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Abstract. We compute the motive of the algebraic group G = SL1(D)
for a central simple algebraD of prime degree over a perfect field. As an ap-
plication we determine certain motivic cohomology groups and differentials
in the motivic spectral sequence of G.


1. Introduction


In this paper we study the motive in the triangulated category of geomet-
ric mixed effective motives DMeff


gm (F ) over a perfect field F and the motivic
cohomology of the algebraic group SL1(D) of reduced norm 1 elements in a
central simple algebra D of prime degree l.


In [18], A. Suslin computed the K-cohomology groups of the (split) special
linear group SLn and the symplectic groups Sp2n using higher Chern classes in
K-cohomology. O. Pushin in [15] constructed higher Chern classes in motivic
cohomology and found decompositions of the motives of the groups SLn and
GLn into direct sums of Tate motives. S. Biglari computed in [1] the motives
of certain split reductive groups over Q. In particular, he showed that


(1.1) M(SLn)Q ≃
n−1∐


i=0


Symi
(
Q(2)[3]⊕Q(3)[5]⊕ · · · ⊕Q(n)[2n− 1]


)
.


A. Huber and B. Kahn determined the motives over Z of split reductive groups
in [9].


The motives of non-split algebraic groups are more complicated. The slices
of the slice filtration of the motive M


(
GLl(D)


)
for a division algebra D of


prime degree were computed by E. Shinder in [17].
In this paper we study the motive of the group G = SL1(D), where D is a


central simple algebra of a prime degree l. As a warm-up, consider the simplest
case l = 2. The variety of G is then an open subscheme of a 3-dimensional
projective isotropic quadric X given by the homogeneous quadratic equation
Nrd = t2, where Nrd is the reduced norm form of D. The surface Y = X \G,
given by Nrd = 0, is isomorphic to S×S, where S is the Severi-Brauer variety
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of D (a conic curve in the case l = 2). Computing the motives of X and Y as
in [17, §4], we get an exact triangle


M(G)→ Z⊕M(S)(1)[2]⊕ Z(3)[6]→M(S)(1)[2]⊕M(S)(2)[4]→M(G)[1].


Canceling out the summands M(S)(1)[2], we obtain an isomorphism


(1.2) M(G) ≃ Z⊕N(2)[3],


where the motive N is defined by the exact triangle


Z(1)[2]→M(S)→ N → Z(1)[3]


with the first morphism dual to the canonical one M(S)→ Z.
In the general case, when l is an arbitrary prime, since the group G and its


motive are split over a field extension of degree l, the torsion part of motivic
cohomology of G is l-torsion. We work over the coefficient ring Z


[
1


(l−1)!


]
, just


inverting insignificant integers.
As in the case l = 2, the motive of G can be computed out of motive of the


Severi-Brauer variety S of the algebra D. Let N be the motive defined by the
exact triangle


Z(l − 1)[2l − 2]→M(S)→ N → Z(l − 1)[2l − 1].


As (l−1)! is invertible in the coefficient ring, one can define symmetric Symi(M)
and alternating powers Alt i(M) of any motive M for i = 0, 1, . . . , l − 1. The
main result of the paper is the following theorem generalizing (1.1) and (1.2)
(see Theorem 11.1).


Theorem. Let D be a central simple algebra of prime degree l over a perfect
field F . Then there is an isomorphism


M
(
SL1(D)


) ∼
→


l−1∐


i=0


Symi
(
N(2)[3]


)
=


l−1∐


i=0


(
Alt iN


)
(2i)[3i]


in the category DMeff
gm (F ) of motives over F with coefficients in Z


[
1


(l−1)!


]
.


The most difficult part of the proof is the construction of a morphism
M(G)→ N(2)[3] in DMeff


gm (F ). The main players of the proof are the groups


H3,2(G) ≃ Z and the Chow group CHl+1(G) = H2l+2,l+1(G) ≃ Z/lZ (when D
is not split). These groups are related by a pair of homomorphisms


(1.3) H3,2(G)← Hom
(
M(G), N(2)[3]


)
→ H2l+2,l+1(G).


We prove that there is a morphism M(G)→ N(2)[3] with the images in (1.3)
generating the two side cyclic groups. This is done in Section 10.


Using Theorem 1 and the exact triangle (Corollary 6.5)


(Alt i−1N)(l − 1)[2l − 2]→ Alt iM(S)→ (Alt iN)→ (Alt i−1N)(l − 1)[2l − 1],


we can compute inductively the motivic cohomology of G. As an application,
in Section 12 we compute the motivic cohomology Hp,q(G) with 2q − p ≤ 1.
We also compute certain differentials in the motivic spectral sequence of G.
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2. Motivic cohomology


The base field F is assumed to be perfect. We fix a prime integer l and work
over the coefficient ring Z that is either the ring of integers Z or Z


[
1


(l−1)!


]
,


or the localization Z(l) of Z by the prime ideal generated by l. Note that
Z /lZ = Z/lZ.


We write DM(F ) := DMeff
gm (F ) for the triangulated category of (geometric


mixed effective) motives with coefficients in Z (see [19]). If p and q ≥ 0 are
integers, Z(q)[p] denotes the Tate motive and M(X) the motive of a smooth
variety X over F . We have M(SpecF ) = Z := Z(0)[0]. For a motive M and
an integer q ≥ 0, we write M(q) for M ⊗ Z(q).


For a motive M in DM(F ) define the motivic cohomology by


Hp,q(M) := Hom
(
M,Z(q)[p]


)
,


where Hom is taken in the category DM(F ). If X is a smooth variety, simply
write Hp,q(X) for Hp,q


(
M(X)


)
. We have


(2.1) Hp,q(X) = 0 if p > 2q or p > q + dim(X).


In particular, Hp,q(F ) = 0 if p > q. Moreover, Hp,p(F ) = KM
p (F ), the Milnor


K-groups of F (see [12, Lecture 5]).
The bi-graded group


∐
p,qH


p,q(X) has a natural structure of a graded com-


mutative ring (with respect to p, [12, Theorem 15.9]).
There is a canonical isomorphism between H2p,p(X) and the Chow groups


CHp(X) of (rational equivalence) classes of algebraic cycles on a smooth variety
X of codimension p ([12, Lecture 18]). We also write CHp(M) := H2p,p(M)
for every motive M .


The cancelation theorem (see [21]) states that the canonical morphism


Hom(M,N)
∼
→ Hom


(
M(1), N(1)


)


is an isomorphism for every two motives M and N .
The natural functor from the category of smooth projective varieties over F


to DM(F ) extends uniquely to a canonical functor from the category Chow (F )
of Chow motives over F to DM(F ) (see [19, Proposition 2.1.4]). The motives
in DM(F ) coming from Chow(F ) are called pure motives.


Let M be any motive and X a smooth projective variety of pure dimension
d over F . The two canonical morphisms (given by the diagonal of X in the
category of Chow motives)


Z(d)[2d]→M(X ×X)→ Z(d)[2d]


together with the cancelation theorem define the two mutually inverse isomor-
phisms (see [9, Appendix B])


(2.2) Hom
(
M,M(X)


)
⇄ Hom


(
M ⊗M(X),Z(d)[2d]


)
= CHd


(
M ⊗M(X)


)
.
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In particular, if Y is another smooth projective variety, then


HomDM(F )


(
M(Y ),M(X)


)
≃ CHd(Y ×X) = HomChow(F )


(
M(Y ),M(X)


)
.


We say that a motive M is of degree d ifM is a direct summand of a motive
of the formM(X)(q)[p] with 2q−p = d, whereX is a smooth projective variety.
The pure motives are of degree 0. The following statement is an immediate
consequence of (2.1).


Lemma 2.3. Let M and N be motives of degree d and e respectively. If d > e,
then Hom(M,N) = 0. �


The coniveau spectral sequence for a smooth variety X over F ,


Ep,q
1 =


∐


x∈X(p)


Hq−p,n−pF (x)⇒ Hp+q,n(X),


where X(p) is the set of points in X of codimension p, yields isomorphisms


H i+n,n(X) ≃ Ai(X,Kn) when n− i ≤ 2


with the K-cohomology groups Ai(X,Kn) defined in [16].
If X is a variety over F , we write Xsep for the variety X ⊗F Fsep over a


separable closure Fsep of F .


3. Severi-Brauer varieties


LetD be a central simple algebra of degree n over F and S the Severi-Brauer
variety SB(D) of right ideals in D of rank n. This is a smooth projective
variety of dimension n − 1 (see [6]). If D is split, i.e., D = End(V ) for an
n-dimensional vector space V over F , then S is isomorphic to the projective
space P(V ). Therefore, in the split case,


M(S) ≃ Z⊕Z(1)[2]⊕ · · · ⊕ Z(l − 1)[2l − 2].


Let I → S be the tautological vector bundle of rank n (with the fiber over
a right ideal the ideal itself). We have D = End(I)op = End(I∨), where I∨ is
the vector bundle dual to I. In the split case, when S = P(V ),


I = V ∨ ⊗ Lt = Hom(V, Lt),


where Lt → P(V ) is the tautological line bundle. The sheaf of sections of Lt


is O(−1).
In the split case, when S = P(V ), let s ∈ CH1(S) be the class of a hyperplane


section. We have


CHi
(
P(V )


)
=


{
Zsi, i = 0, 1, . . . , n− 1;
0, otherwise.


The ring End
(
M(S)


)
= CHn−1(S×S) is canonically isomorphic to the product


Zn of n copies of Z with the idempotents si × sn−1−i.
In the non-split case we have the following statement (see [13, Corollary


8.7.2]):
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Lemma 3.1. When D is a division algebra of prime degree l, the natural map
CH∗(S) → CH∗(Ssep) is injective and it identifies the Chow group of S as
follows


CHi(S) =







Z 1, i = 0;
lZ si, i = 1, . . . , l − 1;
0, otherwise. �


Any of the two projections p : S × S → S is the projective bundle of I∨,
i.e., S × S = PS(I


∨). Let L be the tautological line bundle of this projective
bundle. By the projective bundle theorem [19, Proposition 3.5.1], we have:


(3.2) CHl−1(S × S) = CHl−1(S) · 1⊕ CHl−2(S) · ξ ⊕ · · · ⊕ CH0(S) · ξl−1,


where ξ is the first Chern class of L in CH1(S×S). Consider the composition


type : CHl−1(S × S) = EndM(S)→ EndM(Ssep)
∼
→ Zl .


Proposition 3.3. Let D be a division algebra of degree l and S = SB(D).
Then the ring homomorphism


type : EndM(S)→ Zl


is injective. Its image consists of all tuples (a1, a2, . . . , al) such that


a1 ≡ a2 ≡ · · · ≡ al (mod l).


Proof. It follows from Lemma 3.1 and (3.2) that type is injective and [Im(type) :
lZl] = l. Therefore, the identity in Zl and lZl generate Im(type). �


We will also need the following lemma.


Lemma 3.4. Let M1 and M2 be direct sum of shifts of M(S) (with arbitrary
coefficients) and f :M1 →M2 a morphism in DM(F ). If f is an isomorphism
over a field extension, then f is also an isomorphism.


Proof. Write M1 and M2 as direct sums of the homogeneous (degree k) com-


ponents M
(k)
1 and M


(k)
2 respectively. By Lemma 2.3, the morphism f is given


by a triangular matrix with the diagonal terms fk : M
(k)
1 → M


(k)
2 . By as-


sumption, the matrix is invertible over a splitting field L, hence all fk are
isomorphisms over L. Note that fk is a shift of a morphism of pure motives
that are direct sums of shifts of M(S). By [4, Corollary 92.7], all fk are iso-
morphisms. Therefore, the triangular matrix is invertible and hence f is an
isomorphism. �


4. The motive N


Let D be a central simple algebra of prime degree l over F and S = SB(D).
The motive N is defined by the triangle


(4.1) Z(l − 1)[2l − 2]→M(S)
κ
−→ N


ε
−→ Z(l − 1)[2l− 1]
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in DM(F ) with the first morphism of pure motives given by the identity in
CH0(S). We have


(4.2) Nsep ≃ Z⊕Z(1)[2]⊕ · · · ⊕ Z(l − 2)[2l − 4],


therefore, Hom
(
M(Ssep), Nsep


)
≃ Zl−1.


Consider the map


type : Hom(M(S), N)→ Hom
(
M(Ssep), Nsep


)
≃ Zl−1 .


For example, type(κ) = (1, 1, . . . , 1).


Proposition 4.3. Let D be a division algebra of degree l and S = SB(D).
Then the homomorphism


type : Hom(M(S), N)→ Zl−1


is injective. Its image consists of all tuples (a1, a2, . . . , al−1) such that


a1 ≡ a2 ≡ · · · ≡ al−1 (mod l).


Proof. Let ϕ ∈ Ker(type). The triangle (4.1) yields an exact sequence


CHl−1(S)→ EndM(S)→ Hom(M(S), N)→ H2l−1,l−1(S).


The last term is zero as 2l − 1 > 2(l − 1). Therefore, ϕ = κ ◦ σ for some
σ ∈ EndM(S). By assumption, type(σ) = (0, . . . , 0, a), where a ≡ 0 modulo l
in view of Proposition 3.3. Then σ comes from CHl−1(S) = lZ by Lemma 3.1
and hence ϕ = 0. This proves injectivity. The second statement follows from
Proposition 3.3. �


Lemma 4.4. There is an isomorphism


N ⊗M(S) ≃ M(S)⊕M(S)(1)[2]⊕ · · · ⊕M(S)(l − 2)[2l − 4].


In particular, N ⊗M(S) is a pure motive.


Proof. The triangle (4.1) is split after tensoring with M(S). Indeed, the mor-
phism M(S)(l − 1)[2l − 2] → M(S) ⊗M(S) has a left inverse given by the
class of the diagonal in CH2l−2(S × S × S). �


Lemma 4.5. We have CHi(N) = 0 if i > l.


Proof. In the exact sequence induced by (4.1)


H2i−2l+1,i−l+1(F )→ CHi(N)→ CHi(S)


the first and the last terms are trivial as 2i−2l+1 > i−l+1 and dim(S) < l. �


Since Hom
(
Z(q)[p],Z


)
= 0 if q > 0, the natural morphism M(S) → Z


factors uniquely through a morphism ν : N → Z.
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5. Higher Chern classes


Let X be a smooth variety. The higher Chern classes with values in motivic
cohomology were constructed in [15]:


cj,i : Kj(X)→ H2i−j,i(X).


We will be using the classes


ci := c1,i+1 : K1(X)→ H2i+1,i+1(X).


Proposition 5.1 ([17, §4.1]). Let L be a vector bundle over a smooth variety
X and α ∈ K1(X). Then


ci
(
α · [L]


)
=


i∑


j=0


(−1)j
(
i


j


)
ci−j(α)h


j,


where h ∈ CH1(X) = H2,1(X) is the first (classical) Chern class of L.


Let E → X be a vector bundle of rank n. We write SL(E) for the group
scheme over X of determinant 1 automorphisms of E.


Let a be the generic element of SL(E) (see [18, §4]). We also write a for the
corresponding element in K1


(
SL(E)


)
. We have c0(a) = 0 since det(a) = 1.


For a sequence i = (i1, i2, . . . , ik) with 1 ≤ i1 < i2 < · · · < ik ≤ n − 1, set
di = i1 + i2 + · · ·+ ik and ei = k. Let


ci(α) := ci1(α)ci2(α) · · · cik(α) ∈ H
2di+ei,di+ei


(
SL(E)


)
.


Proposition 5.2. Let E → X be a vector bundle of rank n. Then the H∗,∗(X)-
module H∗,∗


(
SL(E)


)
is free with basis {ci(α)} over all sequences i.


Proof. This follows from [15, Proposition 3]. �


Write c̃i(α) for the composition


M
(
SL(E)


) diag
−−→M


(
SL(E)


)
⊗M


(
SL(E)


) j⊗ci(α)
−−−−→M(X)


(
di + ei


)[
2di + ei


]
,


where j : M
(
SL(E)


)
→ M(X) is the canonical morphism. The following


corollary is deduced from Proposition 5.2 the same way as in [17, Proposition
4.2].


Corollary 5.3. (cf. [17, Proposition 4.4]) The morphisms c̃i(α) yield an iso-
morphism


M
(
SL(E)


) ∼
→


∐


i


M(X)
(
di + ei


)[
2di + ei


]
. �


Remark 5.4. The natural composition


M
(
SL(E)


) c̃i(α)
−−→M(X)


(
di + ei


)[
2di + ei


]
→ Z


(
di + ei


)[
2di + ei


]


coincides with ci(α).
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Corollary 5.5. There is a canonical isomorphism


M(SLn) ≃
∐


i


Z
(
di + ei


)[
2di + ei


]
. �


Let G = SL(E) where E → X is a vector bundle of rank n over a smooth
variety X . Consider the grading on M(G) with respect to the value e(i):


M(G)(k) :=
∐


ei=k


M(X)
(
di + k


)[
2di + k)


]


for k = 0, 1, . . . , n− 1. Thus,


M(G) =
n−1∐


k=0


M(G)(k)


and each motive M(G)(k) has degree k.


Example 5.6. In the split case, we have a natural isomorphism M(SLl)
(1) ≃


N(2)[3].


Let D be a central simple algebra of prime degree l over F and G = SL1(D).
Let S be the Severi-Brauer variety of D.


Corollary 5.3 yields


Corollary 5.7. There is a canonical isomorphism


M(G× S) ≃
∐


i


M(S)
(
di + ei


)[
2di + ei


]
.


In particular, CH∗(G× S) ≃ CH∗(S). �


It follows from Corollary 5.5 that M(Gsep)
(1) ≃ Nsep(2)[3] and therefore


Hom
(
M(Gsep),M(Ssep)(2)[3]


)
is naturally isomorphic to Zl−1. Consider the


map


type : Hom
(
M(G),M(S)(2)[3]


)
→ Hom


(
M(Gsep),M(Ssep)(2)[3]


)
≃ Zl−1.


By (2.2) and Corollary 5.7, we have


(5.8) Hom
(
M(G),M(S)(2)[3]


)
= H2l+1,l+1(G× S) =


l−1∐


i=1


CHi(S)cl−i(α).


Lemma 3.1 and (5.8) yield the following proposition.


Proposition 5.9. Let D be a division algebra of degree l and S = SB(D).
Then the homomorphism


type : Hom
(
M(G),M(S)(2)[3]


)
→ Zl−1


is injective and Im(type) = lZl−1. �


We will need the Chow groups of G that were computed in [10].
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Proposition 5.10. Let D be a central division algebra of prime degree l and
G = SL1(D). There is an element h ∈ CHl+1(G) such that


CH∗(G) = Z ·1⊕ (Z /lZ)h⊕ (Z /lZ)h2 ⊕ · · · ⊕ (Z /lZ)hl−1. �


Recall that D ≃ End(I∨) and G× S ≃ SL(I∨), where I is the tautological
vector bundle over S of rank n (see Section 3).


Suppose that the algebra D is split. We can compare the generic matrices
ᾱ in G = SLl and α in G × S = SL(I∨). The bundle I∨ ⊗ Lt over G × S is
trivial, hence


ᾱ× S = α⊗ Lt in K1(G× S).


We have the Chern classes ci(α) ∈ H2i+1,i+1(G × S) and ci := ci(ᾱ) ∈
H2i+1,i+1(G). We also write ci for its image in H2i+1,i+1(G × S) under the
pull-back map given by the projection G× S → G.


By Proposition 5.1, we have


(5.11) ci =


i−1∑


j=0


(
i


j


)
ci−j(α)s


j in H2i+1,i+1(G× S)


for all i = 1, 2 . . . , l− 1, since the first Chern class of Lt is equal to −s, where
s ∈ CH1(S) is the class of a hyperplane section, and c0(α) = 0 as det(α) = 1.
In particular, c1 = c1(α).


The group H3,2(G) = A1(G,K2) is infinite cyclic with a canonical generator,
and this group does not change under field extensions. (This is true for every
absolutely simple simply connected group, see [5, Part II, §9].) Therefore, we
can write H3,2(G) = Zc1 viewing c1 as a generator of H3,2(G).


6. Symmetric and alternating powers


We consider motives with coefficients in Z = Z
[


1
(l−1)!


]
in this section. Let


i = 0, 1, . . . , l − 1. The symmetric group Σi acts naturally on the i-th tensor
power M⊗i of a motive M . The elements


τi =
1


i!


∑


σ∈Σi


σ and ρi =
1


i!


∑


σ∈Σi


sgn(σ)σ


are idempotents in the group ring of Σi. The motives Symi(M) := (M, τi) and
Alt i(M) := (M, ρi), that are split off M by the projectors τi and ρi, are called
the i-th symmetric power and i-th alternating power of M respectively. We
have Sym0(M) = Z = Alt0(M) and Sym1(M) =M = Alt1(M).


We will need the following properties of symmetric and alternating powers.


Proposition 6.1 ([1, Proposition 2.3]). Let M and N be two motives. Then


(1) Symi
(
M [1]


)
≃ (Alt iM)[i] and Alt i


(
M [1]


)
≃ (SymiM)[i],


(2) Symi
(
M(q)


)
≃ (SymiM)(iq),


(3) Symi(M ⊕N) =
∐


k+m=i Sym
k(M)⊗ Symm(N) and similarly for Alt.
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Corollary 6.2. We have


Symi
(
Z(q)[p]


)
≃


{
Z(iq)[ip], if p is even;
0, if p > 1 is odd. �


Example 6.3. Let N be the motive Z⊕Z(1)[2] ⊕ · · · ⊕ Z(l − 2)[2l − 4] (see
(4.2)). Then


Symk
(
N(2)[3]


)
= (AltkN)(2k)[3k] =


∐


ei=k


Z
(
di + k


)[
2di + k


]
,


with the notation from Section 5.


Proposition 6.4 ([8, Proposition 15]). Let X → Y → Z → X [1] be an exact
triangle. Then there are sequences of morphisms


Alt iX = T0 → T1 → · · · → Ti = Alt iY,


SymiX = V0 → V1 → · · · → Vi = SymiY


and exact triangles


Tj−1 → Tj → Alt i−jX ⊗ AltjZ → Tj−1[1],


Vj−1 → Vj → Symi−jX ⊗ SymjZ → Vj−1[1]


for every j = 1, 2, . . . , i.


Assuming that AltkX = 0 for k > 1, we get an exact triangle


X ⊗ Alt i−1Z → Alt iY → Alt iZ →
(
X ⊗ Alt i−1Z


)
[1].


Applying this to the exact triangle (4.1), we have the following proposition.


Corollary 6.5. There is an exact triangle


(Alt i−1N)(l − 1)[2l − 2]→ Alt iM(S)→ Alt iN → (Alt i−1N)(l − 1)[2l − 1]. �


This proposition will be used in Section 12 to compute inductively the mo-
tivic cohomology of Alt iN .


The pure motive Alt iM(S) is a direct summand ofM(Si) and the latter is a
direct sum of shifts of the motive M(S). If D is a division algebra, the motive
M(S) is indecomposable [11, Corollary 2.22]. When the coefficient ring Z is the
local ring Z(l), by uniqueness of the decomposition [3, Corollary 35], Alt iM(S)
is a pure motive that is a direct sum of pure shifts of M(S). Moreover, since
in the split case


Alt iM(Ssep) = Z
(
(i(i− 1)/2


)[
i(i− 1)


]
⊕ terms with higher shifts,


we must have


(6.6) Alt iM(S) =M(S)
(
(i(i− 1)/2


)[
i(i− 1)


]
⊕ terms with higher shifts.
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7. Split case


We are going to prove the main theorem in the split case. Let G = SLl with
prime l. We have


N = Z⊕Z(1)[2]⊕ Z(2)[4]⊕ · · · ⊕ Z(l − 2)[2l − 4].


In fact, N is a direct summand of the motive of S = Pl−1:


M(S) = N ⊕ Z(l − 1)[2l − 2].


The Chern classes c1(ā), c2(ā), . . . , cl−1(ā) with values in the motivic coho-
mology of G, where ā is the generic matrix in SLl, define a morphism


ϕ1 :M(G)→ N(2)[3].


For every i = 0, 1, . . . , l − 1, consider the composition


ϕi :M(G)
diag
−−→ M(Gi)


ϕi


−→ N(2)[3]⊗i → Symi
(
N(2)[3]


)
,


where the first morphism is given by the diagonal embedding.


Proposition 7.1. In the split case G = SLl, the morphism


ϕ = (ϕi) :M(G)→
l−1∐


i=0


Symi
(
N(2)[3]


)


is an isomorphism.


Proof. By Corollary 5.5, Example 6.3 and Lemma 2.3, for every i = 0, 1, . . . , l−
1, the morphism ϕi is zero on M(G)(j) for j > i and yields an isomorphism


M(G)(i)
∼
→ Symi


(
N(2)[3]


)
.


The result follows, as ϕ is given by an invertible triangular matrix. �


8. Compactifications of G


Let D be a central division algebra over F and G = SL1(D). By [2, §6.2]
and [10, §6], G admits a smooth projective G×G-equivariant compactification
X . In other words, X is a projective variety equipped with an action of G×G
and containing G as an open orbit on which the group G × G acts by the
left-right translations. The motive of X is split (i.e., M(X) is a direct sum of
Tate motives) over any field extension that splits D by [10, Theorem 6.5].


By Proposition 5.10, the group CHl+1(G) is cyclic of order l. Choose a
generator h ∈ CHl+1(G) and let h̄ ∈ CHl+1(X) be any element such that
h̄|G = h. Set


(8.1) R = Z⊕ Z(l + 1)[2l + 2]⊕ Z(2l + 2)[4l + 4]⊕ · · · ⊕ Z(l2 − 1)[2l2 − 2].


Proposition 8.2 ([10, §8]). When Z = Z(l), the morphismM(X)→ R defined
by the powers of h̄ has a right inverse. Moreover, we have M(X) ≃ R⊕ T for
a pure motive T that is a direct sum of pure shifts of M(S), where S = SB(D).
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Note that the composition π :M(G)→M(X)→ R is given by the powers


hi ∈ CHi(p+1)(G) = Hom
(
M(G),Z(i(p + 1)[2i(p+ 1)]


)
.


9. The morphism θ


In this section we construct a morphism θ :M(S)(2)[3]→ M(G).
As M(Gsep)


(1) ≃ Nsep(2)[3] by Example 5.6, there is a natural isomorphism


Hom
(
M(Ssep)(2)[3],M(Gsep)


(1)
)
≃ Zl−1 .


Projecting M(Gsep) onto M(Gsep)
(1), we get a composition


type : Hom
(
M(S)(2)[3],M(G)


)
→ Hom


(
M(Ssep)(2)[3],M(Gsep)


)
→ Zl−1 .


By Corollary 5.7, there is a canonical morphism


θ :M(S)(2)[3]→M(G× S)→M(G),


where the first morphism is the projection to the i-component for i = (1) and
the second morphism is given by the projection G× S → G.


Note that by definition of θ, the composition of M(S)(2)[3] → M(G × S)
with c̃k(α) : M(G × S) → M(S)(k + 1)[2k + 1] is zero for k > 1. In view of
(5.11) and Remark 5.4, the composition


M(Ssep)(2)[3]
θsep
−−→M(Gsep)


ci−→ Z(i+ 1)[2i+ 1]


for i = 1, 2, . . . , l − 1 coincides with i =
(


i
i−1


)
times the composition


M(Ssep)(2)[3]→ M(Gsep × Ssep)
c1si−1


−−−→ Z(i+ 1)[2i+ 1].


The latter is equal to the morphism si−1 : M(Ssep)(2)[3] → Z(i + 1)[2i + 1]
that is the identity on the summand Z(i+ 1)[2i+ 1]. It follows that


type(θ) = (1, 2, . . . , l − 1).


10. A key lemma


Let D be a central simple algebra of degree l and S = SB(D).


Lemma 10.1. Let Y be a variety over F such that D is split over the residue
field F (y) for every y ∈ Y . Then the push-forward homomorphism CHj(Y ×
S)→ CHj(Y ) is surjective for every j.


Proof. Let y ∈ Y be a point of dimension j. As S is split over F (y), there is
a F (y)-rational point y′ ∈ Y × S in the fiber of the projection q : Y × S → Y
over y. We have [y] = q∗([y


′]). �


Lemma 10.2. Let U be a smooth variety such that D is split over F (u) for
every u ∈ U . Then H2j+1,j(M(U) ⊗N) = 0 for every j.
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Proof. The last term in the exact sequence induced by the triangle (4.1)


H2j,j(U × S)→ H2k,k(U)→ H2j+1,j(M(U)⊗N)→ H2j+1,j(U × S),


where k = j − l + 1, is zero as 2j + 1 > 2j. The first map is surjective by
Lemma 10.1. �


Let Y be a closed subvariety of a smooth variety X . We define the motive
MY (X) by the triangle


(10.3) M(X \ Y )→ M(X)→MY (X)→M(X \ Y )[1].


Lemma 10.4. Let X be a smooth irreducible variety and Y ⊂ X an equidi-
mensional closed subvariety such that S is split over F (y) for every y ∈ Y .
Then H2i+1,i


(
MY (X)⊗N


)
= 0 for every i.


Proof. We proceed by induction on dim(Y ). Choose a closed subset Z ⊂ Y of
pure codimension 1 such that Y \ Z is smooth. In the exact triangle


MY \Z(X \ Z)→MY (X)→MZ(X)→ MY \Z(X \ Z)[1]


the first term is isomorphic to M(Y \Z)(c)[2c] for c = codimX(Y ) since Y \Z
is smooth by [19, Proposition 3.5.4]. In the exact sequence


H2i+1,i(MZ(X)⊗N)→ H2i+1,i(MY (X)⊗N)→ H2i+1,i(MY \Z(X \ Z)⊗N)


the last tern is isomorphic to H2i−2c+1,i−c
(
M(Y \ Z) ⊗ N


)
which is zero by


Lemma 10.2, and the first term is zero by induction. �


Let X be a smooth G×G-equivariant compactification of G = SL1(D) (see
Section 8). Set Y := X \G. By [10, Lemma 7.1], D is split by F (y) for every
y ∈ Y . Applying Lemma 10.4 to the exact cohomology sequence for the exact
triangle (10.3) we get the following corollary.


Corollary 10.5. The natural homomorphism


CHi(M(X)⊗N)→ CHi(M(G)⊗N)


is surjective for every i. �


Lemma 10.6. The natural homomorphism


CHl+1(R⊗N)→ CHl+1(M(G)⊗N)


induced by π :M(G)→ R is surjective.


Proof. The group CHl+1(M(G) ⊗ N) is l-torsion as it is split over a splitting
field. Therefore, we may assume that Z = Z(l). Recall (see Section 8) that
M(X) = R⊕ T , where R is defined in (8.1) and the pure motive T is a direct
sum of shifts of M(S). Moreover, π is the composition M(G)→M(X)→ R.
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Consider the commutative diagram


CHl+1(R⊗N)
α //


))❙❙❙
❙


❙


❙


❙


❙


❙


❙


❙


❙


❙


❙


CHl+1(M(G)⊗N) CH2l(M(G)⊗N ⊗ S)oo


CHl+1(M(X)⊗N)


β


OOOO


CH2l(M(X)⊗N ⊗ S)


OO


oo


CHl+1(T ⊗N)


OO


CH2l(T ⊗N ⊗ S),


OOOO


γoooo


where γ (and the two homomorphisms above γ) are induced by the morphism
Z(l− 1)[2l− 2]→ M(S). By Corollary 10.5, β is surjective. The pure motive
T is a direct sum of shifts ofM(S), so is T ⊗N by Lemma 4.4. It follows from
Lemma 10.1 that γ is surjective.


Again by Lemma 4.4,


CH2l(M(G)⊗N ⊗ S) =


l−2∐


i=0


CH2l−i(G× S) = 0.


as CHj(G × S) = 0 for j ≥ l in view of Corollary 5.7. Recall that M(X) =
R⊕ T . By diagram chase, α is surjective. �


Consider the following key diagram:


Hom
(
M(G),M(S)(2)[3]


) ξ //


≀
��


Hom
(
M(G), N(2)[3]


)


ρ


��


// CHl+1(G) //


σ
��


0


H2l+1,l+1(G× S)
τ // H3,2


(
G) // CHl+1(M(G)⊗N) // 0.


The rows of the diagram are induced by the exact triangle (4.1). The left
vertical homomorphism is an isomorphism by (2.2). The rows are exact since
CHl+1(G× S) ≃ CHl+1(S) = 0 by Corollary 5.7. The morphisms ρ and σ are
induced by the morphism ν : N → Z (see Section 4).


The diagram is commutative. Indeed, both compositions in the right square
take a morphism ϕ :M(G)→ N(2)[3] to (ε(2)[3] ◦ ϕ)⊗ ν. (The morphisms ε
and ν are defined in Section 4.) Both compositions in the left square take a
morphism ψ :M(G)→M(S)(2)[3] to ν(2)[3] ◦ ψ.


Now we can prove the following key lemma.


Lemma 10.7. The homomorphism induced by the morphism ν : N → Z


σ : CHl+1(G)→ CHl+1(M(G)⊗N)


is an isomorphism.
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Proof. In the commutative diagram


CHl+1(R) //


��


CHl+1(R⊗N)


��


CHl+1(G) // CHl+1(M(G)⊗N)


the right vertical map (induced by π) is surjective by Lemma 10.6. We have
CHl+1(R) = Z and by Lemma 4.5, CHl+1(R ⊗ N) = CH0(N) = Z, hence the
top map is an isomorphism. It follows that the bottom map in the diagram is
surjective. If D is split, the group CHl+1(G) is trivial an we are done.


Suppose D is a division algebra. Since H3,2(G) = Z c1 (see Section 5), by
Proposition 5.9, the image of τ in the key diagram is equal to lZ c1. It follows
that CHl+1(M(G) ⊗ N) is a cyclic group of order l. The group CHl+1(G) is
also cyclic of order l by Proposition 5.10. The statement follows from the
surjectivity of σ. �


It follows from Corollary 5.5 and Example 5.6 that Hom
(
M(Gsep), Nsep(2)[3]


)


is naturally isomorphic to Zl−1. Consider the map


type : Hom
(
M(G), N(2)[3]


)
→ Hom


(
M(Gsep), Nsep(2)[3]


)
≃ Zl−1 .


Proposition 10.8. Let D be a division algebra of degree l and S = SB(D).
Then the homomorphism


type : Hom
(
M(G), N(2)[3]


)
→ Zl−1


is injective. Its image consists of all tuples (a1, a2, . . . , al−1) such that


a1 ≡ 2a2 ≡ · · · ≡ (l − 1)al−1 (mod l).


Proof. Let β ∈ Hom
(
M(G), N(2)[3]


)
have zero type. We have ρ(β) = kc1


with k the first component of the type of β. Hence k = 0. It follows from
Lemma 10.7 that the image of β in CHl+1(G) is trivial, t.e., β = ξ(γ) for some
γ ∈ Hom


(
M(G),M(S)(2)[3]


)
with type(γ) = 0. By Proposition 5.9, γ = 0.


This proves the injectivity of type.
Take any β ∈ Hom


(
M(G), N(2)[3]


)
. We have


type(β) = (a1, a2, a3, . . . , al−1)


for some ai ∈ Z. Composing β with θ : M(S)(2)[3] → M(G) (see Section 9)
we get a morphism M(S)(2)[3]→ N(2)[3] of type


(
a1, 2a2, 3a3, . . . (l−1)al−1


)
.


By Proposition 4.3, we have a1 ≡ 2a2 ≡ · · · ≡ (l − 1)al−1 modulo l.
By Proposition 5.9, the image of the map type contains lZl−1. To finish the


proof it suffices to find a β such that type(β) is not divisible by l. By Lemma
10.7 and diagram chase, the map ρ is surjective. Hence there is a morphism
β : M(G) → N(2)[3] such that the composition of β with N(2)[3] → Z(2)[3]
coincides with c1, i.e., type(β) = (1, . . . ). �
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Remark 10.9. If α ∈ Hom
(
M(G), N(2)[3]


)
is such that type(α) is not divisi-


ble by l, then ρ(α) is not divisible by l in H3,2(G) = Z c1, and hence by Lemma
10.7, the image of α in CHl+1(G) is not zero if D is not split.


11. Main theorem


Now the coefficient ring is Z = Z
[


1
(l−1)!


]
. By Proposition 10.8, there is a


unique morphism β1 :M(G)→ N(2)[3] with


type(β1) =
(
1
−1


, 2
−1


, . . . , (l − 1)
−1)


.


For every i = 0, 1, . . . , l − 1 we have a composition


βi :M(G)
diag
−−→M(Gi)


βi


−→ N(2)[3]⊗i → Symi
(
N(2)[3]


)
.


Theorem 11.1. Let D be a central simple algebra of prime degree l over a
perfect field F . Then the morphism


β = (βi) :M
(
SL1(D)


)
→


l−1∐


i=0


Symi
(
N(2)[3]


)
=


l−1∐


i=0


(
Alt iN


)
(2i)[3i]


in the category DM(F ) of motives over F with coefficients in Z
[


1
(l−1)!


]
is an


isomorphism.


Proof. We first prove the theorem in the split case. The morphisms β :
M(G) → N(2)[3] and ϕ : M(G) → N(2)[3] of type (1, 1, . . . , 1) defined in
Section 7 differ by an automorphism of N(2)[3] of type (1, 2, . . . , l−1). There-
fore, the statement follows from Proposition 7.1.


Assume that D is a division algebra. We show next that 1M(S) ⊗ β is an
isomorphism. By Corollary 5.7, the motive M(S) ⊗M(G) = M(S × G) is a
direct sum of shifts of M(S). The motive M(S) ⊗N is a direct sum of shifts
of M(S) by Lemma 4.4, hence so is M(S)⊗ (Alt iN). By the first part of the
proof, β is an isomorphisms over a splitting field, hence so is 1M(S) ⊗ β. By
Lemma 3.4, 1M(S) ⊗ β is an isomorphism. It follows that


(11.2) 1M(Si) ⊗ β is an isomorphism for every i > 0.


We embed the category DM(F ) into a larger triangulated category DMeff
− (F )


of motivic complexes with coefficients in Z as a full subcategory (see [19]).


Let Č(S) be the motive in DM
eff
− (F ) associated with the simplicial scheme


given by the powers of S (see [20, Appendix B]). Using the exact triangle
in the proof of [20, Proposition 8.1] we see from (11.2) that 1Č(S) ⊗ β is an
isomorphism.


It follows from Remark 10.9 that the composition


M(G)
β1
−→ N(2)[3]


ε(2)[3]
−−−→ Z(l + 1)[2l + 2]


represents a nontrivial element h ∈ CHl+1(G). Therefore, for every i =
0, 1, . . . , l − 1, the composition


M(G)
βi
−→ Symi


(
N(2)[3]


) δi−→ Symi
(
Z(l + 1)[2l + 2]


)
= Z


(
i(l + 1)


)
[2i(l + 1)],
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where δi = Symi
(
ε(2)[3]


)
, is equal to hi. By Section 8, we have a commutative


diagram


M(G)
β //


α


��


∐l−1
i=0 Sym


i
(
N(2)[3]


)


δ


��
M(X)


γ // R,


where X is a smooth compactification of G and δ =
∐
δi.


Consider the motive C̃(S) in DM
eff
− (F ) defined by the exact triangle


(11.3) C̃(S)→ Č(S)→ Z→ C̃(S)[1].


We also have an exact triangle


M(G)→ M(X)→MY (X)→M(G)[1],


where Y = X \ G. The algebra D is split by the residue field F (y) for every


y ∈ Y by [10, Lemma 7.1]. Hence, by [17, Lemma 3.4], C̃(S) ⊗MY (X) = 0.
Therefore, 1C̃(S) ⊗ α is an isomorphism.


By Proposition 8.2, M(X) ≃ R ⊕ T , where T is a direct sum of shifts of


M(S) if Z = Z(l). Since C̃(S) ⊗ T = 0, we have 1C̃(S) ⊗ γ is an isomorphism


when Z = Z(l). As C̃(S) vanishes over a splitting field ofD of degree l, 1C̃(S)⊗γ


is an isomorphism when Z = Z
[


1
(l−1)!


]
.


By Proposition 6.4 applied to the exact triangle (4.1), there is a Postnikov
tower connecting Symi


(
N(2)[3]


)
and


Symi
(
Z(l + 1)[2l + 2]


)
= Z


(
i(l + 1)


)
[2i(l + 1)]


with “factors” divisible by M(S). Since C̃(S)⊗M(S) = 0, the morphism


1C̃(S) ⊗ Symiε : C̃(S)⊗ Symi
(
N(2)[3]


) ∼
→ C̃(S)


(
i(l + 1)


)
[2i(l + 1)]


Is an isomorphism. Therefore, 1C̃(S) ⊗ δ is an isomorphism.


It follows from the commutativity of the diagram that 1C̃(S)⊗β is an isomor-


phism. Finally, by 5-lemma applied to the exact triangle (11.3), the morphism
β is an isomorphism. �


12. Applications


As an application of Theorem 11.1, we compute certain motivic cohomology
of G. The Chow groups CHi(G) = H2i,i(G) are given in Proposition 5.10. In
Theorem 12.4 below we compute the groups H2i+1,i+1(G).


The following Lemma is an immediate application of the exact triangle in
Corollary 6.5.


Lemma 12.1. If p > 2q, then


Hp,q
(
Alt i−1N


)
≃ Hp+2l−1,q+l−1


(
Alt iN


)
. �
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We compute the Chow groups of N .


Lemma 12.2. We have


CHi(N) =







Z, if i = 0;
lZ, if i = 1, 2, . . . , l − 2;
F×/Nrd(D×), if i = l;
0, othervise.


Proof. We may assume that Z = Z. Using (4.1) we get CHi(N) ≃ CHi(S) for
i ≤ l − 2 and apply Lemma 3.1. In the exact sequence


0→ CHl−1(N)→ CHl−1(S)→ CH0(Z)


the last map is injective again by Lemma 3.1, hence CHl−1(N) = 0. In the
exact sequence


H2l−1,l(S)→ H1,1(F )→ CHl(N)→ 0


the first map is isomorphic to Al−1(S,Kl) → KM
1 (F ) = F× and its image is


equal to Nrd(D×) since the image is generated by the norms from finite field
extensions that split D. By Lemma 4.5, CHi(N) = 0 if i > l. �


Lemma 12.3. We have


H2i+1,i(Alt2N) =









Z /lZ, if i = l − 1;
F×/Nrd(D×), if i = 2l − 1;
0, othervise.


Proof. Using the triangle in Corollary 6.5, we get an exact sequence


CHi
(
Alt2M(S)


)
→ CHi−l+1(N)→ H2i+1,i(Alt2N)→ 0.


The middle group is trivial if i < l − 1, l = 2l − 2 and l > 2l − 1 by Lemma
12.2. The first map in the sequence is surjective in the split case since Alt2N
is pure and 2i + 1 > 2i. As CHi−l+1(N) = lZ for i = l, l + 1, . . . , 2l − 3 by
Lemma 12.2, the first map is also surjective in general for these values of i.
If i = 2l − 1, the first group is trivial as Alt2M(S) is a direct summand of
M(S × S) and dim(S × S) = 2l − 2.


Finally consider the case i = l − 1. We may assume that Z = Z(l). As


Alt2M(S) =M(S)(1)[2]⊕M(S)(3)[6]⊕ · · · ⊕M(S)(l − 2)[2l − 4],


we have


CHl−1
(
Alt2M(S)


)
= CH1(S)⊕ CH3(S)⊕ · · · ⊕ CHl−2(S).


This is divisible by l when going to the split case by Lemma 3.1. Whence the
case i = l − 1. �


Lemmas 12.1, 12.2 and 12.3 then yield
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Theorem 12.4. Let D be a central division algebra of degree l over F . Then


H2i+1,i+1
(
SL1(D)


)
=







F×, if i = 0;
Zc1, if i = 1;
lZci, if i = 2, 3, . . . , l − 1;
Z/lZ, if i = k(l + 1) + 1 for k = 1, . . . , l − 2;
F×/Nrd(D×), if i = k(l + 1) for k = 1, . . . , l − 1;
0, otherwise. �


Let G = SL1(D). Note that the cup-product maps


F×⊗Z/lZ = H1,1(F )⊗CHk(l+1)(G)→ H2k(l+1)+1,k(l+1)+1(G) = F×/Nrd(D×)


are natural surjections for k = 1, . . . , l − 1.


Consider the motivic spectral sequence for G when D is not split (see [7]):


Ep,q
2 = Hp−q,−q(G)⇒ K−p−q(G).


TheK-groups ofG were computed in [18, Theorem 6.1]. In particular,K0(G) =
Z and K1(G) = K1(F )⊕K0(D)⊕K0(D


op) ≃ F× ⊕ 3Z ⊕ 3Z. It follows that
the zero-diagonal limit terms Ep,−p


∞ are trivial if p 6= 0. On the other hand, by
Proposition 5.10, we have


Ep,−p
2 = CHp(G) =









Z, if p = 0;
Z/lZ, if p = i(l + 1) for i = 1, . . . , l − 1;
0, otherwise.


Note that in the split case all the differentials coming to the zero diagonal
are trivial. It follows that in the general case such differential are l-torsion.
By [14, Theorem 3.4], nontrivial differentials coming to the zero diagonal can
appear only on pages E∗,∗


s with l−1 dividing s−1. It follows that the nonzero
differentials appear only on page E∗,∗


l and they are


(12.5) d : E
1+k(l+1),−2−k(l+1)
l → E


(k+1)(l+1),−(k+1)(l+1)
l = Z/lZ


for k = 0, 1, . . . , l − 2. These maps are all surjective and are isomorphisms
for k > 0, thus “clearing” the zero diagonal and partially the first diagonal.
The other differentials on the l-th page coming to the first diagonal are the
cup-products with F× of the differentials (12.5). Nontrivial E∗,∗


∞ -terms on the
first diagonal are F× and lZ (l − 1 times).
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Below is a fragment of the third page of the spectral sequence when l = 3.


Z


F×
0


∗ Z


%%❑❑
❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


0


∗


%%❑
❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


3Z 0


∗ 0 Z/3Z


∗ F×/N 0


∗ Z/3Z


%%❑❑
❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


0


∗


%%❑
❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


❑


0 0


∗ 0 Z/3Z


∗ F×/N


It follows from Theorem 12.4 that the Chern classes c2, c3, . . . , cl−1 (which
are defined in the split case) are not defined over F if D is not split. (Recall
that c1 is always defined over F .) We will show that the product c1c2 · · · ck is
defined over F for all k = 1, 2, . . . , l − 1.


Lemma 12.6. For every i = 1, 2, . . . , l − 1, if q < i(i − 1)/2, the group
Hp,q(Alt iN) is trivial for every p.


Proof. Induction on k. We may assume that Z = Z(l). The basic triangle (6.5)
yields an exact sequence


Hp−2l+1,q−l+1(Alti−1N)→ Hp,q(Alt iN)→ Hp,q
(
AltiM(S)


)
.


The first term is trivial by induction as q − l + 1 < (i− 1)(i− 2)/2. The last
group is zero by (6.6). �


Theorem 12.7. Let G = SL1(D) for a central simple algebra D of prime
degree l. Then the product of Chern classes c1c2 · · · ck is defined over F for all
k = 1, 2, . . . , l − 1.
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Proof. We may assume that Z = Z(l). The product c1c2 · · · ck belongs to


H(k+1)2−1,(k+1)(k+2)/2−1(G). Consider the following direct summand of this
group (see Theorem 11.1):


H(k+1)2−1,(k+1)(k+2)/2−1
(
(AltkN)(2k)[3k]


)
= CH(k2−k)/2


(
AltkN


)
.


The basic triangle (6.5) yields an exact sequence


Hk2−k−2l+1,(k2−k)/2−l+1
(
Altk−1N


)
→ CH(k2−k)/2


(
AltkN


)
→


CH(k2−k)/2
(
AltkM(S)


)
→ CH(k2−k)/2−l+1


(
Altk−1N


)
.


The side terms are trivial by Lemma 12.6. The third term is isomorphic to


H0,0(S) = Z by (6.6). Therefore, the group CH(k2−k)/2
(
AltkN


)
contains an


element representing c1c2 · · · ck over a splitting field. �
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[3] V. Chernousov and A. Merkurjev, Motivic decomposition of projective homogeneous


varieties and the Krull-Schmidt theorem, Transform. Groups 11 (2006), no. 3, 371–386.
[4] R. Elman, N. Karpenko, and A. Merkurjev, The algebraic and geometric theory of


quadratic forms, American Mathematical Society, Providence, RI, 2008.
[5] R. Garibaldi, A. Merkurjev, and Serre J.-P., Cohomological invariants in galois coho-


mology, American Mathematical Society, Providence, RI, 2003.
[6] Ph. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge


Studies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge,
2006.


[7] D. Grayson, The motivic spectral sequence, Handbook of K-theory. Vol. 1, Springer,
Berlin, 2005, pp. 39–69.
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