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Abstract

We give an explicit construction of Lie algebras of type E7 out of a
Lie algebra of type D6 with some restrictions. Up to odd degree exten-
sions, every Lie algebra of type E7 arises this way. Some applications
to Tits algebras and Rost invariant are mentioned.

1 Introduction

In [13] Jacques Tits wrote the following: “It might be worthwile trying to
develop a similar theory for strongly inner groups of type E7. For instance,
can one give a general construction of such groups showing that there exist
anisotropic strongly inner K-groups of type E7 as soon as there exist cen-
tral division associative 16-dimensional K-algebras of order 4 in BrK whose
reduced norm is not surjective?”

The goal of the present paper is to give such (and much more general)
construction. We deal with Lie algebras; of course, the corresponding group
is just the automorphism group of its Lie algebra. By rational constructions
we mean those not appealing to the Galois descent, that is involving only
terms defined over the base field.

∗This research is supported by the Chebyshev Laboratory (Department of Mathe-
matics and Mechanics, St. Petersburg State University) under RF Government grant
11.G34.31.0026. Research is supported by JSC “Gazprom Neft”. Partially supported by
RFBR grants 12-01-31100, 13-01-00429, 13-01-00709, 13-01-91150, and 13-01-92699

1



Let us recall several milestones in the theory. Freudenthal in [5] gave
an elegant explicit construction of the split Lie algebra of type E7. On the
language of maximal Lie subalgebras it is a particular case of A7-construction.
Another approach was proposed by Brown in [3] (see also [6] for a recent
exposition); this is an E6-construction. It gives only isotropic Lie algebras.
In full generality A7-construction was described by Allison and Faulkner in
[1] as a particular case of a Cayley-Dickson doubling; generically it produces
anisotropic Lie algebras of type E7. Another construction with this property
was discovered by Tits in [13]; in our terms it is an A3+A3+A1-construction.
On the other hand, some Lie algebras of type E7 can be obtained via the
Freudenthal magic square, see [11] (or [7] for a particular case).

Our strategy is to define a Lie triple system structure on the (64-dimen-
sional over F ) simple module of the even Clifford algebra of a central simple
algebra of degree 12 with an orthogonal involution under some restrictions.
Then the embedding Lie algebra is of type E7. Our construction is of type
D6 + A1.

The author is grateful to Ivan Panin, Anastasia Stavrova and Alexander
Luzgarev for discussing earlier attempts to this work.

2 Lie triple systems and quaternionic gifts

Let F be a field of characteristic not 2. Recall that a Lie triple system is a
vector space W over F together with a trilinear map

W ×W ×W → W

(u, v, w) 7→ [u, v, w] = D(u, v)w

satisfying the following axioms:

D(u, u) = 0

D(u, v)w +D(v, w)u+D(w, u)v = 0

D(u, v)[x, y, z] = [D(u, v)x, y, z] + [x,D(u, v)y, z] + [x, y,D(u, v)z].

A derivation is a linear map D : W → W such that

D[x, y, z] = [Dx, y, z] + [x,Dy, z] + [x, y,Dz].

The vector space of all derivations form a Lie algebra Der (W ) under the
usual commutator map.
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The vector space Der (W )⊕W under the map

[D + u,E + v] = [D,E] +D(u, v) +Dv −Eu

form a Z /2-graded Lie algebra called the embedding Lie algebra of W . Con-
versely, degree 1 component of any Z /2-graded Lie algebra is a Lie triple
system under the triple commutator map.

Consider a Z-graded Lie algebra

L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2

with one-dimensional components L−2 = Ff , L2 = Fe, such that each Li is
an eigenspace of the map [[e, f ], ·] with the eigenvalue i. Then e, f and [e, f ]
form an sl2-triple, and the maps [e, ·] and [f, ·] are mutualy inverse isompor-
phisms of L−1 and L1. Moreover, maps [x, ·] with x from 〈e, f, [e, f ]〉 = sl2

defines a structure of left M2(F )-module on L1 ⊕ L−1, that by inspection
coincides with the usual structure on F 2⊗L1 (after identification of L−1 and
L1 mentioned above).

Now L defines two kind of structures: one is a Lie triple structure on
L1 ⊕ L−1, and the other is a ternary system considered by Faulkner in [4]
on L1 (roughly speaking, it is an asymmetric version of a Freudenthal triple
system). Namely, define maps 〈·, ·〉 and 〈·, ·, ·〉 by formulas

[u, v] = 〈u, v〉e

〈u, v, w〉 = [[[f, u], v], w].

Note that 〈·, ·〉 allows to identify the dual L∗

1 with L1, and so the map

L1 ⊗ L1 → End (L1)

corresponding to 〈·, ·, ·〉 produces a linear map

π : End (L1) → End (L1),

namely
π(〈·, u〉v) = 〈u, v, w〉.

By the Morita equivalence, we can consider π as a map

EndM2(F )(F
2 ⊗ L1) → EndM2(F )(F

2 ⊗ L1).
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Also, the same equivalence gives rise to a Hermitian (with respect to the
canonical symplectic involution on M2(F )) form

φ

((

u1

u2

)

,

(

v1
v2

))

=

(

〈u1, v2〉 −〈u1, v1〉
〈u2, v2〉 −〈u2, v1〉

)

.

Now we want to relate the two structures on V1 ⊕ V−1 ≃ F 2 ⊗ V1. Direct
calculation shows that

D(u, v) =
1

2

(

π(φ(·, u)v − φ(·, v)u) + φ(v, u)− φ(u, v)
)

. (*)

This description admits a Galois descent. Namely, let Q be a quaternion
algebra over F , W be a left Q-module equipped with a Hermitian (with
respect to the canonical involution on Q) form φ and a linear map

π : End Q(W ) → End Q(W ).

Assume that φ and π become maps as above over a splitting field of Q.
In terms of [7] this means that End Q(W ) together with π and the sym-
plectic involution adjoint to φ form a gift (an abbreviation for a generalized
Freudenthal (or Faulkner) triple); one can state the conditions on π and φ as
a list of axioms not appealing to the descent (Garibaldi assumes that W is
of dimension 28 over Q, but this really doesn’t matter, at least under some
additional restrictions on the characteristic of F ). Then equation (*) defines
on W a structure of a Lie triple system, hence the embedded Lie algebra
Der (W )⊕W .

3 D6 + A1-construction

We say that a map of functors A → B from fields to sets is surjective at 2 if
for any field F and b ∈ B(F ) there exists an odd degree separable extension
E/F and a ∈ A(E) such that the images of a and b in B(E) coincide.

We enumerate simple roots as in [2]. Erasing vertex 1 from the extended
Dynkin diagram of E7 we see that the simply connected split group Esc

7

contains a subgroup of type D6 + A1, namely (Spin12 × SL2)/µ2. Its image
in the adjoint group Ead

7 is (HSpin12× SL2)/µ2, which we denote by H for
brevity.

Theorem 1. The map H1(F,H) → H1(F,Ead
7 ) is surjective at 2.
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Proof. Note that W (D6 + A1) and W (E7) has the same Sylow 2-subgroup.
Then the result follows by repeating the argument from the proof of Propo-
sition 14.7, Step 1 in [8] (this argument is a kind of folklore).

The long exact sequence

H1(F, µ2) → H1(F,H) → H1(PGO+
12×PGL2) → H2(F, µ2)

shows that the orbits of H1(F,H) under the action of H1(F, µ2) are the isome-
try classes of central simple algebras of degree 12 with orthogonal involutions
(A, σ) and fixed isomorphism Cent(C0(A, σ)) ≃ F×F , with [C+

0 (A, σ)] = [Q]
in Br(F ) for some quaternion algebra Q, where C0 stands for the Clifford al-
gebra and C+

0 for its first component (see [9, § 8] for definitions). Now

C+
0 (A, σ) ≃ End Q(W )

for a 16-dimensional spaceW overQ, and the canonical involution on C+
0 (A, σ)

induces a Hermitian form φ on W up to a scalar factor. It is not hard to see
that H1(F,H) parametrizes all the mentioned data together with φ (and not
only its similarity class), and H1(F, µ2) multiplies φ by the respective con-
stant. Over a splitting field of Q the 32-dimensional half-spin representation
carries a structure of Faulkner ternary system, so we are in the situation of
Section 2. The resulting embedding 66 + 3 + 64 = 133-dimensional Lie alge-
bra Der (W )⊕W is the twist of the split Lie algebra of type E7 obtained by
a cocycle representing the image in H1(F,Ead

7 ). Theorem 1 shows that any
Lie algebra of type E7 over F arises this way up to an odd degree extension.

4 Tits algebras and Rost invariant

Recall that the class of Tits algebra of a cocycle class from H1(F,Ead
7 ) is its

image under the connecting map of the long exact sequence

H1(F,Esc
7 ) → H1(F,Ead

7 ) → H2(F, µ2).

The sequence fits in the following diagram:

H1(F, (Spin12 × SL2)/µ2) //

��

H1(F,H) //

��

H2(F, µ2)

H1(F,Esc
7 ) // H1(F,Ead

7 ) // H2(F, µ2).
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Since the middle vertical arrow is surjective at 2, we obtain the following
result:

Theorem 2. The class of the Tits algebra in Br(F ) of the class in H1(F,Ead
7 )

corresponding to Der (W ) ⊕ W is [A] + [Q]. For any cocycle class from
H1(F,Ead

7 ) there is an odd degree extension E/F such that the class of the
Tits algebra in Br(E) is a sum of three symbols.

Proof. Indeed, by the fundamental relation for groups of type D6 (see [9,
9.14]) the image of a cocycle class from H1(F,H) in H2(F, µ2) is [A] + [Q].
Here Q is a quaternion algebra, and A over an odd degree extension is Brauer-
equivalent to an algebra of degree 4 and exponent 2, that is to a biquaternion
algebra. The second claim follows from Theorem 1.

Now we reproduce a construction from [13] in our terms. Let D be an
algebra of degree 4 and µ be a constant from F×. By the exceptional isomor-
phism A3 = D3 the group PGL1(D) defines a 3-dimensional anti-Hermitian
form h over Q up to a constant, where [Q] = 2[D] in Br(F ). Consider the
algebra M6(Q) with the orthogonal involution σ adjoint to the 6-dimensional
form h ⊥ −µh. One of the component of C0(M6(Q), σ) is trivial in Br(F )
and the other is Brauer-equivalent to Q. Choose φ on W = Q16; by The-
orem 2 the class of the Tits algebra of the corresponding cocycle class in
H1(F,Ead

7 ) is trivial, so the cocycle class comes from some ξ ∈ H1(F,Esc
7 ).

Let us compute the Rost invariant of ξ (see [8] or [9, § 31] for definitions).

Theorem 3. For D and µ as above, there is a cocycle from H1(F,Esc
7 ) whose

Rost invariant is (µ) ∪ [D]. In particular, if this element cannot be written
as a sum of two symbols from H3(F,Z /2) with a common slot, then there is
a strongly inner anisotropic group of type E7 over F .

Proof. Consider ξ as above. Over the function field F (SB(Q)) the image of
the Rost invariant of ξ equals to the Arason invariant of the 12-dimensional
quadratic form Morita-equivalent to h − µh. Explicitly, over F (SB(Q)) the
algebra D becomes a biquaternion algebra (a, b) ⊗ (c, d), and the quadratic
form is Witt equivalent to 〈〈µ〉〉(〈〈a, b〉〉 − 〈〈c, d〉〉), so the Arason invariant
equals the image of (µ)∪[D] over F (SB(Q)). It follows that the Rost invariant
is (µ) ∪ [D] + (λ) ∪ [Q] for some Q. Changing φ to λφ adds (λ) ∪ [Q] (cf.
[9, p. 441]), so there is a cocycle class from H1(F,Esc

7 ) whose Rost invariant
is (µ) ∪ [D]. The last claim follows from the easy computation of the Rost
invariant of cocycles corresponding to isotropic groups of type E7 (cf. [8,
Appendix A, Proposition]).
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