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Abstract. We consider a central division algebra over a separable quadratic extension
of a base field endowed with a unitary involution and prove 2-incompressibility of certain
varieties of isotropic right ideals of the algebra. The remaining related projective homo-
geneous varieties are shown to be 2-compressible in general. Together with [13], where
a similar issue for orthogonal and symplectic involutions has been treated, the present
paper completes the study of grassmannians of isotropic ideals of division algebras.

Let F be a field, K/F a separable quadratic field extension, n an integer ≥ 1, and D
a central division K-algebra of degree 2n endowed with a K/F -unitary involution σ. For
definitions as well as for basic facts about involutions on central simple algebras, we refer
to [16].

For any integer i, we write Xi for the F -variety of isotropic (with respect to σ) right
ideals in D of reduced dimension i. (The reduced dimension of an ideal in D is its
dimension over K divided by degD :=

√
dimK D.) For any i, the variety Xi is smooth

and projective. It is nonempty if and only if 0 ≤ i ≤ 2n−1 (X0 is simply SpecF ) in which
case it is geometrically connected and has dimension

dimXi = i(2 degD − 3i).

For any i, the variety Xi is a closed subvariety of the Weil transfer RK/F SBi D, where
SBi D is the ith generalized Severi-Brauer variety of D – the K-variety of all right ideals
in D of reduced dimension i. We recall that according to [10] (see [15] for a more recent
and simple proof), for any r = 0, 1, . . . , n−1, the variety RK/F SB2r D is 2-incompressible.
This means, roughly speaking, that any self-correspondence

RK/F SB2r D  RK/F SB2r D

of odd multiplicity is dominant. In particular, any rational self-map

RK/F SB2r D 99K RK/F SB2r D

is dominant.
The following theorem is the main result of this note. It extends to the unitary setting

the results on orthogonal and symplectic involutions obtained in [13].

Theorem 1. For any r = 0, 1, . . . , n− 1, the variety X2r is 2-incompressible.
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The proof will be given right after some preparation work. It extensively uses the notion
of upper motives introduced in [14] and [8]. In our exposition, we go along the lines of
[13] undertaking the necessary modifications.
Examples 7 and 9 show that Theorem 1 precisely detects the types of those projective

homogeneous varieties under the projective unitary group Aut(D, σ) of a division algebra
of given degree, which are 2-incompressible in general, i.e., for any F , K, D and σ. Note
that Aut(D, σ) is an absolutely simple adjoint affine algebraic group of outer type A2n−1.
The varieties Xi for i = 1, . . . , 2n−1 − 1 correspond to the pairs of vertices of the Dynkin
diagram exchanged by the action of Gal(K/F ); the variety X2n−1 corresponds to the
unique Gal(K/F )-stable vertex.
We start the preparation for the proof of Theorem 1. For any i = 0, 1, . . . , 2n−1, the

tensor product K ⊗F F (Xi) is a field (namely, the field K(Xi)) and the tensor product
D ⊗F F (Xi) is a central simple K(Xi)-algebra.

Lemma 2. For any r = 0, 1, . . . , n − 1, the Schur index of the central simple algebra
D ⊗F F (X2r) is equal to 2r.

Proof. First of all, although X := X2r is an F -variety, the center of D is K, not F .
Therefore we do not need the index reduction formula [19, (9.29)] for the F -variety X
here, we rather need an index reduction formula for the K-variety XK . The variety XK

is isomorphic to the variety of flags of right ideals in D of reduced dimensions 2r and
2n − 2r. This flag variety is equivalent (in the sense of existence of rational maps in both
directions) to SB2r D so that the desired result on

ind(D ⊗F F (X)) = ind(D ⊗K K(X))

is contained in [23]. It is also a consequence of the index reduction formula for the
generalized Severi-Brauer varieties [3] (see also [18, (5.11)]). �

Lemma 3. Theorem 1 holds for r = n− 1.

Proof. This is a particular case of Proposition A4. �

We are working with Chow groups modulo 2. In particular, multiplicities of correspon-
dences, [6, §75], take values in F2 := Z/2Z.

Lemma 4. Assume that for some r = 0, 1, . . . , n− 2 there is no multiplicity 1 correspon-
dence X2r  X2r+1. Then the variety X2r is 2-incompressible.

Proof. This is a particular case of Proposition A4. �

Before proving the general case of Theorem 1, as a warm up, we prove the case of
maximal r among yet unproved ones:

Proposition 5. Theorem 1 holds for r = n− 2.

Proof. By Lemma 4, we may assume that there exists a multiplicity 1 correspondence
X2n−2  X2n−1 . We set T := X2n−1 . The involution σF (T ) is hyperbolic. Besides, by
Lemma 2, the Schur index of the algebra D ⊗F F (T ) is 2n−1.
For X := X2n−2 , we have indD⊗F F (X) = 2n−2 by Lemma 2. By Lemma A3 (applied

twice), the complete motivic decomposition of XF (X) contains four Tate summands: F2,
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F2(2
2n−3), F2(dimX − 22n−3), F2(dimX). Note that dimX = 22n−4 · 5, so that 22n−3 <

dimX − 22n−3, showing that the four Tate summands have pairwise different shifts.
Each of the remaining summands of the complete motivic decomposition of XF (X) is of

even rank because by Lemma A3 it is a summand of the motive of an anisotropic variety.
(The definition of anisotropic variety is given right before Lemma Lemma A3; the rank
of any summand of the motive of an anisotropic variety is even by [14, Lemma 2.21]).
For the upper motive U(X), we are going to show that U(X)F (X) contains all the 4 Tate
summands; this will imply that X is 2-incompressible, cf. [7, Theorem 5.1].

By definition of U(X), U(X)F (X) contains the Tate summand F2.
By Corollary A6, U(X)F (X) contains the Tate summand F2(dimX − 22n−3).
Let C be a central division K(T )-algebra (of degree 2n−1) Brauer-equivalent to

D ⊗F F (T ) = D ⊗K K(T ).

Since there exist multiplicity 1 correspondences

XF (T )! RK(T )/F (T ) SB2n−2 C,

the upper motive of the variety XF (T ) is isomorphic to the upper motive of the variety
RK(T )/F (T ) SB2n−2 C, [14, Corollary 2.15]. Since the latter variety is 2-incompressible and
has dimension

[K(T ) : F (T )] · dimSB2n−2 C = 22n−3,

U(XF (T ))F (T )(X) contains the Tate summand F2(2
2n−3). In particular, U(X)F (T )(X) con-

tains this Tate summand. Since the field F (T )(X) = F (X)(T ) is purely transcendental
over F (X) (because of the assumption that there exists a multiplicity 1 correspondence
X  T ), U(X)F (X) contains the Tate summand F2(2

2n−3).
Finally, since U(X) has even rank, U(X)F (X) contains the remaining (fourth) Tate

summand F2(dimX). �

For the general case of Theorem 1 we need one more observation:

Lemma 6. For some r = 0, 1, . . . , n−1, let us consider the biggest i such that there exists
a multiplicity 1 correspondence X2r  Xi. (In particular, Xi 6= ∅, so that i ≤ 2n−1.) Then
i = 2s for some s ∈ {r, r + 1, . . . , n− 1}.
Proof. Assuming that i > 2s for some s = r, r+1, . . . , n−2, we show that i ≥ 2s+1. Since
indD ⊗F F (X2r) = 2r by Lemma 2, it is a priori clear that i ≥ 2s + 2r.

Note that indD ⊗F F (T ) = 2s for T := X2s by Lemma 2. Let I be an isotropic right
ideal of reduced dimension 2s in D ⊗F F (T ). Let

C := EndD⊗FF (T ) I

so that C is a central divisionK(T )-algebra of degree 2s Brauer-equivalent toD⊗FF (T ) =
D⊗KK(T ). Let A be a central simpleK(T )-algebra with aK(T )/F (T )-unitary involution
obtained out of I by Construction A2. Let X be the variety of isotropic right ideals in A of
reduced dimension 2r. The upper motives of X and of RK(T )/F (T ) SB2r C are isomorphic.
Since RK(T )/F (T ) SB2r C is 2-incompressible and has dimension

d := dimRK(T )/F (T ) SB2r C = [K(T ) : F (T )] · dimSB2r C = 2r+1(2s − 2r),
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the motive ofXF (T )(X) contains the Tate motive F2(d) as a summand. It follows by Lemma
A3 that the maximum of the Witt index of the unitary involution on A ⊗F (T ) E for E
running over finite odd-degree field extensions of F (T )(X) is at least 2s. Therefore the
maximum of the Witt index of σE is at least 2s+2s = 2s+1 and it follows that i ≥ 2s+1. �

Proof of Theorem 1. We set X := X2r . Let i be the maximal integer such that there
exists a multiplicity 1 correspondence X  Xi. By Lemma 6, i = 2s for some s ∈
{r, r + 1, . . . , n− 1}.
By Lemma 2, indD ⊗F F (X) = 2r. By Lemma A3 (applied 2s−r times), the complete

motivic decomposition of the variety XF (X) contains the Tate summands with the shifts
j22r+1 and dimX− j22r+1 for j = 0, 1, . . . , 2s−r−1 (precisely one Tate summand for each
shifting number). Note that (2s−r−1)22r+1 < dimX− (2s−r−1)22r+1 so that the shifting
numbers are pairwise different. Each of the remaining summands in the complete motivic
decomposition of XF (X) is of even rank. For the upper motive U(X) it suffices to show
that U(X)F (X) contains the Tate summand F2(dimX).
By Corollary A6, U(X)F (X) contains the Tate summand F2(dimX − (2s−r − 1)22r+1).
By Lemma 2, indD ⊗F F (T ) = 2s, where T := X2s . Let C be a central division

K(T )-algebra of degree 2s Brauer-equivalent to D ⊗F F (T ). The upper motives of the
varieties XF (T ) and S := RK(T )/F (T ) SB2r C are isomorphic. Passing to the dual motives
and shifting, we get that

U(XF (T ))
∗(dimX) ≃ U(S)∗(dimX).

Since the variety S is 2-incompressible, the motive U(S)F (T )(X) contains the Tate sum-
mands F2 and F2(dimS). Consequently, U(S)∗F (T )(X)(dimX) contains the Tate summands

F2(dimX) and F2(dimX − dimS). In particular, U(X)∗F (T )(X)(dimX) contains both of

these Tate summands. Since the field extension F (T )(X)/F (X) is purely transcendental,
U(X)∗F (X)(dimX) contains both of these Tate summands. Note that

dimS = (2s−r − 1)22r+1

and U(X)∗(dimX) is an indecomposable summand of M(X). Since U(X)F (X) also con-
tains the Tate summand F2(dimX − dimS), the Krull-Schmidt principle of [5] (see also
[8]) tells us that U(X) ≃ U(X)∗(dimX) and therefore U(X)F (X) contains F2(dimX) as
desired. �

The following example shows that for G = Aut(D, σ), the varieties listed in Theorem
1 are the only projective G-homogeneous varieties which are 2-incompressible in general
(i.e., for any field F , any separable quadratic field extension K/F , and any central division
K-algebra D of degree 2n endowed with a K/F -unitary involution σ). We recall that an
arbitrary (different from SpecF ) projective G-homogeneous variety is isomorphic to the
variety Xl1...lk of flags of isotropic right ideals in D of some fixed reduced dimensions
1 ≤ l1 < · · · < lk ≤ 2n−1 with some k ≥ 1.

Example 7. Let F , K, D, and σ be as in Lemma 8 and assume that D is a division
algebra. An arbitrary projective G-homogeneous variety is isomorphic to the variety
Xl1...lk with some k ≥ 1 and some 1 ≤ l1 < · · · < lk ≤ 2n−1. By Lemma 8, this variety is
equivalent (in the sense of existing of rational maps in both directions) to the variety X2r ,
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where 2r is the largest 2-power dividing l1, . . . , lk. In particular, canonical 2-dimensions
of these two varieties coincide (see e.g. [15, Lemma 3.3]). Hence {l1, . . . , lk} = {2r} (i.e.,
k = 1 and l1 = 2r) if the variety Xl1...lk is 2-incompressible (because dimXl1...lk > dimX2r

otherwise).

Lemma 8. For any given n ≥ 2, let us consider over an appropriate field F of char-
acteristic 6= 2, a central division F -algebra D′ of degree 2n endowed with an orthogonal
or a symplectic involution σ′ such that (D′, σ′) is the tensor product of n quaternion al-
gebras with involutions. Let K/F be a separable quadratic field extension. We define a
K/F -unitary involution σ on D := D′ ⊗F K as the tensor product of σ′ by the nontriv-
ial automorphism of K/F . Then for any field extension L/F , the unitary involution on
D ⊗F L given by σ is either anisotropic or hyperbolic.

Proof. We only need to consider the case where K ⊗F L is a field (because the involution
is hyperbolic otherwise). We assume that the involution is isotropic for such an L and we
want to show that it is hyperbolic. Replacing F by L, we simply assume that σ (over F )
is isotropic and we want to show that σ is hyperbolic.

By [12, Theorem A.2] (see also [9]), we may replace F by the function field of the
F -variety RK/F SB(D). Since now the F -algebra D′ splits over the quadratic extension
K/F , it is equivalent to a quaternion F -algebra Q. It follows by [2] that the algebra
D′ together with the (orthogonal or symplectic) involution σ′ is isomorphic to a tensor
product of n quaternions algebras with involutions, where the first quaternion algebra is
Q and the remaining n − 1 quaternion algebras are split. Since the quadratic extension
K/F splits Q, our algebra D together with the unitary involution σ is the tensor product
(over K) of n split quaternion K-algebras with K/F -unitary involutions.

Let h be a K/F -hermitian form on an n-dimensional K-vector space V such that σ is
adjoint to h. Because of the tensor decomposition we have for (D, σ), the quadratic form
q : v 7→ h(v, v) on V over F is similar to an (n+1)-fold Pfister form. Isotropy of σ implies
isotropy of h, which implies isotropy of q, which implies hyperbolicity of q, which in its
turn implies hyperbolicity of h and of σ (cf. [11, Lemma 9.1]). �

The following example shows that in the case when degD is not a power of 2, i.e., when
degD = 2n · m with n ≥ 0 and with odd m ≥ 3, none (but SpecF ) of the projective
homogeneous varieties under G = Aut(D, σ) is 2-incompressible in general.

Example 9. Let n and m be integers with n ≥ 0 and with odd m ≥ 3. Let F , K, D,
and σ be as in Lemma 10 with the above m. Changing notation, we write Dm and σm

for these D and σ. Replacing F by a purely transcendental extension field of sufficiently
large transcendence degree, we may find a central division K-algebra D′ of degree 2n with
a K/F -unitary involution σ′. (For instance, one may take the degree 2n purely tran-
scendental field extension F (x1, y1, . . . , xn, yn), consider the tensor product of quaternion
algebras (x1, y1) ⊗ · · · ⊗ (xn, yn) with the tensor product of their canonical involutions,
and then take the induced unitary involution over K(x1, y1, . . . , xn, yn).) We define the
central division K-algebra D as the tensor product D′ ⊗K Dm and we define a K/F -
unitary involution σ on D as the tensor product of σ′ and σm. We claim that none of the
projective homogeneous varieties given by (D, σ) is 2-incompressible. Indeed, canonical
2-dimension of any such variety X remains the same over any finite field extension of F
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of odd degree, [17, Proposition 1.5]. Replacing F by an odd degree extension L/F given
by Lemma 10, we come to the situation where σm is isotropic. Therefore σ is isotropic
and it follows that X is not 2-incompressible.

Lemma 10. For any odd integer m ≥ 3, there exist a field F , a separable quadratic field
extension K/F , a degree m central division K-algebra D, a K/F -unitary involution σ on
D, and a finite field extension L/F of odd degree such that σ is isotropic over L.

Proof. For prime m ≥ 5, such examples can be derived from [21] and [20]. For general m,
one may proceed by a generic construction as follows.
Let m ≥ 3 be an odd integer and let D be a central division algebra of degree m (over

an appropriate field K) possessing a unitary involution σ. Let F ⊂ K be the subfield
of the σ-invariant elements. There exists a finite field extension L/F of odd degree such
that the algebra D ⊗F L is split (cf. [1, 3.3.1] or [9, Page 938]). Let h be a hermitian
form such that the involution σL on the split algebra D⊗F L is adjoint to h. Let q be the
quadratic form over L (of dimension 2m) given by h. Let q′ be a nondegenerate subform
of q of dimension 2m− 1. Let X be the projective quadric of q′. We are going to replace
the base field F by the function field of the Weil transfer RL/FX . The quadratic form
q′ (and therefore q, h and σL as well) will then become isotropic. We only need to check
that D will remain a division algebra. We check this with the help of the index reduction
formula for Weil transfers of quadrics. This formula is simpler for odd-dimensional q′ then
for even-dimensional q and this is the reason to use q′, not q itself.
The index reduction formula we need is given in [19, (7.25)]. We want to check that

the index of D ⊗K K(RL/FX) is m. By [19, (7.25)], this index (note that (RL/FX)K ≃
RK⊗FL/K(XK⊗FL)) is the greatest common divisor of certain products

nE · [E : K] · ind(D ⊗K AE),

where nE is an integer, E/K is a finite field extension, and AE is a central simple E-
algebra whose exponent divides 2. To see that the exponent of AE divides 2, it suffices
to note that AE is obtained out of the even Clifford algebra of q′ using the operations
of restriction and corestriction of scalars; the even Clifford algebra has exponent dividing
2 and the exponent of a restriction/corestriction of a central simple algebra divides the
exponent of the algebra.
It follows that for any E, the index of D⊗K AE is divisible by the index of D⊗KE. On

the other hand, m = indD always divides the product [E : K] · ind(D ⊗K E). Therefore
m divides ind(D ⊗K K(RL/FX). �

Appendix. Quadric-like behavior

In this Appendix we establish some results on grassmannians of isotropic ideals which
are very close (in the statement as well as in the proof) to results on projective quadrics
in the spirit of [24].
Let F be a field, K/F a separable quadratic field extension, A a central simple K-

algebra endowed with a K/F -unitary involution σ.
For a right ideal J ⊂ A, its orthogonal complement J⊥ is defined as the (right) an-

nihilator of the left ideal σ(J). This is a right ideal of reduced dimension rdim J⊥ =
degA− rdim J , [16, Proposition 6.2].
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A right ideal J is nondegenerate if J ∩ J⊥ = 0.

Construction A1. Given a nondegenerate right ideal J ⊂ A, the right A-module A is a
direct sum of the submodules J and J⊥. The image e ∈ J of 1 ∈ A with respect to the
projection A → J is a symmetric (with respect to the involution σ) idempotent generating
J : σ(e) = e, e2 = e, and J = eA. The K-algebra EndA J is identified with the subalgebra
eAe of A (see [16, Corollary 1.13]) stable under the involution σ. (Note that the unit of
the algebra eAe is the element e which may differ from the unit 1 of A so that the unital
algebra eAe is, in general, not a unital subalgebra of A.) The restriction of σ to eAe is a
K/F -unitary involution. Note that the degree of the algebra eAe is equal to the reduced
dimension of the ideal J .

In contrast to [16], we define the (Witt) index ind σ of σ as the maximum of reduced
dimension of an isotropic right ideal in A. The information given by the Witt index of σ
in the sense of [16], or equivalently by the Tits index of the algebraic group Aut(A, σ), is
equivalent to the information given by ind σ and indA.

Construction A2. Given an isotropic right ideal I in A, we have I ⊂ I⊥. Let us choose
an ideal J ⊂ I⊥ such that I⊥ = I ⊕ J . The ideal J is nondegenerate so that, using
Construction A1, we get the algebra eAe with restriction of σ. Note that deg(eAe) =
rdim J = degA− 2 rdim I. The (Witt) index of this restriction is equal to ind σ− rdim I.
(Note that Construction A1 applied to the ideal J⊥ produces an algebra with hyperbolic
unitary involution.)

A variety is called anisotropic here if every its closed point has even degree. The
following statement is an analogue of the motivic decomposition [6, Proposition 70.1] of
smooth projective quadrics, observed originally by M. Rost. It is also the unitary analogue
of [13, Lemma A.3] which contains a mistake in the statement: the motive of Y occurs in
the decomposition of M(X) with the shift (indA)2, not with the shift 2 indA as claimed
there. The shift we have in the unitary setting is 2(indA)2:

Lemma A3. Assume that indA is a power of 2. Let I be an isotropic ideal of reduced
dimension indA in A. Let X be the variety of isotropic right ideals of reduced dimension
indA in A. Let B be an algebra eAe given by Construction A2. Let Y be the variety
of isotropic right ideals of reduced dimension indA = indB in B (Y is nonempty iff
degA ≥ 4 indA). Then there exists a motivic decomposition of X with summands F2,
F2(dimX), and – in the case of nonempty Y –

M(Y )(2(indA)2) = M(Y )((dimX − dim Y )/2)

such that each of the remaining summands of the decomposition is the motive of an
anisotropic variety.

Proof. See [9, Lemma 2.3]. In order to determine the shift of M(Y ), one may use [4]. �

For any integer i, we write Xi for the variety of isotropic right ideals in A of reduced
dimension i. The variety Xi is nonempty if and only if 0 ≤ i ≤ (degA)/2.

Proposition A4 and Corollary A6 below are analogues of computation of canonical 2-
dimension of smooth projective quadrics [6, Theorem 90.2]. We refer to [7] for definition
and basic properties of canonical dimension.
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Proposition A4. For some r ≥ 0 with 2r+1 ≤ degA and 2r dividing indA, assume that
the variety X := X2r is anisotropic and has no multiplicity 1 correspondence to X2r+1.
Then the variety X is 2-incompressible.

Proof. By the index reduction formula as in Lemma 2, we see that the index of AF (X)

is 2r. The F (X)-variety Y as in Lemma A3 is anisotropic (because of absence of a
multiplicity 1 correspondence X  X2r+1). It follows that all summands of the complete
motivic decomposition of the variety XF (X) but F2 and F2(dimX) have even ranks. On
the other hand, since X is anisotropic, the motive U(X) is also of even rank. It follows
that U(X)F (X) contains F2(dimX). Therefore X is 2-incompressible. �

Lemma A5. For any multiple m of indA satisfying 0 ≤ m ≤ degA, there exists a
nondegenerate right ideal in A of reduced dimension m.

Proof. We write A = EndD V for some central division K-algebra D with a fixed K/F -
unitary involution and a right D-module V with a hermitian form h such that the involu-
tion σ on A is adjoint to h. By [22, Theorem 6.3 of Chapter 7], h can be diagonalized. �

Corollary A6. Assume that indA = 2r for some r ≥ 0. Assume that the variety
X2r is anisotropic. Let i be the maximal integer such that there exists a multiplicity 1
correspondence X  X(i+1)2r . Then the canonical 2-dimension cdim2X of X is equal
to dimX − i22r+1. In particular, the Tate motive F2(dimX − i22r+1) is a summand of
U(X)F (X).

Proof. Note that the case of i = 0 follows by Proposition A4.
For arbitrary i, let J ⊂ A be a nondegenerate right ideal of reduced dimension degA−

i2r (existing by Lemma A5). Let B be the corresponding nonunital subalgebra of A
(obtained by Construction A1) and let Y be the variety of isotropic right ideals of reduced
dimension 2r in B. Since there is a multiplicity 1 correspondence X  X(i+1)2r , there
is a multiplicity 1 correspondence from X to Y . Note that there also is a multiplicity
1 correspondence Y  X so that U(X) ≃ U(Y ). It follows by [7, Theorem 5.1] that
cdim2X = cdim2 Y .
The variety Y satisfies the conditions of Proposition A4: it is anisotropic and has no

multiplicity 1 correspondence to Y2r+1. Therefore Y is 2-incompressible. It follows that
U(Y )F (Y ) as well as U(X)F (X) contain F2(dimY ) = F2(dimX−i22r+1) as a summand. �
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