
INCOMPRESSIBILITY OF PRODUCTS OF WEIL TRANSFERS

OF GENERALIZED SEVERI-BRAUER VARIETIES

NIKITA A. KARPENKO

Abstract. We generalize the result of [11] on incompressibility of Galois Weil transfer
of generalized Severi-Brauer varieties, to direct products of varieties of such type; as
shown in [11], this is needed to compute essential dimension of representations of finite
groups. We also provide a generalization to non-Galois (separable) Weil transfer.
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1. Introduction

Let F be a field and let L/F be a finite Galois field extension. A central division L-
algebra D is balanced, if for every g ∈ Gal(L/F ), the conjugate L-algebra g(D), obtained
from D by the base change g : L → L, is Brauer-equivalent to a tensor power of D.

For a balanced D as above, we refer as RSB-variety to the Weil transfer RL/F of a
generalized Severi-Brauer variety SB(j,D) of D (j = 1, . . . , degD). Let p be a prime
integer. An RSB-variety is a pRSB-variety, if the integers [L : F ], degD, and j are
p-powers.

The following problem has been raised in [11] for needs of computing essential p-
dimension of a representation of a finite group: compute canonical p-dimension of an
arbitrary finite direct product of RSB-varieties. This problem has been solved in [11] in
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the case of a single RSB-variety. The core result producing the solution was the following
statement on p-incompressibility of pRSB-varieties (we refer to [11] for an introduction
and further references on p-incompressibility, canonical p-dimension, Weil transfer, etc.):

Theorem 1.1 ([11, Theorem 11.2]). Any pRSB-variety is p-incompressible.

In the present paper, we generalize Theorem 1.1 in two directions. First, we replace
Galois field extensions in the definition of pRSB-varieties, by separable ones. Although
this generalization is not motivated anymore by study of representations, it is a natural
step to do. The statement remains the same (see Theorem 2.3), as does the main outline
of the proof. The main change is in the definition of a balanced algebra over a separable
extension. All this is done in §2.
As a second (and principal) generalization, we establish a criterion of p-incompressibility

of a product of pRSB-varieties, see Corollary 3.6. The basic result here is a p-incompres-
sibility criterion for a product of a pRSB-variety by an arbitrary projective homogeneous
(under an action of a semisimple affine algebraic group) variety given in Theorem 3.1.
As a particular case of Corollary 3.6, we recover in §4a (with a new proof and a simplified

statement) an old result [10, Theorem 2.1] on p-incompressibility of products of Severi-
Brauer varieties. But now we can also determine canonical p-dimension of any p-primary
Weil transfer of a product of this type, see §4b. In particular, we show that a p-primary
Weil transfer of a p-incompressible product of this type is also p-incompressible. Moreover,
the latter statement also holds for generalized Severi-Brauer varieties in place of the usual
ones, see §4c.
In the last section (§5), we drop the balance assumption to do a complete analysis

of a quadratic field extension. Note however, that the balanced case, motivated by the
representations, also looks interesting (not only for a quadratic L/F ) from the following
viewpoint: for a pRSB-variety Y , the integer cdp(Y ) = dimY turns out to be much bigger
than cdp(YL) = (dimY )/[L : F ] so that the role of the field extension and the Weil transfer
shows up as crucial. In the imbalanced case however, the variety YL may, for instance,
happen to be p-incompressible (c.f. Example 5.3), trivially implying p-incompressibility
of Y itself.

Most of our terminology and notation being introduced “on the move”, we only mention
here that smooth projective varieties X and Y over F are called equivalent if there exist
rational maps X 99K Y and Y 99K X . Equivalent varieties have the same canonical
(p-)dimension, [11, Lemma 3.3(a)].

Acknowledgements. I am grateful to Alexander Merkurjev and Zinovy Reichstein for
useful comments on early versions of the preprint. Its current version has been prepared
during my stay at the Universität Duisburg-Essen (research group of Marc Levine), under
ideal work conditions.

2. Non-Galois extensions

In this section we generalize Theorem 1.1 to the case of an arbitrary finite separable
(not necessarily Galois) field extension L/F of degree a power of p.
Here is the “Galois to separable” generalization of [11, Lemma 11.1] (with practically

the same proof). Here and everywhere else in the paper, the motive we are talking about
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are Chow motives with coefficients in Fp (the finite field of p elements), see e.g. [2, §64].
Weil transfer of motives has been introduced in [5]. Corestriction of motives is from [7,
§3].

Lemma 2.1. Let L/F be an arbitrary finite separable field extension and let E/F be a
finite Galois field extension containing L. For and any m ≥ 1, let M1, . . . ,Mm be m
motives over L. Then the motive RL/F (M1 ⊕ · · · ⊕Mm) decomposes into a direct sum

RL/F (M1 ⊕ · · · ⊕Mm) ≃ RL/FM1 ⊕ · · · ⊕ RL/FMm ⊕N,

where N is a direct sum of corestrictions to F of motives over fields K with F ( K ⊂
E. �

Let L/F be a finite separable field extension. We generalize the notion of a balanced
central simple L-algebra D (which we already have in the Galois case, see §1). A central
simple L-algebra D is balanced, if for a Galois field extension E/F containing L and for
any F -imbedding of L into E with an image L0, the LL0-algebra obtained from D by
the base change L → L0 ⊂ LL0 is Brauer-equivalent to a tensor power of DLL0

. This
definition does not depend on the choice of E; E can be taken to be a Galois closure of
L/F .

From now on, we extend the notion of a pRSB-variety, introduced in §1, by allowing
separable (not necessarily Galois) Weil transfer:

Definition 2.2. Let p be a prime number. An F -variety Y is a pRSB-variety, if there
exist a finite p-primary separable field extension L/F and a balanced division L-algebra
D of degree pn such that X ≃ RL/F SB(pi, D) for some i = 0, . . . , n.

Theorem 2.3. For any prime number p, any pRSB-variety is p-incompressible.

Proof. Let p be a prime number, L/F a finite separable field extension of degree a power
of p, D a balanced central division L-algebra of degree pn for some n ≥ 0, and X the
generalized Severi-Brauer variety SB(pi, D) of D with some i = 0, 1, . . . , n. Let us prove
that the variety RL/FX , given by the Weil transfer of X , is p-incompressible.

Let E be a finite Galois field extension of F containing L (for instance, E can be a
Galois closure of L/F ). The question on canonical p-dimension of RL/FX easily reduces
to the case where [E : F ] is also a power of p. Indeed, let G be the Galois group of
E/F and let H be its subgroup corresponding to L. Let G′ be a Sylow p-subgroup of G
containing a Sylow p-subgroup H ′ of H . We get the following diagram of subgroups and
the corresponding diagram of subfields, where the sign p? marks p-primary while the sign
p6 | marks p-coprime indexes/degrees:

{1}
p?

H ′
p?
❊❊

❊❊p 6 |

②②
②②

H

p?
❊❊

❊❊
G′

p 6 |②②
②②
②

G

E
p?

L′
p?
❇❇

❇❇p 6 |

⑦⑦
⑦⑦

L

p?
❅❅

❅❅
F ′

p 6 |⑤⑤
⑤⑤

F

Since the degree [F ′ : F ] is not divisible by p, canonical p-dimension of RL/FX does
not change under the base change F ′/F . Moreover, (RL/FX)F ′ ≃ RL′/F ′(XL′) because
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L′ ≃ L ⊗F F ′. Finally, observe that the index of a p-primary central simple L-algebra
is not changed under the base change L′/L. In particular, DL′ is still a division algebra.
Moreover, this central division L′-algebra is still balanced (now with respect to the subfield
F ′ ⊂ L′).
For the rest of the proof we will assume that the degree [E : F ] is a p-power. We follow

the proof of Theorem 1.1, given in [11, Theorem 11.2], and only indicate the changes.
The first place where a change is needed is the place where we compute the index of D

over the field L′ = F ′⊗F L, where F ′ is the function field of the variety RL/F SB(pn−1, D).
In the case of Galois L/F , the Weil transfer disappears because RL/F SB(pn−1, D)L is the
product of the generalized Severi-Brauer varieties given by the conjugate algebras. This
happens because of the isomoprhism

L⊗F L ≃ L× · · · × L

of L-algebras, where L acts on L ⊗ L on the left. Note that this isomorphism is also
L-linear for the right action of L on the tensor product if one lets L act on the factors of
L× · · · × L by means of the F -automorphisms of L.
Under the assumptions of Theorem 2.3 however, L⊗F L is identified with L1×· · ·×Lr,

where each Li is LL0 for an appropriate (depending on i) choice of L0 as in the definition
of balanced algebra. Since [Li : L] > 1 for at least one value of i, we cannot avoid
the Weil transfer here and may want to use the index reduction formulas for the Weil
transfer of generalized Severi-Brauer varieties from [15] (see also [14]). But this is not
really necessary. Indeed, since D is balanced, for any i, the Li-algebra in question is
Brauer-equivalent to a tensor power of DLi

, its index will divide pn−1 if we extend L to
the function field of SB(pn−1, D). The Weil transfer becomes rational over this extension
of L so that the index of D won’t be affected by passing to the function field of the Weil
transfer.
We have explained why the index of DL′ is indeed pn−1. The final adjustment we need

to make, in order to adopt the proof of Theorem 1.1 to the setting of Theorem 2.3, is in
the choice of the degree p Galois field subextension L̃/F of L/F . Recall that the Galois
group G of E/F is a p-group. Let H be its subgroup corresponding to the field L. By [3,

Theorem 4.2.1], H is contained in a normal subgroup H̃ of G such that [G : H̃ ] = p. We

take for L̃ the field corresponding to H̃ and we have to compute canonical p-dimension
of the variety RL/F (X)L̃.

The variety RL/F (X)L̃ is isomorphic to the product
∏

g̃∈G̃ g̃(RL/L̃X), where G̃ = G/H̃

is the Galois group of L̃/F . Since D is balanced, this product is equivalent to its factor
RL/L̃X given by g̃ = 1. In particular, the canonical p-dimension of RL/F (X)L̃ is given by
the dimension of RL/L̃X . After this is established, the remainder of the proof of Theorem
1.1 goes through unchanged. �

3. Incompressibility of products

Here is our basic result on p-incompressibility of products:

Theorem 3.1. Let Y be a pRSB-variety (for a given prime number p) and let Z be a
projective homogeneous F -variety. The product Y × Z is p-incompressible provided that
the varieties YF (Z) and ZF (Y ) are so.



INCOMPRESSIBILITY OF PRODUCTS OF WEIL TRANSFERS 5

Proof. Let Y := RL/F SB(pi, D), where L/F is a finite separable field extension of degree
pr with r ≥ 0, D is a balanced central division L-algebra of degree pn with n ≥ 0,
and i = 0, . . . , n. Let Z be a projective homogeneous F -variety such that the varieties
YF (Z) and ZF (Y ) are p-incompressible. We are going to prove that the product Y × Z is
p-incompressible.

By Theorem 2.3, the assumption requiring that YF (Z) is p-incompressible is equivalent
to the assumption that DL(Z) is a division algebra.

Since canonical p-dimension is not changed under base field extensions of degree prime
to p (see [12, Proposition 1.5(2)]), we may assume that there exists a finite p-primary Ga-
lois field extension E/F containing L and such that ZE is of inner type. This assumption
allows us to apply results of [7] and [8, §6].

For any j = 0, . . . , n, we set Xj := SB(pj, D) and Y j := RL/FX
j. We also set X := X i

so that Y = RL/FX .
We induct on n. For n = 0 the statement is trivial. From now on, we assume that

n > 0.
For i = n the statement is trivial. From now on, we assume that i < n.
Let F ′ be the function field of the variety Y n−1. Let L′ := F ′⊗F L. Since D is balanced,

the index of the central simple L′-algebra DL′ := D⊗LL
′ = D⊗F F ′ is pn−1 so that there

exists a central division L′-algebra D′ such that the algebra of (p× p)-matrices over D′ is
isomorphic to DL′. We set X ′j := SB(pj , D′), Y ′j := RL′/F ′X ′j, X ′ := X ′i, and Y ′ := Y ′i.
By [4] (see also [1, Theorem 7.5]) and [9, Theorem 3.8], the motive of the variety XL′

decomposes into a direct sum

M(XL′) ≃ M(X ′)⊕M(X ′)(pi+n−1)⊕

M(X ′)(2pi+n−1)⊕ · · · ⊕M(X ′)((p− 1)pi+n−1)⊕N,

where N is a direct sum of some shifts of the upper motives U(X ′j) of some varieties
X ′j with j < i. Therefore, by Lemma 2.1 and [5, Theorem 5.4] (which we use just to
determine the shifts), the motive of the variety YF ′ = RL′/F ′(XL′) decomposes into a
direct sum

M(YF ′) ≃ M(Y ′)⊕M(Y ′)(pr+i+n−1)⊕

M(Y ′)(2pr+i+n−1)⊕ · · · ⊕M(Y ′)((p− 1)pr+i+n−1)⊕N ⊕N ′,

where now N is a direct sum of shifts of U(Y ′j) with j < i, and N ′ is a direct sum of
corestrictions of motives over fields K with F ( K ⊂ E. It follows that

M(Y × Z)F ′ ≃ M(Y ′ × ZF ′)⊕M(Y ′ × ZF ′)(pr+i+n−1)⊕

M(Y ′ × ZF ′)(2pr+i+n−1)⊕ · · · ⊕M(Y ′ × ZF ′)((p− 1)pr+i+n−1)⊕N ⊕N ′,

with N ′ of the same shape as before and with N being a direct sum of shifts of

U(Y ′j)⊗M(Z), j < i.

We claim that the variety Y ′×ZF ′ is p-incompressible by the induction hypothesis. To
check the claim, we check that the varieties ZF ′(Y ′) and Y ′

F ′(Z) are p-incompressible. To

check that ZF ′(Y ′) is p-incompressible, we check that Z over a lager field F ′(Y ′ × YF ′) is
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so. The field F ′(Y ′ × YF ′) = F ′(Y )(Y ′) is purely transcendental over F (Y ) and ZF (Y )

is p-incompressible (this is the place in the proof of Theorem 3.1, where the assumption
on ZF (Y ) is used). Therefore Z over F ′(Y ′ × YF ′) is p-incompressible. (To see that
canonical p-dimension of projective homogeneous varieties does not change under a purely
transcendental base field extension, one may use the characterization [8, Corollary 6.2] of
the canonical p-dimension in terms of algebraic cycles together with the fact that a purely
transcendental base field extension does not affect the Chow groups.)
To check that Y ′

F ′(Z) is p-incompressible, we check that D′
L′(Z) is a division algebra.

Since L′ = L(Y n−1), we have L′(Z) = L(Y n−1 × Z) = L(Z)(Y n−1). Since DL(Z) is a
balanced (over F (Z)) division algebra, DL(Z)(Y n−1) has index pn−1. Therefore D′

L′(Z) is a
division algebra.
The claim being proved, it follows that

(3.2) M(Y × Z)F ′ ≃ U(Y ′ × ZF ′)⊕ U(Y ′ × ZF ′)(pr+i+n−1)⊕

U(Y ′ × ZF ′)(2pr+i+n−1)⊕ · · · ⊕ U(Y ′ × ZF ′)((p− 1)pr+i+n−1)⊕N,

with N having the property that no summand of its complete decomposition is isomorphic
to a shift of U(Y ′ × ZF ′).
We want to show that the variety Y × Z is p-incompressible. Let l be the number

of those summands in the complete decomposition of the motive U(Y × Z)F ′, which are
isomorphic to a shift of U(Y ′ × ZF ′). We have 1 ≤ l ≤ p and it suffices to show that
l = p. Indeed, l = p implies that the complete decomposition of U(Y ×Z)F ′ contains the
summand U(Y ′ × ZF ′) of (3.2) with the maximal shift (p− 1)pr+i+n−1. Therefore

cdp(Y × Z) = dimU(Y × Z) = dimU(Y × Z)F ′ ≥

dimU(Y ′ × ZF ′) + (p− 1)pr+i+n−1 = dim(Y × Z).

(We refer to [6, Theorem 5.1] for the relation between canonical p-dimension and dimen-
sion of the upper motive of a projective homogeneous variety, used here.)
Our next claim is: l divides p (therefore l = 1 or l = p, and we will only need to

show that l 6= 1). To prove the claim, we consider the complete motivic decomposition
of Y × Z. It contains several shifts of U(Y × Z) (it contains one non-shifted U(Y × Z)
and - as we hope - no other shifts of this motive, but we do not know whether the hope
comes true by now). Let N be any of the remaining (indecomposable) summands. We
affirm that no summand of the complete decomposition of NF ′ is isomorphic to a shift of
U(Y ′ × ZF ′). Clearly, this affirmation implies the claim that l divides p.
To prove the affirmation, let us note that N can be of two alternative types. The first

type is given by corestriction to F of a motive over a field K with F ( K ⊂ E. For
such N , any indecomposable summand of NF ′ is a corestriction to F ′ of a motive over
K ′ := K⊗F F ′ (see [7, Proposition 3.1]) which is never isomorphic to a shift of the upper
motive of a projective homogeneous F ′-variety.
The second type of N is a shift of U(T ), where T is a projective homogeneous variety

with deg Ch0(TF (Y×Z)) = 0 (and with deg Ch0(Y × Z)F (T ) = Fp). Over F ′ we still have
deg Ch0(TF ′(Y×Z)) = 0 (and deg Ch0(Y × Z)F ′(T ) = Fp) because the field extension

F ′(Y × Z)/F (Y × Z)
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is purely transcendental. Any indecomposable summand of NF ′, which is not corestriction
from some F ( K ⊂ E, is a shift of U(S), where S is a projective homogeneous F ′-variety
with deg Ch0(TF ′(S)) = Fp. It follows that deg Ch0(SF ′(Y×Z)) = 0 (otherwise we would
be in contradiction with deg Ch0(TF ′(Y×Z)) = 0) implying that no shift of U(S) (and
consequently no shift of U(S)) is isomorphic to U(Y ′ × ZF ′), see [9, Corollary 2.15] for
the criterion of isomorphism for upper motives.

We proved the affirmation and the claim. This means that we only need to show that
l 6= 1 to finish the proof of Theorem 3.1. So, we assume that l = 1 and we look for a
contradiction. By [8, Proposition 2.4], the complete decomposition of U(Y ×Z)F ′ contains
as a summand the motive U(Y ′ × ZF ′) shifted by the difference

dimU(Y × Z)− dimU(Y ′ × ZF ′).

Therefore, l = 1 implies that the above difference is 0, and we come to

cdp(Y × Z) = dimU(Y × Z) = dimU(Y ′ × ZF ′) = d,

where d := dim(Y ′ × ZF ′) = dimY ′ + dimZ.
By [8, Proposition 6.1], there exist α ∈ Chd(Y × Z)F (Y×Z) and β ∈ Chd(Y × Z) with

deg(α · β) 6= 0 ∈ Fp. In the last formula, we consider both cycles over a common field
extension of their fields of definition, before we multiply them. We use this convention
below (in similar formulas on degree of products) as well.

Since cdp(YF ′) = dimY ′ =: d′, we can find α′ ∈ Chd′(YF ′(Y )) and β ′ ∈ Chd′(YF ′) with
deg(α′ · β ′) 6= 0. Using these α′ and β ′ and a rational point pt ∈ ZF (Z), we get the cycles

α′ × [pt] ∈ Chd(Y × Z)F ′(Y×Z) and β ′ × [Z] ∈ Chd(Y × Z)F ′,

having the same property as α and β:

deg
(

(α′ × [pt]) · (β ′ × [Z])
)

6= 0.

It follows by [8, Lemma 6.5] that one can ”mix up” the old cycles with the new ones and
get the relation

deg
(

(α′ × [pt]) · β
)

6= 0.

Since α′ × [pt] = (α′ × [Z]) · ([Y ] × [pt]), the last degree relation can be rewritten as
deg(α′ ·β ′′) 6= 0, where β ′′ ∈ Chd′(YF (Z)) is the push-forward of the product ([Y ]× [pt]) ·β
along the projection (Y ×Z)F (Z) → YF (Z). Since the field extension F ′(Y )/F (Y ) is purely

transcendental, there exists α′′ ∈ Chd′(YF (Y )) mapped to α′ under the change of field

homomorphism. Changing notation, we write α′′ for the image of α′′ in Chd′(YF (Z)(Y )).

The cycles α′′ ∈ Chd′(YF (Z)(Y )) and β ′′ ∈ Chd′(YF (Z)) thus constructed have the property
deg(α′′ · β ′′) 6= 0. It follows by [8, Corollary 6.2] that cdp(YF (Z)) ≤ d′. Since

(3.3) d′ = dim Y ′ = pi(pn−1 − pi) < pi(pn − pi) = dimY,

the relation cdp(YF (Z)) ≤ d′ obtained contradicts the assumption on p-incompressibility
of the variety YF (Z). �

The necessary condition for p-incompressibility of a product of projective homogeneous
varieties, showing up in the following lemma, turns out to be sufficient in the case of the
special varieties we are interested in (see Corollary 3.5):
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Lemma 3.4. For any projective homogeneous F -varieties X and Y ,

cdp(X × Y ) ≤ cdp(X) + cdp(YF (X)).

In particular, a necessary condition for p-incompressibility of X×Y is p-incompressibility
of XF (Y ) and YF (X).

Proof. Again, we are using the characterization of canonical p-dimension of projective
homogeneous varieties given in [8, Corollary 6.2]. Since canonical p-dimension is not
changed under base field extensions of degree prime to p (see [12, Proposition 1.5(2)]),
we may assume that the condition of [8, Corollary 6.2] on the projective homogeneous
variety is satisfied for X and Y : both of them become of inner type over a finite p-primary
extension of F . We set x := cdp(X) and y := cdp(YF (X)). We find αX ∈ Chx(XF (X))
and βX ∈ Chx(X) with deg(αX · βX) 6= 0. Similarly, we find αY ∈ Chy(YF (X)(Y )) and
βY ∈ Chy(YF (X)) with deg(αY · βY ) 6= 0. Let β ′

Y ∈ ChdimX+y(X × Y ) be an element
mapped to βY under the surjection

ChdimX+y(X × Y ) →→ Chy(YF (X))

given by the pull-back along the morphism YF (X) → X × Y induced by the generic point
of X . We set

α := αX × αY ∈ Chx+y(X × Y )F (X×Y ) and β := (βX × [Y ]) · β ′
Y ∈ Chx+y(X × Y ).

We have the relation deg(α · β) 6= 0 showing that cdp(X × Y ) ≤ x+ y. �

Corollary 3.5. For two products X and Y of pRSB-varieties over F , their product X×Y
is p-incompressible if and only if the varieties XF (Y ) and YF (X) are p-incompressible.

Proof. The “only if” part being served by Lemma 3.4, we only prove the “if” part. We
write X as product X1 × · · · ×Xr of pRSB-varieties and induct on r. The case of r = 1
follows from Theorem 3.1. For r > 1, set X ′ := X2 × · · · × Xr. To show that X × Y =
X1 × (X ′ × Y ) is p-incompressible, by Theorem 3.1, it suffices to check that (X1)F (X′×Y )

and (X ′ × Y )F (X1) are p-incompressible. The assumption on p-incompressibility of XF (Y )

implies (by Lemma 3.4) p-incompressibility of (X1)F (X′×Y ). And the variety (X ′×Y )F (X1)

is p-incompressible by induction hypothesis. �

Here is the most convenient statement to check p-incompressibility of a general product
of pRSB-varieties. Basically, it reduces the problem to application of index reduction
formulas.

Corollary 3.6. Product X1 × · · · × Xr of pRSB-varieties over F is p-incompressible if
and only if (Xi)F (X1×···×Xi−1×Xi+1×···×Xr) for every i = 1, . . . , r, is p-incompressible. �

4. Particular products

4a. Products of Severi-Brauer varieties. Applying Corollary 3.6 to a product of
Severi-Brauer varieties (Weil transfer do not show up here), we get a version of [10,
Theorem 2.1]. Note that the proof is different from the original one: it does not involve
K-theory.
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Corollary 4.1. Let D1, . . . , Dr be p-primary central division F -algebras. The product of
their Severi-Brauer varieties is p-incompressible if and only if each Di remains division
algebra over the function field of the product of the Severi-Brauer varieties of the remaining
algebras. �

Remark 4.2. By the index reduction formula for Severi-Brauer varieties, the condition
on Di means that the index of every product of Di by tensor powers of the remaining
algebras is ≥ indDi. With this, one may see that D1, . . . , Dr satisfy the condition of
Corollary 4.1 if and only if their nonzero Brauer classes (put in some/any order increasing
the degrees) form a minimal basis in the sense of [10, Remark 2.9].

Remark 4.3. In general, the property of being p-incompressible for a projective homoge-
neous variety X is weaker than the property of having indecomposable motive. However,
for a generically split X (i.e., for X such that the motive of XF (X) is split, i.e., is a direct
sum of shifts of the motive of a point), the above two properties are equivalent. Indeed,
M(X) for a generically split X is a direct sum of shifts of U(X) so that M(X) = U(X)
is and only if dimU(X) = dimX .

A product of Severi-Brauer varieties is a generically split projective homogeneous va-
riety. Therefore the motive of a p-incompressible product of Severi-Brauer varieties is
indecomposable.

There are numerous simplification in the proof of Theorem 3.1 when we adopt it to
products of Severi-Brauer varieties. It might be therefore helpful for the reader to look
at the simplified proof below before going through the actual proof of Theorem 3.1.

Proposition 4.4. Let X be the product of Severi-Brauer varieties X1, . . . , Xr over F such
that for every i = 1, . . . , r, the variety (Xi)F (X1×···×Xi−1×Xi+1×···×Xr) is p-incompressible.
Then the motive of X is p-incompressible.

Proof. Using induction on r, we are reduced to prove the following statement (which looks
more like the statement of Theorem 3.1): the product Y ×Z of a Severi-Brauer variety Y
by a product of Severi-Brauer varieties Z is p-incompressible provided that the varieties
YF (Z) and ZF (Y ) are so.

Actually, instead of being a product of Severi-Brauer varieties, Z can be any generically
split projective homogeneous variety: we will only use this property of Z in the proof.

Now we go along the lines of the proof of Theorem 3.1, removing everything superfluous.
The variety Y is the Severi-Brauer variety of a p-primary central division algebra D,

say, degD = pn. Note that D remains division over F (Z).
We induct on n. For n = 0 the statement we are proving is trivial. We assume that

n ≥ 1 below.
Let F ′ be the function field of the variety SB(pn−1, D). The index of the central simple

F ′-algebra DF ′ is pn−1 so that there exists a central division F ′-algebra D′ such that the
algebra of (p × p)-matrices over D′ is isomorphic to DF ′. We set Y ′ := SB(D′). The
motive of the variety YF ′ decomposes into the direct sum of p summands

M(YF ′) ≃ M(Y ′) ⊕ M(Y ′)(pn−1) ⊕ M(Y ′)(2pn−1) ⊕ · · · ⊕ M(Y ′)((p − 1)pn−1).
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It follows that

(4.5) M(Y × Z)F ′ ≃ M(Y ′ × ZF ′)⊕M(Y ′ × ZF ′)(pn−1)⊕

M(Y ′ × ZF ′)(2pn−1)⊕ · · · ⊕M(Y ′ × ZF ′)((p− 1)pn−1).

We claim: the decomposition (4.5) is complete, i.e., the motive of the variety Y ′ × ZF ′ is
indecomposable (see Remark 4.3), and that – by the induction hypothesis. To check the
claim, we check that the varieties ZF ′(Y ′) and Y ′

F ′(Z) are p-incompressible. This is done
precisely as in the proof of Theorem 3.1.
Now we know that (4.5) is the complete decomposition and we want to show that the

motive of Y × Z is indecomposable. In other words, we want to show that

U(Y × Z) = M(Y × Z),

or – equivalently – that U(Y × Z)F ′ contains all the p indecomposable summands of the
decomposition (4.5).
Let l be the number of summand in the complete decomposition of the motive U(Y ×

Z)F ′ (all of them are automatically isomorphic to a shift of M(ZF ′)). We have 1 ≤ l ≤ p
and all we want to show is l = p.
It is now very easy to see that l divides p. Indeed, since the variety Y ×Z is generically

split, every summand of its complete motivic decomposition is a shift of U(Y × Z).
Therefore l divides p, as claimed, and we only need to show that l 6= 1.
So, we assume that l = 1 and we look for a contradiction. Clearly, l = 1 implies that

cdp(Y × Z) = dimU(Y × Z) = dimM(Y ′ × ZF ′) = d,

where d := dimY ′ + dimZ = pn−1 − 1 + dimZ. By [8, Proposition 6.1], there exist
α ∈ Chd(Y ×Z)F (Y×Z) and β ∈ Chd(Y ×Z) with deg(α · β) 6= 0 ∈ Fp. Starting from this
point, the proof of Proposition 4.4 ends precisely as the proof of Theorem 3.1. Note that
in (3.3) we will have i = 0 here. �

4b. Weil transfer of products of Severi-Brauer varieties.

Corollary 4.6. Let L/F be a p-primary separable field extension and let X be a product
over L of Severi-Brauer varieties of some balanced p-primary division L-algebras. Then
cdp(RL/FX) = [L : F ] · cdp(X). In particular, RL/FX is p-incompressible provided that
X is so.

Proof. Taking a minimal basis of the subgroup in Br(L) generated by the algebras (note
that any L-algebra representing an element of this subgroup is balanced), consider the
product X ′ of their Severi-Brauer varieties. The variety X ′ is p-incompressible and equiv-
alent to X . Moreover, its Weil transfer RL/FX

′ is equivalent to RL/FX . Therefore we
reduced the proof of the first statement of Corollary 4.6 to the proof of the second one.
The second statement follows directly from Corollary 3.6. �

4c. Weil transfer of products of generalized Severi-Brauer varieties. The second
conclusion of Corollary 4.6 also holds for generalized Severi-Brauer varieties. Again, the
result is an immediate consequence of Corollary 3.6:
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Corollary 4.7. Let L/F be a p-primary separable field extension and let X be a product
over L of some generalized Severi-Brauer varieties of some balanced p-primary division
L-algebras. Then RL/FX is p-incompressible if (and only if) X is so. �

5. Quadratic extensions

Let L/F be a separable quadratic field extension and let D be a central division L-
algebra of a 2-primary index. In this section, we determine canonical 2-dimension of
the variety RL/F SB(D) without imposing any restrictions on the conjugate algebra g(D),
where g is the non-trivial element ofG := Gal(L/F ). We will provide two different recipes;
which of them has to be applied depends on a property of the group A generated by the
Brauer classes of D and g(D). Since the case of cyclic A has been already treated, we
assume that A is not cyclic. Therefore A/2A ≃ Z/2Z⊕Z/2Z with g acting by exchanging
the summands.

Let α ∈ A \ 2A be an element of the smallest index. Let Dα be a central division
L-algebra representing α. If the image of α in A/2A is not invariant under the action
of G, then the images of α and g(α) form a minimal basis of A/2A in the sense of [10,
Remark 2.9]. It follows that the variety (RL/F SB(Dα))L ≃ SB(Dα) × SB(g(Dα)) is 2-
incompressible. Therefore the variety RL/F SB(Dα) is 2-incompressible as well. Since
α and g(α) generate A, the varieties RL/F SB(D) and RL/F SB(Dα) are equivalent. So,
cd2RL/F SB(D) = cd2RL/F SB(Dα) and we get that

(5.1) cd2RL/F SB(D) = dimRL/F SB(Dα) = 2(indα− 1).

Now we assume that the image of α in A/2A is invariant under G. This means that
this image is equal to the element (1, 1) ∈ Z/2Z ⊕ Z/2Z. Let β ∈ A be an element of
the smallest index with the property that its image in A/2A is outside of the subgroup
generated by the image of α. We claim that in this case

(5.2) cd2RL/F SB(D) = dimRL/F SB(Dβ) = 2(ind β − 1).

Since the image of β in A/2A is (1, 0) or (0, 1), it is not invariant under G. Moreover,
A is generated by β and g(β). It follows that the variety RL/F SB(D) is equivalent to
RL/F SB(Dβ), where Dβ is a central division L-algebra representing β. To prove the claim,
it suffices to prove that the variety RL/F SB(Dβ) is 2-incompressible. It is so because the
F (RL/F SB(Dα))-variety

RL/F SB(Dβ)F (RL/F SB(Dα)) ≃ RL(RL/F SB(Dα))/F (RL/F SB(Dα)) SB((Dβ)L(RL/F SB(Dα)))

is 2-incompressible. Indeed, g(Dβ)L(RL/F SB(Dα)) is Brauer-equivalent to a tensor power of

(Dβ)L(RL/F SB(Dα)) so that Theorem 1.1 applies. On the other hand, (Dβ)L(RL/F SB(Dα)) is

still a division algebra by the Schofield–van den Bergh index reduction formula [16] (see
also [13]), because

ind(Dβ ⊗D⊗i
α ) ≥ indDβ

for any i by the minimality of ind β = indDβ.
We finish this section by examples where the above recipes apply.

Example 5.3. Let l be a field of characteristic 6= 2, let L be the rational function field
over l in variables x, y, x′, y′, let g be the l-automorphism of L exchanging x with x′ and y
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with y′, and let F be the subfield of L consisting of the elements fixed by g. The variety
RL/F SB(D), where D is the quaternion L-algebra (x, y), is 2-incompressible by formula
(5.1) with Dα = D. Note that in this example the algebras D and g(D) are, informally
speaking, “completely independent”.
In the next example, D and g(D) will be “partially dependent”. To get it, we replace

F and L by the rational function fields

F (s1, s2, t1, t2) and L(s1, s2, t1, t2)

in some variables s1, s2, t1, t2. For D := C ⊗ (x, y) with C := (s1, t1)⊗ (s2, t2), the variety
RL/F SB(D) is 2-incompressible by formula (5.2) with Dα = (x, y)⊗ (x′, y′) and Dβ = D.
Note that the non-zero elements of the group A in this situation are the Brauer classes
of the index 8 conjugate algebras C ⊗ (x, y) and C ⊗ (x′, y′) and the index 4 invariant
algebra (x, y)⊗ (x′, y′); besides, 2A = 0.
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