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Abstract. Canonical dimension of a smooth complete connected variety is the minimal
dimension of image of its rational endomorphism. The i-th canonical dimension of a non-
degenerate quadratic form is the canonical dimension of its i-th orthogonal grassmannian.
The maximum of a canonical dimension for quadratic forms of a fixed dimension is known
to be equal to the dimension of the corresponding grassmannian. This article is about
the minima of the canonical dimensions of an anisotropic quadratic form. We conjecture
that they equal the canonical dimensions of an excellent anisotropic quadratic form of
the same dimension and we prove it in a wide range cases.
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1. Introduction


Canonical dimension cd(X) of a smooth complete connected algebraic variety X over
a field F is the minimum of dimension of the image of a rational map X 99K X . This
integer depends only on the class of field extensions L/F with X(L) 6= ∅. We refer to
[8] and [15] for interpretations and basic properties of cd(X). We will also use a 2-local
version cd2(X) of cd(X) called canonical 2-dimension.
All fields here are of characteristic 6= 2. (The questions we are discussing can be


raised in characteristic 2 as well, but all results we get are for characteristic 6= 2 mainly
because their proofs need the Steenrod operations on Chow groups modulo 2 which are
not available in characteristic 2.)
Let ϕ be a non-degenerate quadratic form over a field F . (Our general reference for


quadratic forms is [3].) For any integer i lying in the interval [1, (dimϕ)/2], the i-
th canonical dimension cd[i](ϕ) is defined as the canonical dimension of the orthogonal
grassmannian of i-dimensional totally isotropic subspaces of ϕ (i-grassmannian of ϕ for
short). A little care should be given to the case of i = (dimϕ)/2 because the corresponding
i-grassmannian is not connected if the discriminant of ϕ is trivial. However, the (two)
connected components it has are isomorphic to each other so that we can define the
canonical dimension by taking any of them.
For arbitrary i and a given field extension L/F , the i-grassmannian of ϕ has an L-point


if and only if the Witt index i0(ϕL) is at least i. Therefore, cd[i](ϕ) is an invariant of the
class of field extensions L/F satisfying i0(ϕL) ≥ i.
Similarly, the i-th canonical 2-dimension cd2[i](ϕ) is the canonical 2-dimension of the


i-grassmannian. Since in general, canonical 2-dimension is a lower bound for canonical
dimension, we have cd[i](ϕ) ≥ cd2[i](ϕ) for any i. This is known to be equality for i = 1
(see Section 5) and no example when this inequality is not an equality (for some i > 1) is
known.
The study of canonical dimensions of quadratic forms naturally commences with the


question about the range of their possible values for anisotropic quadratic forms of a fixed
dimension (over all fields or over all field extensions of a given field). It has been shown
in [11] (see also [12]) that the evident upper bound on cd[i](ϕ) and cd2[i](ϕ), given by the
dimension of the i-grassmannian, is sharp. Here is a formula for this dimension:


i(i− 1)/2 + i(dimϕ− 2i).


The question on the sharp upper bound being therefore closed, the present paper ad-
dresses the question about the sharp lower bound. Natural candidates are canonical
dimensions of excellent quadratic forms. We do not really have a strong evidence sup-
porting this, but we may, for instance, recall [3, Theorem 84.1] where the excellent forms
appear in the answer to the question about the minimal height of quadratic forms.
For any n ≥ 1 and any i ∈ [1, n/2], we write cd[i](n) (resp., cd2[i](n)) for the i-th


canonical (2-)dimension of an anisotropic excellent n-dimensional quadratic form over
some field. Note that cd[i](n) depends only on i, n and coincides with cd2[i](n) (see
Section 2).
The following Conjecture therefore gives a complete answer to the question about the


sharp lower bound on canonical dimension and canonical 2-dimension of anisotropic qua-
dratic forms:
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Conjecture 1.1. Let ϕ be an anisotropic quadratic form over a field F satisfying dimϕ >
2i for some i ≥ 1. Then cd2[i](ϕ) ≥ cd[i](dimϕ).


The reason of excluding the case 2i = dimϕ in the statement is that in this case
cd2[i](ϕ) = cd2[i−1](ϕE) and cd[i](ϕ) = cd[i−1](ϕE), where E/F is the discriminant field
extension of ϕ (E = F if the discriminant of ϕ is trivial) and i ≥ 2. So, understanding
of cd2[i](ϕ) and cd[i](ϕ) for i < (dimϕ)/2 would provide their understanding for i =
(dimϕ)/2 and, on the other hand, using these relations it is easy to get counter-examples
to the formula of Conjecture 1.1 with i = (dimϕ)/2 (see Section 9).


In this paper we prove Conjecture 1.1 for “small” values of i, namely, for i non-exceeding
the 2-nd absolute Witt index of ϕ (see Theorem 6.1) as well as for i ≤ 5 (see Theorems
7.1, 10.1 and 11.1). Finally, we prove Conjecture 1.1 with arbitrary i for all quadratic
forms of height ≤ 3 (see Theorem 8.2).


The proofs make use of a wide spectrum of modern results on quadratic forms and
Chow motives (the question seems to be a good testing ground for them). However most
of the results under use already became “classical” at least in the sense that they have
been exposed in a book (in [3] in most of the cases). For instance, we are using only a part
of Excellent Connections Theorem [19, Theorem 1.3], called Outer, which was available
already before the whole result and is exposed in [3, Corollary 80.13].


The most recent (and certainly yet non-classical) tool is a kind of going down principle
for Chow motives due to Charles De Clercq [2], used in the proofs of Theorem 3.2 and
(in a slightly different situation) Theorem 8.2. Applications of some particular cases
of this principle exist already in the literature (see, e.g., [4]). We are using it here (in
the proof of Theorem 3.2) in a new situation (still not in its full generality but in the
biggest generality which may occur in the case of projective homogeneous varieties). This
principle generalizes [9, Proposition 4.6], this older result is not sufficient for our purposes
here.


Those methods can certainly be used to prove a bit more of Conjecture 1.1, but it seems
that something is missing for a complete solution.


One could expect that the case of maximal i should be more accessible because maxi-
mal orthogonal grassmannians are so well-understood (mainly due to results of [18] also
exposed in [3, Chapter XVI]). Though in our approach we have to go through all values
of i in order to get to the maximal one.


This paper is an extended version of [6].


2. Excellent forms


Here we recall some standard facts about excellent forms needed to complete the state-
ment of Conjecture 1.1. Proofs (along with a definition) can be found, e.g., in [3, §28].


Every positive integer n is uniquely representable in the form of an alternating sum of
2-powers:


n = 2p0 − 2p1 + 2p2 − · · ·+ (−1)r−12pr−1 + (−1)r2pr


for some integers r ≥ 0 and p0, p1, . . . , pr satisfying p0 > p1 > · · · > pr−1 > pr + 1 > 0.
For any integer i ∈ [1, n/2], we define an integer cd[i](n) as


cd[i](n) := 2ps−1−1 − 1,
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where s is the minimal positive integer with


n− 2i ≥ 2ps − 2ps+1 + · · ·+ (−1)r−s2pr .


Note that cd[i](n) ≥ cd[i+ 1](n) (for any i, n such that both sides are defined).


Lemma 2.1. For any field k and any positive integer n, there exists an n-dimensional
anisotropic quadratic form ϕ over an appropriate extension field F/k such that


cd[i](ϕ) = cd2[i](ϕ) = cd[i](n)


for any i ∈ [1, n/2].


Proof. One may take as F a field extension of k generated by p0 algebraically independent
elements. (For k ⊂ R one may simply take F = R.) Then there exists an anisotropic
p0-fold Pfister form over F and therefore an anisotropic excellent quadratic form ϕ of
dimension n. (For F = R, the unique up to isomorphism anisotropic n-dimensional
quadratic form is excellent.) We claim that canonical dimensions of such ϕ are as required.
Indeed, for i ∈ [1, n/2] let s be the defined above integer. Then by [3, Theorem 28.3],
there exists a ps−1-fold Pfister form ρ over F such that for any field extension L/F the
condition i0(ϕL) ≥ i is equivalent to isotropy of ρL. It follows that cd2[i](ϕ) = cd[i](ϕ) =
2ps−1−1 − 1. �


3. Upper motives


By motives we always mean the Chow motives with coefficients in F2 := Z/2Z; we use
related terminology and notation as in [3, Chapter XII]. In particular,M(X) is the motive
of a variety X ; the motive M(SpecF ) and all its shifts M(SpecF )(i), i ∈ Z, are called
Tate motives. If M is a motive over F , M̄ is the corresponding motive over an algebraic
closure of F .
Let ϕ be a non-degenerate quadratic form over a field F . For an integer i with 0 ≤ i <


dimϕ/2, let Xi = Xi(ϕ) be the i-grassmannian of ϕ. In particular, X0 is the point and
X := X1 is the projective quadric of ϕ.
According to the general notion of upper motive, introduced in [13] and [10], the upper


motive U(Xi) of the variety Xi is the unique summand in the complete motivic decom-
position of X with the property that Ū(Xi) contains a Tate summand with no shift (i.e.,
with the shift 0). According to the general criterion of isomorphism for upper motives,
U(Xi) ≃ U(Xj) if and only if


i0(ϕL) ≥ i ⇐⇒ i0(ϕL) ≥ j


for any extension field L/F . This means that i and j are in the same semi-open interval
(jr−1, jr] for some r ≥ 0, where jr is the r-th absolute Witt index of ϕ and j−1 := −∞.
According to the general [10, Theorem 1.1], applied to quadrics, any summand of the


complete motivic decomposition of X is a shift of U(Xi) for some i or – in the case
of even-dimensional ϕ with non-trivial discriminant – U(SpecE), where E/F is the
quadratic discriminant field extension. Shifts of U((Xi)E), which may a priori appear
by [10, Theorem 1.1], aren’t possible because for any j 6= (dimX)/2 the motive M̄(X)
contains at most one Tate summand with the shift j while Ū((Xi)E) contains two Tate
summands without shift and two Tate summands with the shift dimU((Xi)E).
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A more precise information can be derived from [17, §4] (see also [3, §73]): if a shift
of U(Xi) for some i ∈ (jr−1, jr] with r ≥ 1 really appears in the decomposition (note
that this is always the case for r = 1), then it appears precisely ir := jr − jr−1 times and
the shifting numbers are jr−1, jr−1 + 1, . . . , jr − 1. A shift of U(SpecE) appears if and
only if ϕE is hyperbolic in which case it appears only once and with the shifting number
(dimX)/2. Note that U(Xi) for i ≤ j0 is just the motive of a point (= the Tate summand
with no shift), it appears precisely 2j0 times and the shifting numbers are 0, . . . , j0 − 1
and dimX, . . . , dimX − (j0 − 1).


Given any i and setting Y := Xi, one can answer the question, whether a shift of U(Y )
does appear, in terms of canonical dimension. First of all we have


Theorem 3.1 ([8, Theorem 5.1]). cd2(Y ) = dimU(Y ).


The following result is new. It provides a criterion of appearance of U(Y ) and is proved
with a help of the going down principle of [2].


Theorem 3.2. Assume that i ∈ (jr−1, jr] for some r ≥ 1 and set T := Xjr−1
, Y := Xi.


A shift of U(Y ) appears in the complete motivic decomposition of X if and only if


cd2(Y ) = cd2(YF (T )).


Remark 3.3 (cf. §5). cd2(YF (T )) = dimϕ− 2jr−1 − ir − 1.


Remark 3.4. Note that cd2(Y ) ≥ cd2(YF (T )) in general, [15].


Remark 3.5. As already mentioned, for i = j1, the i1 shifts of U(Xi) appear always.


Remark 3.6. Sufficient criteria of appearance given in [17, Theorems 4.15 and 4.17] are
easily derived from Theorem 3.2.


Proof of Theorem 3.2. By Theorem 3.1, we may replace cd2(Y ) with dimU(Y ) as well as
cd2(YF (T )) with dimU(YF (T )) in the statement.


If a shift of U(Y ) does appear, then dimU(Y ) = dimU(YF (T )) by [17, §4] (see also
[3, §73]). This proves one (“easy”) direction of Theorem 3.2. Let us concentrate on the
opposite direction.


Note that a shift of U(YF (T )) is a summand inM(XF (T )) (see Remark 3.5). If dimU(Y ) =
dimU(YF (T )), then we conclude by [2, Theorem 1.1] that the same shift of U(Y ) is a sum-
mand in M(X). �


4. Some tools


In this section we recall some results which appear most frequently in the proofs below.


4a. Outer excellent connections. The following statement is a part of [19, Theorem
1.3]. It is also proved in [3, Corollary 80.13].


Theorem 4.1 (Outer Excellent Connections). Let X be the quadric of an anisotropic
quadratic form of dimension 2n +m with n ≥ 1 and m ∈ [1, 2n]. Let M be a summand
of the complete motivic decomposition of X. If M̄ contains a Tate summand with a shift
i < m, then it also contains a Tate summand with the shift 2n−1+i = dimX−(m−1)+i.
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Using Theorem 4.1, we will be able see that no shift of U(Y ) is a summand of M(X)
for certain concrete X and Y as in Theorem 3.2. The latter theorem will then tell us that
cd2(Y ) > cd2(YF (T )) (see Remark 3.4). Afterwards, we usually get even a sharper lower
bound on cd2(Y ) using the motivic decomposition described right below.


4b. A motivic decomposition. Let ϕ be a non-degenerate quadratic form over F of
dimension n and let Y be the i0-grassmannian of ϕ. A variety is called anisotropic if all
its closed points are of even degree.


Lemma 4.2 ([7, Theorem 15.8 and Corollary 15.14] or [1]). The motive of Y decomposes
in a sum of shifts of motives of some anisotropic varieties plus


i0
⊕


i=0


M(Γi)
(


i(i− 1)/2 + i(n− 2i0)
)


,


where Γi is the i-grassmannian of an i0-dimensional vector space (Γ0 and Γi0 are points,
Γ1 and Γi0−1 – projective spaces).


Corollary 4.3. The motive of Y does not contain any Tate summand with a positive
shift strictly below n− 2i0.


Proof. By preceding Lemma, the motive of Y decomposes in a sum of shifts of motives
of certain varieties. Those summands of this motivic decomposition which are motives
of isotropic varieties1 (and therefore can contain Tate summands while the motives of
anisotropic varieties cannot, see, e.g., [13, Lemma 2.21]) come with shifts i(i − 1)/2 +
i(n− 2i0), i ≥ 0. For i = 0 the shifting number is 0 and the corresponding variety is just
the point. For i ≥ 1 the shifting numbers are at least n− 2i0. �


4c. Maximal orthogonal grassmannian. Let ϕ be a non-degenerate quadratic form
of dimension 2n + 1 and let Y = Xn(ϕ) be the maximal orthogonal grassmannian of ϕ.
Let ei ∈ Chi(Ȳ ), i = 0, 1, . . . , e2n−1+1, be the standard generators of the modulo 2 Chow
ring Ch(Ȳ ) defined as in [3, §86]. We say that ei is rational if it is in the image of the
change of field homomorphism Chi(Y ) → Chi(Ȳ ); otherwise is is irrational. We recall [3,
Theorem 90.3] stating that cd2(Y ) is equal to the sum of all j such that ej is irrational.


4d. Values of first Witt index. By [3, Proposition 79.4 and Remark 79.5], the first
Witt index i1 of an anisotropic quadratic form of dimension d ≥ 2 satisfies the relations


i1 ≡ d (mod 2r) and 1 ≤ i1 ≤ 2r


for some integer r ≥ 0 with 2r < d.


4e. Dimensions of forms in In. By [3, Proposition 82.1], dimension d of an anisotropic
quadratic form in In (the n-th power of the fundamental ideal in the Witt ring of the
base field), where n ≥ 1, is either ≥ 2n+1 or equals 2n+1 − 2i with 1 ≤ i ≤ n + 1.
Actually, apart from the old Arason-Pfister Hauptsatz (saying that d 6∈ (0, 2n)), we are
only using the statement about the “first hole”, saying that d is outside of the open
interval (2n, 2n + 2n−1) and proved earlier ([17, Theorem 6.4]).


1A variety if isotropic here if it has a closed point of odd degree.
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5. Level 1


We explain here that Conjecture 1.1 is actually already known in “level 1”, that is, for
i non-exceeding the first Witt index of ϕ.


It is well-known that cd[1](ϕ) = cd2[1](ϕ) ≥ cd[1](dimϕ) for any anisotropic ϕ. This
is a consequence of the formula cd[1](ϕ) = cd2[1](ϕ) = dimϕ − i1(ϕ) − 1 ([3, Theorem
90.2]) and the fact that the first Witt index of an excellent form is maximal among the
first Witt indexes of quadratic forms of a given dimension ([5, Corollary 1]).


As an immediate consequence, we get the following, formally more general statement –
(a bit more than) the “level 1” case of Conjecture 1.1:


Proposition 5.1. Let ϕ be an anisotropic quadratic form over F of height ≥ 1. For any
i ≤ i1(ϕ) one has cd[i](ϕ) = cd2[i](ϕ) ≥ cd[i](dimϕ).


Proof. cd[i](ϕ) = cd2[i](ϕ) = cd2[1](ϕ) ≥ cd[1](dimϕ) ≥ cd[i](dimϕ). �


6. Level 2


In this Section we prove (a bit more than) the “level 2” case of Conjecture 1.1:


Theorem 6.1. Let ϕ be an anisotropic quadratic form over F of height ≥ 2. For any
positive integer i ≤ i1(ϕ) + i2(ϕ) one has cd2[i](ϕ) ≥ cd[i](dimϕ).


Corollary 6.2. Let ϕ be an anisotropic quadratic form over F of dimension dimϕ ≥ 4.
Then cd2[2](ϕ) ≥ cd[2](dimϕ). �


Corollary 6.3. Let ϕ be an anisotropic quadratic form over F of of height ≤ 2. Then
cd2[i](ϕ) ≥ cd[i](dimϕ) for any i ∈ [1, (dimϕ)/2]. �


Proof of Theorem 6.1. We write i1 for i1(ϕ) and i2 for i2(ϕ). By Proposition 5.1, we may
assume that i ∈ (i1, i1 + i2].


Let us write dimϕ = 2n+m with n ≥ 1 and m ∈ [1, 2n]. In the case of i1 = m we have


cd2[i](ϕ) ≥ cd2[i−m](ϕ1) ≥ cd[i−m](dimϕ1) = cd[i](dimϕ),


where ϕ1 is the 1-st anisotropic kernel of ϕ, [3, §25]. The first inequality here is a particular
case of the general principle saying that cd2(TL) ≤ cd2(T ) for a variety T over F and a
field extension L/F , [15]. The second inequality holds by Proposition 5.1.


Below we are assuming that i1 < m and we have to show that cd2[i](ϕ) ≥ 2n − 1.
In the case of i1 < m/2 we have


cd2[i](ϕ) ≥ cd2[1](ϕ1) ≥ cd[1](2n +m− 2i1(ϕ)) = 2n − 1.


Below we are assuming that m/2 ≤ i1 < m. It follows by §4d that i1 = m/2 (in
particular, m is ≥ 2 and even). This implies that i2 ≤ 2n−1.


If i1 + i2 < m, then i1 + i2 ≤ m − i1 by [16, Theorem 1.2] which is impossible with
i1 = m/2. Therefore i1+i2 ≥ m and it follows by Theorem 4.1 that U(Y )(i1) is not a direct
summand of the motive of X , where X is the quadric of ϕ and Y is the (j2 = i1 + i2)-th
grassmannian of ϕ.


Since cd2[i](ϕ) = cd2(Y ), all we need to show is cd2(Y ) ≥ 2n − 1.
First of all we have cd2(Y ) > cd2(YF (X)) by Theorem 3.2 and Remark 3.4.
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Now we claim that the complete decomposition of M(YF (X)) does not contain a sum-
mand U(YF (X))(j) with j inside of the open interval


(0, 2n +m− 2(i1 + i2)).


Indeed, if U(YF (X))(j) with some j is there, then M(YF (Y )) contains a Tate summand
with the shift j. By Corollary 4.3 we necessarily have j = 0 or j ≥ 2n +m − 2(i1 + i2),
and the claim is proved.
By [8, Proposition 5.2], the complete decomposition of U(Y )F (X) ends with a sum-


mand U(YF (X))(j) with some j ≥ 0. (We say “ends” meaning that dimU(Y )F (X) =
dimU(YF (X)) + j.) By the first claim, j 6= 0. It follows by the second claim that
j ≥ 2n +m− 2(i1 + i2). Thus


cd2(Y ) = dimU(Y ) = dimU(Y )F (X) = dimU(YF (X)) + j = cd2[1](ϕ1) + j =


(2n +m− i1 − 1) + j ≥ (2n +m− i1 − 1) + (2n +m− 2(i1 + i2)) =


2n+1 + 2m− 3i1 − 2i2 − 1 = 2n+1 +m/2− 2i2 − 1 ≥ 2n.


The last inequality here holds because i2 ≤ 2n−1 and m ≥ 2 (see above). The very first
equality holds by Theorem 3.1. �


7. Third canonical dimension


Theorem 7.1. For any positive integer i ≤ 3 and any anisotropic quadratic form ϕ of
dimension ≥ 2i, one has cd2[i](ϕ) ≥ cd[i](dimϕ).


Proposition 7.2. In order to prove Theorem 7.1, one only needs to show that cd2[3](ϕ) ≥
2n − 1 for ϕ satisfying dimϕ = 2n + 3 (n ≥ 2) and i1(ϕ) = i2(ϕ) = 1.


Proof. We are reduced to the case of i = 3 and of ϕ of height ≥ 3 with i1(ϕ) = i2(ϕ) = 1
by Theorem 6.1.
So, we assume that dimϕ ≥ 6. Having written dimϕ = 2n+m with m ∈ [1, 2n] (where


n ≥ 2), we get


cd2[3](ϕ) ≥ cd2[2](ϕ1) ≥ cd[2](2n +m− 2) =















2n − 1 = cd[3](dimϕ) provided that m ≥ 4;


2n−1 − 1 ≥ cd[3](dimϕ) for m = 1, 2 and


2n−1 − 1 < 2n − 1 = cd[3](dimϕ) for m = 3.


So, the only problematic value of m is 3. �


Proof of Theorem 7.1. We are showing that cd2[i](ϕ) ≥ 2n−1 for ϕ as in Proposition 7.2.
Let X be the quadric of ϕ, T the 2-grassmannian of ϕ, and Y its (2 + i3)-grassmannian,
where i3 = i3(ϕ) is the third Witt index of ϕ. We have to show that cd2(Y ) ≥ 2n − 1.
We claim that cd2(Y ) > cd2(YF (T )). We get the claim as a consequence of Theorem 3.2


because by Theorem 4.1, U(Y )(2) is not a summand of M(X).
By §4b, the complete motivic decomposition of M(YF (Y )) does not contain a Tate


summand with a positive shift strictly below


dimϕ− 4− 2i3 = 2n − 1− 2i3.
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Since cd2(YF (T )) = dimϕ− 4− i3 − 1 = 2n − 2− i3, it follows that


cd2(Y ) ≥ (2n − 2− i3) + (2n − 1− 2i3).


Therefore cd2(Y ) ≥ 2n − 1 provided that 3i3 ≤ 2n − 2.
The integer i3 is the first Witt index i1(ϕ2) of the anisotropic quadratic form ϕ2 (the


2-nd anisotropic kernel of ϕ) of dimension 2n − 1. It follows by §4d that i3 = 2n−1 − 1 or
i3 ≤ 2n−2− 1. In the second case we are done and we are considering the first case below.


The equality i3 = 2n−1−1 we are assuming now means that ϕ is a (2n+3)-dimensional
anisotropic quadratic form of height 3 with the splitting pattern (i1, i2, i3) = (1, 1, 2n−1−1).
This is actually possible only for n = 2 and n = 3 (see [17, §7.2] for n ≤ 4), but we will
not use this fact because our argument will work for arbitrary n.


Note that the variety Y is now the maximal grassmannian of ϕ. Therefore cd2(Y ) can
be computed as in §4c in terms of the generators ei ∈ Chi(Ȳ ), i = 0, 1, . . . , e2n−1+1.


Note that ϕ2 is a (2n − 1)-dimensional form of height 1. So, ϕ2 is similar to a 1-
codimensional subform of an anisotropic n-fold Pfister form. It follows by [3, Example
88.10] that e2n−1−1 is irrational.


As can be easily deduced from [3, Corollary 88.6], the homomorphism Ch(Y ) →
Ch(YF (T )) is surjective in codimensions ≤ 2n−1 − 1. Consequently, if both e2n−1 and
e2n−1+1 are rational, then cd2(YF (T )) = cd2(Y ) contradicting the proved above claim. So,
at least one of these two standard generators is irrational and it follows that cd2(Y ) ≥
(2n−1 − 1) + 2n−1 = 2n − 1. �


8. Height 3


We prove (a bit more than) Conjecture 1.1 for all forms ϕ of height ≤ 3 in this Section.
We recall the classification of splitting patterns of quadratic forms of height 2 first (for


reader’s convenience, we include a proof):


Theorem 8.1 ([20, Theorem 2]). Let ϕ be a non-zero anisotropic quadratic form of height
≤ 2 over a field of characteristic 6= 2 with a non-excellent splitting pattern. Then


(1) either dimϕ = 2n+1 and i1(ϕ) = 2n−1 = i2(ϕ) for some n > 0 or
(2) dimϕ = 2n + 2n−1, i1(ϕ) = 2n−2, and i2(ϕ) = 2n−1 for some n > 1.


Proof. By [3, Theorem 84.1], the height of ϕ is at least the height of an anisotropic
excellent form of dimension dimϕ. Moreover, for odd dimϕ this is an equality by [3,
Remark 84.6]. It follows that either dimϕ = 2n for some n ≥ 0, or dimϕ = 2m − 2n−1 for
some m > n > 1, or dimϕ = 2m−2n+1 for some m > n > 1. To finish, it suffices to look
at the possible values of i1(ϕ) satisfying the condition of §4d together with the condition
that dimϕ− 2i1(ϕ) is 2


r or 2r+1 − 1 for some r ≥ 1. The latter condition comes from the
classical [14, Theorem 5.8] giving the list of possible dimensions of height 1 anisotropic
quadratic forms. �


Theorem 8.2. Let ϕ be an anisotropic quadratic form over F of height ≤ 3. For any
positive integer i ≤ (dimϕ)/2 one has cd2[i](ϕ) ≥ cd[i](dimϕ). In particular, Conjecture
1.1 holds for all ϕ of height ≤ 3.


Proof. By Theorem 6.1, we only need to consider ϕ of precisely height 3. Let n :=
v2(dimϕ).
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Even-dimensional ϕ. We assume that n ≥ 1 here. We have to show that


cd2[m](ϕ) ≥ 2n−1 − 1,


where m = (dimϕ)/2.
If 2n−1| i1, then 2n| dimϕ1 and we are done. Otherwise, by §4d, i1 = 2r for some


0 ≤ r ≤ n− 2. Since ϕ1 is of height 2, it follows by Theorem 8.1 that dimϕ = 2n.
If r = n − 2 then i1 = 2n−2 and i2 = i3 = 2n−3. It follows by [3, Corollary 83.4] that


dimϕ− i1 is a 2-power which is false. Therefore r ≤ n− 3 and we have i2 = 2n−1 − 2r+1,
i3 = 2r; or r = n − 3 and i2 = 2n−3, i3 = 2n−2. In the first case, it follows by [17,
Theorem 7.7] as well as by [3, Theorem 83.3] that U(YF (X))(i1 + i2) is a summand of
M(XF (X)), where X is the projective quadric and Y the m-grassmannian of ϕ. On the
other hand, U(Y )(i1 + i2) is not a summand of M(X) by Theorem 4.1. It follows by [2,
Theorem 1.1] that cd2(YF (X)) < cd2(Y ). Therefore the standard generator of maximal
codimension e2n−1−1 ∈ Ch(Ȳ ) is irrational and it follows that cd2(Y ) ≥ 2n−1 − 1. So,
cd2[m](ϕ) ≥ 2n−1 − 1 as required.
In the second case, we simply have


cd2(Y ) = cd2[2
n−3 + 1](ϕ1) ≥ cd[2n−3 + 1](2n−1 + 2n−2) = 2n−1 − 1.


Odd-dimensional ϕ. Here we assume that n = 0. By [3, Theorem 84.1 and Remark
84.6], the height of an anisotropic excellent quadratic form of dimension dimϕ is 1 or
3. In the first case we have dimϕ = 2n − 1 for some n ≥ 2 and we need to show that
cd2[2


n−1 − 1](ϕ) ≥ 2n−1 − 1.
By §4d, i1 = 2r − 1 for some 1 ≤ r ≤ n− 1. Moreover, r ≤ n − 2 because height of ϕ


is 3. It follows that dimϕ1 = 2n − 2r+1 + 1. Since ϕ1 is of height 2, it has an excellent
splitting pattern by Theorem 8.1 so that we have i2 = 2n−1 − 2r+1 + 1 and i3 = 2r − 1.
Note that n ≥ 3 at this stage. If n = 3 then we are done by Theorem 7.1.
Assuming that n ≥ 4, we claim that U(YF (X))(i1 + i2) is a summand of M(XF (X)),


where X is the quadric and Y the maximal grassmannian of ϕ. For r ≤ n − 3, this is a
consequence of the inequality i2 > i3 and [17, Theorem 7.7]. For the remaining case of
r = n− 2 we have i2 = 1 and the above argument does not work. However, Theorem 4.1
ensures that the first shell of ϕ is connected with the third one. Since i1 = 2r−1 > i2 = 1,
the first shell is not connected with the second one, and the claim follows.
Using the claim, we finish the proof of the current case the way we did it above for


even-dimensional ϕ.
It remains to consider the case when the height of an anisotropic excellent quadratic


form of dimension dimϕ is 3. This means that dimϕ = 2n0 − 2n1 + 2n2 − 1 for some
integers n0 > n1 > n2 ≥ 2.
The first Witt index i1 should satisfy §4d and in the same time be such that the height


of the integer2 dimϕ1 = dimϕ − 2i1 is 2. It follows that dimϕ1 = 2n1 − 2n2 + 1 or
dimϕ1 = 2n0 − 2n1 + 1. In both cases we have


cd2[m](ϕ) ≥ cd2[m1](ϕ1) ≥ cd[m1](dimϕ1) ≥ cd[m](dimϕ),


where m := (dimϕ− 1)/2 and m1 := (dimϕ1 − 1)/2. �


2As in [3, §84], by the height of a positive integer we mean the height of an anisotropic excellent
quadratic form of dimension equal this integer.
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9. “Counter-example” with maximal grassmannian


Surprisingly, we didn’t exclude i = (dimϕ)/2 in any case of Conjecture 1.1 proved so
far. So, let us produce a “counter-example” to the case i = (dimϕ)/2 of Conjecture 1.1.
By Theorem 7.1, i should be at least 4 and therefore dimϕ should be at least 8. We
produce it in dimension 8.


Let us find a field F and quadratic forms q and ψ such that q is 4-dimensional of
discriminant a, qF (


√
a) is anisotropic, ψ is 4-dimensional and divisible by 〈〈a〉〉, and, finally,


ϕ := q⊥ψ is anisotropic. For instance, taking F := k(a, b, c, d, e) with any field k and
variables a, b, c, d, e, we can take ψ = 〈〈a, b〉〉 and q = 〈c, d, e, acde〉. Then


cd[4](ϕ) = cd2[4](ϕ) = cd[2](qF (
√
a)) = 1 < 3 = cd[4](dimϕ).


10. Fourth canonical dimension


Theorem 10.1. Conjecture 1.1 holds for i = 4.


Proposition 10.2. It suffices to prove Theorem 10.1 only for ϕ of dimension 2n + 4
(n ≥ 3), of height at least 4, and of Witt indexes satisfying either i1 = i2 = i3 = 1; or
i1 = 1, i2 = 2; or i1 = 2, i2 = 1. More precisely, it suffices to prove that cd2[4](ϕ) ≥ 2n − 1
for such ϕ.


Proof. Note that Conjecture 1.1 for i = 4 is only about quadratic forms ϕ of dimension
≥ 9. We may assume that i1 ≤ 2 (Theorem 6.1) and that the height of ϕ is at least 4
(Theorem 8.2). Moreover, we may assume that i1 + i2 + i3 = 3 or i1 + i2 = 3 (Theorem
7.1). Therefore, we have either i1 = i2 = i3 = 1; or i1 = 1, i2 = 2; or i1 = 2, i2 = 1.


Let us write dimϕ = 2n +m with n ≥ 3 and 1 ≤ m ≤ 2n. Assuming that i1 = 1, we
have


cd2[4](ϕ) ≥ cd[3](2n +m− 2) = 2n − 1 = cd[4](dimϕ)


for m ≥ 5. On the other hand,


cd2[4](ϕ) ≥ cd[3](2n +m− 2) = 2n−1 − 1 = cd[4](dimϕ)


for m ≤ 3. So, the only problematic value of m is 4.
Assuming that i1 = 2, we have


cd2[4](ϕ) ≥ cd[2](2n +m− 4) = 2n − 1 = cd[4](dimϕ)


for m ≥ 6. On the other hand,


cd2[4](ϕ) ≥ cd[2](2n +m− 4) = 2n−1 − 1 = cd[4](dimϕ)


for m ≤ 3. Moreover, since i1 = 2, m is necessarily even (§4d). So, the only problematic
value of m is again 4. �


Proof of Theorem 10.1. Let ϕ be a quadratic form as in Proposition 10.2. Let r be the
integer ∈ {3, 4} such that i1 + . . . ir−1 = 3 (more concretely, r := 3 if i1 + i2 = 3, r := 4
if i1 + i2 + i3 = 3). Let X be the quadric, T the 3-grassmannian, and Y the (3 + ir)-
grassmannian of ϕ. Since cd2[4](ϕ) = cd2(Y ), it suffices to prove that cd2(Y ) ≥ 2n − 1.


By Theorem 4.1, the motive U(Y )(3) is not a summand ofM(X). It follows by Theorem
3.2 that cd2(Y ) > cd2(YF (T )).
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Now, using §4b in the standard way, we get that


cd2(Y ) ≥ cd2(YF (T )) + (dimϕ− 2(i1 + · · ·+ ir)) =


(2n − 3− ir) + (2n − 2− 2ir) = 2n+1 − 5− 3ir.


So, the inequality cd2(Y ) ≥ 2n − 1 holds if 2n+1 − 5− 3ir ≥ 2n − 1, or, equivalently, if


(10.3) 2n ≥ 3ir + 4.


Since the integer ir is the first Witt index of the quadratic form ϕr−1 of dimension
dimϕr−1 = dimϕ− 6 = 2n − 2, we have ir = 2n−1 − 2 or ir ≤ 2n−2 − 2 or ir = 1 (the last
case is not included in the previous one if n = 3). The inequality (10.3) does not hold
only in the case of ir = 2n−1 − 2 which we consider now.
Recall that now our anisotropic quadratic form ϕ is of dimension 2n + 4 (n ≥ 3) and


has the splitting pattern


either (1, 1, 1, 2n−1 − 2, 1), or (1, 2, 2n−1 − 2, 1), or (2, 1, 2n−1 − 2, 1).


Let d ∈ F× represents the discriminant of ϕ. We evidently have ϕF (
√
d) ∈ In. It follows


that the Clifford algebra C(ϕ) is Brauer-equivalent to a quaternion algebra (c, d) with
some c ∈ F×. Let ψ := ϕ⊥c 〈〈d〉〉. Then disc(ψ) is trivial and it follows by [3, Lemma
14.2] that the Clifford invariant of ψ is trivial as well, so that ψ ∈ I3. Let us show that
ψ ∈ In. We know this already for n = 3. To show this for n ≥ 4, it suffices to show
that ψL is hyperbolic for any extension field L/F such that dim(ψL)an ≤ 2n−1. Since
dimψ = 2n + 6, the condition on L ensures that i0(ψL) ≥ 2n−2 + 3. Since ϕ is a subform
in ψ of codimension 2, i0(ϕL) ≥ 2n−2 + 1 which is ≥ 4 because n ≥ 4. It follows that
i0(ϕL) ≥ 4 and therefore ≥ 2n−1 +1 so that dim(ϕL)an ≤ 2 and dim(ψL)an ≤ 4. Since the
discriminant and the Clifford invariant of ψL are trivial, it follows that ψL is hyperbolic.
We have shown that ψ ∈ In. On the other hand, 2n + 2 ≤ dimψan ≤ 2n + 6 so that for


n ≥ 4 we get a contradiction with §4e.
We proved that none of the above splitting patterns of ϕ is possible in the case of n ≥ 4.


It remains to consider the case of n = 3, that is, of dimϕ = 12. The splitting patterns of
12-dimensional anisotropic quadratic forms have been classified in [17, §7.3]. In particular,
it has been shown there that only the first of our three splitting patterns is possible. For
ϕ of this possible splitting pattern (1, 1, 1, 2, 1), the above procedure provides us with
an anisotropic quadratic form ψ′ := ψan ∈ I3 of dimension 14 or 12 such that for any
extension field L/F the condition i0(ϕL) ≥ 4 holds if and only if i0(ψ


′
L) ≥ 4 is hyperbolic.


It follows that cd2[4](ϕ) = cd2[4](ψ
′). Since the height of ψ′ is ≤ 3, it follows by Theorem


8.2 that cd2[4](ψ
′) ≥ cd[4](dimψ′) = 7 = 2n − 1. �


11. Fifth canonical dimension


Theorem 11.1. Conjecture 1.1 holds for i = 5.


Proposition 11.2. It suffices to prove Theorem 11.1 only for ϕ of height at least 4 and
with i1 + · · ·+ ir = 4 for some r, having one of the following types:


(1) dimϕ = 2n + 5 (n ≥ 3) and i1 = 1;
(2) dimϕ = 2n + 6 (n ≥ 3) and i1 = 2;
(3) dimϕ = 2n + 7 (n ≥ 3) and i1 = 3.
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More precisely, it suffices to prove that cd2[4](ϕ) ≥ 2n − 1 for above ϕ.


Proof. Note that Conjecture 1.1 for i = 5 is only about quadratic forms ϕ of dimension
≥ 11. We may assume that i1 ≤ 3 (Theorem 6.1) and that the height of ϕ is at least 4
(Theorem 8.2). Also we may assume that i1 + · · ·+ ir = 4 for some r (Theorem 10.1).


Let us write dimϕ = 2n +m with n ≥ 3 and 1 ≤ m ≤ 2n.
Assuming that i1 = 1, we have


cd2[5](ϕ) ≥ cd[4](2n +m− 2) = 2n − 1 = cd[5](dimϕ)


for m ≥ 6. On the other hand,


cd2[5](ϕ) ≥ cd[4](2n +m− 2) = 2n−1 − 1 = cd[5](dimϕ)


for m ≤ 4. So, the only problematic value of m is 5.
Assuming that i1 = 2, we have


cd2[5](ϕ) ≥ cd[3](2n +m− 4) = 2n − 1 = cd[5](dimϕ)


for m ≥ 7. On the other hand,


cd2[5](ϕ) ≥ cd[3](2n +m− 4) = 2n−1 − 1 = cd[5](dimϕ)


for m ≤ 4. Moreover, since i1 = 2, m is necessarily even (§4d). So, the only problematic
value of m is 6.


Finally, assuming that i1 = 3, we have


cd2[5](ϕ) ≥ cd[2](2n +m− 6) = 2n − 1 = cd[5](dimϕ)


for m ≥ 8. On the other hand,


cd2[5](ϕ) ≥ cd[2](2n +m− 6) = 2n−1 − 1 = cd[5](dimϕ)


for m ≤ 4. Moreover, since i1 = 3, m is necessarily odd (§4d). So, the only problematic
values of m are 5 and 7. Since 3 cannot be the first Witt index of an anisotropic quadratic
form of dimension 2n + 5 (§4d again), the value 5 is not possible for m. �


Proof of Theorem 11.1. Let ϕ be a quadratic form as in Proposition 11.2. Let r be the
integer such that i1 + · · ·+ ir−1 = 4. Let X be the quadric, T the 4-grassmannian, and
Y the (4 + ir)-grassmannian of ϕ. Since cd2[5](ϕ) = cd2(Y ), it suffices to prove that
cd2(Y ) ≥ 2n − 1.


By Theorem 4.1, the motive U(Y )(4) is not a summand ofM(X). It follows by Theorem
3.2 that cd2(Y ) > cd2(YF (T )).


Now, using §4b in the standard way, we get that


cd2(Y ) ≥ cd2(YF (T )) + (dimϕ− 2(i1 + · · ·+ ir)) ≥


(2n +m− 9− ir) + (2n +m− 8− 2ir) = 2n+1 + 2m− 17− 3ir.


So, the inequality cd2(Y ) ≥ 2n−1 holds if 2n+1+2m−17−3ir ≥ 2n−1, or, equivalently,
if


(11.3) 2n ≥ 3ir + 16− 2m.


Since the integer ir is the first Witt index of the quadratic form ϕr−1 of dimension
2n + m − 8, we have ir = 2n−1 + m − 8 or ir ≤ 2n−2 + m − 8. For n = 3 and m = 6,
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there is an additional case of ir = 1. The inequality 11.3 does not hold only in the case
of ir = 2n−1 +m− 8 which we consider now.
Let us start with the case of m = 5. So, ϕ is of dimension 2n + 5 and has the splitting


pattern (. . . , 2n−1 − 3, 1).
First we consider the case of n = 3. In this case we have cd2(YF (T )) = 3, cd2(Y ) ≥ 6,


and §4b tells us that in the complete decomposition of M(YF (Y )) there is only one Tate
summand with the shift 3. On the other hand, if cd2(Y ) = 6, then U(Y )F (T ) contains
summands U(YF (T )) and U(YF (T ))(3) so that there are two Tate summands with the shift
3 in the complete decomposition ofM(YF (Y )). It follows that cd2(Y ) ≥ 7 and we are done
in the case of n = 3 and m = 5.
In the case of n ≥ 4 and m = 5, the splitting pattern of ϕ is impossible. Indeed, the


anisotropic part of a (2n+6)-dimensional quadratic form of trivial discriminant containing
ϕ is in In and has dimension 2n + 6 or 2n + 4.
We go ahead to the case m = 7. Now ϕ is of dimension 2n + 7 and has the splitting


pattern (3, 1, 2n−1 − 1). This is only possible for n = 3, but anyway, the height of ϕ is 3
so that we don’t need to do anything more here.
The remaining value of m is 6 so that dimϕ = 2n + 6 now. The splitting pattern of


ϕ is either (2, 1, 1, 2n−1 − 2, 1) or (2, 2, 2n−1 − 2, 1). Adding to ϕ an appropriate binary
quadratic form of discriminant disc(ϕ), we get a (2n + 8)-dimensional quadratic form ψ
lying in I3 and therefore in In. The anisotropic part of ψ has dimension 2n +8, 2n +6 or
2n+4 and it follows that n is 3 or 4. Note that for any field extension L/F , the condition
i0(ϕL) ≥ 5 is equivalent to i0(ψL) ≥ 5 so that cd2[5](ϕ) = cd2[5](ψ).
If n = 4, then ψ is anisotropic (of dimension 24) and of height 2. Therefore we have


cd2[5](ψ) ≥ cd[5](24) = 15 and the case is closed.
If n = 3, then the anisotropic part ψ′ of ψ has dimension 12, 14, or 16. If dimψ′ = 12,


then cd2[5](ψ) = cd2[3](ψ
′) ≥ cd[3](12) = 7. If dimψ′ = 14, then cd2[5](ψ) = cd2[4](ψ


′) ≥
cd[4](14) = 7. Finally, if dimψ′ = 16, i.e., if ψ is anisotropic, then either the height of ψ
is ≤ 3 or i1(ψ) = 1. If the height is ≤ 3, then cd2[5](ψ) ≥ cd[5](16) = 7. If the first Witt
index is 1, then cd2[5](ψ) ≥ cd2[4](ψ1) ≥ cd[4](14) = 7. �


Corollary 11.4. Conjecture 1.1 holds in full for ϕ of dimension ≤ 13.


Proof. We only need to consider cd2[6](ϕ) for a 13-dimensional ϕ. But cd[6](13) = 1 so
that the statement to prove is trivial. �


Remark 11.5. To prove Conjecture 1.1 for 14-dimensional ϕ, one “only” needs to check
that cd2[6](ϕ) ≥ 7.


References


[1] Chernousov, V., Gille, S., and Merkurjev, A. Motivic decomposition of isotropic projective
homogeneous varieties. Duke Math. J. 126, 1 (2005), 137–159.


[2] De Clercq, C. A going down theorem for Grothendieck Chow motives. Quart. J. Math. 64 (2013),
721–728.


[3] Elman, R., Karpenko, N., and Merkurjev, A. The algebraic and geometric theory of quadratic
forms, vol. 56 of American Mathematical Society Colloquium Publications. American Mathematical
Society, Providence, RI, 2008.


[4] Garibaldi, S., Petrov, V., and Semenov, N. Shells of twisted flag varieties and non-
decomposibility of the Rost invariant. arXiv:1012.2451v2 [math.AG] (30 Jun 2011), 48 pages.







CANONICAL DIMENSIONS OF QUADRATIC FORMS 15


[5] Hoffmann, D. W. Isotropy of quadratic forms over the function field of a quadric. Math. Z. 220,
3 (1995), 461–476.


[6] Karpenko, N. A. Minimal canonical dimensions of quadratic forms. Linear Algebraic Groups and
Related Structures (preprint server) 509 (2013, Sep 1), 7 pages.


[7] Karpenko, N. A. Cohomology of relative cellular spaces and of isotropic flag varieties. Algebra i
Analiz 12, 1 (2000), 3–69.


[8] Karpenko, N. A. Canonical dimension. In Proceedings of the International Congress of Mathe-
maticians. Volume II (New Delhi, 2010), Hindustan Book Agency, pp. 146–161.


[9] Karpenko, N. A. Hyperbolicity of orthogonal involutions. Doc. Math. Extra Volume: Andrei A.
Suslin’s Sixtieth Birthday (2010), 371–389 (electronic).


[10] Karpenko, N. A. Upper motives of outer algebraic groups. In Quadratic forms, linear algebraic
groups, and cohomology, vol. 18 of Dev. Math. Springer, New York, 2010, pp. 249–258.


[11] Karpenko, N. A. Incompressibility of orthogonal grassmannians. C. R. Math. Acad. Sci. Paris
349, 21-22 (2011), 1131–1134.


[12] Karpenko, N. A. Sufficiently generic orthogonal Grassmannians. J. Algebra 372 (2012), 365–375.
[13] Karpenko, N. A. Upper motives of algebraic groups and incompressibility of Severi-Brauer vari-


eties. J. Reine Angew. Math. 677 (2013), 179–198.
[14] Knebusch, M. Generic splitting of quadratic forms. I. Proc. London Math. Soc. (3) 33, 1 (1976),


65–93.
[15] Merkurjev, A. S. Essential dimension: a survey. Transform. Groups 18, 2 (2013), 415–481.
[16] Scully, S. On the splitting of quasilinear p-forms. arXiv:1210.7836v2 [math.RA] (1 Nov 2012), 29


pages.
[17] Vishik, A. Motives of quadrics with applications to the theory of quadratic forms. In Geometric


methods in the algebraic theory of quadratic forms, vol. 1835 of Lecture Notes in Math. Springer,
Berlin, 2004, pp. 25–101.


[18] Vishik, A. On the Chow groups of quadratic Grassmannians. Doc. Math. 10 (2005), 111–130 (elec-
tronic).


[19] Vishik, A. Excellent connections in the motives of quadrics. Ann. Sci. Éc. Norm. Supér. (4) 44, 1
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