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Abstract. Let q be a quadratic form over a field k and let L be a
field extension of k of odd degree. It is a classical result that if qL
is isotropic (resp. hyperbolic) then q is isotropic (resp. hyperbolic).
In turn, given two quadratic forms q, q′ over k, if qL ∼= q′L then q ∼=
q′. It is natural to ask whether similar results hold for algebras with
involution. We give a survey of the progress on these three questions
with particular attention to the relevance of hyperbolicity, isotropy and
isomorphism over some appropriate function field. Incidentally, we prove
the anisotropy property in some new low degree cases.


Introduction


Let F be a field of characteristic different from 2. It is well-known that
an anisotropic quadratic form q over F is anisotropic over any finite field ex-
tension of F of odd degree. This result was first published by T.A. Springer
[31] in 1952, but Emil Artin had already communicated a proof to Witt by
1937 see [13, Remark 1.5.3]. In what follows, we refer to this result as the
Artin-Springer theorem. Since any quadratic form can be decomposed as the
sum of an anisotropic part and some number of hyperbolic planes, an im-
mediate consequence of the Artin-Springer theorem is that a quadratic form
which becomes hyperbolic over an odd-degree field extension is hyperbolic.
Further, since two quadratic forms q and q′ are isomorphic if and only if
q ⊥ −q′ is hyperbolic, another consequence of the Artin-Springer theorem is
that two quadratic forms which become isomorphic over an odd-degree field
extension are isomorphic. This last result also extends to similar quadratic
forms. Indeed, using the properties of Scharlau transfer’s map described
in [28, Chap. 2, Thm. 5.6, Lem. 5.8], one may check that two forms which
become similar after an odd degree field extension are similar.


Recall that every (nondegenerate) quadratic form q on an F -vector space
V induces the so-called adjoint involution adq on the endomorphism algebra
EndF (V ), and, conversely, every orthogonal involution on EndF (V ) is ad-
joint to a quadratic form q, uniquely defined up to a scalar factor. Therefore,
algebras with orthogonal involution can be thought of as twisted forms (in
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the sense of Galois cohomology) of quadratic forms up to scalars. Since adq
is isotropic (resp. hyperbolic) if and only if q is isotropic (resp. hyperbolic)
and adq is isomorphic to adq′ if and only if q and q′ are similar, it is natural
to ask whether the behavior of quadratic forms under odd-degree field ex-
tensions described above, extends to involutions on central simple algebras.
The present paper is mostly a survey of what is known on this topic. More
precisely, we are interested in the following:


Main questions: Let F be a field and let (A, σ) be an algebra with
involution over F . Let L be an odd-degree field extension of F .
(i) If σ is anisotropic, does it remain anisotropic over L?
(ii) If σ is non-hyperbolic, does it remain non-hyperbolic over L?
(iii) If σ and σ′ are non-isomorphic involutions, do they remain non-


isomorphic over L?


Question (ii) was solved by Bayer and Lenstra [3], in an even more general
context than is discussed above, see § 2 below. Question (i) should be
posed differently, as was noticed by Parimala, Sridharan and Suresh. In [26,
§4], they constructed an example of an anisotropic unitary involution that
becomes isotropic over an odd-degree field extension. They suggested the
following reformulation:


(i′) Let (A, σ) be an algebra with involution over F , and let L/F be
a field extension of degree coprime to 2 ind(A). If σ is anisotropic,
does it remain anisotropic over L1?


Questions (i) and (i′) are equivalent if the involution is orthogonal or sym-
plectic, since an algebra which admits an involution of either of these types
has exponent 2 and the index and exponent of any central simple algebra
have the same prime factors. By similar reasoning, the two questions are
equivalent in the unitary case under the additional hypothesis that the al-
gebra has 2-power exponent.


Question (i′) is open in general, though as we will discuss in § 3, 4, 5
and 7 a positive answer is known for algebras with involution satisfying
some additional conditions. By the aforementioned Bayer-Lenstra theorem,
question (i′) has a positive answer for involutions for which isotropy and
hyperbolicity are equivalent. In particular, a positive answer is known for
totally decomposable involutions, by results of Becher [5] and Karpenko [16];
this is explained in § 3. Parimala, Sridharan and Suresh gave a general
argument for algebras of index 2 with orthogonal involution, based on the
excellence property of the function field of a conic [26], see § 4. In § 7 we
prove new results on low-degree algebras, in particular, degree 12 algebras
with orthogonal involutions, thus answering a question posed in [1, pg 240].
This new case includes some algebras of index strictly larger than 2, and for


1More generally, one can ask how the Tits index of an algebraic group behaves over
finite field extensions of degree coprime to the torsion primes of the group. See [1, Problem
7.3]
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which isotropy is not equivalent to hyperbolicity, so that the question does
not reduce to the Bayer-Lenstra theorem.


A natural way to address question (i′) is to try to reduce to quadratic
form theory by extending scalars to a function field2. This method was used
more than a decade ago by Parimala-Sridharan-Suresh [26], Dejaiffe [9] and
Karpenko [14] to study isotropy of orthogonal involutions. Roughly speak-
ing, one uses the existence of generic index reduction fields FA,t depending
on the algebra A and on the type of the involution, over which σ is adjoint
to a hermitian form, which in turn is determined by an associated quadratic
form. In the orthogonal case, one may take a generic splitting field of the
algebra A, since the involution is adjoint to a quadratic form over such a
field; see § 1 below for a description of FA,t in the symplectic and uni-
tary cases. If one can prove that an anisotropic involution of type t remains
anisotropic over FA,t, then a positive answer to question (i′) (and even ques-
tion (i)) follows easily from the Artin-Springer theorem (see Lemma 1.1).
On the other hand, it is a deep result, due to Karpenko [18], Tignol [18,
Apppendix] and Karpenko-Zhykhovich [21] that if anisotropy is preserved
under odd-degree field extensions, then it is preserved under extension to
FA,t. Therefore, question (i) is equivalent to asking whether anisotropy is
preserved over FA,t (for algebras of 2-power index in the unitary case). A
survey on this approach is the content of § 5, where we also explain how one
can reduce question (i) to an excellence question.


An affirmative answer to question (iii) for symplectic and orthogonal in-
volutions was given by Lewis [24, Proposition 10] and Barquero-Salavert [2,
Theorem 3.2] proved an affirmative answer for unitary involutions (See also
[6, Proposition 5.1]). The second-named author and Tignol [27, §4], pro-
duced examples of non-isomorphic orthogonal involutions that become iso-
morphic after generic splitting of the underlying algebra. In particular, the
behavior of non-isomorphic involutions is not the same under finite odd-
degree extensions and extension to FA,t, see § 6.


1. Background and Notation


In this section, we review the relevant background that informs this work.
The results on quadratic forms mentioned in the introduction are explained
in [10], [13], [23], and [28], while general facts on algebras with involution
and hermitian forms are in [22].


2This approach also relates our main question to the following classical question for
algebraic groups: Let F be a field, G and G′ be algebraic groups over F , and X and X ′


projective homogeneous varieties under G and G′, respectively. When does X admit a
rational point over the function field F (X ′)? See for instance [13] for results for quadratic
forms and the so-called index reduction formulas (e.g. [25]) for results for central simple
algebras.
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Throughout the paper, A denotes a central simple algebra over a field
K of characteristic3 different from 2. An involution σ on A is an anti-
automorphism of period 2. The involution is said to be of orthogonal type,
symplectic type or unitary type, according to the type of its automorphism
group. We consider as a base field the field F of elements of K fixed by σ.
If σ is unitary, K/F is a quadratic field extension. Otherwise, K = F and
σ is K-linear. In all three cases, we say for short that (A, σ) is an algebra
with involution over F . Two F -algebras with involution (A, σ) and (A′, σ′)
are isomorphic if there is an F -algebra isomorphism f : A → A′ such that
f ◦ σ = σ′ ◦ f . Since in the unitary case, the isomorphism f induces an
isomorphism of the centers of the algebras K and K ′, we may assume that
K = K ′ and that f is K-linear.


By Wedderburn’s theorem, the algebra A can always be represented as
an endomorphism algebra A ≃ EndD(V ), where D is a central division
algebra Brauer equivalent to A, V is a D-module, and both are uniquely
defined up to isomorphism. The degree of D is called the index of A, and
we call the dimension of V over D, the co-index of A. Thus the degree of
A is the product of its index and its co-index. It follows from the existence
criteria for involutions [22, §3] that D is endowed with an involution θ of
the same type as σ. Once such a θ is chosen, σ can be represented as the
adjoint involution with respect to a hermitian form h over (D, θ), which is
uniquely defined up to a scalar factor. We will refer to such a form h as
a hermitian form associated to σ. For any field extension L/F , we denote
by (AL, σL) the extended algebra with involution, defined by AL = A ⊗F L
and σL = σ ⊗ id. Since an involution of any type acts on F as idF , σL
is well-defined. Given a representation (A, σ) = (EndD(V ), adh), for some
hermitian module (V, h) over (D, θ) we denote by VL the DL-module VL =
V ⊗F L and by hL the extended form hL : VL × VL → (DL, θL), so that
(AL, σL) ≃ (EndDL


(VL), adhL
).


One may easily check that if some hermitian form associated with σ is
isotropic (resp. hyperbolic), so is every hermitian form associated with σ.
The involution is said to be isotropic or hyperbolic accordingly. A right
ideal I ⊂ A is called an isotropic ideal if σ(x)x = 0 for all x ∈ I. Given
a representation (A, σ) ≃ (EndD(V ), adh), isotropic right ideals are given
by endomorphisms of V with image contained in a given totally isotropic
D-subspace W of V . The reduced dimension of such an ideal is the product
of the index of A and the dimension of W over D. Hence, one may also
use isotropic ideals to give a statement of the definition of isotropy and
hyperbolicity of involutions, independent of the choice of a representation
in terms of a hermitian module. Namely, (A, σ) is isotropic if and only if


3This restriction on the characteristic of K is not always necessary. For instance, the
Artin-Springer theorem is valid in characteristic 2 [10, 18.5]. The main result in [15], which
will be discussed in § 5 below, holds over a field of arbitrary characteristic. However, as
most of the results which inform this survey are for fields of characteristic different from
2, we observe that convention.
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A contains a nonzero isotropic ideal and (A, σ) is hyperbolic if and only if
A contains an isotropic ideal of reduced dimension 1


2
deg(A) (see [4] or [22,


§6]). In particular, hyperbolic involutions can only exist on algebras of even
co-index.


Given an algebra A with an involution σ of any type t, we define below
a field FA,t such that the involution σFA,t


is either adjoint to a quadratic
form or adjoint to a hermitian form determined by a quadratic form. In
particular, even in the case of a unitary or symplectic involution, there is a
quadratic form q over FA,t such that σFA,t


is isotropic (resp. hyperbolic) if
and only if q is isotropic (resp. hyperbolic). The field FA,t depends on the
algebra A and on the type t of σ and is defined as follows. We set t = o
(respectively s, u) when σ is of orthogonal (respectively symplectic, unitary)
type. Assume the involution σ is of orthogonal type. We let FA,o be the
function field of the Severi-Brauer variety SB(A) of A. Since A is split over
FA,o the involution σFA,o


is adjoint to a quadratic form. If σ is unitary,
we need an extension of the fixed field F = Kσ to extend the involution.
Thus, we consider the function field FA,u of the Weil transfer of the Severi-
Brauer variety of A. Since A is split over FA,u the extended involution
σFA,u


is adjoint to a hermitian form h with values in the quadratic extension
FA,u⊗F K. We can associate to h the quadratic form qh : V → FA,u defined
by qh(x) := h(x, x). It is classically known that the hermitian form h is
uniquely determined by qh and qh is called the trace form of h. Moreover,
the isotropy or hyperbolicity of h is determined by that of qh [28, Chap.
10, Thm. 1.1]. A symplectic involution on a split algebra is hyperbolic. So,
rather than considering a splitting field of A, we let FA,s be the function field
of the generalized Severi-Brauer variety SB2(A) of right ideals of reduced
dimension 2. This field generically reduces the index of A to 2. Further,
given H a quaternion algebra over FA,s Brauer equivalent to AFA,s


and
taking the canonical involution ¯ on H, the involution σFA,s


is adjoint to
a hermitian form over (H, )̄ determined as in the unitary case by its trace
form [28, Chap. 10, Thm. 1.7].


We will make frequent use of the following straightforward consequence
of the Artin-Springer theorem:


Lemma 1.1. Let (A, σ) be an algebra with involution of type t over F . If
σ is non-hyperbolic (resp. anisotropic) over the function field FA,t, then it
is non-hyperbolic (resp. anisotropic) over any odd degree extension L of the
base field F .


Proof. Assume σ is hyperbolic (resp. isotropic) over an odd degree extension
L of the base field F . Then σ is hyperbolic (resp. isotropic) over the
compositum L = FA,tL, which is an odd degree extension of FA,t. Since the
involution σ is determined by a quadratic form over FA,t and over L, we can
apply the Artin-Springer theorem to deduce that σFA,t


is hyperbolic (resp.
isotropic). �
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2. Hyperbolicity of involutions


We begin by considering question (ii) above. As we mentioned, a complete
answer to this question was given in 1990 by Bayer and Lenstra [3], who
aimed at proving the existence of a self-dual normal basis for any odd-degree
Galois field extension. Their argument is based on the following, which is
the result we are interested in:


Theorem 2.1. [3, Proposition 1.2] Let B be a finite dimensional F -algebra
endowed with an F -linear involution θ, and (V, h) a hermitian module over
(B, θ). Let L be a field extension of F of odd degree. If (VL, hL) is hyperbolic,
then (V, h) is hyperbolic.


In view of the definition of hyperbolic involutions via the associated her-
mitian forms, this result gives a positive solution to question (ii). Since a
K-central division algebra withK/F unitary involution is an F -algebra with
F -linear involution, Theorem 2.1 applies to involutions of any type. Fur-
ther, since there is no simplicity assumption on the algebra B, Theorem 2.1
applies to a broader class of algebras with involution than is specified in the
statement of question (ii). The proof is quite similar to the classical proof in
quadratic form theory and is based on Scharlau’s transfer homomorphism,
which, as the authors prove, extends naturally to the setting of hermitian
forms.


In the sequel, we will frequently use the following corollary of Bayer-
Lenstra’s theorem:


Corollary 2.2. [3, Corollary 1.4] Let (V, h) and (V ′, h′) be two hermitian
forms over (B, θ), and let L be an extension of F of odd degree. If the
extended forms (VL, hL) and (V ′


L, h
′
L) are isomorphic, then (V, h) and (V ′, h′)


are isomorphic.


Note that this result does not answer the isomorphism question for in-
volutions, since σ ≃ σ′ implies only that their associated hermitian forms
are similar. However, as we describe in § 6, one can use Scharlau’s norm
principle to deduce a positive answer to the isomorphism question.


Though Theorem 2.1 gives a very nice and purely algebraic solution to
question (ii), it is natural to ask whether non-hyperbolicity is preserved un-
der scalar extension to the function field FA,t (see § 1 for the definition of
FA,t, depending on the type t of σ). The following result is due to Karpenko
for orthogonal and unitary involutions, and Tignol for symplectic involu-
tions4; it was previously proven by Dejaiffe [9] and Parimala, Sridharan and
Suresh [26] for algebras of index 2 with orthogonal involutions:


Theorem 2.3. [16, Theorems 1.1 & A.1][20, Theorem 1.1] Let (A, σ) be an
algebra with involution of type t over F . If the extended involution σFA,t


is
hyperbolic, then σ is hyperbolic.


4Tignol’s argument also applies to the unitary case if the underlying algebra has expo-
nent 2.
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Using this result and the Artin-Springer theorem for quadratic forms (or
even its weak version, for hyperbolicity) one gets another argument for a
positive answer to question (ii) (see Lemma 1.1). Therefore, Theorem 2.3
can be considered as a generalization of Bayer-Lenstra’s Theorem 2.1 in the
setting of central simple algebras. Its proof, based on computations of cycles
on the underlying varieties, requires much more machinery than the original
proof of Bayer and Lenstra, including for instance the Steenrod operations
on Chow groups with coefficients in Z/2. Yet, in addition to generaliz-
ing this previous result, Theorem 2.3 can be seen as an intermediate result
that helped to pave the way for Karpenko and Karpenko-Zhykovich’s later
results on isotropy [18], [21]. Moreover, Theorem 2.3 also implies an interest-
ing connection between isotropy and hyperbolicity of totally decomposable
involutions which we shall discuss in the next section.


3. First results on isotropy


Though question (i′) is largely open, there is some evidence in support
of an affirmative answer. In the case where A is split and σ is orthogo-
nal or unitary, or A has index 2 and σ is symplectic, one can reduce to
quadratic form theory (see § 1) where the Artin-Springer theorem shows
that anisotropy is preserved under any odd degree extensions. Since every
symplectic involution on a split algebra is hyperbolic, this resolves the split
case, for involutions of all three types. For division algebras, an affirmative
answer to question (i′) is a consequence of the fact that, since [L : F ] is
coprime to the index of A, the extended algebra AL is division. Since a
division algebra admits no isotropic involution, σL remains anisotropic.


Next we highlight two cases in which isotropy reduces to hyperbolicity, so
that a positive answer to question (i′) follows from results in § 2 above. The
first such case is when A has co-index 2. In this setting, the involution σ is
adjoint to a 2-dimensional hermitian form. Since isotropy is equivalent to
hyperbolicity for such a form, Theorem 2.1 gives that anisotropy is preserved
under field extensions of degree coprime to 2 ind(A).


One can make a similar reduction for totally decomposable involutions.
The following result, due to Becher [5] in the orthogonal and symplectic
cases, will prove useful for this purpose:


Theorem 3.1. [5, Theorem 1 & Corollary] Let (A, σ) be an algebra with
involution over F that decomposes as a tensor product of quaternion algebras
with involution. We assume moreover that A is split if σ is orthogonal or
unitary, and has index 2 if σ is symplectic. Then there exists a Pfister form
π such that (A, σ) decomposes as follows:


(1) (A, σ) = Adπ if σ is orthogonal;
(2) (A, σ) = Adπ ⊗F (K, )̄ if σ is unitary;
(3) (A, σ) = Adπ ⊗F (H, )̄ if σ is symplectic.


Proof. Assertions (1) and (3) are Theorem 1 and its Corollary in [5]. As-
sertion (2) also follows easily from those results. Indeed, assume (A, σ) is
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a tensor product of quaternion algebras, each endowed with a K/F unitary
involution. By [22, (2.22)], each factor decomposes as (Hi, )̄ ⊗F (K, )̄, for
some quaternion algebra Hi over F . Therefore, (A, σ) has a decomposition
(A, σ) = (A0, σ0)⊗F (K, )̄, where (A0, σ0) is a totally decomposable algebra
with orthogonal or symplectic involution, depending on the parity of the
number of factors. Moreover, since A = A0 ⊗F K is split, A0 has index at
most 2. Therefore, by [5, Corollary & Theorem 2], (A0, σ0) = Adπ0


⊗(H0, γ)
for some Pfister form π0 and some quaternion algebra with orthogonal or
symplectic involution (H0, γ). To conclude, it only remains to observe that
sinceH0⊗FK is split, γ⊗¯ is adjoint to a 2-dimensional hermitian form with
values in (K, )̄. Up to a scalar, this form has a diagonalisation 〈1,−µ〉 for
some µ ∈ F×, so that (H0, γ)⊗F (K, )̄ ≃ Ad〈1,−µ〉⊗F (K, )̄. This concludes
the proof, with π = π0 ⊗ 〈1,−µ〉. �


For totally decomposable involutions, we get an affirmative answer to
question (i′), and even a slightly stronger result in the unitary case. Indeed,
given Becher’s Theorem 3.1, Karpenko’s Theorem 2.3 admits the following
corollary:


Corollary 3.2. Let (A, σ) be an algebra with involution over F that de-
composes as a tensor product of quaternion algebras with involution over F .
If σ is isotropic, then it is hyperbolic. In particular, if σ is anisotropic, it
remains anisotropic over any odd degree extension of the base field.


Proof. If σ is isotropic, then σFA,t
is isotropic. Therefore, in view of 2.3, it


is enough to prove that isotropy implies hyperbolicity over FA,t, or equiva-
lently, that isotropy implies hyperbolicity for split algebras with orthogonal
or unitary involution and index 2 algebras with symplectic involution. This
was shown by Becher [5] in the orthogonal and symplectic cases, and follows
easily from 3.1. In the orthogonal case, σ is adjoint to a Pfister form π.
In the unitary and symplectic cases, σ is adjoint to a hermitian form with
trace form qh = π ⊗ 〈1,−δ〉 and qh = π ⊗ nH respectively, where δ is given


by K = F (
√
δ), and nH denotes the norm form of H. In particular, in


all three cases, the involution σ is determined by a quadratic form which
is a Pfister form. Since isotropy implies hyperbolicity for Pfister forms,
we obtain the desired result. The last assertion follows by Bayer-Lenstra’s
Theorem 2.1. �


The first example of a positive answer to question (i′) that does not reduce
to hyperbolicity is due to Parimala, Sridharan and Suresh [26]. That result
is the main subject of the next section.


4. Orthogonal involutions on algebras of index 2 and
excellence for hermitian forms


An affirmative answer to question (i′) for algebras of index 2 with or-
thogonal or symplectic involution was proven by Parimala, Sridharan and
Suresh [26]. The argument in the symplectic case is elementary and was
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explained at the beginning of the previous section (see also [26, Proof of
thm 3.5]). The key result in the orthogonal case is an excellence result for
function fields of conics. We recall that a field extension L/F is said to be
excellent for a hermitian form h over F if there is a hermitian form h′ over F
such that h′L is isomorphic to the anisotropic part of hL. The authors prove
excellence of the function field of any smooth projective conic defined over
the base field.


Theorem 4.1. [26, Theorem 2.2] Let (D, θ) be an algebra with orthogonal
or symplectic involution over F and let C be a smooth, projective conic over
F , with function field F . The field extension F/F is excellent for hermitian
forms over (D, θ).


Since when A has index 2, the field FA,o is a purely transcendental ex-
tension of the function field of a conic, with Theorem 4.1 in hand, one can
show the following:


Corollary 4.2. [26, Cor. 3.4, thm. 3.5] Let A be an algebra of index 2, and
let FA,o be the function field of the Severi-Brauer variety of A. Anisotropic
orthogonal involutions on A remain anisotropic over the function field FA,o,
hence also over all odd-degree field extensions of F .


The argument in [26] goes as follows. Let Q be a quaternion division
algebra Brauer equivalent to A.Pick an orthogonal involution θ on Q so
that σ is adjoint to some hermitian form h over (Q, θ). If σ is isotropic
over FA,o, then h is isotropic over FA,o. Since A has index 2, the field
FA,o is a purely transcendental extension of the function field of a conic and
thus by excellence, there is a hermitian form h′ over (Q, θ) such that h′FA,o


is isomorphic to the anisotropic part of hFA,o
. Hence, the form h ⊥ −h′ is


hyperbolic over FA,o and by Theorem 2.3 (see also [9, Prop],[26, Proposition
3.3]), it follows that h ⊥ −h′ is hyperbolic over F . In view of the dimensions,
this implies that h is isotropic. The second assertion follows immediately,
by the Artin-Springer theorem (see Lemma 1.1). Hence this gives a positive
answer to question (i′) for orthogonal involutions on algebras of index 2.


The excellence property of function fields of conics used in this section
does not extend to function fields of Severi-Brauer varieties. For instance,
Izhboldin-Karpenko [12] and Sivatski [30] proved that the function field of
a division biquaternion algebra does not satisfy the excellence property for
quadratic forms over the base field. However, the proof of Corollary 4.2 only
uses a very particular case of the excellence property, namely excellence for
hermitian forms over the underlying quaternion algebra with orthogonal
involution (Q, θ). This part of the argument is general, and one can reduce
the anisotropy question to an excellence question, since anisotropy is known
to be preserved over FD,t for any involution on a division algebra D. This
latter result is due to Karpenko and Tignol and is discussed in the next
section.
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5. Isotropy over the function field FA,t


In his first paper on the topic of the present survey [14], Karpenko stated
the following conjecture:


Conjecture 5.1. [14, Conjecture 5.2] Let A be a central simple algebra
over a field F . An anisotropic orthogonal involution remains anisotropic
over FA,o.


The analogous statement for unitary involutions is false in general. Pari-
mala, Sridharan and Suresh [26, Thm 4.3] showed that for every odd prime
p, there is an algebra of p-power index with unitary involution which be-
comes isotropic over an odd-degree field extension. By Lemma 1.1, it follows
that the involution also becomes isotropic over FA,t. However, whether the
conjecture holds not just for orthogonal involutions, but also for symplectic
involutions or unitary involutions on algebras of 2-power index is an open
question. There is some evidence in support of the conjecture in these set-
tings.


The conjecture holds if A is split and σ is orthogonal since in this case FA,o


is a purely transcendental extension of F . The same argument applies to
the unitary split case. Since there are no anisotropic symplectic involutions
on a split algebra, the result also trivially holds in the split symplectic case.
For division algebras, Karpenko and Tignol proved the following:


Theorem 5.2. [14, Theorem 5.3], [16, Theorem. A.1 & A.2] Let (D, θ) be a
division algebra with an anisotropic involution of type t. If θ is unitary, we
assume that D has exponent 2. The involution θ remains anisotropic over
FD,t.


In the orthogonal case, Theorem 5.2 is the main result in [14]. Its proof
involves cycle computations in Chow groups with values in Z/2. Tignol
extended the result to symplectic involutions, and unitary involutions on
algebras of exponent 2. We sketch here the beautiful and rather elementary
argument that he gives in the symplectic case. Given an algebra D with
symplectic involution θ over F , consider the iterated Laurent series field
F̂ = F ((x))((y)), the quaternion division algebra (x, y)F̂ over F̂ , and the


tensor product D̂ = D ⊗F (x, y)F̂ . Since the canonical involution γ on


(x, y)F̂ is symplectic, the involution θ̂ = θ ⊗ γ on D̂ is orthogonal. Using
some residue computations, one may check that D is division if and only if
D̂ is division, and that θ is anisotropic if and only if θ̂ is anisotropic. Since
θ is anisotropic by assumption, Karpenko’s result in the orthogonal case
implies that σ̂ remains anisotropic over FD̂,o. Further, since D̂ necessarily


splits over FD̂,o then A is Brauer equivalent to (x, y)F
D̂,o


over FD̂,o. Thus


D has index 2 and θ is anisotropic over this field. It follows that θ remains
anisotropic over the generic index reduction field FD,s.


Recall that by Lemma 1.1, a proof of Conjecture 5.1 would give an affir-
mative answer to question (i′). In fact, interest in this question seemed to be
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the initial motivation for studying Conjecture 5.1. However, within a decade
of stating the conjecture, Karpenko, Tignol and Karpenko-Zhykhovich had
proven the following converse of Lemma 1.1:


Theorem 5.3. [18, Theorem 1][18, Appendix],[19],[21, Theorem 6.1] Let
(A, σ) be a central simple algebra over F with an anisotropic involution of
type t. If σFA,t


is isotropic, then there exists an odd-degree field extension
L/F such that σL is isotropic.


Theorem 5.3 is a very deep result whose proof is related to the incompress-
ibility of some projective homogeneous varieties. Among its interesting con-
sequences is the following extension of Theorem 5.2 for unitary involutions,
which actually applies to division algebras of arbitrary 2-power exponent:


Corollary 5.4. [20, Thm. 1.4]5 Let D be a division algebra with 2-power
exponent. Any anisotropic unitary involution on D remains anisotropic over
FD,u.


Proof. By Theorem 5.3, isotropy over FD,u would imply isotropy over some
odd degree extension L of the base field. But this is impossible, since the
hypothesis on the exponent of D guarantees that D remains division over
L. �


A further consequence of Theorem 5.3 is the following:


Corollary 5.5. Let (A, σ) be a central simple algebra over F with anisotropic
involution of type t. Fix an involution θ of type t on the underlying division
algebra D and let h over (D, θ) be a hermitian form associated to σ. The
following assertions are equivalent:


(i) The extension FD,t/F is excellent for the hermitian form h;
(ii) The involution σ remains anisotropic over FD,t;
(iii) The involution σ remains anisotropic over any odd degree field ex-


tension L/F ;


The equivalence between conditions (ii) and (iii) is given by Lemma 1.1
and Theorem 5.3. Condition (ii) clearly implies condition (i), and conversely,
condition (i) combined with Theorem 2.3 implies condition (ii), as in the
proof of Parimala-Sridharan-Suresh’s result Theorem 4.2.


We conclude this section, by pointing out a third interesting consequence
of Theorem 5.3 which is further evidence in support of an affirmative answer
to question (i′). The statement of the result requires the notion of the Witt
index of an involution. We define the Witt-index of an involution σ to be
the reduced dimension of a maximal isotropic ideal of the underlying algebra
A.6 If σ is adjoint to a hermitian form h, then the Witt indices of σ and h


5In fact, [20, Thm. 1.4] is more general than the consequence we point out here, and
was proven before Theorem 5.3, see 5.6 below. The corollary can also be deduced from
the earlier result of N. Karpenko [17].


6The Witt index of σ is the maximal element of the index of (A, σ) as defined in [22,
§6.A].
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satisfy the equation iW (σ) = iW (h) ind(A), where ind(A) is the Schur index
of A [22, §6.A].
Corollary 5.6. Let (A, σ) be an algebra with involution of type t over F .
Then, there exists an odd degree field extension L/F such that iW (σL) =
iW (σFA,t


). If in addition A has 2-power exponent, then iW (σFA,t
) is a mul-


tiple of the Schur index of A.7


Proof. Let L be an odd degree extension of the base field F , and consider the
compositum L = LFA,t. Since the Witt index can only increase under a field
extension, we have iW (σL) ≤ iW (σL). On the other hand, as in the proof
of Lemma 1.1, the Artin-Springer theorem gives that iW (σFA,t


) = iW (σL).
Therefore, iW (σL) ≤ iW (σFA,t


). If the inequality is strict, one may apply
Theorem 5.3 to the anisotropic part of (A, σ)L to produce an odd degree
extension L′ of L such that iW (σL′) > iW (σL), and an induction argument
completes the proof. The last assertion follows immediately since the Witt
index of σL is a multiple of ind(AL) and our hypothesis on the exponent of
A guarantees that ind(A) = ind(AL). �


6. Isomorphism of involutions


While the main result in the previous section was that anisotropy is
preserved under odd-degree extensions if and only if it is preserved un-
der extension to FA,t, we shall observe here that though non-isomorphic
involutions remain non-isomorphic over odd degree field extensions, they
may become isomorphic over FA,t. Recall that Bayer and Lenstra’s Corol-
lary 2.2 gave that non-isomorphic hermitian forms remain non-isomorphic
over odd-degree field extensions. However, as we noted above, since isomor-
phic involutions have associated hermitian forms which are similar rather
than isomorphic, this does not immediately answer question (iii). In 2000,
Lewis [24, Proposition 10] gave an affirmative answer to question (iii) for
involutions of the first kind. Barquero-Salavert [2, Theorem 3.2] gave the
proof in the unitary case in 2006 (see also [7, Proposition 7.10, 7.20] and [6,
Theorem 4.8]). The formal statement is as follows:


Theorem 6.1. [24, Proposition 10], [2, Theorem 3.2]. Let A be a central
simple algebra over F and let σ and σ′ be two involutions on A over F .
Assume there is an odd-degree extension L of F such that σL is isomorphic
to σ′


L. If the involutions are of unitary type, we assume in addition that the
degree of L/F is coprime to the index of A. Then σ and σ′ are isomorphic.


The idea behind the proof is to use the extension of Scharlau’s norm
principle [28, Chap. 2 Thm 8.6] to hermitian forms to descend the similarity


7For an algebra with orthogonal or unitary involution (A, σ) over F , that the Witt
index of σFA,o


(resp. σFA,u
) is a multiple of the Schur index of A is due to Karpenko [15,


Thm 3.3], [20, Thm. 1.4]. This result preceded Theorem 5.3, though as we have discussed
here it can be deduced as a consequence of Theorem 5.3. The argument in [15] also applies
to a quadratic pair over a base field of characteristic 2 [22, §5.B].
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factors of the hermitian forms associated to σ and σ′ over L to the base field
F . Since there is no norm map between FA,t and the base field F , there
is no hope of using this strategy to produce an isomorphism over F from a
given isomorphism over FA,t. Indeed, explicit examples of non-isomorphic
orthogonal involutions that become isomorphic over FA,o are given by the
second-named author and Tignol in [27]. The construction can be sketched
as follows:


The starting point is a field F and a degree 8 and exponent 2 central
simple algebra E over F that contains a triquadratic field F (


√
a,
√
b,
√
c),


but does not have any decomposition as a tensor product of quaternions
H1 ⊗ H2 ⊗ H3 such that


√
a ∈ H1,


√
b ∈ H2 and


√
c ∈ H3. For instance,


one may take for E any indecomposable degree 8 and exponent 2 central
simple algebra. Since the centralizer in E of K = F (


√
a) is a biquaternion


algebra containing F (
√
b,
√
c), by Albert’s theorem, it does decompose as


(b, r) ⊗ (c, s) for some r, s ∈ K×. The example is defined in terms of these
elements a, b, c ∈ F× and s ∈ F (


√
a)×. Pick two variables x, y over F and


consider the algebra A = (a, x) ⊗ (b, y) ⊗ (c, 1) over F (x, y). The element
s ∈ F (


√
a)× can be viewed as an element of (a, x) ⊃ F (


√
a). Endow the


quaternion algebras (a, x), (b, y) and (c, 1) with the unique orthogonal invo-
lutions ρ, τ and θ with discriminant x, y and c respectively (see [22, (7.4)]).
Using cohomological invariants, it is proven in [27, Example 4.2] that the
orthogonal involutions σ = ρ⊗ τ ⊗θ and σ′ = (int(s)◦ρ)⊗ τ ⊗θ are non iso-
morphic, and become isomorphic over FA,o. This example was inspired by
Hoffmann’s example [11, §4] of non-similar 8-dimensional quadratic forms
that are half-neighbors where two 8-dimensional quadratic forms q and q′


over a field F are said to be half-neighbors if there exists scalars λ, µ ∈ F
such that 〈λ〉q ⊕ 〈µ〉q′ is a 4-fold Pfister form. The relation between the
two constructions is given by triality [22, §42], and Sivatski’s criterion for
isomorphism after generic splitting of orthogonal involutions on degree 8
algebras [29, Proposition 4].


In addition to being of independent interest, these results on isomorphism
give new insights on isotropy. In the next section we use Lewis and Barquero-
Salavert’s Theorem 6.1 to give an affirmative answer to question (i) for some
algebras of low degree.


7. Isotropy of involutions on some algebras of low degree


In [1, pg 240] Auel, Brussel, Garibaldi and Vishne note that it is unknown
whether anisotropy is preserved under odd degree extensions for orthogonal
involutions on algebras of degree 12. We prove that this result holds and
thus give a second example of a positive answer to question (i′) that does
not reduce to hyperbolicity.


Theorem 7.1. Let (A, σ) be a degree 12 algebra with orthogonal involution
over F . Let L be a finite field extension of F of odd degree. If σL is isotropic,
then σ is isotropic.
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Proof. Since the cases where ind(A) = 1 or ind(A) = 2 were discussed above,
we need only consider the case where ind(A) = 4. So, we may assume
A = M3(D), for some division biquaternion algebra over F . Let us denote
by δ ∈ F×/F×2 the discriminant of σ, and let F ′ = F [X]/(X2 − δ) be the
corresponding quadratic étale extension.


Assume σ is isotropic over L. Since D remains division over L, the
anisotropic part of (A, σ)L has degree 4; therefore, it is isomorphic to (DL, σ̃),
for some orthogonal involution σ̃ of DL. The involution σ̃ being Witt-
equivalent to σL, it has discriminant δ ∈ F×/F×2 ⊂ L×/L×2 and by the
exceptional isomorphism [22, (15.7)], we have


(DL, σ̃) = NL′/L(Q̃, )̄,


where L′ = L[X]/(X2 − δ), and the quaternion algebra Q̃ over L′ is the
Clifford algebra of σ̃. Hence, since L′ has odd degree over F ′, the Clifford
algebra of σ itself is Brauer-equivalent to a quaternion algebra Q over F ′


such that QL′ is isomorphic either to Q̃ or to its conjugate (see [8, prop. 3]).


In both cases, we have
(


NF ′/F (Q, )̄
)


L
≃ NL′/L(Q̃, )̄.


To conclude, we will use the so-called fundamental relation [22, (9.14)],
which shows that NF ′/F (Q) is isomorphic to the division algebra D. There-
fore, A = M3(D) has a unique isotropic orthogonal involution σ0 with
anisotropic part NF ′/F (Q, )̄. Moreover, the involutions σ and σ0 are isomor-
phic over L. Hence they are isomorphic over F by Lewis [24, Proposition. 10]
(see 6.1 above), and σ is isotropic. �


One may proceed as in Tignol’s appendix [18, Appendix] to derive a
positive answer to question (i′) for an algebra of degree 6 and exponent 2
with unitary involution as a consequence of Theorem 7.1. Indeed, Tignol’s
construction associates to a degree m algebra with K/F unitary involution


(A, σ) a degree 2m algebra with orthogonal involution (Ã, σ̃) over the Lau-
rent series field F ((x)), and he proves the anisotropy property holds for


(Ã, σ̃) if it holds for (A, σ). Alternatively, one can prove this result by using
an argument similar to that in the proof of Theorem 7.1. We give the details
of the latter approach below.


Theorem 7.2. Let (A, σ) be an exponent 2 and degree 6 algebra with unitary
involution over F . Let L be a finite field extension of F of odd degree. If σL
is isotropic, then σ is isotropic.


Proof. Let F ′ be the center of the algebra A and let L′ = LF ′. Since the
case of a split algebra was discussed in 3 we may assume that A is non-split
and therefore that A = M3(D) for some quaternion division algebra D over
F ′. The involution σL is an L′/L unitary involution on AL which is isotropic
by assumption. Since D remains division over L′, the anisotropic part of
(A, σ)L has degree 2 and therefore, it is isomorphic to (DL′ , τ) for some L′/L-
unitary involution τ on DL′ . By a result of Albert (see [22, (2.22)]), there
exists a unique quaternion algebra Q over L such that (DL′ , τ) = (Q, )̄ ⊗
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(L′, )̄, where¯denotes the respective canonical involutions on the quaternion
algebra Q and the quadratic extension L′ over L. Now, as explained in [22,
p. 129], the quaternion algebra Q is the discriminant algebra of (DL′ , τ),
hence it is Brauer-equivalent to the discriminant algebra of (A, σ)L. Since
L/F has odd degree, it follows that the discriminant algebra of (A, σ) is
Brauer equivalent to a quaternion algebra Q0 over F such that (Q0)L ≃ Q.
By [22, Prop. 10.30], (Q0)F ′ is Brauer-equivalent to A, so A = M3(Q0)F ′


admits a unique involution σ0 Witt-equivalent to (Q0, )̄ ⊗F (F ′, )̄. The
involutions σ and σ0 are isomorphic over L, hence they are isomorphic over
F by [2, Theorem 3.2], hence σ is isotropic. �
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