Isotropy of totally decomposable orthogonal involutions


In this section we prove our main result. That a totally decomposable orthog-
onal involution is anisotropic or metabolic over every field extension. We assume
throughout this section that char(F ) = 2.


Lemma 5.1. Let (A, σ) be a totally decomposable orthogonal F–algebra with invo-
lution. Then (A, σ) is anisotropic if and only if it is direct.


Proof. That (A, σ) is anisotropic if it is direct is clear as 0 ∈ Alt(A, σ).
Assume that (A, σ) is anisotropic. Over the separable closure L of F all F–


quaternion algebras are split by (4.1). Therefore (A, σ)L isomorphic to Ad(π) for
some Pfister form π over L. Hence by (4.3) and (2.5), (A, σ)L is either metabolic
or anisotropic. If (A, σ)L is anisotropic, then (A, σ) is direct by (4.7).


Otherwise, (A, σ)an is symplectic by (4.7). However (A, σ) is orthogonal, and
hence in this case must have a non-trivial metabolic part. �


Theorem 5.2. Let (A, σ) be an orthogonal F–algebra with involution such that
(A, σ) ≃


⊗n
i=1(Qi, σi), where (Qi, σi) are F–algebras with involution for all i ∈


{1, . . . , n}. If (A, σ) is isotropic then it is metabolic.


Proof. By [11, (2.23)] we have that the (Qi, σi) are all orthogonal as (A, σ) is
orthogonal. We proceed by induction. The result is trivial for n = 1. Assume that
it is true for n− 1.


Let (A, σ) ≃ (B, τ) ⊗ (Qn, σn) be an isotropic orthogonal F–algebra with invo-
lution such that (Qi, σi) are orthogonal F–algebras with involution for i = 1, . . . , n


and (B, τ) =
⊗n−1


i=1 (Qi, σi). By the inductive assumption, we may assume that
(B, τ) and (Qn, σn) are anisotropic, as if one of them is metabolic then (A, σ) is
metabolic. In particular (B, τ) is direct by (5.1).


Let L be the separable closure of F . By (2.5), (A, σ)L is metabolic and hence
by [5, (9.4)], (A, σ) is some orthogonal sum of an anisotropic symplectic F–algebra
with involution (C, γ) and a metabolic F–algebra with involution. If (C, γ) is trivial,
then we are done.


By (4.1) all L–algebras are split, hence we may find π and ψ ≃ 〈1, a〉, Pfister
forms over L such that Ad(π) ≃ (B, τ) and Ad(ψ) ≃ (Qn, σn). By (4.7), (B, τ)L is
anisotropic and hence so is π. Since (A, σ)L ≃ Ad(π ⊗ ψ) is metabolic, we have


π ⊗ ψ ≃ M(β)⊥n ×H


for some anisotropic bilinear form β over L. Hence π⊥aπ is metabolic, and in
particular it represents 0. As π is anisotropic, it follows that π represents a and
therefore aπ ≃ π by (2.3). Hence π ⊗ ψ ≃ M(π) and we must have that M(π) ≃
M(β) by (2.2). In particular, we have that n = 0. Hence (C, γ) is trivial by (4.6),
as required. �


Lemma 5.3. A totally decomposable orthogonal F -algebra with involution is either
direct or metabolic. In particular, the even part of a totally decomposable orthogonal
F–algebra with involution is trivial.
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Proof. If an orthogonal F -algebra with involution is anisotropic then it is direct by
(5.1). Otherwise it is metabolic by (5.2) and has trivial anisotropic part. �


Corollary 5.4. Let L be the separable closure of F . A totally decomposable orthog-
onal F -algebra with involution (A, σ) is metabolic if and only if (A, σ)L is metabolic.
Otherwise (A, σ) is anisotropic.


Proof. This follows immediately from (5.3) and (4.7). �


Question 5.5. Let (A, σ) be a non-metabolic F–algebra with involution. Assume
that for every field extension K/F we have (A, σ)K is either anisotropic or meta-
bolic. Is (A, σ) totally decomposable?


6. An invariant of totally decomposable algebras


In this section we use (5.2) to define an invariant on totally decomposable invo-
lutions and give an application of this result.


Let (A, σ) be an F–algebra with orthogonal involution. As in [11, Section 7] the
determinant of (A, σ), denoted ∆(A, σ), is the square class of the reduced norm of
any alternating unit. That is


∆(A, σ) = NrdA(a) · F
×2 ∈ F×/F×2 for a ∈ Alt(A, σ) ∩ A×.


This does not depend on the choice of a ∈ Alt(A, σ) ∩ A× (see [11, (7.1)]).


Lemma 6.1. Let (Q, σ) be a split orthogonal F–quaternion algebra with involution
and let d ∈ F be a representative of the class of ∆(Q, σ) in F×/F×2. Then (Q, σ) ≃
Ad(〈1, b〉).


Proof. This follows from [11, (7.3), (3)] and the fact that the determinant of a
2–dimensional bilinear form classifies it up to similarity. �


We now assume throughout the rest of this section that char(F ) = 2.


Lemma 6.2. Let (A, σ) be an orthogonal F–algebra with involution such that
(A, σ) ≃


⊗n
i=1(Qi, σi) ≃


⊗n
i=1(Q


′


i, σ
′


i) where (Qi, σi) and (Q′


i, σ
′


i) are orthogo-
nal F–algebras with involution for all i ∈ {1, . . . , n}. Let ∆i = ∆(Qi, σi) and
∆′


i = ∆(Q′


i, σ
′


i). Then 〈〈∆1, . . . ,∆n〉〉 ≃ 〈〈∆′


1, . . . ,∆
′


n〉〉.


Proof. Let π = 〈〈∆1, . . . ,∆n〉〉 and π′ = 〈〈∆′


1, . . . ,∆
′


n〉〉. Let L be the separable
closure of F . Since (Qi)L and (Q′


i)L are split for all i ∈ {1, . . . , n} by (4.1), it
follows from (6.1) that (A, σ) ≃ Ad(π) ≃ Ad(π′). Therefore by (4.2) there exists
a λ ∈ L such that λπL ≃ π′


L. However, since π and π′ are Pfister forms, it follows
from (2.4) that πL ≃ π′


L. That π ≃ π′ now follows from (3.2). �


Theorem 6.3. Let (Qi, σi) be orthogonal F–algebras with involution for all i ∈
{1, . . . , n} and let ∆i = ∆(Qi, σi). Then the map that associates 〈〈∆1, . . . ,∆n〉〉
to the F–algebra with involution


⊗n
i=1(Qi, σi) induces a map from the set of iso-


morphism classes of totally decomposable orthogonal F–algebras with involution of
degree 2n to the set of isometry classes of n–fold Pfister forms over F . This map
is compatible with scalar extension.


Proof. That the map induced by associating 〈〈∆1, . . . ,∆n〉〉 with
⊗n


i=1(Qi, σi) is
well defined follows directly from (6.2). Let K/F be a field extension and let π
be the Pfister form over K associated with (A, σ)K via the map in the statement.
That π ≃ 〈〈∆1, . . . ,∆n〉〉K follows using the same argument as in (6.2). �
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With notation as in (6.3), the Pfister form 〈〈∆1, . . . ,∆n〉〉 associated to a totally
decomposable F–algebra with orthogonal involution (A, σ) is uniquely determined
by (A, σ) up to isometry. We call this Pfister form the Pfister invariant of (A, σ).
We denote it by Pf(A, σ).


Question 6.4. For totally decomposable orthogonal F–algebras with involution
(A, σ) and (A, τ), does Pf(A, σ) ≃ Pf(A, τ) imply that (A, σ) ≃ (A, τ)?


Corollary 6.5. Let (A, σ) be a totally decomposable orthogonal F–algebra with
involution. Then


(1) (A, σ) is metabolic if and only if Pf(A, σ) is metabolic.
(2) If Pf(A, σ) is not metabolic, then (A, σ) is anisotropic.
(3) For any field K such that Ak is split, (A, σ)K ≃ Ad(Pf(A, σ)K ).


Proof. Let L be the separable closure of F . Then we clearly have that (A, σ)L ≃
Ad(Pf(A, σ)L). Hence (A, σ)L is anisotropic (resp. metabolic) if and only if
Ad(Pf(A, σ)L) is anisotropic (resp. metabolic) by (4.3). This is equivalent to
(1) and (2) by (3.1) and (5.4).


Now let ϕ be a symmetric bilinear form over K such that (A, σ)K ≃ Ad(ϕ).
By scaling we may assume that ϕ represents 1. Then by (4.2), there exists a
λ ∈ L× such that λϕL ≃ πL. Note that this implies that ϕL is either anisotropic
or metabolic and hence so is ϕ by (3.1). Then ϕL ≃ πL by (2.4). That ϕ ≃ πK
now follows from (3.2). �


Remark 6.6. Let k be a field of characteristic different from 2. It is shown in [2,
(3.9)] that in general one cannot associate a bilinear form over k to any F–algebra
with involution (A, σ) so that ϕ shares its anisotropy behaviour with (A, σ) as the
Pfister invariant is shown to do in (6.5). Moreover, they show that for a field
extension K/k such that AK is split, there does not always exist a bilinear form ϕ
over k such that (A, σ)K ≃ Ad(ϕK). This gives (3).


Remark 6.7. Part (2) of (6.5) can be thought of as one characteristic 2 version of
the Pfister Factor Conjecture (see [3]). That is, any totally decomposable orthog-
onal involution over a split algebra is adjoint to a Pfister form.


This can be shown more directly as follows. Let (A, σ) be a totally decomposable
F–algebra with orthogonal involution such that A is split. Then (A, σ) ≃ Ad(ϕ)
for some bilinear form ϕ over F which we may assume represents 1. Let L be a
separable closure of F . Then, since every L-quaternion algebra is split by (4.1), we
must have that (A, σ)L is isomorphic to a product of split L–quaternion algebras
with involution, and hence (A, σ)L ≃ Ad(π) for some Pfister form π over L. That
ϕL ≃ π now follows from (4.2) and (2.4), and hence ϕ is a Pfister form by (3.3)
and (2.4).


However (6.5) not only shows that these split totally decomposable algebras
with involution are adjoint to Pfister forms, but gives an explicit description of the
Pfister forms. This result was also independently obtained in [15, (4.6)] with dif-
ferent methods that do not rely on the non-split behaviour of totally decomposable
involutions.


Corollary 6.8. Let (Q1, σ1) and (Q2, σ2) be orthogonal F–quaternion algebras with
involution such that ∆(Q1, σ1) = ∆(Q2, σ2). Then (Q1, σ1)⊗ (Q2, σ2) is metabolic.


Proof. It is clear thatPf((Q1, σ1)⊗(Q2, σ2)) is metabolic, and hence so is (Q1, σ1)⊗
(Q2, σ2) by (6.5). �
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Remark 6.9. Let k be a field of arbitrary characteristic. Let (Q1, σ1) and (Q2, σ2)
be split orthogonal k–quaternion algebras with involution such that ∆ = ∆(Q1, σ1) =
−∆(Q2, σ2). Then by (6.1) we have that (Q1, σ1) ≃ Ad(〈1,∆〉) and (Q2, σ2) ≃
Ad(〈1,−∆〉). Moreover, since we have (Q1, σ1) ⊗ (Q2, σ2) ≃ Ad(〈1,∆〉 ⊗ 〈1,−∆〉)
it is clear that (Q1, σ1)⊗ (Q2, σ2) is metabolic.


(6.8) shows that this behaviour extends to the non-split case when char(k) = 2.
Note that is is not the case when char(k) 6= 2, where ∆(Q1, σ1) = −∆(Q2, σ2) does
not even imply that Q1 ⊗Q2 is not division in general, as (6.11) shows.


Let k be a field with char(k) 6= 2. For a, b ∈ k×, let (1, u, v, w) be basis ele-
ments of a k-vector space such that u2 = a, v2 = b and w = uv = −vu. Then
(1, u, v, w) generate an k–quaternion algebra which we denote (a, b)k. There is a
unique symplectic k–involution γ on (a, b)k given by γ(u) = −u and γ(v) = −v
(see [11, (2.21)]). We call this k–involution the canonical involution on (a, b)F .


Lemma 6.10. Let k be a field with char(k) 6= 2. Let K = k(X,Y, Z) where X,Y
and Z are indeterminates. Then we have


(X,Y )K ⊗ (−1, Z)K ≃ (X,Y Z)K ⊗ (−X,Z)K .


Proof. Let ϕ ≃ 〈−X,−Y,XY, 1,−Z,Z〉 and ψ ≃ 〈−X,−Y Z,XY Z,X,−Z,−XZ〉.
Direct computation shows that ϕ⊥(−ψ) ≃ 〈〈X,Y, Z〉〉⊥2×H. By [14, Chapter XII,
(2.13)], it then follows that (X,Y )K ⊗ (−1, Z)K ≃ (X,Y Z)K ⊗ (−X,Z)K . �


Example 6.11. Let k be a field with char(k) 6= 2. Further assume that −1 /∈ k2.
Let K = k(X,Y, Z) where X,Y and Z are indeterminates. Then the K–algebra
A = (X,Y )K ⊗ (−1, Z)K is division by [16, (19.6, Corollary c)].


By (6.10) we haveA ≃ (X,Y Z)K⊗(−X,Z)K . Let (1, u1, v1, w1) and (1, u2, v2, w2)
be K–bases of Q1 = (X,Y Z)K and Q2 = (−X,Z)K respectively. Let γ1 and γ2 be
the canonical involutions of Q1 and Q2 respectively. Then (Q1, Int(u1) ◦ γ1) and
(Q2, Int(u2)◦γ2) are orthogonalK–algebras with involution by [11, (2.21)]. Further
by [11, (7.4)] ∆(Q1, Int(i1) ◦ γ1) = X and ∆(Q2, Int(i2) ◦ γ2) = −X .


However, every F–involution on A must be anisotropic, as for all a ∈ A× we have
σ(a)a 6= 0 since A is division. In particular, (Q1, Int(i1) ◦ γ1)⊗ (Q2, Int(i2) ◦ γ2) is
not metabolic.


7. Involutions adjoint to Pfister forms after splitting


In this section we show that a non-metabolic algebra with involution that is
anisotropic or metabolic over every field extension is adjoint to a Pfister form over
any splitting field, but that the converse fails in general. This result also shows
that over fields of characteristic 2, there exist non-totally decomposable algebras
with involution that become totally decomposable over some field extension. We
construct an explicit example in Section 8. We assume throughout this section that
char(F ) = 2.


Proposition 7.1. Let (A, σ) be a split anisotropic orthogonal F–algebra with in-
volution. Assume that for all field extensions K/F , (A, σ)K is either anisotropic
or metabolic. Then there exists a Pfister form over F such that (A, σ) ≃ Ad(π).


Proof. By hypothesis (A, σ) must be anisotropic. Let ϕ be a bilinear form over F
such that (A, σ) ≃ Ad(ϕ). We may assume ϕ represents 1. Then ϕ is anisotropic
and ϕK is either anisotropic or metabolic over every field extension K/F by (4.3).
Hence ϕ is a Pfister form by (2.5) and (2.4). �
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Proposition 7.2. Let (A, σ) be an anisotropic F–algebra with involution. Assume
that for all field extensions K/F , (A, σ)K is either anisotropic or metabolic. Let L
be the separable closure of F . Then (A, σ)L is anisotropic and there exists a Pfister
form π over L such that (A, σ)L ≃ Ad(π).


Proof. By the hypothesis, (A, σ) is anisotropic and not symplectic. If (A, σ)an =
(A, σ) is not isomorphic to (A, σ)dir then it follows from (4.6) and (4.7) that (A, σ)L
is neither anisotropic nor metabolic. Hence (A, σ) is direct. Therefore, by (4.7),
(A, σ)L is anisotropic and by the hypothesis, either anisotropic or metabolic over
every field extension of L. Therefore, there exists a Pfister form π over L such that
(A, σ)L ≃ Ad(π) by (7.1). �


Theorem 7.3. Let (A, σ) be an anisotropic orthogonal F–algebra with involution.
Assume that for all field extensions K ′/F , (A, σ)K′ is either anisotropic or meta-
bolic. Then for every field extension K/F such that AK is split, there exists a
Pfister form over K such that (A, σ)K ≃ Ad(π).


Proof. Let L be a separable closure of F . By (7.2) there exists a Pfister form π
over L such that (A, σ)L ≃ Ad(π).


Let K/F be a field extension such that AK is split, and let ψ be a bilinear form
over K such that (A, σ)K ≃ Ad(ψ). We may assume that ψ represents 1. Let
K ′ be a separable extension of K such that L is a subfield of K ′. It follows that
(A, σ)K′ ≃ Ad(ϕK′) and hence πK′ ≃ ψK′ by (4.2) and (2.4). Hence ψ is similar
to a Pfister form by (2.5). �


Question 7.4. In the situation of (7.3), can we find a Pfister form π′ over F such
that π′


K ≃ π?


Note that the converse to (7.3) does not hold in general as we now show.


Lemma 7.5. Let (A, σ) be an orthogonal F–algebra with involution with deg(A) =
2n for some integer n such that (A, σ)an ≃ (A, σ)ev and the counterpart of (A, σ)an
is totally decomposable. Let K/F be a field extension such that AK is split. Then
there exists a Pfister form over K such that (A, σ)K ≃ Ad(π).


Proof. Denote the counterpart of (A, σ)an by (B, τ). Note that (B, τ) must be
orthogonal by (4.5). Since AK is split there exists some symmetric bilinear form ϕ
over K such that (A, σ)K ≃ Ad(ϕ).


Then by (4.4) it follows from the hypothesis that ϕ ≃ M(π)⊥n × H for some
bilinear form π over K and integer n with 2dimF (π) + 2n = 2m for some integer
m such that ((A, σ)ev)K ≃ Ad(n × H) and (B, τ)K ≃ Ad(M(π)). Since (B, τ) is
totally decomposable, it follows from (6.5) that π is a Pfister form and hence so is
ϕ by (2.6). �


Proposition 7.6. Let (A, σ) be an orthogonal F–algebra with involution with
deg(A) = 2n for some integer n such that (A, σ)an ≃ (A, σ)ev is non-trivial and a
counterpart of (A, σ)an is totally decomposable and non-trivial. Then the following
hold:


(a) For any field extension K/F such that AK is split (A, σ)K is totally decom-
posable.


(b) (A, σ) is isotropic but not metabolic.
(c) (A, σ) is not totally decomposable.
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Proof. Statement (a) follows directly from (7.5). Statement (b) is clear as (A, σ)an
is non-trivial but not isomorphic to (A, σ). It is also clear that (A, σ) is neither
direct nor metabolic, hence (5.3) gives (c). �


8. A non-totally decomposable involution that becomes totally


decomposable after splitting


We now use hermitian forms to construct an explicit example of the type of
algebra with involution described in (7.6). Throughout this section, assume that
char(F ) = 2.


Let (D, θ) be an F–division algebra with involution of the first kind. A hermitian
form over (D, θ) is a pair (V, h) where V is a finite-dimensional right D-vector space
and h is a non-degenerate bi-additive map h : V × V → D such that


h(x, yd) = h(x, y)d and h(y, x) = θ(h(x, y))


holds for all x, y ∈ V and d ∈ D. We say (V, h) is non-degenerate if h(x, y) = 0
for all y ∈ V implies that x = 0. We say (V, h) represents an element a ∈ D
if h(x, x) = a for some x ∈ V \{0}. We call a hermitian form (V, h) isotropic it
represents 0, and anisotropic otherwise. We call a hermitian form (V, h) metabolic
if there exists a subspace W ⊂ V such that h|W = 0 and dimF (W ) = 1


2dimF (V ).
For a1, . . . , an ∈ D×∩ Sym(D, θ), we denote by 〈a1, . . . , an〉θ the hermitian form


(Dn, h) where


h : Dn ×Dn → D, is given by (x, y) 7→
n∑


i=1


θ(xi)aiyi.


There is a well known correspondence between non-degenerate hermitian forms
on V and F–involutions on A, generalising the correspondence between bilinear
forms and involutions on a split algebra:


Proposition 8.1. Let (D, θ) be an F–division algebra with involution, V a right
D–vector space and let A = EndD(V ). For every non-degenerate hermitian form
(V, h), there is a unique F–involution σ on A such that


h(f(x), y) = h(x, σ(f)(y)) for all x, y ∈ V and f ∈ A.


Proof. See [11, (4.1)]. �


In the situation of (8.1), we call (A, σ) the F–algebra with involution adjoint to
(V, h) and we write Ad(V, h) = (EndD(V ), σ).


Proposition 8.2. Let (V, h) be a nondegenerate hermitian form over and F–
division algebra with involution (D, θ). Then (V, h) is isotropic (resp. metabolic) if
and only if Ad(V, h) is isotropic (resp. metabolic).


Proof. See [4, (4.8)]. �


Let a ∈ F be such that −4a 6= 1 and let b ∈ F×. Let K = F (α) where α2+α = a
and let τ be the non-trivial F–automorphism ofK. Let (1, u, v, w) be basis elements
of the F -vector space K ⊕ vK such that u2 = u + a, v2 = b and w = uv = τ(u).
Then (1, u, v, w) generate an F–quaternion algebra which we denote by [a, b)F .


Let Q = [a, b)F for a ∈ F and b ∈ F× as above. Let γ be the F–involution on
Q given by γ(u) = τ(u) and γ(v) = v. This is the unique symplectic involution on
Q (see [11, (2.21)]). Let Alt(Q, γ) = {γ(s) + s | s ∈ Q}. Then direct computation
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gives Alt(Q, γ) = F and that for s = t1 + t2u + t3v + t4w where t1, . . . , t4 ∈ F we
have


γ(s)s = t21 + t1t2 + t22a+ (t23 + t3t4 + t24a)b.


If we consider Q as a 4-dimensional F–vector space, Q together with the map
nQ : Q→ F , s 7→ γ(s)s for s ∈ Q can be considered as a quadratic form over F .


Lemma 8.3. Let k be a field of arbitrary characteristic and let F = k(X,Y ), where
X,Y are indeterminates. Let Q = [X,Y )F . Then Q is an F–division algebra.


Proof. By [7, (12.5)], Q is division if and only if (Q,nQ) is anisotropic.
By [7, (17.4)], (Q,nQ) is anisotropic if and only if


ρ = (k(Y )2, (t1, t2) 7→ t21 + t1t2 + t22Y )


is anisotropic. By [7, (17.3)], ρ is anisotropic if and only if there exists an element
a ∈ k[Y ] such that 1 + a+ a2Y = 0.


Assume a = anY
n + . . . + a1Y + a0 for n > 0 and a0, . . . , an ∈ k with an 6= 0.


Substituting this expression for a into 1+a+a2Y = 0 gives a2nY
2n+1+ b = 0 where


b ∈ k[Y ] such that degY (b) < 2n+ 1. This contradicts an 6= 0. Therefore we must
have that degY (a) = 0. However, since Y /∈ k, it follows that a = 0, and hence ρ is
anisotropic. �


Example 8.4. Let k be a field of characteristic 2 and let F = k(X,Y, Z) where
X,Y and Z are indeterminates. Let Q = [X,Y )F , which is an F–divison algebra
by (8.3).


Let ψ be the hermitian form 〈1, Z, v, v〉γ over (Q, γ) and let (A, σ) ≃ Ad(ψ). We


have that Ad(〈1, Z〉γ) is symplectic and that Ad(〈v, v〉γ) and (A, σ) are orthogonal


by [11, (4.2)].
Since 〈v, v〉γ is clearly metabolic, by (8.2) we have that Ad(〈v, v〉γ) is metabolic.


We have that 〈1, Z〉γ is isotropic if and only if γ(a1)a1 + Zγ(a2)a2 = 0 for some


(a1, a2) 6= (0, 0) ∈ Q × Q. That is, if and only if (Q,nQ)⊥Z(Q,nQ) is isotropic.
That (Q,nQ)⊥Z(Q,nQ) is anisotropic follows from [7, (17.14)] using an argument
similar to that in (8.3). Hence 〈1, Z〉γ is anisotropic, and hence so is Ad(〈1, Z〉γ)


by (8.2). It follows that ψ is not metabolic by [10, Chapter 1, (6.1.1)] and hence
(A, σ) is not metabolic by (8.2).


Finally, Ad(〈v, v〉γ) ≃ Ad(〈1, 1〉) ⊗ Ad(〈v〉γ) and Ad(〈v〉γ) ≃ (Q, σ′) for some


orthogonal F–involution σ′. That is, Ad(〈v, v〉γ) is totally decomposable. Therefore


(A, σ) satisfies the conditions of (7.6). That is, (A, σ) is a non-totally decomposable
orthogonal F–algebra with involution such that (A, σ)L is totally decomposable for
any field extension L/F such that AL is split.


Question 8.5. Let (A, σ) be an orthogonal F–algebra with involution. Assume
that there exists a field extension L/F such that (A, σ)L is anisotropic and AL is
split. That is, by (4.7), (A, σ) is direct. Assume further that for all field extensions
K/L, (A, σ)K is either anisotropic or metabolic. Does it follow that for every field
extension K ′/F , (A, σ)K′ is either anisotropic or metabolic?
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