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of Lethbridge), Gopal Prasad (University of Michigan), and Andrei Rapinchuk (University
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1. Introduction and Overview
The theory of arithmetic groups deals with groups of matrices whose entries are integers, or
more generally, S-integers in a global field. This notion has a long history, going back to the
work of Gauss on integral quadratic forms. The modern theory of arithmetic groups retains
its close connection to number theory (for example, through the theory of automorphic forms)
but also relies on a variety of methods from the theory of algebraic groups, particularly over
local and global fields (this area is often referred to as the arithmetic theory of algebraic
groups), Lie groups, algebraic geometry, and various aspects of group theory (primarily,
homological methods and the theory of profinite groups). At the same time, results about
arithmetic groups have numerous applications in differential and hyperbolic geometry (as
the fundamental groups of many important manifolds often turn out to be arithmetic),
combinatorics (expander graphs), and other areas. There are also intriguing connections
and parallels (which are currently not so well-understood) between arithmetic groups and
other important classes of groups, such as Kac-Moody groups, automorphism groups of free
groups, and mapping class groups.
The objective of the workshop was to survey the most significant results in the theory

of arithmetic groups obtained primarily in the last five years, in order to make the new
concepts and methods accessible to a broader group of mathematicians whose interests are
closely related to arithmetic groups. The workshop brought together 34 mathematicians,
from the world’s leading experts to recent PhD recipients and graduate students, working
on a variety of problems involving arithmetic groups. This resulted in very active exchanges
between and after the lectures. The scientific program of the workshop consisted of 3 mini-
courses (two 45-min lectures each), 17 survey and research talks (30 or 45 minutes), one
of which (by Bertrand Remy) was not planned in advance, a Q&A session, and an open
problem session.
The subjects of the mini-courses were: Pseudo-reductive groups and their arithmetic appli-

cations (Brian Conrad), Towards an arithmetic Kac-Moody theory (Ralf Köhl), and Homo-
logical finiteness properties of arithmetic groups in positive characteristic (Kevin Wortman).
The mini-course on the pseudo-reductive groups focused on arithmetic applications of the
theory of pseudo-reductive groups, developed by Conrad, Gabber and Prasad, which include
the proof of fundamental finiteness theorems (finiteness of the class number, finiteness of
the Tate-Schafarevich set, etc.) for all algebraic groups over the fields of positive character-
istic, not just reductive ones. The course on Kac-Moody groups contained a series of results
extending the known properties of (higher rank) arithmetic groups, such as property (T )
and (super)rigidity, to Kac-Moody groups over rings. The course on homological finiteness
properties contained an account of a major breakthrough in the area — the proof of the
Rank Conjecture.

Most major areas within the theory of arithmetic groups were represented by at least one
talk at the workshop. Topics that were not discussed, but should be included in the program
of future meetings on the subject, include:

• connections between the cohomology of arithmetic groups and the theory of auto-
morphic forms,

• the virtual positivity of the first Betti number of certain rank one lattices and the
growth of higher Betti numbers,

• the analysis on homogeneous spaces modulo arithmetic groups.
2
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We conclude this introduction with a brief overview of the main themes that were discussed
in the lectures. More details of the three mini-courses are in Section ??, and the other lectures
are described individually in Section ??.

(a) Structural and homological properties. In addition to the mini-course on homolog-
ical finiteness properties for S-arithmetic subgroups of semi-simple algebraic groups in posi-
tive characteristic, which contained an exposition of the work of Bux-Köhl-Witzel-Wortman
on the rank conjecture, there was a talk by Stefan Witzel on finiteness properties for proper
actions of arithmetic groups.
The talk of Ted Chinburg demonstrated how to use the Lefschetz Theorem from algebraic

geometry to show, in certain situations, that a “large” arithmetic group can be generated
by smaller arithmetic subgroups.
In his talk, Vincent Emery showed how to bound the torsion homology of non-uniform

arithmetic lattices in characteristic zero.

(b) Profinite techniques for arithmetic groups. The method of analyzing arithmetic
groups via the study of their finite quotients has a long history. One aspect of this approach,
known as the congruence subgroup problem, is focused on understanding the difference
between the profinite completion and the congruence completion. This difference is measured
by the congruence kernel. In his talk, Andrei Rapinchuk gave a survey of the concepts and
results pertaining to the congruence subgroup problem.
In their talks, which together virtually constituted another mini-course, Benjamin Klopsch

and Christopher Voll presented their new results on the representation growth of S-arithmetic
groups satisfying the congruence subgroup property (i.e., for which the congruence kernel
is finite). These results are formulated in terms of the representation zeta function of the
S-arithmetic group, and show, in particular, that the abscissa of convergence depends only
on the root system.
The talk of Pavel Zalesskii was devoted to the general question of when the profinite

topology on an arithmetic group should be considered to be “strong.” The cohomological
aspect of this question boils down to the notion of “goodness” introduced by Serre. The
central conjecture here asserts that if an S-arithmetic subgroup in characteristic zero fails
the congruence subgroup property, then it should be good, and the talk contained an account
of the results supporting this conjecture.

(c) Connections with Kac-Moody, automorphism groups of free groups, and map-
ping class groups. As we already mentioned, Ralf Köhl gave a mini-course on Kac-Moody
groups, in which he described how Kac-Moody groups are obtained from Chevalley groups by
amalgamation, defined the Kac-Peterson topology on them, and established their important
properties, including property (T ) and a variant of superrigidity. The lectures generated
so much interest in Kac-Moody groups among the conference participants that Bertrand
Rémy was asked to give a survey talk on the subject. He discussed various approaches to
Kac-Moody groups, and stressed the utility of buildings in their analysis.
In his talk, Alan Reid showed how methods from Topological Quantum Field Theory can

be used to prove that every finite group is a quotient of a suitable finite index subgroup of
the mapping class group (for any genus).
Lizhen Ji reported on the construction of complete geodesic metrics on the outer space Xn

that are invariant under Out(Fn), where Fn is the free group of rank n.



4 Arithmetic Groups

(d) Applications to geometry, topology, and beyond. Mikhail Belolipetsky gave a
survey of the long line of research on hyperbolic reflection groups. (These are discrete
isometry groups that are generated by reflections of hyperbolic n-space). One of the central
results here is that there are only finitely many conjugacy classes of maximal arithmetic
hyperbolic reflection groups. This opens the possibility of classifying such groups.
Matthew Stover reported on his results that provide a lower bound on the number of ends

(cusps) of an arithmetically defined hyperbolic manifold/orbifold or a locally symmetric
space. In particular, one-end arithmetically defined hyperbolic n-orbifolds do not exist for
any n > 31. The question about the existence of one-ended nonarithmetic finite volume
hyperbolic manifolds remains wide open.
T. N. Venkataramana spoke about the monodromy groups associated with hypergeometric

functions. One of the central questions is when the monodromy group is a finite index
subgroup of the corresponding integral symplectic group. A criterion was described for this
to be the case.

(e) Rigidity. Generally speaking, a group-theoretic rigidity theorem asserts that, in certain
situations, any abstract homomorphism of a special subgroup (e.g, an arithmetic subgroup
or a lattice) of the group of rational points of an algebraic group (resp., a Lie group, or a
Kac-Moody group) can be extended to an algebraic (resp., analytic or continuous) homo-
morphism of the ambient group. The pioneering and most unexpected result of this type is
Margulis’s Superridity Theorem for irreducible lattices in higher rank semi-simple Lie groups.
As was pointed out by Bass, Milnor, and Serre, rigidity statements can also be proved for
S-arithmetic groups if the corresponding congruence kernel is finite.
In his mini-course, Ralf Köhl showed how to use the known rigidity results for higher rank

arithmetic groups to prove a rigidity theorem for Kac-Moody groups over Z.
In his talk, Igor Rapinchuk discussed his rigidity results for the finite-dimensional represen-

tations of elementary subgroups of Chevalley group of rank > 1 over arbitrary commutative
rings. These results settle a conjecture of Borel and Tits about abstract homomorphisms
for split algebraic groups of rank > 1 over fields of characteristic 6= 2, 3, and also have
applications to character varieties of some finitely generated groups.

(f) Weakly commensurable groups and connections to algebraic groups. The no-
tion of weak commensurability for Zariski-dense subgroups of the group of rational points of
semi-simple algebraic groups over a field of characteristic zero was introduced by G. Prasad
and A. Rapinchuk. They were able to provide an almost complete answer to the ques-
tion of when two S-arithmetic subgroups of absolutely almost simple algebraic groups are
weakly commensurable. Using Schanuel’s conjecture from transcendental number theory,
they connected this work to the analysis of length-commensurable and isospectral locally
symmetric spaces, and in fact obtained new important results about isospectral spaces. In
his talk, Rajan reported on his work which is based on a new notion of representation equiv-
alence of lattices. While the condition of representation equivalence is generally stronger
than isospectrality, it enables one to obtain results about representation equivalent locally
symmetric spaces without using Schanuel’s conjecture (which is still unproven).
The work of Prasad-Rapinchuk also attracted attention to a wide range of questions in the

theory of algebraic groups asking about a possible relationship between two absolutely almost
simple algebraic groups G1 and G2 over the same field K, given the fact that they have the
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same isomorphism/isogeny classes of maximal K-tori. In his talk, Vladimir Chernousov re-
ported on the recent results on a related problem of characterizing finite-dimensional central
division algebras over the same field K that have the same isomorphism classes of maximal
subfields. He also formulated a conjecture that would generalize these results to arbitrary
absolutely almost simple groups, and indicated that the results on division algebras enable
one to prove this conjecture for inner forms of type An.

(g) Applications to combinatorics. In his talk, Alireza Salehi Golsefidy discussed appli-
cations of arithmetic groups and their Zariski-dense subgroups to the construction of highly
connected but sparse graphs known as expanders. It was pointed out by G. A. Margulis that
families of expanders can be constructed from a discrete Kazhdan group Γ by fixing a finite
system S of generators of Γ and considering the Cayley graphs Cay(Γ/N, S) of the finite
quotients of Γ with respect to this generating system. Later, using deep number-theoretic
results, Lubotzky, Phillips, and Sarnak showed that one also obtains a family of expanders
from the non-Kazhdan group SL2(Z) by fixing a system S of generators of the latter and
considering the Cayley graphs Cay

(
SL2(Z/dZ), S

)
for the congruence quotients.

Lubotzky raised the question of whether one gets a family of expanders if one takes, for
example, an arbitrary finitely generated Zariski-dense subgroup Γ ⊂ SL2(Z), and considers
the Cayley graphs of the congruence quotients SL2(Z/dZ) with respect to a fixed finite
generating set of the subgroup. (It is known that Γ will map surjectively onto SL2(Z/dZ)
for all d prime to some d0 that depends on Γ.)
Alireza Salehi Golsefidy surveyed the important progress on this question in the context

of general arithmetic groups, including the groundbreaking work of Bourgain and Gamburd,
and his recent results with Varjú.



2. Mini-Courses

Brian Conrad (Stanford University):

Pseudo-reductive groups and their arithmetic applications ⊲

The talk first described some motivation for, and examples of, the theory of pseudo-reductive
groups [?Con-pred], culminating in the main structure theorem (ignoring subtleties that arise
in characteristics 2 and 3). Then, it discussed how to apply the main structure theorem in the
context of proving some finiteness theorems over global function fields [?Con-finite]. Such
results include affirmative solutions to open questions which render unconditional several
results in [?Con-oesterle] on the behavior of sizes of degree-1 Tate–Shafarevich sets and
Tamagawa numbers for linear algebraic groups over global function fields.
A very highly-recommended survey of both the general theory and arithmetic applications

is given in the Bourbaki report [?Con-remy] by Bertrand Rémy. This includes a user-friendly
overview of the contents of [?Con-pred], indicating where main results can be found and how
the logical development of the main proofs proceeds.

Definition of pseudo-reductivity: triviality of the so-called k-unipotent radical Ru,k(G)
(the largest smooth connected normal unipotent k-subgroup of a smooth connected affine k-
group), with k a general field. The formation of Ru,k(G) commutes with separable extension
on k, including K → Kv for a global function field K and place v. We say G is pseudo-
reductive if it is smooth connected affine and Ru,k(G) = 1. This coincides with “connected
reductive” when k is perfect. Several examples were given over any imperfect field, both
commutative as well as perfect (G = D(G)). The most basic example is the Weil restriction
Rk′/k(G

′) for a finite extension k′/k and a connected reductive k′-group G′; this is never
reductive if G′ 6= 1 and k′ is not separable over k.

Surprises: the purely inseparable Weil restriction may fail to preserve dimension (e.g.,
Rk′/k(µp) has positive dimension for a nontrivial purely inseparable finite extension k′/k in
characteristic p > 0). It may also fail to preserve surjectivity or perfectness: Rk′/k(PGLp)
has a nontrivial commutative quotient modulo the image of Rk′/k(SLp) for a nontrivial purely
inseparable finite extension k′/k in characteristic p > 0. Other surprises: pseudo-reductivity
can be lost under central quotient, and also some quotients by smooth connected normal
k-subgroups.

Good news: Cartan k-subgroups are always commutative, Rk′/k(G
′) is perfect when G′

is simply connected, and there is a theory of root systems (which can be non-reduced in
characteristic 2, even if k = ks). A related concept is pseudo-semisimplicity; this has some
surprises (there are two possible definitions, one of which is “wrong”). Overall, pseudo-
reductivity is not a particularly robust concept, so its main purpose is the role it plays in
trying to prove theorems about rather general linear algebraic groups when one might not
have much control (e.g. for Zariski closures, working with stabilizer schemes for a group
action, etc.).

A general principle: we cannot hope to understand the commutative pseudo-reductive
groups, but we will aim to describe the general structure modulo that ignorance. Life could
be worse; at least we are remaining ignorant only about something commutative.

6
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The standard construction: this is a procedure which is a kind of pushout that replaces
a Weil-restricted maximal torus Rk′/k(T

′) from a simply connected semisimple k′-group G′

with another commutative pseudo-reductive group C according to a very specific kind of
procedure. The final output of this process is a central quotient presentation

G = (Rk′/k(G
′)⋊ C)/Rk′/k(T

′).

This can be generalized to allow several extensions k′
i/k, and admits a precise uniqueness

aspect as well, determines all of the data (G′, k′/k, T ′, C) in terms of a choice of maximal
k-torus of T .

A general principle for applying the structure theory of pseudo-reductive groups: if a
theorem is known in the smooth connected solvable affine case over k and in the connected
semisimple case over all finite extensions of k then “probably” one can use the structure
theorem via standard presentations (plus extra care in characteristics 2 and 3) to prove the
result for all smooth connected linear algebraic groups (and something without smoothness
or connectedness, depending on the specific assertion).

Some of the finiteness questions one would like to settle (all of which have long been
known in the affirmative in the connected reductive case): finiteness for “class numbers” of
smooth connected linear algebraic groups over global function fields, finiteness for degree-1
Tate–Shafarevich sets for all affine algebraic group schemes over global function fields, finite-
ness for Tamagawa numbers of smooth connected affine groups, and finiteness for obstruction
sets to a local-global principle for orbits over global function fields (i.e., if x, x′ ∈ X(k) are
in the same G(kv)-orbit for all v 6∈ S then the images of x and x′ in G(k)\X(k) might
not coincide but are at least constrained within a finite set, depending on S). In this final
question it is important that we do not impose smoothness hypotheses (or any hypotheses at
all) on the stabilizer schemes for the geometrically transitive action. The finiteness question
for orbits reduces to finiteness for Tate–Shafarevich sets for the stabilizer scheme, so it is
important for the latter finiteness result that we do not demand smoothness hypotheses (but
they can be imposed by a trick).

Example applications: finiteness for Tate–Shafarevich sets can be reduced to the pseudo-
reductive case, and the form of the “standard presentation” is very well-suited to then pulling
up the known result for the semisimple and commutative cases, essentially using vanishing
theorems for simply connected groups. Second: finiteness for Tamagawa numbers is settled
in general by a different kind of argument with the “standard presentation” for pseudo-
reductive groups to pull it up from the known semisimple and commutative cases. Third:
the original finiteness question for the local-global principle with orbits. That indeed works
out affirmatively, due to the established case for Tate–Shafarevich sets. Fourth: various
formulas for the behavior of Tamagawa numbers under exact sequences that were proved
in Oesterlé’s paper [?Con-oesterle] conditionally on certain unknown finiteness results are
now all valid unconditionally.
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Ralf Köhl (University of Gießen):

Kac-Moody groups

By theorems of Tits and Curtis, a Chevalley group over a field with at least four elements
is the product of its rank two subgroups amalgamated over the rank one subgroups. The
following result goes to show that in the context of Chevalley groups over local fields, the
topology is also forced by the rank one subgroups:

Theorem 1 (Glöckner-Hartnick-Köhl [?MR2684413]). Let F be a local field, and let G be
a Chevalley group over F. Then the Lie group topology on G is the finest group topology
making the embeddings of the fundamental rank one subgroups (endowed with their Lie group
topologies) continuous.

Now let ∆ be a 2-spherical Dynkin diagram without loops and let F be a field with at least
four elements. For each node α ∈ ∆ let Gα be a copy of SL2(F); and for each pair α, β ∈ ∆
let Gα,β be a simply connected Chevalley group over F of the type given in ∆. There are
obvious inclusions Gα  Gα,β. The Kac-Moody group G∆(F) can then be described as the
product of the Gα,β amalgamated over the Gα and is uniquely determined by ∆ since ∆ does
not contain loops. Every 2-spherical split Kac-Moody group arises this way.

Definition 2. The Kac-Peterson topology on G∆(F) is the finest group topology that makes
the canonical embeddings Gα  G∆(F) continuous.

Theorem 3 (Hartnick-Köhl-Mars [?koehl-twin]). The group G∆(F) with the Kac-Peterson
topology is Hausdorff and a kω-space, i.e., it is the direct limit of an ascending sequence of
compact Hausdorff subspaces. If ∆ is not spherical, then the Kac-Peterson topology is neither
locally compact nor metrizable.

In particular, the existence of a Haar measure is not guaranteed for non-spherical Kac-
Moody groups with the Kac-Peterson topology.

Theorem 4 (Hartnick-Köhl [?koehl-kazhdan]). Let F be a local field and let G∆ be an
irreducible (i.e., ∆ is connected), 2-spherical split Kac-Moody group. Then G∆(F) with the
Kac-Peterson topology has Kazhdan’s property (T ).

The subgroup G∆(Z) is discrete and finitely generated. One would like to think of G∆(Z)
in analogy to arithmetic lattices. It is, however, an open question whether it inherits prop-
erty (T ) from G∆(R).
The following follows easily from a theorem of Caprace and Monod on Chevalley groups

acting on CAT(0) polyhedral complexes applied to the Davis realization of the twin building
for G∆(R):

Proposition 5. Let L be an irreducible Chevalley group of rank at least two, let G∆(R) be
a Kac-Moody group, and let ϕ : L(Z)→ G∆(R) be a group homomorphism. Then the image
ϕ(L(Z)) is a bounded subgroup, i.e., it lies in the intersection of two parabolic subgroups of
opposite sign. In particular, ϕ(L(Z)) is contained in an algebraic subgroup of G∆(R).

This can be extended to yield an analogue of Margulis superrigidity:

Theorem 6 (Farahmand-Horn-Köhl). Let G∆(R) and G∆′(R) be irreducible 2-spherical Kac-
Moody groups and let ϕ : G∆(Z) → G∆′(R) be a group homomorphism with Zariski dense
image. Then there exists n ∈ N such that the restriction of ϕ to G∆(nZ) extends uniquely to
a continuous homomorphism G∆(R)→ G∆′(R) with respect to the Kac-Peterson topologies.
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The proof proceeds by first dealing with the case that G∆ is a Chevalley group, where the
Kac-Peterson topology is the Lie group topology. For general G∆, the statement is reduced
to the rank two subgroups, which are Chevalley groups. Using the the presentations of
G∆ and G∆′ as products of their respective rank two subgroups amalgamated along their
rank one subgroups, one constructs the extension of ϕ. Since the Kac-Peterson topology is
universal with respect to the Lie topologies on the rank one subgroups, it follows that ϕ is
continuous.

Kevin Wortman (University of Utah):

Finiteness properties of arithmetic groups over function fields ⊲

Recall that a group Γ has finiteness length ≤ m if it has a classifying space whose m-skeleton
is finite. In this case, the cohomology of Γ is clearly finitely generated in dimensions ≤ m.
Let K be a global function field of characteristic p > 0, let Fp be the finite field with

p elements, and let G be a connected noncommutative absolutely almost simple K-isotropic
K-group. Let d :=

∑
p∈S rkKp

(G) denote the sum of the local ranks of G. With this notation
fixed, the two main results are:

Theorem 1 (“Rank Theorem”, Bux-Köhl-Witzel [?MR2999042]). The finiteness length φ(Γ)
of the S-arithmetic subgroup Γ = G(OS) is d− 1.

Theorem 2 (Wortman). For some subgroup Γ′ of finite index in Γ, the cohomology Hd(Γ′,Fp)
is not finitely generated.

(At the time of the conference, a mild restriction on the K-type of G was needed in
Theorem ??, but Wortman was soon able to remove this restriction.)
Results on finiteness properties of arithmetic groups have a long history. The Euclidean

algorithm shows that SLn(Z) is finitely generated. Finite presentability of these groups is a
classical application of Siegel domains. Raghunathan [?MR0230332] proved that arithmetic
groups in characteristic 0 enjoy all finiteness properties. In fact, he showed that they have a
torsion-free subgroup of finite index that is the fundamental group of a compact aspherical
manifold with boundary. Borel-Serre [?MR0447474] have shown that S-arithmetic subgroups
of reductive groups in characteristic 0 also enjoy all finiteness properties.
The picture in positive characteristic is different. Nagao [?MR0114866] showed that SL2(Fq[t])

is not even finitely generated. Behr [?MR0238853] proved that Γ as in the Rank Theorem
is finitely generated if and only if d > 1. Stuhler [?MR568936] showed that SL2(OS) has
finiteness length |S| − 1 = d − 1. Abels [?MR1177335] and Abramenko [?MR1286827] inde-
pendently showed that SLn(Fq[t]) has finiteness length n − 2 = d − 1, provided q is large
enough. Sometime during the 1980s, the pattern became transparent. Behr turned it into a
serious conjecture when he proved in [?MR1603845] that the S-arithmetic subgroup Γ of the
Rank Theorem is finitely presented if and only if d > 2.
A significant step toward the Rank Theorem was the proof of its “negative half” by Wort-

man and Bux in [?MR2270455], where they showed that φ(Γ) < d. In 2008 (published in
[?MR2819164]), Wortman and Bux also settled the Rank Theorem in full for groups of global
rank 1. The major improvement was a geometric filtration of the Bruhat-Tits building for
Γ defined by Busemann functions. The relative links of this filtration are larger than those
occurring in combinatorially defined filtrations used previously: the new relative links are
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hemi-sphere complexes in spherical buildings, whose connectivity properties have been estab-
lished by Schulz [?MR3039769]. The proof of the Rank Theorem for arbitrary groups follows
this line of thought. Here, Behr-Harder reduction theory is the source of the Busemann
functions and the associate filtration.
Theorem ?? above is a considerable strengthening of the negative half of the Rank Theo-

rem. For SL2(OS), Stuhler succeeded in proving that the homology in the critical dimension
(here d = |S|) is infinitely generated, by using of a spectral sequence argument. In the other
works cited above, the finiteness length was deduced by combinatorial or geometrical means
that do not detect homology in the critical dimension.
The main difficulty is that the action of Γ on its associated Bruhat-Tits building X is

not free; in fact, the orders of the point stabilizers are not bounded. Wortman uses the
height function from the Rank Theorem to pass to a cocompact subspace X(0), which is
(d − 2)-connected. Gluing in free Γ-orbits of cells of dimensions d and d + 1, he obtains a
d-connected space Y on which Γ acts with stabilizers of uniformly bounded order, and he
obtains a Γ-equivariant map Y → X . He can now pass to a finite index subgroup Γ′ ≤ Γ
that acts freely on Y . He then constructs an infinite family of cocycles on Y and a “dual”
family of cycles on X paired via the comparison map Y → X . The supports of the cycles
in X increase in height and “low” cocycles evaluate trivially on higher cycles. On the other
hand, each cocycle evaluates non-trivially on the corresponding cycle. This shows that the
cocycles are non-trivial and linearly independent.



3. Research Lectures and Survey Talks

Mikhail Belolipetsky (IMPA, Brazil):

Arithmetic hyperbolic reflection groups ⊲

A hyperbolic reflection group Γ is a discrete subgroup of the group of isometries of the
hyperbolic n-space Isom(Hn) generated by reflections in the faces of a hyperbolic polyhedron
P ⊂ Hn. If P has finite volume, then Hn/Γ = O is a finite volume hyperbolic orbifold, which
is obtained by “mirroring” the faces of P . A reflection group Γ is maximal if there does not
exist a reflection group Γ′ ⊂ Isom(Hn) that properly contains Γ. A reflection group is called
arithmetic if it is an arithmetic subgroup of Isom(Hn) = PO(n, 1).
This talk was about finiteness results for maximal arithmetic hyperbolic reflection groups.

After a brief review of previous foundational work by Vinberg and Nikulin, it focused atten-
tion on the results obtained in this area in the last 10 years. The important breakthrough was
achieved by Maclachlan–Long–Reid [?Bel-LMR] and Agol [?Bel-A06], who proved that there
exist only finitely many conjugacy classes of arithmetic maximal hyperbolic reflection groups
in dimensions n = 2 and n = 3, respectively. Later, this was proved for all dimensions:

Theorem 1 (Agol-Storm-Belolipetsky-Whyte [?Bel-ABSW], Nikulin [?Bel-N07]). There are
only finitely many conjugacy classes of arithmetic maximal hyperbolic reflection groups in
any fixed dimension n.

The finiteness theorem allows us to talk about a classification of arithmetic hyperbolic
reflection groups. Two types of problems are considered here: proving quantitative bounds
for the invariants of the groups, and constructing examples that fit into the bounds. Results
in these directions were obtained in the papers [?Bel-B09,?Bel-B11,?Bel-Mcleod,?Bel-M11,
?Bel-N11,?Bel-BLi,?Bel-BM]. The end of the talk discussed the main open problems in the
area.

Vladimir Chernousov (University of Alberta):

A finiteness theorem for the genus ⊲

Given a finite-dimensional central division algebra D over a field K, the genus gen(D) is
defined to be the set of isomorphism classes of central division K-algebras having the same
(isomorphism classes of) maximal subfields as D. One would like to have qualitative and
quantitative results for gen(D) over arbitrary fields.
This general question is related to other interesting problems in division algebras, quadratic

forms, Galois cohomology and even differential geometry (a question of this nature was raised
in the paper [?Raj-PR] on length-commensurable and isospectral locally symmetric spaces).
Since every division algebra is the union of its maximal subfields, questions about the genus
can informally be thought of questions about ways to use the same subfields and construct
a different algebra (so, in some sense, these are analogs of the Banach-Tarski paradox for
division algebras).
More precisely, we have the following questions.

Question 1. When is |gen(D)| = 1?
11
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We note that |gen(D)| = 1 if and only ifD is uniquely determined by its maximal subfields.
Since D and its opposite algebra Dop have the same maximal subfields, an affirmative answer
to Question ?? is possible only if exp(D) = 2.

Question 2. When is |gen(D)| <∞?

Various people including Garibaldi, Rost, Saltman, Shacher, Wadsworth, have described
a method for constructing non-isomorphic quaternion algebras over very large fields (having
infinite transcendence degree over the prime field) with the same quadratic subfields, which
actually shows that the genus of a quaternion algebra over such a field can be infinite. This
suggests that Question ?? should be considered primarily over finitely generated fields.
Work of Vladimir Chernousov with Andrei and Igor Rapinchuk developed a general ap-

proach to proving the finiteness of the genus of a division algebra, and estimating its size,
based on an analysis of the unramified Brauer group with respect to an appropriate set of
discrete valuations of K. This approach yields, in particular, the following two theorems.

Theorem 3 (“Stability Theorem”, Chernousov-Rapinchuk-Rapinchuk [?Cher-CRR1,?Cher-CRR2]).
Let K be a field of characteristic not 2. If |gen(D)| = 1 for any central division K-algebra
D of exponent 2, then the same is true for any division algebra of exponent 2 over the field
of rational functions K(x).

Corollary 4. Let k be either a finite field of characteristic not 2 or a number field, and let
K = k(x1, . . . , xr) be a finitely generated purely transcendental extension of k. Then, for any
central division K-algebra D of exponent 2, we have |gen(D)| = 1.

Theorem 5 (Chernousov-Rapinchuk-Rapinchuk [?Cher-CRR1, ?Cher-CRR2]). Let K be a
finitely generated field. If D is a central division K-algebra of exponent prime to char K,
then gen(D) is finite.

Furthermore, the authors proposed a generalization of the notion of genus to arbitrary
absolutely almost simple algebraic K-groups, based on the isomorphism classes of maximal
K-tori. (Possible variations of this notion can be based on the consideration of isogeny
classes and/or some special classes of maximal K-tori, e.g., generic tori.)
In view of Theorem ??, the following seems natural.

Conjecture 6 (Chernousov-Rapinchuk-Rapinchuk [?Cher-CRR1,?Cher-CRR2]). Let G be an
absolutely almost simple simply connected algebraic group over a finitely generated field K
of characteristic zero (or of “good” characteristic relative to G). Then there exists a finite
collection G1, . . . , Gr of K-forms of G such that if H is a K-form of G having the same
isomorphism classes of maximal K-tori as G, then H is K-isomorphic to one of the Gi’s.

The proof of Theorem ?? yields a proof of this conjecture for inner forms of type Aℓ.

Ted Chinburg (University of Pennsylvania):

Generating arithmetic groups by small subgroups using Lefschetz
Theorems ⊲

The following result provides interesting examples of large arithmetic groups that are gen-
erated by specific small arithmetic subgroups.
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Theorem 1 (Chinburg-Stover [?Chin-CS]). Let G be SL2(R) × SL2(R) or SU(2, 1) with
corresponding hermitian symmetric space X, and let Γ be a cocompact arithmetic lattice
in G. Assume that the complex algebraic surface S = Γ\X contains a holomorphically
immersed totally geodesic projective algebraic curve. Then there exist finitely many such
curves C1, . . . , Cr ⊂ S and positive integers α1, . . . , αr such that:

(1) The divisor D =
∑

αjCj is a connected effective divisor on S.
(2) The image of π1(|D|) in Γ under the natural homomorphism is a finite index subgroup.

Statement ?? is shown using the commensurator of Γ and the fact that there are infin-
itely many commensurability classes of Fuchsian curves on S once one exists. The proof of
statement ?? uses work of Nori [?Chin-N] and of Napier and Ramachandran [?Chin-NR] on
Lefschetz Theorems for sufficiently positive divisors on complex varieties.
One consequence of the theorem is the following structure theorem for the Albanese vari-

eties of arithmetic complex hyperbolic 2-manifolds.

Theorem 2 (Chinburg-Stover [?Chin-CS]). Let Γ be as in Theorem ?? and suppose G =
SU(2, 1). There exists r ≥ 1 and Fuchsian curves C1, . . . , Cr on S = Γ\H2

C such that if the
Albanese variety Alb(S) is nontrivial, then every simple factor of Alb(S) is isogenous to a

factor of the Jacobian of the normalization C#
j of (at least) one of the curves Cj.

If Γ is a congruence arithmetic lattice of simple type, Gelbart and Rogawski [?Chin-GR]
proved that the first cohomology group of Γ\H2

C, which determines Alb(Γ\H2
C), arises from

the theta correspondence. Murty and Ramakrishnan then used Faltings’ work on the Mordell
conjecture in [?Chin-MR] to show that the simple factors of Alb(Γ\H2

C) are, in fact, CM
abelian varieties. This gave a positive answer to a question of Langlands.
Theorem ?? provides information of a different nature about Alb(Γ\H2

C) for both congru-
ence and noncongruence Γ, namely that Alb(Γ\H2

C) is built from the Jacobians of Fuchsian
curves on Γ\X . By work of Kazhdan in [?Chin-K], one can always find elements in the
commensurability class with nontrivial Albanese variety, and there are always noncongru-
ence groups in the commensurability classes under consideration. It would be interesting to
know whether or not the factors which appear for noncongruence Γ must also have complex
multiplication.

Vincent Emery (Stanford University):

Bounds for torsion homology of arithmetic groups ⊲

Let G be a connected semisimple real algebraic group, such that G(R) has trivial center
and no compact factor. A result of Gelander [?Em-Gel04] can be used to prove the following
theorem that bounds the torsion homology of nonuniform arithmetic lattices Γ ⊂ G(R),
without requiring Γ to be torsion-free (but with a restriction on G). Results of this type for
Betti numbers hold in much greater generality (see, for instance, [?Em-Samet]).

Theorem 1 (Emery [?Em-EmeK2]). Let G be as above, and assume, for all irreducible lattices
Γ ⊂ G(R), that we have Hq(Γ,Q) = 0 for q = 1, . . . , j. Then there exists a constant CG > 0,
such that, for each irreducible nonuniform arithmetic lattice Γ ⊂ G(R), the following bound
on torsion homology holds:

log |Hj(Γ,Z)| ≤ CG vol
(
Γ\G(R)

)
.

http://www.birs.ca/events/2013/5-day-workshops/13w5019/videos/


14 Arithmetic Groups

The following theorem about K-theory of number fields is obtained by combining Theo-
rem 1 with recent results of Calegari and Venkatesh [?Em-CalVen]. It improves — for totally
imaginary fields — previous bounds due to Soulé [?Em-Soule03].

Theorem 2 (Emery [?Em-EmeK2]). Let d > 5 be an integer. There exists a constant C =
C(d) > 0, such that, for each totally imaginary field F of degree d, we have:

log |K2(OF )⊗ R| ≤ C|DF |
2(log |DF |)

d−1,

where R = Z[ 1
6wF

], DF is the discriminant, and wF the number of roots of unity in F .

Alireza Salehi Golsefidy (University of California, San Diego):

Expansion properties of linear groups

Highly connected sparse graphs are extremely useful in the theory of communication, the-
oretical computer science, and pure mathematics (see the beautiful surveys [?Gol-HLW],
[?Gol-Lub] and [?Gol-Kow]). A family {Xi}

∞
i=1 of finite k-regular graphs is called a fam-

ily of expanders if, for some positive number c, we have

cmin{|A|, |V (Xi) \ A|} < |∂A| for any i and A ⊆ V (Xi).

Margulis gave the first explicit construction of expanders. He made the fundamental
observation that the Cayley graphs of finite quotients of a discrete group with Kazhdan’s
property (T) form a family of expanders. Based on his ideas, Selberg’s 3/16-theorem implies
that {Cay(πm(SL2(Z)), πm(Ω))}m is a family of expanders, where

Ω :=

{[
1 ±1
0 1

]
,

[
1 0
±1 1

]}
,

m runs through all the positive integers, and πm is the reduction map modulom. Many others
(Burger, Sarnak and Clozel, to name a few) have studied the analytic behavior of congruence
quotients of arithmetic lattices using automorphic forms and representation theory. Their
work resulted in the following.

Theorem 1. Let G ⊆ GLn be a semisimple Q-group and Γ := G ∩ GLn(ZS), where S is a
finite set of primes. Assume Γ is an infinite group that is generated by a finite (symmetric)
set Ω = Ω−1. Then the Cayley graphs Cay(πm(Γ), πm(Ω)) form a family of expanders as m
runs through positive integers.

Lubotzky was the first to ask if Theorem ?? holds for a thin group. Specifically he asked
if {Cay(πp(Γ), πp(Ω))}p is a family of expanders, where Γ = 〈Ω〉,

Ω =

{[
1 ±3
0 1

]
,

[
1 0
±3 1

]}
,

and p runs through all the primes. This question essentially asks if the analytic behavior
of the congruence quotients of a linear group (under suitable conditions) is dictated by its
Zariski topology.
In a groundbreaking work based on a result of Helfgott [?Gol-Hel], Bourgain and Gam-

burd [?Gol-BG] answered Lubotzky’s question affirmatively. These works were the starting
point of a chain of fundamental results on the expansion properties of linear groups and
their applications in other branches of mathematics (see the surveys [?Gol-Lub,?Gol-Kow,



Research Lectures and Survey Talks 15

?Gol-MSRI]). The following result was an essential part of the proof of the fundamental
theorem of affine sieve [?Gol-SGS].

Theorem 2 (Golsefidy-Varjú [?Gol-SGV]). Let Ω ⊆ GLn(ZS) be a finite symmetric set and
Γ = 〈Ω〉. Then {Cay(πq(Γ), πq(Ω))}q is a family of expanders as q runs through square-free
integers if and only if the Zariski connected component G◦ of the Zariski closure G of Γ is
perfect, i.e. G◦ = [G◦,G◦].

Lizhen Ji (University of Michigan):

Outer automorphisms of free groups and tropical geometry ⊲

Let Fn be the free group on n generators (with n ≥ 2), and let Out(Fn) = Aut(Fn)/Inn(Fn)
be its outer automorphism group. The group Out(Fn) is one of the most basic groups in
combinatorial group theory, and it has been extensively studied.
One key tool for understanding the properties of Out(Fn) is its action on a certain

space Xn, called outer space. By definition (see [?CullerVogtmann]), Xn is the space of
equivalence classes of marked metric graphs whose fundamental group is Fn. (A metric on
a graph Γ is an assignment of lengths to the edges of the graph, such that the sum is 1. A
marking of Γ is a homotopy equivalence from Γ to the wedge of n circles. Roughly speaking,
this is an identification of π1(Γ) with Fn, but no basepoint has been fixed, so the identi-
fication is only well-defined up to an inner automorphism. Equivalence classes are taken
with respect to a natural notion of isomorphism of marked metric graphs.) Since Out(Fn)
acts on Xn (by changing the marking), information about Xn can yield information about
Out(Fn).
According to the celebrated Erlangen program of Klein, an essential part of the geometry of

a space is concerned with invariants of the isometries (or symmetries) of the space. Similarly,
an essential part of the geometry of a group is to find and understand spaces on which the
group acts and preserves suitable additional structures of the space. It is often natural to
require the space to be a metric space and the action to be by isometries.
In classical geometry, a metric space is a complete Riemannian manifold such as the

Euclidean space, the sphere, or the hyperbolic space. But it is also important to consider
metric spaces that are not manifolds. Examples include Tits buildings and Bruhat-Tits
buildings for real and p-adic semisimple Lie groups. These are simplicial complexes with a
natural complete Tits metric so that the groups act isometrically and simplicially on them.
Of course, the rich combinatorial structure also makes their geometry interesting.
The outer space Xn can be realized in a natural way as a subset of a finite-dimensional

simplicial complex (with infinitely many simplices) and hence admits a natural simplicial
metric d0. This metric is invariant under Out(Fn), but it is not complete, because Xn is
missing the faces of some simplices. Since the completeness of metrics is a basic condition
that is important for many applications, the following problem is very natural (see [?Ji-briv,
Question 2] for more discussion).

Problem 1. Construct complete geodesic metrics on Xn that are invariant under Out(Fn).

As explained above, solutions to this problem provide geometries of Out(Fn) in a certain
sense. Another motivation for this problem comes from the analogy with other important
groups in geometric group theory: arithmetic subgroups Γ of semisimple Lie groups G and
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mapping class groups Modg,n of surfaces of genus g with n punctures. A lot of work on
Out(Fn) is motivated by results obtained for these families of groups.
An arithmetic group Γ acts on the symmetric space G/K, and the mapping class group

Modg,n acts on the Teichmüller space Tg,n of Riemann surfaces of genus g with n punctures.
The symmetric space X = G/K admits a complete G-invariant Riemannian metric and Γ
acts isometrically and properly on X . The Teichmüller space Tg,n admits several complete
Riemannian and Finsler metrics, such as the Bergman and Teichmüller metrics, and Modg,n

acts isometrically and properly on them.
Though Xn is not a manifold, it is a locally finite simplicial complex and hence is a

canonically stratified space with a smooth structure. Therefore, the following problem also
seems to be natural in view of the above analogy.

Problem 2. Construct piecewise smooth Riemannian metrics on Xn that are invariant under
Out(Fn) and whose induced length metrics are complete geodesic metrics. Furthermore, the
quotient Out(Fn)\Xn has finite volume.

With respect to the smooth structure on Xn as a canonically stratified space, it is natural
to require the Riemannian metric on Xn to be smooth in the sense of stratified spaces.
Problems ?? and ?? are solved by the following theorem.

Theorem 3 (Ji [?Ji-ji]). There exist several explicitly constructed complete geodesic met-
rics and complete piecewise-smooth Riemannian metrics on Xn that are invariant under
Out(Fn).

The proof of this theorem utilizes tropical geometry, which is algebraic geometry over the
tropical semifield. (This is a rapidly developing subject — see [?Ji-mi, ?Ji-ims] and the
references therein.) The theory is applicable because metric graphs can be identified with
tropical curves. There is a tropical Jacobian map from the moduli space of tropical curves to
the moduli space of principally polarized tropical abelian varieties, and the desired metrics
are obtained by combining this map with the simplicial metric d0 on Xn. This application
of tropical geometry to geometric group theory might be of independent interest.
Now that complete invariant geodesic metrics have been constructed on Xn, one natural

problem is to understand how these metrics can be used to study Xn and Out(Fn). Their
construction might be the first step towards a metric theory of outer space [?Ji-briv,
Question 1.2].

Benjamin Klopsch (Heinrich Heine University Düsseldorf) and
Christopher Voll (Bielefeld University):

Representation growth of arithmetic groups ⊲

The talks of B.Klopsch and C.Voll were coordinated to essentially constitute another mini-
course, so they are summarized here as a single unit.
For a group Γ, let rn(Γ) denote the number of irreducible complex representations (up to

isomorphism) in dimension n. The group Γ is called representation rigid if rn(Γ) is finite for
every n.
A rigid group Γ has polynomial representation growth (PRG) if rn(Γ) grows at most poly-

nomially. Equivalently, one can ask that the partial sums Rn(Γ) :=
∑n

i=1 ri(Γ) grow at most
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polynomially. In this case, it is profitable to encode the numbers rn(Γ) into the (representa-
tion) zeta function of Γ:

ζΓ(s) :=

∞∑

n=1

rn(Γ)

ns
.

The PRG-condition ensures that ζΓ converges absolutely on some complex right half-plane.
Conversely, the abscissa of convergence determines the rate of growth of the sequence
{Rn(Γ)}. Computing this abscissa is therefore a central problem in the subject of repre-
sentation growth of groups. In particular, it is important to understand how the abscissa
varies (and how other analytic invariants of ζΓ vary), as Γ ranges over interesting classes of
groups.
Consider the case that Γ is an arithmetic group in characteristic zero. For simplicity,

assume that Γ = G(OS), where G is a connected, simply connected, semisimple algebraic
group defined over a number field k with ring of S-integers OS.

Theorem 1 (Lubotzky-Martin [?MR2121543]). The group Γ has PRG if and only if it has
the Congruence Subgroup Property (CSP).

From now on we assume, again for simplicity, that the congruence kernel of Γ is trivial.
In this case, the zeta function has an Euler product decomposition that is a consequence of
Margulis superrigidity:

Proposition 2 (Larsen-Lubotzky [?MR2390327]). If Γ has trivial congruence kernel then the
zeta function ζΓ has an Euler product decomposition:

(1) ζΓ(s) = ζG(C)(s)
[k:Q]

∏

v 6∈S

ζG(Ov)

The archimedean factor ζG(C) enumerates rational representations of the algebraic group
G(C). This factor, known as the Witten zeta function, is comparatively well understood
in terms of highest weight theory and the Weyl character formula. The non-archimedean
factors ζG(Ov) enumerate continuous representations of the p-adic analytic groupsG(Ov), and
there exists a well-developed Lie theory for their principal congruence subgroups Gm(Ov).
In particular, the Kirillov orbit method sets up a 1-1-correspondence between continuous,
irreducible complex representations of these pro-p groups and finite co-adjoint orbits in the
dual of their Lie algebras. Deligne-Lusztig theory governs the representation theory of the
finite groups of Lie type G(Ov)/G

1(Ov).
Avni, Klopsch, Onn, and Voll have recently created a framework for the study of the local

representation zeta functions ζG(Ov), with a view toward analyzing their Euler products.
Formulas for the zeta functions of pro-p-groups of the form Gm(Ov) can be obtained by
developing methods from p-adic integration. These formulas yield, in particular, proofs of
local functional equations upon inversion of the residue field characteristic [?KuV-AKOV1].
For analysis of the analytic properties of Euler products such as (??), control over the

zeta functions of congruence subgroups is not sufficient. In [?KuV-AKOV4], powerful machin-
ery from model theory (viz., integrals of quantifier-free definable functions) is developed to
“approximate”, uniformly over large sets of places, the Clifford theory connecting the rep-
resentation theory of the groups G(Ov) with the representation theory of their congruence
subgroups. This approach requires new insights into the behavior of representation growth
of groups such as G(O) under base change, combined with a detailed analysis of represen-
tation zeta functions of finite groups of Lie type. This yields, in particular, a proof of the
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following theorem, which implies that the degree of representation growth is invariant under
ring extensions.

Theorem 3 (Avni-Klopsch-Onn-Voll [?KuV-AKOV4]). For every irreducible root system Φ,
there is a constant αΦ that equals the abscissa of convergence of the representation zeta
function for any group Γ = G(OS) satisfying the CSP, such that G has absolute root system
Φ.

This is related to the following conjecture, which is a refinement of Serre’s conjecture on
the Congruence Subgroup Property of lattices in higher-rank groups:

Conjecture 4 (Larsen-Lubotzky [?MR2390327]). Let G be a higher-rank semisimple locally
compact group and let Γ1 and Γ2 be two irreducible lattices in G. Then the corresponding
representation zeta functions have the same abscissa of convergence.

For groups that have the CSP (which is required by the theorem, but not by the conjecture),
the theorem’s hypothesis is weaker than the conjecture’s hypothesis. Namely, the conjecture
requires Γ1 and Γ2 to be contained in a common ambient group G, but the theorem only
requires the ambient groups to have the same absolute root system. Further details can be
found in the survey [?KuV-survey].

C. S. Rajan (Tata Institute of Fundamental Research):

Representation and characteristically equivalent arithmetic
lattices
The inverse spectral problem is to recover the properties of a compact Riemannian mani-
fold M from the knowledge of the spectrum of the Laplace operator (or of a more general
Laplacian type operator) acting on the space of smooth functions on M . It is known, for
example, that the spectra on functions determines the dimension, volume and the scalar
curvature of M .
Examples of non-isometric compact Riemannian manifolds which are isospectral on func-

tions have been given by Milnor in the context of flat tori, and by Vigneras for compact
hyperbolic surfaces [?Raj-V]. Sunada gave a general method in analogy with a construction
in arithmetic [?Raj-S].
In many of these constructions, the manifolds are quotients by finite groups of a fixed Rie-

mannian manifold. The question arises whether isospectral manifolds are indeed commensu-
rable, i.e., have a common finite cover. In the context of Riemannian locally symmetric spaces
this question has been studied by various authors [?Raj-R,?Raj-CHLR,?Raj-PR,?Raj-LSV]
assuming that the spaces are isospectral for the Laplace-Beltrami operator acting on func-
tions. In [?Raj-PR], Gopal Prasad and A. S. Rapinchuk address this question in full gen-
erality, and get conditional commensurability type results for isospectral, compact locally
symmetric spaces. For this when the locally symmetric spaces are of rank at least two, they
have to assume the validity of Schanuel’s conjecture on transcendental numbers. Another
hypothesis they are required to make is that the base field is totally real and the group is
anisotropic at all but one real place.
Chandrasheel Bhagwat, Supriya Pisolkar, and C. S. Rajan [?Raj-BPR] considered this

question, assuming the stronger hypothesis that the lattices defining the locally symmetric
spaces are representation equivalent, rather than isospectral on functions (see [?Raj-DG]).
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They were able to obtain unconditionally similar conclusions as in [?Raj-PR] for represen-
tation equivalent lattices, for example without invoking Schanuel’s conjecture, and also ex-
tend the application to representation equivalent S-arithmetic lattices. In the process, they
introduced a new relation of characteristic equivalence of lattices, stronger than weak com-
mensurability.
The proofs are distilled from the arguments given in [?Raj-PR]. The stronger hypothesis

simplifies the arguments used in [?Raj-PR].

Andrei Rapinchuk (University of Virginia):

On the congruence subgroup problem ⊲

The talk was a brief survey of, and a progress report on, the congruence subgroup for
algebraic groups over global fields. Let G be an absolutely almost simple algebraic group
defined over a global field K, and let S be a (not necessarily finite) set of places containing
all the archimedean ones when K is a number field. Then one considers the completions

ĜS and G
S
of the group G(K) of rational point with respect to the S-arithmetic and the

S-congruence topologies (see [?AR-PR-Milnor, ?AR-Rag-CSP] for precise definitions), and
defines the S-congruence kernel CS(G) to be the kernel of the natural continuous surjective

homomorphism ĜS π
−→ G

S
. The congruence subgroup problem in this situation is the

question about the computation of C = CS(G). The main conjecture, due to Serre, states
that C should be finite if rkSG :=

∑
v∈S rkKv

G is > 2 and rkKv
G > 0 for all nonarchimedean

v ∈ S, and infinite if rkSG = 1 (here rkKv
G denotes the rank of G over the completion Kv).

The talk focused primarily on the higher rank case of Serre’s conjecture (the structure of C in
the rank one situation has been determined in many cases by O. V. Mel’nikov, A. Lubotzky
and P. A. Zalesskii with various co-authors - see the references in [?AR-PR-Milnor]). First,
it was explained that modulo the Margulis-Platonov conjecture on the structure of normal
subgroups of G(K), which has already been proved in the majority of cases, the finiteness

of C is equivalent to its centrality, i.e., to the fact that it lies in the center of ĜS, in
which case C (or more precisely, its Pontrjagin dual) is isomorphic to the metaplectic kernel
M(S,G) (see [?AR-PR-Milnor], [?AR-Rag-CSP] for the details). Second, the effort to compute
M(S,G) initiated by C. Moore and continued by Matsumoto, Deodhar, Prasad-Raghunathan
and others was completed in [?AR-PR-Met]. In essence, the final result says that M(S,G)
is always finite and is isomorphic to a subgroup of the group µK of roots of unity in K
(in particular, it is always a finite cyclic group), and in fact is trivial under some rather
general additional assumptions. So, the focus in the higher rank case of the congruence
subgroup problem is currently on finding a general approach to the proof of centrality.
The centrality has been established in a number of cases using a variety of techniques (cf.
[?AR-PR-Milnor, ?AR-Rag-CSP]), but there are still anisotropic groups (e.g., K-groups of
the form SL1,D where D is a finite-dimensional central division algebra over K) that defy all
efforts. The talk discussed some approaches to proving the centrality that do not require any
case-by-case considerations. One of the approaches relies on the analysis of the centralizers
of elements from G(K) in ĜS. To formulate a result in this direction, recall that, without

loss of generality, we may assume that rkS G > 0, and then the S-congruence completion G
S

can be identified with the group of S-adeles G(A(S)) by the strong approximation theorem
(see [?AR-R-SA] for a recent survey on strong approximation).
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Proposition 1. Assume that there exists n > 1 such that for any regular semi-simple element
t ∈ G(K) and its centralizer T = ZG(t) we have

π(ZĜS(t)) ⊃ T (A(S))n.

Then C is central.

If we let ̂ and ¯ denote the closure in ĜS and G
S
, respectively, then clearly, ZĜS(t)

contains T̂ (K), and since π(T̂ (K)) = T (K), we obtain the following.

Corollary 2. If there exists n > 1 such that

T (K) ⊃ T (A(S))n

for any K-torus T in G then C is central.

Thus, the centrality would be a consequence of the property of almost strong approxima-
tion in all K-tori of G for a given S. The bad news is that this property never holds for a
nontrivial K-torus if S is finite. More precisely, one uses the fact that T admits coverings
T → T of any degree to show that the quotient T (A(S))/T (K) has infinite exponent (cf.
[?AR-R-SA]). But there is a little bit of good news at the other end of the spectrum, viz.
when S is co-finite, i.e. S = V K \ S0 where S0 is a finite set of nonarchimedean places. In
this case,

T (A(S)) = TS0
:=

∏

v∈S0

T (Kv),

and one shows that TS0
/T (K) has finite exponent which can be bounded by a function

depending only on dimT .

Corollary 3 (Semi-local case). If S is co-finite then C is central (in fact, trivial).

In fact, the property of almost strong approximation holds in tori if S almost contains
a generalized arithmetic progression (subject to some natural assumptions), and one can
formulate the corresponding result for the centrality of C.

Corollary ?? leads to another condition for the centrality of C. To formulate it, we

observe that using the identification G
S
= G(A(S)), one can think of G(Kv) for any v /∈ S

as a subgroup of G
S
.

Theorem 4. Assume that for each v /∈ S there exists a subgroup Gv ⊂ ĜS so that

(1) π(Gv) = G(Kv);
(2) Gv1 and Gv2 commute elementwise for any v1 6= v2;

(3) the subgroup generated by the Gv’s is dense in ĜS.

Then C is central.

This result can be used to give a relatively short proof of Serre’s conjecture for K-isotropic
groups and also for K-anisotropic groups of exceptional types E7,E8 and F4 (recall that these
types split over a quadratic extension of K).
Finally, the ideas involved in the proof of Theorem ?? can be used to provide some

information about C in the rank one case. First, recall the following general dichotomy
(assuming the truth of the Margulis-Platonov conjecture): C is either central and finite, or
is not finitely generated (e.g., the congruence kernel for the group SL2(Z) is known to be the
free profinite group of countable rank). Nevertheless, Lubotzky proved that if Γ = G(O(S))
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is the corresponding S-arithmetic subgroup then C is finitely generated as a normal subgroup

of Γ̂ (this is a consequence of finite presentation of the group of integral ideles Γ). G. Prasad
and A. Rapinchuk showed that in some situations C is virtually generated by a single element

as a normal subgroup of ĜS. (Note that, between this result and that of Lubotzky, neither
one implies the other.)

Theorem 5. Assume that K is a number field and G is K-isotropic. Then there exists

c ∈ C such that if D ⊂ C is the closed normal subgroup of ĜS generated by c then C/D is a
finite cyclic group.

(For G = SL2 this element c can be written down explicitly.)

Igor Rapinchuk (Yale University):

On the conjecture of Borel and Tits for abstract homomorphisms
of algebraic groups ⊲

The general philosophy in the study of abstract homomorphisms between groups of rational
points of algebraic groups is as follows. Suppose G and G′ are algebraic groups that are
defined over infinite fields K and K ′, respectively. Let

ϕ : G(K)→ G′(K ′)

be an abstract homomorphism between their groups of rational points. Then, under appro-
priate assumptions, one expects to be able to write ϕ essentially as a composition ϕ = β ◦α,
where α : G(K)→ K ′G(K ′) is induced by a field homomorphism α̃ : K → K ′ (and K ′G is the
group obtained from G by base change via α̃), and β : K ′G(K ′)→ G′(K ′) arises from a K ′-
defined morphism of algebraic groups K ′G→ G′. Whenever ϕ admits such a decomposition,
one generally says that it has a standard description.
The following conjecture of Borel and Tits is a major open question. Recall that, for an

algebraic group G defined over a field k, one denotes by G+ the subgroup of G(k) generated
by the k-points of split (smooth) connected unipotent k-subgroups.

Conjecture 1 (Borel-Tits [?Rap-BT, 8.19]). Let G and G′ be algebraic groups defined over
infinite fields k and k′, respectively. If ρ : G(k)→ G′(k′) is any abstract homomorphism, such
that ρ(G+) is Zariski-dense in G′(k′), then there exists a commutative finite-dimensional k′-
algebra B and a ring homomorphism f : k → B, such that

ρ|G+ = σ ◦ rB/k′ ◦ F,

where

• F : G(k)→ BG(B) is induced by f (and BG is obtained by change of scalars),
• rB/k′ : BG(B) → RB/k′(BG)(k′) is the canonical isomorphism (here RB/k′ denotes
the functor of restriction of scalars), and
• σ is a rational k′-morphism of RB/k′(BG) to G′.

In their fundamental paper [?Rap-BT], Borel and Tits proved the conjecture for G an
absolutely almost simple k-isotropic group and G′ a reductive group. Shortly after the
conjecture was formulated, Tits [?Rap-T] sketched a proof of ?? in the case that k = k′ = R.
Prior to the recent work of I. Rapinchuk that is described below, the only other available
result was due to L. Lifschitz and A. S. Rapinchuk [?Rap-LR], where the conjecture was

http://www.birs.ca/events/2013/5-day-workshops/13w5019/videos/


22 Arithmetic Groups

essentially proved in the case where k and k′ are fields of characteristic 0, G is a universal
Chevalley group, and G′ is an algebraic group with commutative unipotent radical.
While the above results only deal with abstract homomorphisms of groups of points over

fields, it should be pointed out that there has also been considerable interest and activity
in analyzing abstract homomorphisms of higher rank arithmetic groups and lattices (e.g.,
the work of Bass, Milnor, and Serre [?Reid-BMS] on the congruence subgroup problem and
Margulis’s Superrigidity Theorem [?Rap-Mar, Chap. VII]). However, relatively little was pre-
viously known about abstract homomorphisms of groups of points over general commutative
rings, which has been the primary focus of I. Rapinchuk’s work in this area.
To state the new results, we first need to fix some notation. Let Φ be a reduced irreducible

root system of rank ≥ 2 and G be the corresponding universal Chevalley-Demazure group
scheme over Z. For any commutative ring R, we denote by G(R)+ the subgroup of G(R)
generated by the R-points of the canonical one-parameter root subgroups (usually called the
elementary subgroup).
The first theorem below is a rigidity result for abstract representations

ρ : G(R)+ → GLn(K),

where K is an algebraically closed field. In its statement, for a finite-dimensional commuta-
tive K-algebra B, the group of rational points G(B) is viewed as an algebraic group over K
by using the functor of restriction of scalars. Furthermore, given a commutative ring R, we
will say that (Φ, R) is a nice pair if 2 ∈ R× whenever Φ contains a subsystem of type B2,
and {2, 3} ⊆ R× if Φ is of type G2.

Theorem 2 (I. Rapinchuk [?Rap-IR, Main Theorem]). Let Φ be a reduced irreducible root
system of rank ≥ 2, R a commutative ring such that (Φ, R) is a nice pair, and K an alge-
braically closed field. Assume that R is noetherian if charK > 0. Furthermore let G be the
universal Chevalley-Demazure group scheme of type Φ and let ρ : G(R)+ → GLn(K) be a
finite-dimensional linear representation over K of the elementary subgroup G(R)+ ⊂ G(R).

Set H = ρ(G(R)+) (Zariski closure), and let H◦ denote the connected component of the
identity of H. Then in each of the following situations

(1) H◦ is reductive;
(2) charK = 0 and R is semilocal;
(3) charK = 0 and the unipotent radical U of H◦ is commutative,

there exists a commutative finite-dimensional K-algebra B, a ring homomorphism f : R→ B
with Zariski-dense image, and a morphism σ : G(B) → H of algebraic K-groups such that
for a suitable subgroup ∆ ⊂ G(R)+ of finite index, we have

ρ|∆ = (σ ◦ F )|∆,

where F : G(R)+ → G(B)+ is the group homomorphism induced by f .

Thus, if R = k is a field of characteristic 6= 2 or 3, then R is automatically semilocal and
(Φ, R) is a nice pair. Hence, Theorem 1 provides a proof of Conjecture ?? in the case that
G is split and K is an algebraically closed field of characteristic zero.
Let us now describe some applications of Theorem ?? to the study of character varieties

of elementary subgroups of Chevalley groups. Let K be an algebraically closed field of
characteristic 0 and R be a finitely generated commutative ring. As above, suppose that Φ
is a reduced irreducible root system of rank ≥ 2 and let G be the corresponding universal
Chevalley-Demazure group scheme. Then the elementary subgroup G(R)+ has Kazhdan’s
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property (T ) (see [?Rap-EJK]), hence is in particular a finitely generated group, and therefore,
for any integer n ≥ 1, one can consider the character variety Xn(Γ).

Theorem 3 (I. Rapinchuk [?Rap-IR1]). Let Φ be a reduced irreducible root system of rank
≥ 2, R a finitely generated commutative ring such that (Φ, R) is a nice pair, and G the
universal Chevalley-Demazure group scheme of type Φ. Denote by Γ the elementary subgroup
G(R)+ of G(R) and consider the nth character variety Xn(Γ) of Γ over an algebraically
closed field K of characteristic 0. Then there exists a constant c = c(R) (depending only on
R) such that κn(Γ) := dimXn(Γ) satisfies

κn(Γ) ≤ c · n

for all n ≥ 1.

The proof of Theorem ?? makes extensive use of Theorem ??’s description of the repre-
sentations with non-reductive image.
Another application of Theorem ?? has to do with the problem of realizing complex

affine varieties as character varieties of suitable finitely generated groups. This question was
previously considered by M. Kapovich and J. Millson [?Rap-KM], who showed that any affine
variety S defined over Q is birationally isomorphic to an appropriate character variety of
some Artin group Γ. By using Theorem ?? with K = C, it is possible to prove the following
result.

Theorem 4 (I. Rapinchuk [?Rap-IR2]). Let S be an affine algebraic variety defined over Q.
There exist a finitely generated group Γ having Kazhdan’s property (T ) and an integer n ≥ 1
such that there is a biregular isomorphism of complex algebraic varieties

S(C)→ Xn(Γ) \ {[ρ0]},

where ρ0 is the trivial representation.

Alan Reid (University of Texas at Austin):

All finite groups are involved in the mapping class group ⊲

Let Σg be a closed orientable surface of genus g ≥ 1, and Γg its Mapping Class Group.
A group H is involved in a group G if there is a finite index subgroup K < G so that

K subjects onto H . The question as to whether every finite group is involved in a fixed Γg
was raised by U. Hamenstädt in her talk at the 2009 Georgia Topology Conference. This is
easily seen to hold for the case g = 1 (since Γ1 = SL(2,Z) is virtually free) and for g = 2
(since Γ2 is large, see [?Reid-Ko]). In fact, it holds for all g:

Theorem 1 (Masbaum-Reid [?Reid-MR]). For all g ≥ 1, every finite group is involved in
Γg.

Although Γg is well-known to be residually finite [?Reid-Gro], and therefore has a rich
supply of finite quotients, very little seems known about what finite groups can arise as
quotients of Γg (or of subgroups of finite index), other than those finite quotients obtained
from

Γg → Sp(2g,Z)→ Sp(2g,Z/NZ).

It should be emphasized that one cannot expect to prove Theorem ?? by simply using the
subgroup structure of the groups Sp(2g,Z/NZ). The reason for this is that, since Sp(2g,Z)
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has the Congruence Subgroup Property [?Reid-BMS], it is well-known that not all finite
groups are involved in Sp(2g,Z) (see [?Reid-LR, Chapter 4.0], for example).
The main new idea in the proof of Theorem ?? is to exploit the unitary representations

arising in Topological Quantum Field Theory (TQFT), first constructed by Reshetikhin
and Turaev [?Reid-RT]. (Actually, the proof uses the so-called SO(3)-TQFT, following the
skein-theoretical approach of [?Reid-BMVH] and the Integral TQFT refinement [?Reid-GM].)
Since, as was mentioned above, the case g = 1 and the case g = 2 are easy, it suffices to

deal with the case where g ≥ 3. Therefore, Theorem ?? easily follows from the next result,
which gives many new finite simple groups of Lie type as quotients of Γg.

Theorem 2 (Masbaum-Reid [?Reid-MR]). For each g ≥ 3, there exist infinitely many N ,
such that, for each such N , there exist infinitely many primes q, such that Γg surjects onto
the finite group PSL(N,Fq), where Fq denotes the finite field of order q.

In addition, [?Reid-MR] also shows that Theorem ?? holds for the Torelli group (with
g ≥ 2).

Bertrand Rémy (Institut Camille Jordan):

Informal talk on Kac-Moody groups ⊲

There are two kinds of Kac-Moody groups: the complete groups and the minimal groups.
Both are discussed in J. Tits’ Bourbaki seminar [?Remy-Tits89], and they both have the
same algebraic origin, namely Kac-Moody Lie algebras [?Remy-Kac90]. (Kac-Moody alge-
bras are infinite-dimensional analogues of finite-dimensional reductive Lie algebras. In the
classical finite-dimensional setting, the Serre presentation produces generators and relations
for the Lie algebra from a Cartan matrix. In the infinite-dimensional setting, there is an
analogous presentation that is produced from a generalized Cartan matrix.) The two kinds of
groups also share a method of construction that imitates, in an infinite-dimensional context,
the definition of Chevalley-Demazure group schemes for reductive groups [?Remy-Dem65].
Namely, the Kac-Moody group of either kind is a functor that is defined by a presentation.
It is essentially a Steinberg presentation, generalizing an abstract presentation of the rational
points of a split reductive group [?Remy-Tits87]. The main ingredients in the presentation
are various completions of integral forms of (pieces of) universal enveloping algebras of Kac-
Moody algebras [?Remy-Rem02].
Instead of working with the presentation of a Kac-Moody group, it is much more efficient

to use its nice combinatorics (the existence of two twinned Tits systems). The geometric
counterpart to these rich combinatorial properties is the existence of buildings on which
the Kac-Moody group acts highly transitively. By definition, buildings are cell complexes
that are the union of subcomplexes all isomorphic to a given Coxeter tiling; some additional
incidence properties are required [?Remy-AB08]. They admit very useful metrics that are
complete and non-positively curved. Moreover, non-spherical buildings are contractible,
which suggests a fruitful analogy with symmetric spaces of non-compact type (an important
tool in the study of Lie groups and their discrete subgroups).
One of the valuable features of Kac-Moody theory is that it leads to intriguing new ex-

amples of groups. For example, the minimal Kac-Moody groups over finite fields provide
infinitely many quasi-isometry classes of finitely presented simple groups [?Remy-CR10]. (The
proof of simplicity has two main parts. First is the fact that non-central normal subgroups
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have finite index [?BaderShalom, ?Remy-induction], which is analogous to a well-known
result in the theory of arithmetic groups. Then the proof exploits a crucial “weakly hy-
perbolic” property of the geometry of non-Euclidean infinite Coxeter groups [?Remy-CR09].)
The maximal pro-p subgroups in complete Kac-Moody groups are another class of groups
that pose interesting challenges. Their first homology has just been computed [?Remy-CR13],
but their higher finiteness properties still need to be investigated.

Matthew Stover (Temple University):

Counting ends of rank one arithmetic orbifolds ⊲

If N is a noncompact negatively curved locally symmetric space of finite volume, then it has
a finite number of topological ends, or cusps. The following question, remarkably, remains
wide open:

Question 1. Is there a one-cusped complete finite-volume hyperbolic n-manifold for every n?

One-ended finite-volume orbifold quotients of hyperbolic n-spaceHn are known for n < 10,
but no one-cusped n-manifold is known for n > 4. For n = 2, 3, it is relatively easy to find
examples with arithmetic fundamental group. For example, one can interpret the fact that
the modular surface PSL2(Z)\H

2 has one cusp in terms of the fact that Z is a principal ideal
domain, and it is relatively easy to find a one-cusped manifold cover. The number of cusps
of arithmetic hyperbolic 3-manifolds is closely related to the class number of an imaginary
quadratic field k, which is an invariant that measures ‘how far’ its ring of integers is from
being a PID.
Given the ease with which one can build one-cusped arithmetic orbifolds in dimensions 2

and 3, one might hope that arithmetic techniques could provide one-cusped hyperbolic n-
manifolds, or at least orbifolds, for all n. The following theorem shows that this is impossible.

Theorem 2 (Stover [?Stover]). One-cusped arithmetic hyperbolic n-orbifolds do not exist
for any n > 31.

The proof relates the number of ends to the so-called class number of a certain quadratic
form, then studies related number theoretic invariants that yield a lower bound on the
number of ends. In fact, it gives an exact formula for the number of cusps for Γ\Hn when
Γ is a natural generalization of the usual congruence subgroups of PSL2(Z). The paper also
constructs new one-cusped examples in dimensions 10 and 11.
Theorem ?? is actually a precise special case of the following much stronger finiteness

theorem.

Theorem 3 (Stover [?Stover]). Fix k > 0. There are only finitely many commensurability
classes of negatively curved arithmetic locally symmetric spaces that contain an element with
k ends.

The negatively curved locally symmetric spaces are hyperbolic n-space, complex hyperbolic
n-space Hn

C, quaternionic n-space Hn
H, and the exceptional Cayley hyperbolic plane H2

O.
All finite-volume quaternionic hyperbolic n-orbifolds and Cayley hyperbolic 2-orbifolds are
arithmetic, so the arithmetic assumption in Theorem ?? is superfluous and finiteness holds
over all finite-volume quotients. In particular, for each k > 0, there is a constant ck such
that finite-volume quaternionic hyperbolic n-orbifolds with k ends do not exist for n > ck.
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T. N.Venkataramana (Tata Institute of Fundamental Research):

Monodromy of arithmetic groups ⊲

Let f, g ∈ Z[X ] be polynomials of degree n that are monic with constant term one, and have
no common root. Also assume that every root of fg is a root of unity, and that {f, g} is a
“primitive pair” (see [?Venk-SV]).

Theorem 1 (Beukers-Heckman [?Venk-BH]). The companion matrices A,B of f, g preserve
a nondegenerate symplectic form Ω on Qn and generate a Zariski dense subgroup Γ of the
integral symplectic group Spn(Ω,Z).

It is known [?Venk-BH] that Γ is the monodromy group of a suitable hypergeometric
equation of type nFn−1. The following theorem determines when the subgroup Γ has finite
index in Spn(Ω,Z):

Theorem 2 (Singh-Venkataramana [?Venk-SV]). If the leading coefficient of the polynomial
f − g does not exceed two, then Γ is arithmetic.

The method of proof also shows that for the 14 examples of Calabi-Yau threefolds listed
in [?Venk-CEYY], the monodromy group is arithmetic.

Stefan Witzel (University of Münster):

Bredon finiteness properties of arithmetic groups ⊲

Classifying spaces EG of groups G have been studied for a long time. Its usefulness in un-
derstanding G partly depends on how finite EG is (or how finite it can be chosen to be). One
natural measure of finiteness is dimension, which leads to the notion of the geometric dimen-
sion gdG of the group G. In a different direction, one investigates up to which dimension
the action of G on EG is cocompact, which is encoded in the finiteness properties Fn.
For groups with torsion, it is natural to allow the actions to have finite stabilizers. Thus,

instead of classifying spaces EG for free actions, one studies classifying spaces EG for proper
actions. (All actions are by cell-permuting homeomorphisms on CW-complexes.) In the
same way as for free actions, this gives rise to the notions of proper geometric dimension gd
and proper finiteness properties Fn (see [?MR0206946] and [?MR1027600]).
For the study of classical (free) finiteness properties, there is a very useful criterion due

to Brown [?MR885095]. If one can let G act on a contractible space, in such a way that the
stabilizers have good finiteness properties themselves, then the criterion relates the finiteness
properties of G to the essential connectivity of an orbit. (Essential connectivity is a technical
property that measures how highly connected an orbit is in a coarse sense.)
Fluch and Witzel [?FluchWitzel2011] translated a homological version of Brown’s cri-

terion to actions with arbitrary families of stabilizers, in particular, to proper actions. Al-
gebraically, proper finiteness properties correspond to finiteness properties of normalizers
of finite groups. Topologically, they are reflected in the connectivity of fixed point sets of
finite subgroups. The essential connectivity in this case is measured uniformly over all finite
groups.
A concrete family of examples illustrates how and why the classical finiteness properties

of a group can differ from its proper finiteness properties. Namely, consider the stabilizers in
GLn+1

(
Z[1/p]

)
of two horospheres in the associated Bruhat–Tits building. In a special case,

these groups were known to be of type Fn−1, but not of type Fn, by work of Abels, Brown
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and others [?MR885096]. The classical finiteness properties generalize to the whole family.
In contrast, the proper finiteness properties depend on the position of the horospheres. This
is because the fixed-point sets of finite subgroups decompose as products of buildings, and
the connectivity of horospheres in these depends on which direct factors are contained in
one of the horospheres. In addition, the amount of torsion in the groups can also vary. A
detailed analysis yields the following theorem, which shows that the two types of finiteness
properties can vary completely independently of each other.

Theorem 1 (Witzel [?Witzel2012]). For 0 < m ≤ n, there is a solvable algebraic group G,
such that, for every odd prime p, the group G

(
Z[1/p]

)
is

• of type Fm−1, but not Fm, and, also,
• of type Fn−1 but not Fn.

Pavel Zalesskii (University of Brasilia):

Profinite topology on arithmetic groups ⊲

Let G be a group. We can make G into a topological group by considering all normal
finite index subgroups of G as a fundamental system of neighborhoods of the identity. This
topology is called the profinite topology on G.

Question 1. How strong is the profinite topology?

Question 2. To what extent does the profinite completion

Ĝ = lim
←−N⊳fG G/N

determine G?

Definition 3. If every finitely generated subgroup of G is closed in the profinite topology,
then G is called subgroup separable.

Definition 4. If the conjugacy class of every element is closed, then G is called conjugacy
separable.

Cohomological aspect of Question ??. According to J.-P. Serre [?Zal-Serre], a group

G is called good if G −→ Ĝ induces isomorphisms Hn(Ĝ,M) −→ Hn(G,M) for every finite
G-module M .
Subgroup separability, conjugacy separability, goodness are indications (or features) of

strong profinite topology.
The term “strong profinite topology” has a precise meaning for S-arithmetic groups.

Namely, the profinite topology on an S-arithmetic group Γ is strong if Γ does not have
the Congruence Subgroup Property.

Remark 5. If an S-arithmetic group Γ has CSP then it is not subgroup separable, conjugacy
separable or good.

Conjecture 6. If an S-arithmetic group Γ does not have CSP then Γ is conjugacy separable
and subgroup separable. If in addition the characteristic of the ground field is zero, then Γ
is good.
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Supporting result. The conjecture is true for arithmetic lattices in SL2(C).
Recent progress in the study of 3-manifolds allows one to deduce from results of Wilton-

Zalesskii [?Zal-wilton_profinite_2010] that the fundamental group of a compact 3-manifold
is good and from results of Hamilton-Wilton-Zalesskii [?Zal-HWZ] that it is conjugacy sepa-
rable.
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[6] Ian Agol, Mikhail Belolipetsky, Peter Storm, and Kevin Whyte, Finiteness of arithmetic hy-
perbolic reflection groups, Groups Geom. Dyn. 2 (2008), no. 4, 481–498. ↑

[7] Nir Avni, Benjamin Klopsch, Uri Onn, and Christopher Voll, Representation zeta functions
of compact p-adic analytic groups and arithmetic groups, Duke Math. J. 162 (2013), no. 1,
111–197. ↑

[8] Nir Avni, Benjamin Klopsch, Uri Onn, and Christopher Voll, Arithmetic groups, base change,
and representation growth, preprint, available at http://arxiv.org/abs/1110.6092. ↑

[9] Uri Bader and Yehuda Shalom, Factor and normal subgroup theorems for lattices in products
of groups, Invent. Math. 163 (2006), 415–454. ↑

[10] Hyman Bass, John Milnor, and Jean-Pierre Serre, Solution of the congruence subgroup problem

for SLn (n ≥ 3) and Sp2n (n ≥ 2), Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59–137. ↑

[11] Helmut Behr, Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern, Invent.
Math. 7 (1969), 1–32 (German). ↑

[12] Helmut Behr, Arithmetic groups over function fields. I. A complete characterization of finitely
generated and finitely presented arithmetic subgroups of reductive algebraic groups, J. Reine
Angew. Math. 495 (1998), 79–118. ↑

[13] Mikhail Belolipetsky, On fields of definition of arithmetic Kleinian reflection groups, Proc.
Amer. Math. Soc. 137 (2009), no. 3, 1035–1038. ↑

[14] Mikhail Belolipetsky, Finiteness theorems for congruence reflection groups, Transform. Groups
16 (2011), no. 4, 939–954. ↑

[15] Mikhail Belolipetsky and Benjamin Linowitz, On fields of definition of arithmetic Kleinian
reflection groups, II, International Mathematics Research Notices (2013). ↑

[16] Mikhail Belolipetsky and John Mcleod, Reflective and quasi-reflective Bianchi groups, to ap-
pear in: Transform. Groups, available at http://arxiv.org/abs/1210.2759. ↑

[17] Frits Beukers and Gert Heckman, Monodromy for the hypergeometric function nFn−1, Invent.
Math. 95 (1989), no. 2, 325–354. ↑

[18] Chandrasheel Bhagwat, Supriya Pisolkar, and Conjeeveram S. Rajan, Commensurability
and representation equivalent arithmetic lattices, International Mathematics Research Notices
(2013). ↑

[19] Christian Blanchet, Nathan Habegger, Gregor Masbaum, and Pierre Vogel, Topological quan-
tum field theories derived from the Kauffman bracket, Topology 34 (1995), no. 4, 883–927.
↑

[20] Armand Borel and Jean-Pierre Serre, Cohomologie d’immeubles et de groupes S-arithmétiques,
Topology 15 (1976), no. 3, 211–232 (French). ↑

29

http://arxiv.org/abs/1110.6092
http://arxiv.org/abs/1210.2759


30 Arithmetic Groups

[21] Armand Borel and Jacques Tits, Homomorphismes “abstraits” de groupes algébriques simples,
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[99] Bertrand Rémy, Groupes algébriques pseudo-réductifs et applications (d’après J. Tits et B.
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