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Abstract. In this paper we present a decomposition theorem for generalised
quadratic forms over a division algebra with involution in characteristic 2.
This is a generalisation of a decomposition result on quadratic forms in char-
acteristic 2 from [3] and extends a generalisation of the Witt decomposition
theorem for nonsingular forms to cover forms that may be singular.

1. Introduction

Generalised quadratic forms (also known as pseudo-quadratic forms) are an ex-
tension of the concept of a quadratic form over a field to the setting of division
algebras with involution, first introduced in [8]. Rather than being maps from a
vector space over a field to that field, they are defined as being maps on a vector
space over a division algebra to that division algebra modulo alternating elements
with respect to an involution.

The decomposition theorem of Witt (see [9]) states that any regular quadratic
form over a field of characteristic different from 2 uniquely decomposes into an
orthogonal sum of an anisotropic part and a hyperbolic part. Our interest is in this
theorems generalisation to the theory of generalised quadratic forms over fields of
arbitrary characteristic, where it says that every nonsingular generalised quadratic
form over a finite dimensional division algebra with involution can be decomposed
into an orthogonal sum of an anisotropic part and a hyperbolic part in a unique
way.

We consider decompositions of generalised quadratic forms that may be singular.
That is, we allow the hermitian form associated to the generalised quadratic form
to be degenerate. If the characteristic of the underlying field is different from
2, or the involution is of unitary type, then the hermitian form associated to a
generalised quadratic form completely determines the generalised quadratic form
(and vice versa), so singular generalised quadratic forms are not interesting in this
case. Indeed, forms that are totally singular, that is, whose associated hermitian
form is the zero map, are trivial in characteristic different from 2 or in the case of
a unitary involution.

However, over fields of characteristic 2 and for involutions of the first kind,
singular generalised quadratic forms have a great deal of structure. In particular,
in characteristic 2 and when the involution is of the first kind, there can be many
different totally singular forms of the same dimension. Singular quadratic forms
have been studied over fields, in, for example, [3]. Here it is shown that totally
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singular forms can be studied somewhat independently and with methods quite
distinct from the usual theory of quadratic forms (see also, for example, [6]).

In Section 8 we show a decomposition theorem for quadratic forms that are not
assumed to be nonsingular. This generalises [3, (2.4)] to our wider setting. In
Section 6 we also show some results on totally singular generalised quadratic forms
and on the elements they represent. In particular, in (6.3) we show that, excluding
the split case, totally singular generalised quadratic forms can be characterised in
terms of the elements they represent.

2. Algebras with involution

We refer to [7] as a general reference on finite-dimensional algebras over fields,
and for central simple algebras in particular, and to [5] for involutions.

Let A be a finite-dimensional F–algebra. If A is simple (i.e. it has no non-
trivial two sided ideals) and E is the centre of A, we can view A as an E–algebra
and by Wedderburn’s Theorem (see [5, (1.1)]) we have that A ≃ EndD(V ) for an
F–division algebra D with centre E and a right D–vector space V . In this case
dimE(A) is a square, and the positive root of this integer is called the degree of A
and is denoted deg(A). If E = F , then we call the F–algebra A central simple. An
F–quaternion algebra is a central simple F -algebra of degree 2.

Let Ω be an algebraic closure of F . By Wedderburn’s Theorem, under scalar
extension to Ω, every central simple F–algebra of degree n becomes isomorphic to
Mn(Ω), the algebra of n×n matrices over Ω. Therefore if A is a central simple F–
algebra we may fix an F -algebra embedding A → Mn(Ω) and view every element
a ∈ A as a matrix in Mn(Ω). The characteristic polynomial of this matrix has
coefficients in F and is independent of the embedding of A into Mn(Ω) (see [7,
§16.1]). We call this polynomial the reduced characteristic polynomial of A and
denote it by

PrdA,a = Xn − s1(a)X
n−1 + s2(a)X

n−2 − . . .+ (−1)nsn(a).

The we call s1(a) the reduced trace of a and sn(a) the reduced norm of a and denote
them by TrdA(a) and NrdA(a) respectively. We also denote s2(a) by SrdA(a).

An F–involution on A is an F–linear map σ : A → A such that σ(xy) = σ(y)σ(x)
for all x, y ∈ A and σ2 = idA. An F–algebra with involution is a pair (A, σ)
of a finite-dimensional F–algebra A and an F–involution σ on A such that one
has F = {x ∈ Z(A) | σ(x) = x}, and such that either A is simple or A is a
product of two simple F–algebras that are mapped to one another by σ. In this
situation, there are two possibilities: either Z(A) = F , so that A is a central
simple F–algebra, or Z(A)/F is a quadratic étale extension with σ restricting to
the nontrivial F–automorphism of Z(A). To distinguish these two situations, we
speak of algebras with involution of the first and second kind : we say that the
F–algebra with involution (A, σ) is of the first kind if Z(A) = F and of the second

kind otherwise. For more information on involutions of the second kind, also called
unitary involutions, we refer to [5, Section 2.B].

Let (A, σ) be an F–algebra with involution and E be the centre of A. For λ ∈ E
such that λσ(λ) = 1, let

Symλ(A, σ) = {a ∈ A | λσ(a) = a} and Altλ(A, σ) = {a− λσ(a) | a ∈ A}.

These are F–linear subspaces of A and we write Sym(A, σ) = Sym1(A, σ) and
Alt(A, σ) = Alt1(A, σ).
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Example 2.1. Let (1, u, v, w) be basis elements of a 4–dimensional F -vector space.
For a ∈ F be such that −4a 6= 1 and b ∈ F×, defining a multiplication on this F–
vector space through the relations u2 = u + a, v2 = b and w = uv = v − vu gives
the structure of a F–quaternion algebra. We call such basis (1, u, v, w) a quaternion

basis of this algebra and we denote it by [a, b)F .
Let Q = [a, b)F for a ∈ F and b ∈ F× as above. Let γ be the F–involution on Q

such that γ(u) = 1−u and γ(v) = v. This is the unique symplectic involution on Q
(see [5, (2.21)]) and for all x ∈ Q we have γ(x) = TrdQ(x)−x and γ(x)x = NrdQ(x).
Direct computation then shows that Alt−1(Q, γ) = F .

3. Hermitian and Quadratic forms

In this section we recall the basic terminology and results we use from hermitian
and quadratic form theory. We refer to [4, Chapter 1] as a general reference on
hermitian and quadratic forms.

Let (D, θ) be an F–division algebra with involution with centre E. Further,
fix λ ∈ E such that λθ(λ) = 1. Note that if (D, θ) is of the first kind one must
have that λ = ±1. A λ–hermitian form over (D, θ) is a pair (V, h) where V is a
finite-dimensional right D-vector space and h is a bi-additive map h : V × V → D
such that

h(x, yd) = h(x, y)d and h(y, x) = λθ(h(x, y))

holds for all x, y ∈ V and d ∈ D.
Let ϕ = (V, h) be a λ–hermitian form over (D, θ). We call the set

rad(ϕ) = {v ∈ V | h(v, w) = 0 for all w ∈ V }

the radical of ϕ. We say ϕ is non-degenerate if rad(V, h) = {0}. We say ϕ represents
an element a ∈ D if h(x, x) = a for some x ∈ V \{0}.

Let ϕ1 = (V, h1) and ϕ2 = (W,h2) be a λ–hermitian forms over (D, θ). The
orthogonal sum of ϕ1 and ϕ2 is defined to be the pair (V × W,h) where the F–
linear map h : (V × W ) × (V × W ) → D is such that h((v1, w1), (v2, w2)) =
h1(v1, v2) + h2(w1, w2) for any v1, v2 ∈ V and w1, w2 ∈ W ; we also denote it by
ϕ1 ⊥ ϕ2.

Lemma 3.1. Let ϕ = (V, h) be a λ–hermitian form over an F–division algebra with

involution (D, θ) such that h is not identically zero on V × V . Then ϕ represents

a non–zero element in D if and only if (D, θ) 6= (F, id) and λ 6= −1.

Proof. Since h is not the trivial map, there exists an F–vector subspace W of V
such that W ⊕ rad(V, h). Then (V, h) = (W,h|W )⊥(rad(V, h), h|rad(V,h)) as for
all x1, x2 ∈ W and y1, y2 ∈ rad(V, h) we have h(x1 + y1, x2 + y2) = h(x1, x2) +
h(y1, y2) = h(x1, x2). Then by [4, Chapter 1, (6.2.3)], (W,h|W ) represents a non-
zero element in D if and only if (D, θ) 6= (F, id) and λ 6= −1. �

By a λ–quadratic form over (D, θ) we mean a pair (V, q) of a finite-dimensional
right D-vector space V and a map q : V → D/Altλ(D, θ) such that for all x, y ∈ V
and d ∈ D we have

• q(xd) = θ(d)q(x)d,
• (V, hq) is a λ–hermitian form over (D, θ), where the map hq : V × V → D
is given by (x, y) 7−→ q(x + y)− q(x) − q(y) + Altλ(D, θ),
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Let ρ = (V, q) be a λ–quadratic form (V, q) over (D, θ). We call dimD(V ) the
dimension of ρ and write it as dimD(ρ). We call the λ–hermitian form (V, hq) the
polar form of ρ. We say ρ is nonsingular if (V, hq) is a non-degenerate λ–hermitian
form over (D, θ) and singular otherwise. We call ρ totally singular if hq is the zero
map on V × V . We call the set

rad(ρ) = {v ∈ rad(V, hq) | q(v) = 0}

the radical of ρ. We say that ρ is regular if rad(ρ) = {0}.
If char(F ) 6= 2 or if (D, θ) is unitary then any λ–quadratic form is uniquely

determined by its polar form (see [4, Chapter 1, (6.6.1)]), and in these cases we
can consider the concepts of a λ–quadratic form and of a λ–hermitian form as
coinciding. In particular, in this case a λ–quadratic form is regular if and only if it
is nonsingular.

Let ρ = (V, q) and ρ′ = (W, q′) be λ–quadratic forms over (D, θ). By an isometry

φ : ρ → ρ′ we mean an isomorphism of D–vector spaces φ : V −→ W such that
q = q′ ◦ φ. The orthogonal sum of ρ and ρ′ is defined to be pair (V ×W, q′′) where
the map q′′ : (V ×W ) → D/Altλ(D, θ) is given by q′′((v, w)) = q′(v) + q(w) for all
v ∈ V and w ∈ W , and we write (V ×W, q′′) = ρ ⊥ ρ′. We say ρ′ is a subform of

ρ if there exists a λ–quadratic form ρ′′ over (D, θ) such that ρ ≃ ρ′⊥ρ′′. For n ∈ N

be denote the orthogonal sum of n copies of ρ by n× ρ. For c ∈ F× we denote by
cρ the λ–quadratic form (V, cq), where (cq)(x) = c(q(x)) for x ∈ V .

Lemma 3.2. Let (V, q) be a λ–quadratic form over (D, θ). If U is an F–vector

subspace of V such that q|U is nonsingular, then (U, q|U ) is an subform of (V, q).

Proof. See [4, Chapter 1 (5.4.1)]. �

Lemma 3.3. Let ρ = (V, q) be a λ–quadratic form over (D, θ). Then for an F–

vector subspace U of V such that V = U ⊕ rad(V, hq) we have

ρ ≃ (U, q|U )⊥(rad(V, hq), q|rad(V,hq
)).

Proof. For all x ∈ rad(ρ) and y ∈ V we have hq(x, y) = 0 and hence q(x + y) =
q(x) + q(y). �

We say ρ represents an element a ∈ D if q(x) = a + Altλ(D, θ) for some x ∈
V \{0}. We call ρ isotropic if there exists an x ∈ V \{0} such that q(x) ∈ Altλ(D, θ),
and anisotropic otherwise. Assume that ρ is nonsingular. Then we call a subspace
W ⊂ V totally isotropic (with respect to q) if q|W = 0. We call ρ hyperbolic if there
exists a totally isotropic subspace W ⊂ V with dimD(W ) = 1

2dimD(V ). We denote

the λ–quadratic form (D2, p) over (D, θ) where the map p : D2 → D/Altλ(D, θ) is
given by (x, y) 7→ θ(x)y by H(λ,θ).

Lemma 3.4. H(λ,θ) is nonsingular and hyperbolic.

Proof. Let H(λ,θ) = (D2, p) as above. For all x1, x2, y1, y2 ∈ D and for x = (x1, x2)
and y = (y1, y2) we have

p(x+ y)− p(x)− p(y) = θ(x1)y2 + θ(y1)x2 +Altλ(D, θ)

= θ(x1)y2 + λθ(x2)y1 +Altλ(D, θ).

Hence hp(x, y) = θ(x1)y2 + λθ(x2)y1 and (D2, hp) is nondegenerate. That H(λ,θ) is
isotropic is clear. That H(λ,θ) is hyperbolic then follows as dimD(H(λ,θ)) = 2. �
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Proposition 3.5. Let ρ = (V, q) be a λ–quadratic form over (D, θ). Then ρ ≃
n×H(λ,θ), where n = 1

2dimD(ρ).

Proof. By [4, (5.6.1)], a nonsingular hyperbolic λ–quadratic form over (D, θ) is
uniquely determined up to isometry by its dimension. The result follows immedi-
ately. �

We call a λ–quadratic form isometric to H(λ,θ) a hyperbolic plane.

Proposition 3.6. Let ρ be a nonsingular λ–quadratic form over (D, θ). Then there

exist an anisotropic nonsingular λ–quadratic form ρ′ and a nonnegative integer

n such that ρ ≃ ρ′⊥n × H(λ,θ). Moreover, n is uniquely determined and η′ is

determined up to isomorphism by ρ.

Proof. See [4, Chapter 1, (6.5.3)]). �

4. Witt Cancellation

Throughout this section, let (D, θ) be an F–division algebra with involution.
The following results taken together are an extension of the ‘Witt Cancellation’
result for nonsingular generalised quadratic forms from [4, Chapter 1, (6.5.2)] to
cover the case where the λ–quadratic forms are potentially singular. The proof of
[4, Chapter 1, (6.5.2)] is not explicitly given, but it is noted that the proof of an
analogous result for hermitian forms, [4, Chapter 1, (6.4.2)], is straightforward to
adapt to this case. In fact, such an adaptation does not require the assumption
that the λ–quadratic form is nonsingular.

Let H(λ,θ) = (W, p). Then by [4, Chapter 1, (5.6.2)] we can find elements x, y ∈
W such that p(x) = 0 = p(y) and hp(x, y) = 1. For a λ–quadratic form (V, q)
over (D, θ), we call a pair x, y ∈ V such that q(x) = 0 = q(y) and hq(x, y) = 1 a
hyperbolic pair in (V, q). Let H and H ′ be hyperbolic planes that are subforms of
a λ–quadratic form (V, q) over (D, θ). We say H and H ′ are adjacent if there is
a hyperbolic pair {x, y} in H and a hyperbolic pair {x′, y′} in H ′ with a common
element. We say that H and H ′ are related if there is a finite chain of adjacent
hyperbolic planes connecting H and H ′.

Lemma 4.1. Let ρ be a λ–quadratic form over (D, θ). Two hyperbolic planes H
and H ′ that are subforms of ρ are always related.

Proof. The proof follows similarly to the analogous hermitian form result in [4,
Chapter 1, (6.4.3)]. �

For a λ–quadratic form (V, q) over (D, θ) and a nonsingular subform (U, q′) of
(V, q), we denote the set {x ∈ V | hq(x, y) = 0 for all y ∈ U} by U⊥ and the λ–
quadratic form (U⊥, q|U⊥) by (U, q′)⊥. This form exists and is a subform of (V, q)
by (3.2).

Lemma 4.2. Let ρ be a λ–quadratic form over (D, θ). If H and H ′ are two adjacent

hyperbolic planes that are subforms of ρ, then the λ–quadratic forms H⊥ and H⊥

are isometric.

Proof. The proof follows similarly to the analogous hermitian form result in [4,
Chapter 1, (6.4.4)]. �

Corollary 4.3. Let ρ, ρ1 and ρ2 be λ–quadratic forms over (D, θ) such that ρ is

nonsingular. If ρ1⊥ρ ≃ ρ2⊥ρ then ρ1 ≃ ρ2.
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Proof. As ρ⊥(−ρ) is hyperbolic by [4, Chapter 1, (5.5.2)] and ρ1⊥ρ⊥(−ρ) ≃
ρ2⊥ρ⊥(−ρ), the result follows from (4.2). �

5. Diagonalisability of generalised quadratic forms

Throughout this section, let (D, θ) be an F–division algebra with involution. For
a1, . . . , an ∈ D we denote the λ–quadratic form (Dn, q) with q : Dn → D/Altλ(D, θ)
given by

(x1, . . . , xn) 7→

n
∑

i=1

θ(xi)aixi +Altλ(D, θ)

by 〈a1, . . . , an〉(λ,θ). We call such a form a diagonal form, and we call a λ–quadratic

form diagonalisable if it is isometric to a diagonal form. Similarly, we denote the
λ–hermitian form (Dn, h) with h : Dn ×Dn → D given by

(x1, . . . , xn)× (y1, . . . , yn) 7→

n
∑

i=1

θ(xi)aiyi

by 〈a1, . . . , an〉
her
(λ,θ).

Lemma 5.1. Take a1, . . . , an ∈ D. Then the polar form of 〈a1, . . . , an〉(λ,θ) is

〈a1 + λθ(a1), . . . , an + λθ(an)〉
her
(λ,θ).

Proof. It suffices to prove the result for n = 1. Let a = a1 and (D, q) = 〈a〉(λ,θ).

Then for all x, y ∈ D we have

q(x+ y)− q(x) − q(y) = θ(x)ay + θ(y)ax+Altλ(D, θ)

= θ(x)ay + θ(y)ax− (θ(y)ax − λθ(x)θ(a)y) + Altλ(D, θ)

= θ(x)(a + λθ(a)) + Altλ(D, θ),

as required. �

Proposition 5.2. Let ρ be a λ–quadratic form over (D, θ). Then ρ is diagonalisable

except if (D, θ) = (F, id), λ = −1 and if char(F ) = 2, ρ is not totally singular.

Proof. Assume first that (D, θ) = (F, id). If char(F ) 6= 2, that ρ is not diagonal-
isable if λ = −1 follows from [1, (1.8)]. If char(F ) = 2 then by [1, (7.24)], ρ is
diagonalisable if and only if ρ is totally singular.

Assume now that (D, θ) 6= (F, id) or λ 6= −1. Let ρ = (V, q). By (3.3), we can
find a nonsingular λ–quadratic form ρ1 = (V1, q1) and a totally singular λ–quadratic
form ρ2 = (V2, q2) over (D, θ) such that ρ ≃ ρ1⊥ρ2. That ρ2 is diagonalisable is
clear as for all x, y ∈ V2 we have hq2(x, y) = 0, and hence q2(x + y) = q2(x) +
q2(y), so any decomposition of V2 into 1–dimensional summands gives an orthogonal
decomposition of ρ2. Therefore we may assume that ρ is nonsingular.

By (3.6), we have that ρ ≃ ρ′⊥n × H(λ,θ) for some anisotropic λ–quadratic
form ρ′ and an nonnegative integer n. Let a ∈ D\Sym(D, θ). By (5.1), the polar

form of 〈a,−a〉(λ,θ) is 〈a+ λθ(a),−(a+ λθ(a))〉her(λ,θ). In particular, 〈a,−a〉(λ,θ) is

nonsingular and clearly 〈a,−a〉(λ,θ) isotropic. Hence by (3.5), 〈a,−a〉(λ,θ) ≃ H(λ,θ).

Therefore we may assume that ρ is anisotropic.
Since λ 6= −1 or (D, θ) 6= (F, id), there exists an z ∈ V such that hq(z, z) 6= 0

by (3.1). The proof of [4, Chapter 1 (6.5.3)] then shows that we can write ρ as
an orthogonal sum of a nonsingular 1–dimensional λ–quadratic form on zD and
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a nonsingular λ–quadratic form of smaller dimension. The result follows from
induction on the dimension of V . �

6. Totally Singular Generalised quadratic forms

In this section we consider totally singular generalised quadratic forms. Since
totally singular forms over (D, θ) are only of interest if char(F ) = 2 and (D, θ) is
an F–division algebra with involution of the first kind, we assume we are in this
case throughout the section. In particular, since we always have λ = 1 in this case,
we drop it from our notation.

Proposition 6.1. Let ρ be a totally singular quadratic form over (D, θ). Then

there exists an anisotropic totally singular quadratic form ρ′ and a nonnegative

integer j such that ρ ≃ ρ′⊥(j × 〈0〉θ).

Proof. If ρ = (V, q) is anisotropic, then we are done. Otherwise, let take x ∈ V \{0}
such that q(x) ∈ Alt(D, θ). Then V ≃ xD ⊕ U for an F–vector subspace U of V .
As hq is the zero map, it follows that q(x + y) = q(x) + q(y) for all y ∈ U . Hence
ρ ≃ (U, q|U )⊥〈0〉θ. The result follows by induction on the dimension of V . �

Lemma 6.2. Let (V, q) be a quadratic form over (D, θ). For all x ∈ V we have

hq(x, x) = κ + θ(κ), where κ is any representative κ ∈ D of q(x) ∈ D/Alt(D, θ).
In particular, hq(x, x) ∈ Alt(D, θ) for all x ∈ V .

Proof. See [2, (1.1)]. �

Proposition 6.3. Assume that (D, θ) 6= (F, id). Let ρ be a quadratic form over

(D, θ). Then ρ is totally singular if and only if every element represented by ρ is

in Sym(D, θ)/Alt(D, θ).

Proof. Suppose ρ = (V, q) only represents elements in Sym(D, θ). By (6.2) this im-
plies that hq(x, x) = 0 for all x ∈ V . Therefore (V, hq) is the zero map on V by (3.1).
Conversely, if there exists an x ∈ V \{0} such that q(x) 6∈ Sym(D, θ)/Alt(D, θ) then
by (6.2) hq(x, x) 6= 0 and hence ρ is not totally singular. �

Remark 6.4. (6.3) can also be shown using (5.2) and (5.1).

Corollary 6.5. Assume that (D, θ) 6= (F, id). Let ρ be an anisotropic n–dimensional

quadratic form over (D, θ). Then ρ is totally singular if and only if there exist

b1, . . . , bn ∈ Sym(D, θ) such that ρ ≃ 〈b1, . . . , bn〉θ.

Proof. The result follows directly from (5.2) and (6.3). �

Remark 6.6. The description of totally singular forms in char(F ) = 2 from (6.5)
holds even if (D, θ) = (F, id) by [1, (7.24)], as then Sym(D, θ) = F .

Corollary 6.7. Assume that (D, θ) 6= (F, id). Take a ∈ D. Then 〈a〉θ is totally

singular if and only if a ∈ Sym(D, θ). Otherwise 〈a〉θ is nonsingular and does not

represent any elements in Sym(D, θ)/Alt(D, θ).

Proof. All elements represented by 〈a〉θ are of the form θ(x)ax + Alt(D, θ) for
x ∈ D. If x 6= 0, then θ(x)ax ∈ Sym(D, θ)/Alt(D, θ) if and only if a ∈ Sym(D, θ).
Hence 〈a〉θ represents a non-zero element in Sym(D, θ)/Alt(D, θ) if and only if all
elements represented by 〈a〉θ are elements in Sym(D, θ)/Alt(D, θ). That is, if and
only if 〈a〉θ is totally singular by (6.3). That 〈a〉θ is nonsingular if 〈a〉θ is not totally
singular is clear as dimD(〈a〉θ) = 1. �
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7. Nonsingular forms representing symmetric elements

In (6.3) we showed that, in characteristic 2, totally singular generalised quadratic
forms only represent symmetric elements. This means that the isotropy of an
orthogonal sum of an anisotropic nonsingular generalised quadratic form and an
anisotropic totally singular generalised quadratic form depends on whether the
nonsingular form represents a symmetric element. In this section, we investigate
when this can occur.

Again, throughout we assume that char(F ) = 2 and (D, θ) is an F–division
algebra with involution of the first kind, and as we always have λ = 1 we drop it
from our notation.

Lemma 7.1. For all elements a ∈ D and b ∈ Sym(D, θ) we have 〈a, b〉θ ≃
〈a+ b, b〉θ.

Proof. Let (V, q) = 〈a, b〉θ. Let α be the map α : V → V given by the matrix
(

1 0
1 1

)

. Then for (x, y) ∈ V we have

q(α(x, y)) = q((x, x + y)) + Alt(D, θ)

= θ(x)ax + θ(x)bx+ θ(y)by +Alt(D, θ)

= θ(x)ax + θ(x)bx+ θ(y)by + (θ(x)by + θ(y)bx) + Alt(D, θ)

= θ(x)(a + b)x+ θ(x)bx +Alt(D, θ).

Hence α gives an isometry 〈a, b〉θ ≃ 〈a+ b, b〉θ. �

Lemma 7.2. Assume (D, θ) 6= (F, id). Let ρ be a nonsingular anisotropic quadratic

form over (D, θ). Take b ∈ Sym(D, θ). Then ρ represents b if and only if there

exists an a ∈ D \ Sym(D, θ) and an anisotropic quadratic form ρ′ such that ρ ≃
〈a, a+ b〉θ⊥ρ′.

Proof. That 〈a, a+ b〉θ represents b, and hence the ‘if’ implication in the statement,
is clear. Assume now that ρ represents b and let ρ = (V, q). If dimD(V ) = 1 then
that ρ represents an element in Sym(D, θ)/Alt(D, θ), contradicts the nonsingularity
of ρ by (6.7). Therefore we may assume that dimD(V ) > 1.

If ρ only represents elements in Sym(D, θ)/Alt(D, θ), then ρ is totally singular by
(6.3). Hence there exists an element a ∈ D\Sym(D, θ) represented by ρ. Since 〈a〉θ
is nonsingular by (6.7), it follows from (3.2) that ρ ≃ 〈a〉θ⊥ρ′ for some anisotropic
λ–quadratic form ρ′ = (W, q′).

We have
0 6= b = θ(d)ad + q′(y) + Alt(D, θ)

for some y ∈ W and d ∈ D. If d = 0, then (W ′, q′) represents b and the result
follows from induction on dimD(V ).

If d 6= 0, then we may scale b, x and y in order to assume that d = 1. We
must have that y 6= 0 as otherwise 〈a〉θ represents b ∈ Sym(D, θ)/Alt(D, θ), which
cannot occur by (6.7). Hence ρ′ represents a + b. Therefore, again by (3.2), we
have that ρ′ ≃ 〈a+ b〉θ⊥ρ′′ for an anisotropic λ-quadratic form ρ′′. Hence ρ ≃
〈a, a+ b〉θ⊥ρ′′. �

Proposition 7.3. Let ρ1 and ρ2 be anisotropic quadratic forms over (D, θ) such

that ρ1 is nonsingular and ρ2 is totally singular. If ρ ≃ ρ1⊥ρ2 is isotropic, then

there exists a nonsingular anisotropic quadratic form ρ′1 such that ρ ≃ ρ′1⊥Hθ⊥ρ2.
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Proof. See the remarks preceding [3, (2.4)] for the case of (D, θ) = (F, id).
Now assume that (D, θ) 6= (F, id). The isotropy of ρ and the anisotropy of

ρ1 = (W1, q1) and ρ2 = (W2, q2) imply that there exist elements x1 ∈ W1\{0} and
x2 ∈ W2\{0} such that q1(x1), q2(x2) /∈ Alt(D, θ) and q1(x1) + q2(x2) ∈ Alt(D, θ).
By (6.3) we have that

q(x1) = q(x2) = b ∈ Sym(D, θ)/Alt(D, θ).

Then by (7.2) there exists anisotropic λ–hermitian forms ρ′1 and ρ′2 with ρ′1 is non-
singular and ρ′2 is totally singular such that ρ ≃ 〈a, a+ b〉θ⊥ρ′1⊥〈b〉θ⊥ρ′2. Finally,
(7.1) gives

〈a, a+ b〉θ⊥ρ′1⊥〈b〉θ⊥ρ′2 ≃ Hθ⊥ρ′1⊥ρ

as required. �

8. Witt Decomposition of singular quadratic forms

In this section we give our generalisation of [3, (2.4)] to the setting of generalised
quadratic forms. Throughout this section, let (D, θ) be an F–division algebra with
involution. The following is a generalisation of [3, (2.6)]. The proof of [3, (2.6)] is
easily adapted to our setting, but we include it for connivence.

Lemma 8.1. Let ρ1 and ρ2 be regular λ–quadratic forms over (D, θ). If ρ1⊥(j ×
〈0〉(λ,θ)) ≃ ρ2⊥(j × 〈0〉(λ,θ)) for a nonnegative integer j, then ρ1 ≃ ρ2.

Proof. By (3.3), (3.6) and (7.3) we can write ρ1 ≃ m × H(λ,θ)⊥ρ′1 and ρ2 ≃ n ×
H(λ,θ)⊥ρ′2 where m,n are nonnegative integers and ρ′1 and ρ′2 are anisotropic. We
may assume that m > n. By (4.3) we have (m−n)×H(λ,θ)⊥ρ′1 ≃ ρ′2, and hence we
must have that m = n. Therefore it suffices to prove that for π1 = ρ′1⊥(j×〈0〉(λ,θ))

and π2 = ρ′2⊥(j × 〈0〉(λ,θ)), we have π1 ≃ π2 implies that ρ′1 ≃ ρ′2.

Let ρ′i = (Wi, qi) and πi = (Vi, pi) for i = 1, 2. Further, for i = 1, 2, let Ui be such
that Vi = Wi⊕Ui and (Ui, pi|Ui

) = j×〈0〉(λ,θ). Now let φ : V1 → V2 be an F–vector

space isomorphism that is an isometry of π1 and π2. Let σ : V2 = W2 ⊕ U2 → W2

be a projection onto W2 and define τ : W1 → W2 by τ = φ ◦ σ|W1
.

If w ∈ W1 and σ(w) = w′ + u′, for some w′ ∈ W2 and u′ ∈ U2, then τ(w) = w′

and thus

q2(τ(w)) = p2(τ(w)) = p2(w
′) = p2(w

′ + u′) = p2(σ(w)) = p(w) = q1(w),

where the third equality holds as u′ ∈ U2 ⊂ V ⊥
2 and ϕ2(u

′) = 0. To show that
τ is an isometry, it suffices to show that τ is bijective. If 0 6= w ∈ W1 then
q1(w) /∈ Alt(D, θ) as ρ′1 is anisotropic. Hence 0 6= q2(τ(w)) = q1(w) /∈ Alt(D, θ) and
in particular w 6= 0. Therefore τ is injective, and bijectivity follows as dimD(W1) =
dimD(W2). �

Theorem 8.2. Assume char(F ) = 2 and (D, θ) is of the first kind. Let ρ be a

1–quadratic form over (D, θ). Then there exists a nonsingular 1–quadratic form

ρ1, a totally singular 1–quadratic form ρ2 and nonnegative integers i and j such

that ρ1⊥ρ2 is anisotropic and

ρ ≃ ρ1⊥(i×H(1,θ))⊥ρ2⊥(j × 〈0〉(1,θ)).

The integers n and m are uniquely determined, and the 1–quadratic forms ρ1⊥ρ2
and ρ2 are uniquely determined up to isometry.
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Proof. Since λ = 1 throughout this proof, we drop it from the notation. By (3.3),
(3.6), (6.1) and (7.3) we need only prove the uniqueness of the decomposition.

Suppose

ρ ≃ ρ1⊥(i×Hθ)⊥ρ2⊥(j × 〈0〉θ) ≃ ρ′2⊥(i′ ×Hθ)⊥ρ′2⊥(j′ × 〈0〉θ)

for nonnegative integers i, i′, j and j′, nonsingular quadratic forms ρ1 and ρ′1 over
(D, θ) and totally singular quadratic forms ρ2 and ρ′2 over (D, θ). We must have
that j = j′ as j and j′ is the dimension of the radical of the respective quadratic
forms, and any isometry maps the radical of a quadratic form to the radical of the
other quadratic form. It then follows from (8.1) that

ρ1⊥(i×Hθ)⊥ρ2 ≃ ρ′1⊥(i′ ×Hθ)⊥ρ2.

That ρ1⊥ρ2 ≃ ρ′1⊥ρ′2 and ρ2 ≃ ρ′2 then follows from (4.3). �

Note that, in the situation of (8.2), ρ1 is generally not uniquely determined up
to isometry, as we show in (9.6).

9. explicit examples

Throughout this section we assume that char(F ) = 2 and that (D, θ) is an
F–division algebra with involution of the first kind. As we again have λ = 1
throughout, we drop it from the notion. The importance of (7.2) in the proof of
(8.2) suggests the following question.

Question 9.1. Assume (D, θ) 6= (F, id). For which a ∈ D \ Sym(D, θ) and b ∈
Sym(D, θ) is 〈a, a+ b〉θ isotropic?

We now give an example of an F–division algebra with involution over which
there exist both anisotropic and isotropic quadratic forms of the type in Ques-
tion 9.1. This also provides an example showing that totally singular generalised
quadratic form cannot be cancelled in general.

For a ∈ F with −4a 6= 1, let q : F 2 → F be the map given by q(x, y) =
x2+xy+ay2. Then (F 2, q) is a nonsingular quadratic form over (F, id). We denote
(F 2, q) by [1, a].

Lemma 9.2. Let F2 be the field of two elements and let F = F2(X), where X is

an indeterminate. Let Q = [X, 1 +X)F . Then Q is an F–division algebra.

Proof. By [1, (12.5)], Q is division if and only if π = [1, X ]⊥(1 + X) · [1, X ] is
anisotropic. By [1, (23.11)], π is anisotropic if and only if ρ = [1, X ]⊥〈1 +X〉(1,id)
is anisotropic. It is clear that ρ is isotropic if and only if either [1, X ] represents
1 +X or [1, X ] is isotropic. First we show that [1, X ] does not represent 1 +X .

By [1, (17.3)], [1, X ] represents 1 +X if and only if there exist elements a, b ∈
F2[X ], not both zero, such that a2 + ab + a2X = 1 + X . Assume such ele-
ments exist and write a =

∑n
i=0 aiX

i and b =
∑m

i=0 biX
i for some n,m ∈ N

and a0, . . . , an, b0, . . . , bm ∈ F2 and such that an 6= 0 and bm 6= 0.
Assume first that m > n > 0. Then we get that 1 +X = b2mX2m+1 + c where

degX(c) < 2m+ 1. This contradicts bm 6= 0. Now assume that n > m > 0. Then
we have that 1 + X = anX

2n + c′ where degX(c′) < 2n, contradicting an 6= 0.
Therefore we must have that a, b ∈ F2. In particular, we must have that b = 1 and
a2 + a = 1. However, x2 + x = 1 has no solution in F2, therefore [1, X ] does not
represent 1 +X . That [1, X ] is anisotropic can be shown in a similar way. �
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We denote the central simple F–algebra of n × n matrices over D by Mn(D)
and the n × n identity matrix by In. For a matrix M ∈ Mn(D), let M t denote
the transpose of M and let M∗ denote the image of M under the F–involution on
Mn(D) given by

((aij)16i,j6n)
∗
= (θ(aij))

t
16i,j6n .

Note that as In ∈ Alt(Mn(D), ∗), this involution is symplectic by [5, (2.6)].
Let (V, q) be an n–dimensional quadratic form over (D, θ). By [4, Chapter 1,

(5.1.1)] one can find a matrix M ∈ Mn(D) such that q : V → D/Alt(D, θ) is given
by

(x1, . . . , xn) 7→ (θ(x1), . . . , θ(xn))M(x1, . . . , xn)
t +Alt(D, θ) .

We call M the matrix associated to (V, q). Then if (V, h) is the polar form of (V, q),
the map h : V → D is given by

(x1, . . . , xn)× (y1, . . . , yn) 7→ (θ(x1), . . . , θ(xn))(M +M∗)(y1, . . . , yn)
t ,

(see [4, Chapter 1, (5.3)]), and we say M +M∗ is the matrix associated to the polar

of (V, q).
Let ρ be an n–dimensional nonsingular quadratic form over (D, θ). Let M ∈

Mn(D) be the matrix associated to ρ and let N be the matrix associated to the
polar of ρ. As ρ is nonsingular we have that N is invertible and that at least one
of deg(D) or dimD(ρ) is even. Let 2m = deg(D) · dimD(ρ). We denote the set
{a2 + a | a ∈ F} by ℘(F ). The Arf invariant of ρ is then defined as the class in
F/℘F given by

SrdMn(D)(N
−1 ·M) +

m(m− 1)

2
+ ℘(F ).

We denote this class by ∆(ρ). By [8, Corollaire 4], ∆(ρ) depends only on the
isometry class of ρ and not on the choice of M .

Lemma 9.3. Let ρ1 and ρ2 be nonsingular quadratic forms over (D, θ). Then

∆(ρ1⊥ρ2) = ∆(ρ1) + ∆(ρ2).

Proof. For i = 1, 2, let ni = dimD(ρi), Mi ∈ Mni
(D) be the matrix associated

with ρi and Ni ∈ Mni
(D) be the matrix associated with the polar of ρi. Then

matrix associated with ρ1⊥ρ2 in Mn1+n2
(D) is M =

(

M1 0
0 M2

)

and the matrix

associated with its polar form is N =

(

N1 0
0 N2

)

. By [5, (0.2)] we have

SrdMn1+n2
(D)(N

−1M) = SrdMn1
(D)(N

−1
1 M1) + SrdMn2

(D)(N
−1
2 M2)

+TrdMn1
(D)(N

−1
1 M1) · TrdMn2

(D)(N
−1
2 M2) .

For i = 1, 2 we have that N∗

i = N and that N , and hence N−1
i , commutes with

Mi. Hence, we have that N−1M + (N−1M)∗ = Ini
. It therefore follows from [5,

(2.13) and (2.12)] that TrdMni
(N−1

i Mi) =
1
2 deg(D) · ni for i = 1, 2. The formula

for ∆(ρ1⊥ρ2) is then easily checked. �

Lemma 9.4. Let ρ be a hyperbolic nonsingular quadratic form over (D, θ). Then

∆(ρ) = 0.
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Proof. Let m = deg(D). By (3.5), we have that ρ ≃ n×Hθ for some n ∈ N. Hence
by (9.3), it suffices to show the result for the case ρ = Hθ. The matrix in M2(D)

associated with ρ is

(

0 1
0 0

)

. As shown in the proof of (3.4), the matrix associated

with the polar form of ρ in M2(D) is

(

0 1
1 0

)

. Let e =

(

0 1
1 0

)

·

(

0 1
0 0

)

=
(

0 0
0 1

)

. Then, as e is idempotent in M2(D), we have

PrdM2(D),e = (X − 1)m and hence SrdM2(D)(e) =
m(m− 1)

2
.

Therefore ∆(ρ) = 0. �

The following gives an example of an anisotropic and a hyperbolic generalised
quadratic form of the type considered in Question 9.1.

Example 9.5. Let F2 be the field of two elements and let F = F2(X), where X is
an indeterminate. Let Q = [X, 1+X)F . Then Q is an F–division algebra by (9.2).
Let γ be the unique symplectic involution on Q. Then there exist elements u, v ∈ Q
such that u2 = u + X , γ(u) = 1 + u, v2 = 1 + X and γ(v) = v. In particular,
u /∈ Sym(D, θ) and v, v + uv ∈ Sym(D, θ).

Let

ρ = 〈u〉γ , ρ1 = 〈u+ v〉γ and ρ2 = 〈u+ v + uv〉γ .

By (5.1), 〈1〉
her
γ is the polar form of each of ρ, ρ1 and ρ2 and therefore ρ, ρ1 and ρ2

are all nonsingular. It is also clear that ρ, ρ1 and ρ2 are all anisotropic as they are
1-dimensional. Note that as Q is a quaternion algebra, we have that SrdQ = NrdQ.
Hence ∆(ρ) = NrdQ(1 · u) = X . Similarly, ∆(ρ1) = 1 and ∆(ρ2) = X2 = X
mod ℘(F ).

Note that 1+X /∈ ℘(F ) holds if and only if [1, 1+X ] is anisotropic over F , and
that [1, 1+X ] is anisotropic follows from an argument similar to the proof of (9.2).
Therefore it follows from (9.3) that ∆(ρ⊥ρ1) = 1 +X 6= 0 ∈ F/℘(F ). Hence ρ⊥ρ1
is not hyperbolic by (9.4) and therefore anisotropic as dim(ρ⊥ρ1) = 2.

Finally as

γ(u+ v)u(u+ v) = u+ v + uv + (1 +X)

and 1 + X ∈ Alt(Q, γ), we have that ρ⊥ρ2 is isotropic and hence hyperbolic as
dimD(ρ⊥ρ2) = 2.

The following example shows that totally singular generalised quadratic forms
cannot be cancelled in general.

Example 9.6. Let F , (Q, γ), ρ and ρ1 all be as in (9.5). Then 〈v〉γ is totally

singular by (6.7). Further, ρ⊥〈v〉γ ≃ ρ1⊥〈v〉γ by (7.1). If ρ ≃ ρ1, then ρ⊥ρ1 is

hyperbolic, but ρ⊥ρ1 is anisotropic by (9.5). Hence ρ 6≃ ρ1.
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