UNRAMIFIED DEGREE THREE INVARIANTS OF REDUCTIVE GROUPS

A. MERKURJEV

ABSTRACT. We prove that if G is a reductive group over an algebraically closed field F, then for a prime integer $p \neq \operatorname{char}(F)$, the group of unramified Galois cohomology $H^3_{\operatorname{nr}}(F(BG), \mathbb{Q}_p/\mathbb{Z}_p(2))$ is trivial for the classifying space BG of G if p is odd or the commutator subgroup of G is simple.

1. INTRODUCTION

The notion of a cohomological invariant of an algebraic group was introduced by J-P. Serre in [6]. Let G be an algebraic group over a field F and M a Galois module over F. A degree d invariant of G assigns to every G-torsor over a field extension K over F an element in the Galois cohomology group $H^d(K, M)$, functorially in K. In this paper we consider the cohomology groups $H^d(K) = H^d(K, \mathbb{Q}/\mathbb{Z}(d-1))$, where $\mathbb{Q}/\mathbb{Z}(d-1)$ is defined as the Galois module of (d-1)-twisted roots of unity. The p-part of this module requires special care if $p = \operatorname{char}(F) > 0$. All degree d invariants of G form an abelian group $\operatorname{Inv}^d(G)$. An invariant is normalized if it takes a trivial torsor to the trivial cohomology class. The group $\operatorname{Inv}^d(G)$ is the direct sum of the subgroup $\operatorname{Inv}^d(G)_{\operatorname{norm}}$ of normalized invariants and the subgroup of constant invariants isomorphic to $H^d(F)$.

The group $\operatorname{Inv}^d(G)_{\operatorname{norm}}$ for small values of d is well understood. The group $\operatorname{Inv}^1(G)_{\operatorname{norm}}$ is trivial if G is connected. There is a canonical isomorphism $\operatorname{Inv}^2(G)_{\operatorname{norm}} \simeq \operatorname{Pic}(G)$ for every reductive group G (see [2, Theorem 2.4]). M. Rost proved (see [6, Part 2]) that if G is simple simply connected then the group $\operatorname{Inv}^3(G)_{\operatorname{norm}}$ is cyclic of finite order with a canonical generator called the *Rost invariant*. The group $\operatorname{Inv}^3(G)_{\operatorname{norm}}$ for an arbitrary semisimple group G was studied in [10].

For a prime integer p, write $H^d(K, p)$ and $\operatorname{Inv}^d(G, p)$ for the p-primary components of $H^d(K)$ and $\operatorname{Inv}^d(G)$ respectively. If v is a discrete valuation of a field extension K/F trivial on F with residue field F(v), then there is defined the residue homomorphism $\partial_v : H^d(K, p) \longrightarrow H^{d-1}(F(v), p)$ for every $p \neq \operatorname{char}(F)$. An element $a \in H^d(K, p)$ is unramified with respect to v if $\partial_v(a) = 0$. We write $H^d_{\operatorname{nr}}(K, p)$ for the subgroup of all elements unramified

Date: November, 2014.

Key words and phrases. Reductive algebraic group; classifying space: unramified cohomology.

The work has been supported by the NSF grant DMS #1160206 and the Guggenheim Fellowship.

with respect to every discrete valuation of K over F. An invariant in $\operatorname{Inv}^d(G, p)$ is called *unramified* if all values of the invariant over every K/F belongs to $H^d_{\operatorname{nr}}(K,p)$. We write $\operatorname{Inv}^d_{\operatorname{nr}}(G,p)$ for the group of all unramified invariants.

Let V be a generically free representation of G. There is a nonempty Ginvariant open subscheme $U \subset V$ and a versal G-torsor $U \longrightarrow X$ for a variety X over F. We think of X as an approximation of the classifying space BG of G. The larger the codimension of $V \setminus U$ in V the better X approximates BG. Abusing notation, we will write BG for X. Note that the stable birational type of BG is well defined.

The generic fiber of the versal G-torsor is the generic G-torsor over the function field F(BG) of the classifying space. A theorem of Rost and Totaro asserts that the evaluation at the generic G-torsor yields an isomorphism between $\text{Inv}^d(G, p)$ and the subgroup of $H^d(F(BG), p)$ of all elements unramified with respect to the discrete valuations associated with all irreducible divisors of BG. This isomorphism restricts to an isomorphism

$$\operatorname{Inv}_{\operatorname{nr}}^{d}(G,p) \xrightarrow{\sim} H_{\operatorname{nr}}^{d}(F(BG),p)$$

A classical question is whether the classifying space BG of an algebraic group G is stably rational. To disprove stable rationality of BG it suffices to show that the map $H^d(F,p) \longrightarrow H^d_{nr}(F(BG),p)$ is not surjective for some d and p or, equivalently, to find a non-constant unramified invariant of G. For example, D. Saltman disproved in [14] the Noether Conjecture (that V/Gis stably rational for a faithful representation V of a finite group G over an algebraically closed field) by proving that $H^2_{nr}(F(BG),p) \neq H^2(F,p)$ for some G and p, i.e., by establishing a non-constant degree 2 invariant of G. E. Peyre found new examples of finite groups with non-constant unramified degree 3 invariants in [12]. Degree 3 unramified invariants of simply connected groups (over arbitrary fields) were studied in [11] (classical groups) and [7] (exceptional groups).

It is still a wide open problem whether there exists a connected algebraic group G over an algebraically closed field F with the classifying space BGthat is not stably rational. Connected groups have no non-trivial degree 1 invariants. F. Bogomolov proved in [3, Lemma 5.7] (see also [2, Theorem 5.10]) that connected groups have no non-trivial degree 2 unramified invariants. In [15] and [16], D. Saltman proved that the projective linear group PGL_n has no non-trivial degree 3 unramified invariants.

In the present paper, we study unramified degree 3 invariants of an arbitrary (connected) reductive group G over an algebraically closed field, or equivalently, the unramified elements in $H^3(F(BG))$. The language of invariants seems easier to work with. The main result is the following theorem (see Theorems 8.4 and 11.3):

Theorem. Let G be a split reductive group over an algebraically closed field F and p a prime integer different from char(F). Then

$$\operatorname{Inv}_{\operatorname{nr}}^{3}(G,p) = H_{\operatorname{nr}}^{3}(F(BG),p) = 0$$

if p is odd or the commutator subgroup of G is (almost) simple.

Let H be the commutator subgroup of a split reductive group G. We have $\operatorname{Inv}_{\operatorname{nr}}^{3}(G,p) = \operatorname{Inv}_{\operatorname{nr}}^{3}(H,p)$ (see Proposition 6.1). If H is a simple group, we compare the group $\operatorname{Inv}^{3}(H)$ with the group $\operatorname{Inv}^{3}(\widetilde{H}^{\operatorname{gen}})$, where $\widetilde{H}^{\operatorname{gen}}$ is the simply connected cover of H twisted by a generic H-torsor, and use our knowledge of the unramified degree 3 invariants in the simply connected case. The key statement is the injectivity of the homomorphism $\operatorname{Inv}^{3}(H) \longrightarrow \operatorname{Inv}^{3}(\widetilde{H}^{\operatorname{gen}})$ (see Section 8).

In general, when H is semisimple but not necessarily simple, we consider an embedding of H into a reductive group G' as the commutator subgroup. Then $Inv^3(G')$ is identified with a subgroup of $Inv^3(H)$. If G' is *strict*, i.e., the center of G' is a torus, this subgroup is the smallest possible and is independent of the choice of G'. We write $Inv^3_{red}(H)$ for this subgroup. It satisfies

$$\operatorname{Inv}_{\operatorname{nr}}^{3}(H,p) \subset \operatorname{Inv}_{\operatorname{red}}^{3}(H,p) \subset \operatorname{Inv}^{3}(H,p)$$

for every prime $p \neq \operatorname{char}(F)$. The group $\operatorname{Inv}_{\operatorname{red}}^3(H,p)$ is easier to control than $\operatorname{Inv}_{\operatorname{nr}}^3(H,p)$. We show that $\operatorname{Inv}_{\operatorname{red}}^3(H,p) = 0$ which implies that $\operatorname{Inv}_{\operatorname{nr}}^3(H,p)$ is also trivial.

ACKNOWLEDGEMENTS. The author thanks J-P. Tignol for valuable remarks and the Max Planck Institute (Bonn) for hospitality.

2. Basic definitions and facts

Let F be a field. If $d \ge 1$, we write $H^d(F)$ for the Galois cohomology group $H^d(F, \mathbb{Q}/\mathbb{Z}(d-1))$, with $\mathbb{Q}/\mathbb{Z}(d-1)$ the direct sum of colim $\mu_n^{\otimes (d-1)}$, where μ_n is the group of roots of unity of degree n, and the p-component if $p = \operatorname{char}(F) > 0$ (see [6, Part 2, Appendix A]). In particular, $H^1(F)$ is the group of (continuous) characters of the absolute Galois group $\operatorname{Gal}(F_{\operatorname{sep}}/F)$ of F and $H^2(F)$ is the Brauer group $\operatorname{Br}(F)$. We view H^d as a functor from the category Fields_F of field extensions of F to the category of abelian groups (or the category Sets of sets).

Let G be a (linear) algebraic group over a field F. The notion of an *invariant* of G was defined in [6] as follows. Consider the functor

$$\operatorname{Tors}_G: \operatorname{Fields}_F \longrightarrow \operatorname{Sets}$$

taking a field K to the set $\text{Tors}_G(K) := H^1(K, G)$ of isomorphism classes of (right) G-torsors over Spec K. A degree d cohomological invariant of G is then a morphism of functors

$$\operatorname{Tors}_G \longrightarrow H^d$$
,

i.e., a functorial in K collection of maps of sets $\operatorname{Tors}_G(K) \longrightarrow H^d(K)$ for all field extensions K/F. We denote the group of such invariants by $\operatorname{Inv}^d(G)$.

An invariant $I \in \operatorname{Inv}^d(G)$ is called *normalized* if I(E) = 0 for a trivial Gtorsor E. The normalized invariants form a subgroup $\operatorname{Inv}^d(G)_{\text{norm}}$ of $\operatorname{Inv}^d(G)$ and there is a natural isomorphism

$$\operatorname{Inv}^d(G) \simeq H^d(F) \oplus \operatorname{Inv}^d(G)_{\operatorname{norm}}$$

Example 2.1. Let G be a (connected) reductive group over F. It is shown in [2, Theorem 2.4] that there is an isomorphism

 $\beta_G : \operatorname{Pic}(G) \xrightarrow{\sim} \operatorname{Inv}^2(G)_{\operatorname{norm}}.$

Let G be a split reductive group and H the commutator subgroup of G. Let $\pi : \widetilde{H} \longrightarrow H$ be a simply connected cover with kernel \widetilde{C} . There are canonical isomorphisms (see [17, §6])

(2.2)
$$\operatorname{Pic}(G) \xrightarrow{\sim} \operatorname{Pic}(H) \simeq \widetilde{C}^* := \operatorname{Hom}(\widetilde{C}, \mathbb{G}_m).$$

Take any character $\chi \in \widetilde{C}^*$ and consider the push-out diagram

The isomorphism $\widetilde{C}^* \simeq \operatorname{Pic}(H)$ takes a character χ to the class the line bundle L_{χ} on H given by the \mathbb{G}_m -torsor $H' \longrightarrow H$ in the bottom row of the diagram. For a field extension K/F and an H-torsor E over K, the value of the invariant $\beta_H(L_{\chi})$ is equal to $\delta([E]) \in H^2(K, \mathbb{G}_m) = \operatorname{Br}(K)$, where [E] is the class of E in $H^1(K, H)$ and $\delta : H^1(K, H) \longrightarrow H^2(K, \mathbb{G}_m)$ is the connecting map for the bottom exact sequence in the diagram.

If $f: G_1 \longrightarrow G_2$ is a homomorphism of algebraic groups over F and E_1 is a G_1 -torsor over a field extension K/F, then $E_2 := (E_1 \times G_2)/G_1$ is the G_2 -torsor over K which we denote by $f_*(E_1)$. If I is a degree d invariant of G_2 , we define an invariant $f^*(I)$ of G_1 by $f^*(I)(E_1) := I(f_*(E_1))$. Thus, we have a group homomorphism

(2.3)
$$f^* : \operatorname{Inv}^d(G_2) \longrightarrow \operatorname{Inv}^d(G_1)$$

taking normalized invariants to the normalized ones.

Let G be an algebraic group over a field F and let V be a generically free representation of G. There is a nonempty G-invariant open subscheme $U \subset V$ such that U is a G-torsor over a variety which we denote by U/G (see [18, Remark 1.4]). We think of U/G as an approximation of the "classifying space" BG of G and abusing notation write U/G = BG. The space BG is better approximated by U/G if the codimension of $V \setminus U$ in V is large. For our purposes it suffices to assume that this codimension is at least 3 (see [2]).

Note that by the No-name Lemma, the stable rationality type of BG is uniquely determined by G.

The generic fiber $E^{\text{gen}} \longrightarrow \text{Spec}(F(BG))$ of the projection $U \longrightarrow U/G$ is called the *generic G*-torsor. The value of an invariant of G at the generic

torsor E^{gen} yields a homomorphism

$$\operatorname{Inv}^d(G) \longrightarrow H^d(F(BG)).$$

Rost proved (see [6, Part 2, Th. 3.3] or [2, Theorem 2.2]) that this map is injective, i.e., every invariant is determined by its value at the generic torsor.

We decompose the group of invariants into a direct sum of primary components:

$$\operatorname{Inv}^{d}(G) = \prod_{p \text{ prime}} \operatorname{Inv}^{d}(G, p).$$

Let K be a field extension of F. For a prime integer p, write $H^d(K, p)$ for the p-primary component of $H^d(K)$. Let v be a discrete valuation of K over F with residue field F(v). If char $(F) \neq p$, there is the residue map (see [6, Chapter 2])

$$\partial_v: H^d(K, p) \longrightarrow H^{d-1}(F(v), p).$$

An element $a \in H^d(K, p)$ is unramified with respect to v if $\partial_v(a) = 0$.

A point x of codimension 1 in BG for an algebraic group G yields a discrete valuation v_x on the function field F(BG) over F. Write $A^0(BG, H^d, p)$ for the group of all elements in $H^d(F(BG), p)$ that are unramified with respect to v_x for all points x of codimension 1 in BG. It is proved in [6, Part 1, Theorem 11.7] that the value of every invariant from $\operatorname{Inv}^d(G, p)$ at the generic G-torsor E^{gen} belongs to $A^0(BG, H^d, p)$. Moreover, we have the following theorem (see [6, Part 1, Appendix C]):

Theorem 2.4. Let G be an algebraic group over F and p a prime different from char(F). Then the evaluation of an invariant at the generic G-torsor yields an isomorphism

$$\operatorname{Inv}^d(G,p) \xrightarrow{\sim} A^0(BG,H^d,p).$$

The inverse isomorphism is defined as follows. Let E be a G-torsor over a field extension K/F and BG = U/G. We have the following canonical morphisms:

Spec
$$K = E/G \xleftarrow{f} (E \times U)/G \xrightarrow{h} U/G = BG$$
.

Note that the groups $H^d(K, p)$ for all d and all field extensions K/F form a *cycle module* in the sense of Rost (see [13]). In particular, we have flat pull-back homomorphisms

$$H^{d}(K,p) = A^{0}(\operatorname{Spec} K, H^{d}, p) \xrightarrow{f^{*}} A^{0}((E \times U)/G, H^{d}, p) \xleftarrow{h^{*}} A^{0}(BG, H^{d}, p).$$

The variety $(E \times U)/G$ is an open subscheme of the vector bundle $(E \times V)/G$ over Spec K. By the homotopy invariance property, the pull-back homomorphism

$$H^{d}(K,p) = A^{0}(\operatorname{Spec} K, H^{d}, p) \longrightarrow A^{0}((E \times V)/G, H^{d}, p)$$

is an isomorphism. Since the inclusion of $(E \times U)/G$ into $(E \times V)/G$ is a bijection on points of codimension 1 (by our assumption on the codimension of $V \setminus U$ in V), the restriction homomorphism

$$A^0((E \times V)/G, H^d, p) \longrightarrow A^0((E \times U)/G, H^d, p)$$

is an isomorphism. It follows that f^* is an isomorphism.

Let $a \in A^0(BG, H^d, p)$. The invariant $I \in \text{Inv}^d(G, p)$ defined by $I(E) = (f^*)^{-1}h^*(a)$ is the inverse image of a under the isomorphism in Theorem 2.4.

3. Decomposable invariants

The group of decomposable degree 3 invariants of a semisimple group was defined in $[10, \S1]$. We extend this definition to the class of split reductive groups.

Let G be a split reductive group over F. The \cup -product $H^2(K) \otimes K^{\times} \longrightarrow H^3(K)$ for any field extension K/F yields a pairing

$$\operatorname{Inv}^2(G)_{\operatorname{norm}} \otimes F^{\times} \longrightarrow \operatorname{Inv}^3(G)_{\operatorname{norm}}$$

The subgroup of *decomposable invariants* $Inv^3(G)_{dec}$ is the image of the pairing.

Proposition 3.1. Let G be a split reductive group over F. Then the composition

$$\operatorname{Pic}(G) \otimes F^{\times} \xrightarrow{\sim} \operatorname{Inv}^2(G)_{\operatorname{norm}} \otimes F^{\times} \longrightarrow \operatorname{Inv}^3(G)_{\operatorname{dec}}$$

is an isomorphism.

Proof. The surjectivity of the composition follows from the definition. Let H be the commutator subgroup of G. By [10, Theorem 4.2]), the composition is an isomorphism when G is replaced by H. The injectivity of the composition for G follows then from the fact that the map $\text{Pic}(G) \longrightarrow \text{Pic}(H)$ in (2.2) is an isomorphism. \Box

It follows from the proposition that $\text{Inv}^3(G)_{\text{dec}} = 0$ if Pic(G) = 0 (for example, G is semisimple simply connected) or F is algebraically closed.

We write

$$\operatorname{Inv}^{3}(G)_{\operatorname{ind}} := \operatorname{Inv}^{3}(G)_{\operatorname{norm}} / \operatorname{Inv}^{3}(G)_{\operatorname{dec}}.$$

4. UNRAMIFIED INVARIANTS

Let K/F be a field extension and p a prime integer different from char(F). We write $H^d_{nr}(K/F,p)$ for the subgroup of all elements in $H^d(K,p)$ that are unramified with respect to all discrete valuations of K over F. A field extension L/K yields a natural homomorphism $H^d(K) \longrightarrow H^d(L)$ that takes $H^d_{nr}(K/F,p)$ into $H^d_{nr}(L/F,p)$ by [6, Part 1, Proposition 8.2]. Let G be an algebraic group over F. An invariant $I \in \text{Inv}^d(G,p)$ is called

Let G be an algebraic group over F. An invariant $I \in \text{Inv}^d(G, p)$ is called unramified if for every field extension K/F and every $E \in \text{Tors}_G(K)$, we have $I(E) \in H^d_{\text{nr}}(K/F, p)$. Note that the constant invariants are always unramified. We will write $\text{Inv}^d_{\text{nr}}(G, p)$ for the subgroup of all unramified invariants in $\text{Inv}^d(G, p)$. If $f: G_1 \longrightarrow G_2$ is a group homomorphism, then the map f^* in (2.3) takes $\operatorname{Inv}_{\operatorname{nr}}^d(G_2, p)$ into $\operatorname{Inv}_{\operatorname{nr}}^d(G_1, p)$.

Proposition 4.1. Let G be an algebraic group over F. An invariant $I \in$ Inv^d(G, p) is unramified if and only if the value of I at the generic G-torsor in $H^d(F(BG), p)$ is unramified. In particular, Inv^d_{nr}(G, p) $\simeq H^d_{nr}(F(BG), p)$.

Proof. It suffices to show that the inverse of the isomorphism in Theorem 2.4 takes unramified elements to unramified invariants. Let $a \in H^d_{nr}(F(BG), p) \subset A^0(BG, H^d, p)$. The corresponding invariant $I \in \operatorname{Inv}^d(G, p)$ is defined by $I(E) = (f^*)^{-1}h^*(a)$ (see Section 2). Note that h^* takes unramified elements to unramified ones and f^* yields an isomorphism on the unramified elements as the function field of $(E \times U)/G$ is a purely transcendental extension of K. It follows that I(E) is unramified for all E, hence the invariant I is unramified.

Unramified invariants are constant along rational families of torsors. Precisely, if K/F is a purely transcendental field extension and E is a G-torsor over K, then for every invariant $I \in \operatorname{Inv}_{\operatorname{nr}}^d(G, p)$ we have

$$I(E) \in \operatorname{Im}(H^{d}(F,p) \longrightarrow H^{d}(K,p))$$

Indeed, $I(E) \in H^d_{nr}(K,p)$ which is the image of $H^d(F,p)$ in $H^d(K,p)$.

5. Abstract Chern classes

Let A be a lattice (written additively). Consider the symmetric ring $S^*(A)$ over \mathbb{Z} and the group ring $\mathbb{Z}[A]$ of A. We use the exponential notation for $\mathbb{Z}[A]$: every element can be written as a finite sum $\sum_{a \in A} n_a e^a$ with $n_a \in \mathbb{Z}$. There are the *abstract Chern classes* (see [10, 3c])

$$c_i: \mathbb{Z}[A] \longrightarrow S^i(A), \quad i \ge 0$$

satisfying in particular,

$$c_1\left(\sum_i e^{a_i}\right) = \sum_i a_i \in A$$
 and $c_2\left(\sum_i e^{a_i}\right) = \sum_{i < j} a_i a_j \in S^2(A).$

The map c_1 is a homomorphism and

$$c_2(x+y) = c_2(x) + c_2(y) + c_1(x)c_1(y)$$

for all $x, y \in \mathbb{Z}[A]$.

If A is a W-lattice for a group W acting on A, then all the c_i 's are W-equivariant. It follows that c_2 yields a map (not a homomorphism in general) of groups of W-invariant elements:

$$c_2^W : \mathbb{Z}[A]^W \longrightarrow S^2(A)^W.$$

The group $\mathbb{Z}[A]^W$ is generated by the elements $\sum e_i^a$, where the a_i 's form a W-orbit in A. It follows that the subgroup of $S^2(A)^W$ generated by the image of c_2^W is generated by $\sum_{i < j} a_i a_j$ with the a_i 's forming a W-orbit in A and aa'

for $a, a' \in A^W$. The elements of these two types can be viewed as "obvious"

elements in $S^2(A)^W$ which we call *decomposable*. Write $S^2(A)^W_{dec}$ for the subgroup of $S^2(A)^W$ generated by the decomposable elements, or equivalently, by the image of c_2^W . Set

$$S^{2}(A)_{\mathrm{ind}}^{W} := S^{2}(A)^{W} / S^{2}(A)_{\mathrm{dec}}^{W}.$$

Note that if $A^W = 0$, the map c_2^W is a homomorphism and $S^2(A)_{ind}^W$ is the cokernel of c_2^W .

Lemma 5.1. Let A_1 and A_2 be W_1 - and W_2 -lattices respectively. Then there is a canonical isomorphism

$$S^{2}(A_{1} \oplus A_{2})_{\mathrm{ind}}^{W_{1} \times W_{2}} \simeq S^{2}(A_{1})_{\mathrm{ind}}^{W_{1}} \oplus S^{2}(A_{2})_{\mathrm{ind}}^{W_{2}}.$$

Proof. We have

$$S^{2}(A_{1} \oplus A_{2})^{W_{1} \times W_{2}} \simeq S^{2}(A_{1})^{W_{1}} \oplus S^{2}(A_{2})^{W_{2}} \oplus (A_{1}^{W_{1}} \otimes A_{2}^{W_{2}})$$

and

$$\mathbb{Z}[A_1 \oplus A_2]^{W_1 \times W_2} \simeq \mathbb{Z}[A_1]^{W_1} \otimes \mathbb{Z}[A_2]^{W_2}$$

The standard formulas on the Chern classes show that $c_1(\mathbb{Z}[A_i]^{W_i}) = A_i^{W_i}$ and

$$S^{2}(A_{1} \oplus A_{2})_{\text{dec}}^{W_{1} \times W_{2}} \simeq S^{2}(A_{1})_{\text{dec}}^{W_{1}} \oplus S^{2}(A_{2})_{\text{dec}}^{W_{2}} \oplus (A_{1}^{W_{1}} \otimes A_{2}^{W_{2}}),$$

whence the result.

Lemma 5.2. Let $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ be an exact sequence of Wlattices. Suppose that W acts trivially on A and $C^W = 0$. Then

(1) The sequence

$$0 \longrightarrow \mathcal{S}^2(A) \longrightarrow \mathcal{S}^2(B)^W \longrightarrow \mathcal{S}^2(C)^W$$

is exact.

(2) The natural homomorphism $S^2(B)_{ind}^W \longrightarrow S^2(C)_{ind}^W$ is injective.

Proof. The first statement is proved in [5, Lemma 4.9]. Since W acts trivially on A, for every subgroup $W' \subset W$, we have $H^1(W', A) = 0$, hence the map $B^{W'} \longrightarrow C^{W'}$ is surjective. The group $\mathbb{Z}[C]^W$ is generated by elements of the form $\sum_i e^{c_i}$, where the c_i 's form a W-orbit in C. By the surjectivity above, applied to the stabilizer $W' \subset W$, this orbit can be lifted to a Worbit in B. Therefore, the map $\mathbb{Z}[B]^W \longrightarrow \mathbb{Z}[C]^W$ is surjective. The second statement follows from this, the first statement of the lemma and the fact that $S^2(A) = S^2(A)^W_{\operatorname{dec}} \subset S^2(B)^W_{\operatorname{dec}}.$

6. Degree 3 invariants of split reductive groups

Let G be a split reductive group over F and let H be the commutator subgroup of G. Thus, H is a split semisimple group and the factor group Q := G/H is a split torus.

Proposition 6.1. 1. The restriction maps $\operatorname{Inv}^d(G) \longrightarrow \operatorname{Inv}^d(H)$ and $\operatorname{Inv}^d(G)_{\operatorname{ind}} \longrightarrow \operatorname{Inv}^d(H)_{\operatorname{ind}}$ are injective.

2. For every prime $p \neq \operatorname{char}(F)$, the restriction map $\operatorname{Inv}_{\operatorname{nr}}^{d}(G,p) \longrightarrow \operatorname{Inv}_{\operatorname{nr}}^{d}(H,p)$ is an isomorphism.

Proof. For a field extension K/F, the map

$$j: H^1(K, H) \longrightarrow H^1(K, G)$$

is surjective as $H^1(K, Q) = 1$ and the group Q(K) acts transitively on the fibers of j. It follows that the restriction map $\operatorname{Inv}^d(G) \longrightarrow \operatorname{Inv}^d(H)$ is injective. The injectivity of $\operatorname{Inv}^d(G)_{\mathrm{ind}} \longrightarrow \operatorname{Inv}^d(H)_{\mathrm{ind}}$ follows then from Proposition 3.1.

As Q is a rational variety, the fibers of j are rational families of H-torsors. Since an unramified invariant of H must be constant on the fibers, it defines an invariant of G. This proves the second statement. \Box

Let G be a split reductive group, $T \subset G$ a split maximal torus. By [10, 3d], there is a commutative diagram

with the exact rows, where $\overline{H}_{\text{ét}}^{4,2}(BH) = \overline{H}^4(BH,\mathbb{Z}(2))$ for an algebraic group H is the reduced weight two étale motivic cohomology group (see [9, §5]). The group $\text{Inv}^3(T)_{\text{norm}}$ is trivial as T has no nontrivial torsors and $\text{CH}^2(BT) = S^2(T^*)$ by [2, Example A.5], hence the middle term in the bottom row is isomorphic to $S^2(T^*)$.

Let N be the normalizer of T in G and W = N/T the Weyl group. The group W acts naturally on BT. Moreover, if $w \in W$, the composition

$$BT \xrightarrow{w} BT \xrightarrow{s} BG_s$$

where s is the natural morphism, coincides with s. Therefore, the image of the middle vertical homomorphism in the diagram

$$\overline{H}_{\text{\'et}}^{4,2}(BG) \longrightarrow \overline{H}_{\text{\'et}}^{4,2}(BT) = S^2(T^*)$$

is contained in the subgroup $S^2(T^*)^W$ of W-invariant elements. By [10, Lemma 3.8], the image of $CH^2(BG)$ under this homomorphism is equal to $S^2(T^*)^W_{dec}$. Therefore, by diagram chase, we have a homomorphism $Inv^3(G)_{norm} \longrightarrow S^2(T^*)^W_{ind}$. The group of decomposable invariants $Inv^3(G)_{dec}$ is in the kernel of this map since $Inv^3(G)_{dec}$ vanishes over an algebraic closure of F and the group $S^2(T^*)^W_{ind}$ does not change. Therefore, we have a well-defined homomorphism

$$\alpha_G : \operatorname{Inv}^3(G)_{\operatorname{ind}} \longrightarrow S^2(T^*)^W_{\operatorname{ind}}.$$

Theorem 6.2. Let G be a split reductive group over F. Then the map α_G is injective. If G is semisimple, then α_G is an isomorphism.

Proof. The second statement is proved in [10, Theorem 3.9]. The first statement follows from Proposition 6.1(1), the commutativity of the diagram

where H is the commutator subgroup of G and S is a maximal torus of H, and the second statement applied to H.

Proposition 3.1 and Lemma 5.1 yield the following additivity property.

Corollary 6.3. Let H_1 and H_2 be two split semisimple groups. Then there is a canonical isomorphism

$$\operatorname{Inv}^{3}(H_{1} \times H_{2}) \simeq \operatorname{Inv}^{3}(H_{1}) \oplus \operatorname{Inv}^{3}(H_{2}).$$

Let H be a split semisimple group over a field F, $\pi : \widetilde{H} \longrightarrow H$ a simply connected cover, \widetilde{S} the pre-image of a split maximal torus S of H, so \widetilde{S} is a split maximal torus of \widetilde{H} . Then $S^2(S^*)$ can be viewed with respect to π as a sublattice of $S^2(\widetilde{S}^*)$ of finite index and we have the following commutative diagram

If H is simple, the group $S^2(\widetilde{S}^*)^W$ is infinite cyclic with a canonical generator q (see [6, Part 2, §7]). It follows that $S^2(S^*)^W$ is also infinite cyclic with kq a generator for a unique integer k > 0. The invariant $R \in \text{Inv}^3(\widetilde{H})_{\text{norm}}$ corresponding to the generator q is called the *Rost invariant* of \widetilde{H} . It is a generator of the cyclic group $\text{Inv}^3(\widetilde{H})$.

7. CHANGE OF GROUPS

In this section we prove the following useful property.

Proposition 7.1. Let p be a prime integer different from char(F), G an algebraic group over F, $C \subset G$ a finite central diagonalizable subgroup of order not divisible by p, H = G/C. Then the natural maps $Inv^d(H, p) \longrightarrow Inv^d(G, p)$ and $Inv^d_{nr}(H, p) \longrightarrow Inv^d(G, p)$ are isomorphisms.

Proof. Both functors in the definition of an invariant can be naturally extended to the category \mathcal{C} of F-algebras that are finite product of fields, and every invariant extends uniquely to a morphism of extended functors. If $K \longrightarrow L$ is a morphism in \mathcal{C} and M is an étale K-algebra, then $L \otimes_K M$ is also an object of the category \mathcal{C} .

For any K in \mathcal{C} we have an exact sequence

$$H^1_{\acute{e}t}(K,G) \longrightarrow H^1_{\acute{e}t}(K,H) \xrightarrow{\delta_K} H^2_{\acute{e}t}(K,C)$$

and the group $H^1_{\acute{e}t}(K, C)$ acts transitively on the fibers of the first map in the sequence.

Proof of injectivity. Let $I \in \operatorname{Inv}^d(H, p)$ be such that $f^*(I) = 0$, where $f: G \longrightarrow H$ is the canonical homomorphism. We prove that I = 0. Take any K in \mathcal{C} and $E \in \operatorname{Tors}_H(K)$. As an element of the group $H^2_{\acute{e}t}(K, C)$ is a tuple of elements in $\operatorname{Br}(K)$ of order prime to p, there is an étale K-algebra L of (constant) finite rank [L:K] prime to p such that $\delta_L(E_L) = 0$. It follows that $E_L = f_*(E')$ for some $E' \in \operatorname{Tors}_G(L)$. We have

$$I(E)_L = I(E_L) = I(f_*(E')) = f^*(I)(E') = 0.$$

Since [L:K] is prime to p, we have I(E) = 0, i.e., I = 0.

Proof of surjectivity. Let $J \in \text{Inv}^d(G, p)$. We construct an invariant $I \in \text{Inv}^d(H, p)$ such that $J = f^*(I)$. Take any K in \mathcal{C} and $E \in \text{Tors}_H(K)$. As above, choose an étale K-algebra L of finite rank prime to p such that $\delta_L(E_L) = 0$ and an element $E' \in \text{Tors}_G(L)$ with $E_L = f_*(E')$. We set

$$I(E) = \frac{1}{[L:K]} \operatorname{cor}_{L/F}(J(E')).$$

This is independent of the choice of E'. Indeed, if $E_L = f_*(E'')$ for $E'' \in \text{Tors}_G(L)$, then there exists $\nu \in H^1_{\acute{e}t}(L,C)$ with $E'' = \nu(E')$. Choose an *L*-algebra *P* of constant rank [P:L] prime to *p* such that $\nu_P = 1$. It follows that $E''_P = E'_P$ and therefore,

$$[P:L] \operatorname{cor}_{L/F}(J(E'')) = \operatorname{cor}_{P/F}(J(E''_P)) = \operatorname{cor}_{P/F}(J(E'_P)) = [P:L] \operatorname{cor}_{L/F}(J(E'))$$

Since [P:L] is prime to p, we have $\operatorname{cor}_{L/F}(J(E'')) = \operatorname{cor}_{L/F}(J(E'))$.

In order to show that the value I(E) is independent of the choice of L, for the two choices L and L', it suffices to compare the formulas for L and $LL' := L \otimes_F L'$:

$$\frac{1}{[L:K]}\operatorname{cor}_{L/F}(J(E')) = \frac{[L':K]}{[LL':K]}\operatorname{cor}_{L/F}(J(E')) = \frac{1}{[LL':K]}\operatorname{cor}_{LL'F}(J(E'_{LL'})).$$

We have constructed the invariant $I \in \text{Inv}^d(H, p)$. For any K in C and $E' \in \text{Tors}_G(K)$, by the definition of I, we have $f^*(I)(E') = I(f_*(E)) = J(E')$, hence $f^*(I) = J$. Note that if J is an unramified invariant, I is also unramified since the corestriction map preserves unramified elements by [6, Part 1, Proposition 8.6].

8. Degree 3 unramified invariants of simple groups

The following statement was proved in [11] (classical groups) and [7] (exceptional groups).

Proposition 8.1. Let H be an absolutely simple simply connected group over F and p a prime different from char(F).

1. If the Dynkin diagram of H is different from ${}^{2}A_{n}$, n odd, and ${}^{1}D_{4}$, then $\operatorname{Inv}_{nr}^{3}(H,p)_{norm} = 0$.

2. If H is split, then $Inv_{nr}^{3}(H, p)_{norm} = 0$.

Let H be a semisimple group over F, E an H-torsor over Spec(K) for a field extension K/F. The twist $H^E := \text{Aut}_H(E)$ of H by E is a semisimple group over K. The twisting argument shows that $BH^E = BH_K$ and there is a canonical isomorphism $\text{Inv}^d(H^E) \simeq \text{Inv}^d(H_K)$. If E^{gen} is a generic H-torsor, we write H^{gen} for $H^{E^{\text{gen}}}$. Let $\widetilde{H}^{\text{gen}} \longrightarrow H^{\text{gen}}$ be a simply connected cover.

Proposition 8.2. Let H be a split simple group. Then the composition

$$\operatorname{Inv}^{3}(H)_{\operatorname{ind}} \longrightarrow \operatorname{Inv}^{3}(H^{\operatorname{gen}})_{\operatorname{ind}} \longrightarrow \operatorname{Inv}^{3}(H^{\operatorname{gen}})_{\operatorname{ind}} = \operatorname{Inv}^{3}(H^{\operatorname{gen}})$$

is injective.

Proof. The statement is clear if H is a simply connected group. The case of an adjoint group H was considered in [10, Theorem 4.10]. Consider the other split semisimple groups type-by-type. It suffices to restrict to the *p*-component of $\text{Inv}^3(H)$ for a prime *p*.

Type A_{n-1} , $n \ge 2$. We have $H = \operatorname{SL}_n / \mu_m$ for an integer m dividing n. By Proposition 7.1, we may assume that $m = p^r$ for some r. It is shown in [1, Theorem 4.1] and Theorem 6.2 that

$$\operatorname{Inv}^{3}(H)_{\operatorname{ind}} \xrightarrow{\sim} S^{2}(S^{*})_{\operatorname{ind}}^{W} \hookrightarrow (\mathbb{Z}/m\mathbb{Z})q$$

On the other hand, an *H*-torsor yields a central simple algebra of degree n and exponent dividing m. A generic torsor gives an algebra with the exponent exactly m, hence $\text{Inv}^3(\widetilde{H}^{\text{gen}}) = (\mathbb{Z}/m\mathbb{Z})R$ by [6, Part 2, Theorem 11.5].

Type D_n , $n \ge 4$. We have $H = O_{2n}^+$, the special orthogonal group or $H = \operatorname{HSpin}_{2n}$, the half-spin group if n is even. It is shown in [6, Part 1, Chapter VI] in the case $\operatorname{char}(F) \ne 2$ that $\operatorname{Inv}^3(O_{2n}^+)_{\mathrm{ind}} = 0$. In general, recall that the character group of a maximal split torus S is a free group of rank n. Let x_1, x_2, \ldots, x_n be a basis for S^* such that the Weyl group W acts on the x_i 's by permutations and change of signs. The generator of $S^2(S^*)^W$ is the quadratic form $q = x_1^2 + x_2^2 + \cdots + x_n^2$. It is in $S^2(S^*)_{\mathrm{dec}}^W$ since $c_2(\sum_i e^{x_i} + e^{-x_i}) = -q$. By [10, Theorem 3.9], $\operatorname{Inv}^3(O_{2n}^+)_{\mathrm{ind}} = 0$.

Finally, assume that n is even and $H = \text{HSpin}_{2n}$, the half-spin group. It follows from [1, Theorem 5.1] and Theorem 6.2 that

$$\operatorname{Inv}^{3}(H)_{\operatorname{ind}} \xrightarrow{\sim} S^{2}(S^{*})_{\operatorname{ind}}^{W} \hookrightarrow (\mathbb{Z}/4\mathbb{Z})q$$

and $\operatorname{Inv}^{3}(H)_{\operatorname{ind}} = 0$ if n = 4. On the other hand, an *H*-torsor yields a central simple algebra of degree 2n. A generic torsor gives a nonsplit algebra. By [6, Part 2, Theorem 15.4], $\operatorname{Inv}^{3}(\widetilde{H}^{\operatorname{gen}}) = (\mathbb{Z}/4\mathbb{Z})R$ if n > 4.

Remark 8.3. The statement fails for semisimple groups that are not simple, see Example 11.2.

Theorem 8.4. Let H be a split simple group over an algebraically closed field F and p a prime integer different from char(F). Then $Inv_{nr}^{3}(H, p) = 0$.

Proof. Let $I \in Inv_{nr}^{3}(H, p)$. Note that since F is algebraically closed, every decomposable invariant is trivial.

The pull-back I of I under the composition in Proposition 8.2 is an unramified invariant. As \tilde{H}^{gen} is an inner form of \tilde{H} , by Proposition 8.1, $\tilde{I} = 0$ and hence I = 0 by Proposition 8.2 unless the Dynkin diagram of H is D_4 .

If H is a simply connected group of type D_4 , then I = 0 by Proposition 8.1. If H is a half-spin group of type D_4 , then I = 0 by [1, Theorem 5.1]. Finally assume that H is an adjoint group of type D_4 . By [10, Theorem 4.7], the group $\text{Inv}^3(H)$ is cyclic of order 2.

Assume that $I \neq 0$. The group $\widetilde{H}^{\text{gen}}$ is the spinor group of a central simple algebra A of degree 8 with and orthogonal involution σ of trivial discriminant. Consider the corresponding special orthogonal group $\widehat{H}^{\text{gen}} := O^+(A, \sigma)$ of (A, σ) . An \widehat{H}^{gen} -torsor over a field K is given by a pair (a, x), where a is an invertible σ -symmetric element in A and $x \in K^{\times}$ such that $\operatorname{Nrd}(a) = x^2$ and Nrd is the reduced norm map (see [8, 29.27]).

The canonical homomorphism $\operatorname{Inv}^3(H^{\operatorname{gen}}) \longrightarrow \operatorname{Inv}^3(\widetilde{H}^{\operatorname{gen}})$ factors through $\operatorname{Inv}^3(\widehat{H}^{\operatorname{gen}})$. By [10, §4, type D_n], the pull-back of I in $\operatorname{Inv}^3(\widehat{H}^{\operatorname{gen}})$ is the class of the invariant taking a pair (a, x) to the cup-product $(x) \cup [A] \in H^3(K)$. This invariant is ramified as it is non-constant when a runs over a subfield of A of dimension n fixed by σ element-wise, a contradiction. \Box

9. Structure of reductive groups

Let H be a split semisimple group over a field $F, S \subset H$ a split maximal torus. Write $\Lambda_r \subset S^*$ for the root lattice of H. Let $\widetilde{H} \longrightarrow H$ be a simply connected cover and let \widetilde{S} for the inverse image of S, a maximal torus in \widetilde{H} . Write Λ_w for the character group of \widetilde{S} . This is the weight lattice freely generated by the fundamental weights. We have

$$\Lambda_r \subset S^* \subset \Lambda_w.$$

The center C of H is a finite diagonalizable group with $C^* = S^* / \Lambda_r$.

Let G be a split reductive group over a field F with the commutator subgroup H. Choose a split maximal $T \subset G$ such that $T \cap H = S$. The roots of H can be uniquely lifted to T^* (to the roots of G), so the inclusion of Λ_r into S^* is lifted to the inclusion of Λ_r into T^* . The composition $\widetilde{S} \longrightarrow S \longrightarrow T$ yields a homomorphism $T^* \longrightarrow \Lambda_w$ of lattices. Thus, we have the two homomorphisms

(9.1)
$$\Lambda_r \hookrightarrow T^* \xrightarrow{J} \Lambda_w$$

with the composition the canonical embedding of Λ_r into Λ_w . The image of f in (9.1) is equal to S^* . The center Z of G is a diagonalizable group with $Z^* = T^*/\Lambda_r$. The factor group G/H = T/S is a torus Q with the character lattice $Q^* = \text{Ker}(f)$.

We would like to study all split reductive groups with the fixed commutator subgroup H.

Let H be a split semisimple group over F. Fix a split maximal torus $S \subset H$ and consider the root system of H relative to S with the root and weight lattices $\Lambda_r \subset \Lambda_w$ respectively.

Consider a category Red(H) with objects split reductive groups G over F with the commutator subgroup H. A morphism between G_1 and G_2 in this category is a group homomorphism $G_1 \longrightarrow G_2$ over F that is the identity on H.

Consider another category Lat(H) with objects the diagrams of the form

(9.2)
$$\Lambda_r \longrightarrow A \xrightarrow{f} \Lambda_w,$$

where A is a lattice, $\text{Im}(f) = S^*$ and the composition is the embedding of Λ_r into Λ_w . A morphism in Lat(R) is a morphism between the diagrams which is identity on Λ_r and Λ_w .

Let G be an object in Red(H). Write Z for the center of G. Then $T := S \cdot Z$ is a split maximal torus of G. The diagram (9.1) yields then a contravariant functor

$$\rho: \operatorname{Red}(H) \longrightarrow \operatorname{Lat}(H).$$

Proposition 9.3. For every split semisimple group H, the functor ρ is an equivalence of categories Red(H) and $Lat(H)^{op}$.

Proof. We construct a functor $\varepsilon : Lat(H) \longrightarrow Red(H)$ as follows. Given the diagram (9.2), let T be a split torus with $T^* = A$ and Z a diagonalizable subgroup of T with $Z^* = A/\Lambda_r$. We view the torus S as a subgroup of T via the dual surjective homomorphism $A \longrightarrow Im(f) = S^*$.

We embed the center C of H into Z via a homomorphism dual to the surjective composition

$$Z^* = A/\Lambda_r \longrightarrow \operatorname{Im}(f)/\Lambda_r = S^*/\Lambda_r = C^*.$$

The sequence

$$0 \longrightarrow A \xrightarrow{g} S^* \oplus (A/\Lambda_r) \xrightarrow{h} S^*/\Lambda_r \longrightarrow 0,$$

where $g(a) = (f(a), a + \Lambda_r)$ and $h(x, a + \Lambda_r) = (x - f(a)) + \Lambda_r$ is exact. It follows that the product homomorphism $S \times Z \longrightarrow T$ is surjective with the kernel C embedded into $S \times Z$ via $c \mapsto (c, c^{-1})$, i.e., $T \simeq (S \times Z)/C$.

We set $G = (H \times Z)/C$. The group Z is naturally a subgroup of G which coincides with the center of G. The torus T is a subgroup of G generated by S and Z, hence T is a split maximal torus of G. The natural sequence

$$0 \longrightarrow \operatorname{Ker}(f) \longrightarrow A/\Lambda_r \longrightarrow \operatorname{Im}(f)/\Lambda_r \longrightarrow 0$$

is exact. It follows that Z/C is a torus dual to $\operatorname{Ker}(f)$. Since $G/H \simeq Z/C$, G is a (smooth connected) reductive group with H the commutator subgroup. The functor ε , by definition, takes the diagram (9.2) to the group G. By construction, both compositions of ρ and ε are isomorphic to the identity functors.

Let H be a split semisimple group as above. We consider another category Mor(H) with objects homomorphisms $h : B \longrightarrow \Lambda_w/\Lambda_r$ with B a finitely generated abelian group, $Im(h) = S^*/\Lambda_r$ and torsion free Ker(h). Morphisms are defined in the obvious way. Consider a contravariant functor

$$\nu : \operatorname{Red}(H) \longrightarrow \operatorname{Mor}(H)$$

taking a reductive group G to the composition $Z^* \longrightarrow C^* \hookrightarrow \Lambda_w / \Lambda_r$, where Z is the center of G. The kernel of this homomorphism is the character lattice of the torus Z/C = G/H and hence has no torsion.

Proposition 9.4. For every split semisimple group H, the functor ν is an equivalence of categories Red(H) and $Mor(H)^{op}$.

Proof. We construct a functor $\lambda : Mor(H) \longrightarrow Red(H)$ as follows. Let $h : B \longrightarrow \Lambda_w/\Lambda_r$ be an object in Mor(H) and Z a diagonalizable group with $Z^* = B$. The map h yields an embedding of C into Z and the factor group Z/C is a torus. Set $G = (H \times Z)/C$ as in the proof of Proposition 9.3. The factor group G/H is isomorphic to the torus Z/C, hence G is a reductive group with the commutator subgroup H, i.e., G is an object of Red(H). Then Z is the center of G as the group $G/Z \simeq H/C$ is adjoint. We set $\lambda(h) = G$. By construction, both compositions of ρ and λ are isomorphic to the identity functors.

Remark 9.5. It follows from Propositions 9.3 and 9.4 that the categories Lat(H) and Mor(H) are equivalent. An equivalence between the categories can be described directly as follows. If $\Lambda_r \longrightarrow A \xrightarrow{f} \Lambda_w$ is an object in Lat(H), then the induced morphism $A/\Lambda_r \longrightarrow \Lambda_w/\Lambda_r$ is the corresponding object in Mor(H). Conversely, let $\mu : B \longrightarrow \Lambda_w/\Lambda_r$ be an object in Mor(H). Write A for the kernel of the homomorphism

$$h: S^* \oplus B \longrightarrow S^* / \Lambda_r$$

defined by $h(x,b) = (x + \Lambda_r) - \mu(b)$. The corresponding object

 $\Lambda_r \longrightarrow A \stackrel{f}{\longrightarrow} \Lambda_w$

in Lat(H) is defined as follows. The map f is given by the first projection followed by the inclusion of S^* into Λ_w and the inclusion $\Lambda_r \longrightarrow A$ takes x to (x, 0). Note that W acts on $S^* \oplus B$ naturally on S^* and trivially on B.

A split reductive group G is called *strict* if the center Z of G is a torus, i.e., Z^* is a lattice. An object G of Red(H) is *strict* if G is strict. If $B \longrightarrow \Lambda_w/\Lambda_r$ is the object $\nu(G)$ of Mor(H), then G is strict if and only if B is torsion-free.

A semisimple group is strict if and only if it is adjoint. A *strict envelope* of a split semisimple group H is a strict object in Red(H).

Example 9.6. The group GL_n is a strict envelope of SL_n .

Example 9.7. The object G in Red(H) corresponding to the composition $S^* \longrightarrow S^*/\Lambda_r \hookrightarrow \Lambda_w/\Lambda_r$, viewed as an object of the category Mor(H), is

strict. We call such G the *standard* strict envelope of H. By Remark 9.5, the lattice T^* is the subgroup in $S^* \oplus S^*$ consisting of all pairs (x, y) such that $x - y \in \Lambda_r$. Note that the Weyl group acts naturally on the first component of $S^* \oplus S^*$ and trivially on the second.

A strict envelope of H behaves like an "injective resolution" of H.

Lemma 9.8. Let G_1 and G_2 be two objects in Red(H). If G_2 is strict, then there is a morphism $G_1 \longrightarrow G_2$ in Red(H).

Proof. Let $h_i : B_i \longrightarrow \Lambda_w / \Lambda_r$ be the object $\nu(G_i)$ in Mor(H) for i = 1, 2. By assumption, B_2 is a free \mathbb{Z} -module. Therefore, there is a group homomorphism $g : B_2 \longrightarrow B_1$ such that $g \circ h_1 = h_2$, i.e., g is a morphism in Mor(H). By Proposition 9.4, there is a morphism $G_1 \longrightarrow G_2$ in Red(H) corresponding to g.

10. Reductive invariants

Let H be a split semisimple group and G is a reductive group with the commutator subgroup H, i.e., G is an object in Red(H). By Proposition 6.1, the map $Inv^d(G) \longrightarrow Inv^d(H)$ is injective. We view $Inv^d(G)$ as a subgroup of $Inv^d(H)$. If G' is a strict envelope of H, then it follows from Lemma 9.8 that $Inv^d(G') \subset Inv^d(G)$. Therefore, the subgroup $Inv^d(G')$ is independent of the choice of the strict resolution G' of G. We write $Inv^d_{red}(H)$ for this subgroup and call the invariants in this group the *reductive* invariants. By Proposition 6.1, for any prime $p \neq char(F)$ we have

(10.1)
$$\operatorname{Inv}_{\mathrm{nr}}^{d}(H,p) \subset \operatorname{Inv}_{\mathrm{red}}^{d}(H,p) \subset \operatorname{Inv}^{d}(H,p).$$

Let A be a lattice and $q \in S^2(A)$. We can view q as an integral quadratic form on the lattice \widehat{A} dual to A. The *polar* bilinear form h of q is the image of q under the polar map pol: $S^2(A) \longrightarrow A \otimes A$, $aa' \mapsto a \otimes a' + a' \otimes a$. The polar form h is symmetric and *even*, i.e., $h(x, x) \in 2\mathbb{Z}$ for all $x \in \widehat{A}$. Conversely, if $h \in A \otimes A$ is a symmetric even bilinear form, then $q(x) = \frac{1}{2}h(x, x)$ is an integral quadratic form with the polar form h.

Let $\{\alpha_1, \alpha_2 \dots \alpha_n\}$ be a set of simple roots of an irreducible root system, $\{w_1, w_2, \dots, w_n\}$ the corresponding fundamental weights generating the weight lattice Λ_w and W the Weyl group. Let d_i be the square of the length of the co-root α_i^{\vee} . (We assume that the length of the shortest co-root is 1.) Consider the bilinear form

$$h = \sum_{i=1}^{n} w_i \otimes d_i \alpha_i = \sum_{i,j} w_i \otimes d_i c_{ij} w_j \in \Lambda_w \otimes \Lambda_w,$$

where (c_{ij}) is the Cartan matrix (see [4, Chapitre VI]). The matrix $(d_i c_{ij})$ is symmetric with even diagonal terms, hence h is a symmetric even bilinear

form. The corresponding quadratic form

$$q = \frac{1}{2} \sum_{i=1}^{n} d_i w_i \alpha_i \in \mathcal{S}^2(\Lambda_w)$$

is W-invariant by [10, Lemma 3.2]. It follows that the polar form h of q is also W-invariant.

Consider the three embeddings $i_1, i_2, j = i_1 + i_2 : \Lambda_w \longrightarrow \Lambda_w^2 := \Lambda_w \oplus \Lambda_w$ given by $x \mapsto (x, 0), (0, x), (x, x)$ respectively, and the two quadratic forms $q^{(1)}, q^{(2)}$ that are the images of q under the maps $S^2(i_1), S^2(i_2) : S^2(\Lambda_w) \longrightarrow S^2(\Lambda_w^2)$ respectively. We let W act on Λ_w^2 naturally on the first summand and trivially on the second.

Let A be the sublattice of Λ_w^2 of all pairs (x, y) such that $x - y \in \Lambda_r$. Note that $\operatorname{Im}(j) \subset A$. In particular, $S^2(j)(q) \in S^2(A)$. Moreover, since $h \in (\Lambda_r \otimes \Lambda_w) \cap (\Lambda_w \otimes \Lambda_r)$ by [9, Lemma 2.1], we have $(i_k \otimes j)(h) \in A \otimes A$ and $(j \otimes i_k)(h) \in A \otimes A$ for k = 1, 2.

Write $m : \Lambda_w^2 \otimes \Lambda_w^2 \longrightarrow S^2(\Lambda_w^2)$ for the canonical homomorphism. We have $m(i_k \otimes j)(h) \in S^2(A)$ and $m(j \otimes i_k)(h) \in S^2(A)$ for k = 1, 2.

Proposition 10.2. We have $q^{(1)} - q^{(2)} \in S^2(A)^W$ with the polar form $h^{(1)} - h^{(2)} = (j \otimes i_1)(h) - (i_2 \otimes j)(h) \in A \otimes A$.

Proof. By construction, $q^{(1)} - q^{(2)}$ is W-invariant. We have

$$q^{(1)} - q^{(2)} = (q^{(1)} + q^{(2)}) - 2q^{(2)}$$

= $q^{(1)} + q^{(2)} - m(i_2 \otimes i_2)(h)$
= $q^{(1)} + q^{(2)} + m(i_1 \otimes i_2)(h) - m(j \otimes i_2)(h)$
= $S^2(j)(q) - m(j \otimes i_2)(h) \in S^2(A).$

The second statement follows from the equality $j = i_1 + i_2$.

Corollary 10.3. The image of $h^{(1)} - h^{(2)}$ under the map

$$A \otimes A \xrightarrow{p_1 \otimes 1} \Lambda_w \otimes A,$$

where p_1 is the first projection, coincides with the image of h under the natural map

$$\Lambda_w \otimes \Lambda_r \xrightarrow{1 \otimes i_1} \Lambda_w \otimes A.$$

Proof. The statement follows from Proposition 10.2 and the equalities $p_1 \circ j = p_1 \circ i_1 = 1$ and $p_1 \circ i_2 = 0$.

Let \widetilde{H} be a split simply connected cover of H with a split maximal torus \widetilde{S} , thus $\widetilde{S}^* = \Lambda_w$. Consider the standard strict envelope \widetilde{G} of \widetilde{H} (see Example 9.7). The character group \widetilde{T}^* of the maximal torus \widetilde{T} of \widetilde{G} coincides with the group A as above. If \widetilde{H} is simple, by Proposition 9.7, $\overline{q} := q^{(1)} - q^{(2)} \in S^2(\widetilde{T}^*)^W$. The form \overline{q} maps to q under the natural map $S^2(\widetilde{T}^*)^W \longrightarrow S^2(\widetilde{S}^*)^W = S^2(\Lambda_w)^W$. In the general case,

$$\widetilde{H} = \widetilde{H}_1 \times \widetilde{H}_2 \times \cdots \times \widetilde{H}_s,$$

with \widetilde{H}_j the simple simply connected components of \widetilde{H} . The components define a basis q_1, q_2, \ldots, q_s of $S^2(\widetilde{H}^*)^W$. Every q_j has a lift $\overline{q}_j \in S^2(\widetilde{T}^*)^W$ as above. Lemma 5.2 then yields the following statement.

Corollary 10.4. The map $S^2(\widetilde{T}^*)^W \longrightarrow S^2(\widetilde{S}^*)^W$ is surjective and $S^2(\widetilde{T}^*)^W_{\text{ind}} \longrightarrow S^2(\widetilde{S}^*)^W_{\text{ind}}$ is an isomorphism. In particular, $S^2(\widetilde{T}^*)^W_{\text{ind}}$ is generated by the classes of the forms \overline{q}_j .

We will write α_{ij} for the simple roots of the *j*-th component and w_{ij} for the corresponding fundamental weights, etc.

Let $\widetilde{C} \subset \widetilde{H}$ be a central subgroup and set $G := \widetilde{G}/\widetilde{C}$ and $T := \widetilde{T}/\widetilde{C}$. The character group \widetilde{C}^* is a factor group of Λ_w/Λ_r . Consider the composition

(10.5)
$$S^2(\widetilde{T}^*) \xrightarrow{\text{pol}} \widetilde{T}^* \otimes \widetilde{T}^* \xrightarrow{p_1} \Lambda_w \otimes \widetilde{T}^* \longrightarrow \widetilde{C}^* \otimes \widetilde{T}^*.$$

Note that $S^2(T^*)$ is contained in the kernel of the composition.

By Corollary 10.3, the image of q_j under this composition is equal to

$$\sum_{i,j} d_{ij} \overline{w}_{ij} \otimes (\alpha_{ij}, 0),$$

where \overline{x} denotes the image of an $x \in \widetilde{T}^*$ in \widetilde{C}^* .

Let $\widetilde{T}_j \subset \widetilde{T}$ be a maximal torus of the *j*-th simple component of \widetilde{G} , so that $\widetilde{T} = \widetilde{T}_1 \times \cdots \times \widetilde{T}_s$. Let \widetilde{C}_j be the image of the projection $\widetilde{C} \longrightarrow \widetilde{T}_j$. Then \widetilde{C}_j^* can be viewed as a subgroup of \widetilde{C}^* and $\overline{w}_{ij} \in \widetilde{C}_j^*$.

Proposition 10.6. Let $q := \sum_{j=1}^{s} k_j \bar{q}_j \in S^2(\widetilde{T})$ be a linear combination with integer coefficients k_j . If q has trivial image under the composition (10.5) (for example, if $q \in S^2(T^*)$), then the order of \overline{w}_{ij} in \widetilde{C}_j^* divides $k_j d_{ij}$ for all i and j.

Proof. We have $\sum_{i,j} k_j d_{ij} \overline{w}_{ij} \otimes (\alpha_{ij}, 0) = 0$ in $\widetilde{C}^* \otimes \widetilde{T}^*$. Note that the elements $(\alpha_{ij}, 0)$ form part of a basis of \widetilde{T}^* (with the complement (w_{ij}, w_{ij})). It follows that $k_j d_{ij} \overline{w}_{ij} = 0$ in \widetilde{C}_j^* for all i and j, whence the result.

11. Degree 3 unramified invariants of reductive groups

We assume that the base field F is algebraically closed.

Proposition 11.1. Let H be a (split) semisimple group over F with the components of the Dynkin diagram of types A_m for some m or E_6 . Suppose that E_6^{sc} does not split off H as a direct factor. Then $\operatorname{Inv}_{red}^3(H, p) = \operatorname{Inv}_{nr}^3(H, p) = 0$ for all odd primes $p \neq \operatorname{char}(F)$.

Proof. Let $\widetilde{H} \longrightarrow H$ be a simply connected cover with kernel \widetilde{C} and \widetilde{G} be the standard strict envelope of \widetilde{H} . By Proposition 7.1, replacing \widetilde{C} if necessary, we may assume that \widetilde{C}^* is a *p*-group. Set $G := \widetilde{G}/\widetilde{C}$. We choose split maximal tori $S \subset H, \widetilde{S} \subset \widetilde{H}, T \subset G, \widetilde{T} \subset \widetilde{G}$ as in Section 10. The group $Q := G/H = \widetilde{G}/\widetilde{H}$ is a torus.

By Proposition 6.1, it suffices to prove that $\text{Inv}^3(G, p) = 0$. By Theorem 6.2, we are reduced to proving that $S^2(T^*)^W_{\text{ind}}\{p\} = 0$.

By Lemma 5.2(1) and Corollary 10.4, the rows of the diagram

are exact.

Let $\alpha \in S^2(T^*)^W_{ind}\{p\}$. Since p is odd, it sufficient to show that $2\alpha = 0$. The element α lifts to a form $q \in S^2(T^*)^W$. Recall that $S^2(\tilde{S}^*)^W$ is a free abelian group with basis $\{q_j\}$. Hence the image of q in $S^2(\tilde{S}^*)^W$ is equal to $\sum_{j=1}^s k_j q_j$ for some $k_j \in \mathbb{Z}$. Write \bar{q} for $\sum_{j=1}^s k_j \bar{q}_j \in S^2(\tilde{T}^*)^W$. Therefore, in $S^2(\tilde{T}^*)^W$ we have $q = \bar{q} + t$ for some $t \in S^2(Q^*)$.

Note that since the Dynkin diagram of H is simply laced all the integer d_{ij} are equal to 1 for all i and j. The images of q and t are trivial under (10.5), hence so is \bar{q} . By Proposition 10.6, the order of \overline{w}_{ij} in \widetilde{C}_j^* divides k_j for all i and j.

We claim that the class of $2k_jq_j$ is contained in $S^2(S^*)_{dec}^W$ for all j.

Case 1: The *j*-th simple component \widetilde{G}_j is of type A_m for some *m*, i.e, $\widetilde{H}_j = \mathrm{SL}_{m+1}$. The center of \widetilde{H}_j is μ_{m+1} , hence $\widetilde{C}_j = \mu_{p^r}$ for some *r*. The element \overline{w}_{1j} is a generator of $\widetilde{C}^* = \mathbb{Z}/p^r\mathbb{Z}$, hence the order of \overline{w}_{1j} is equal to p^r . Therefore, k_j is divisible by p^k . As *p* is odd, by [1, 4.2], the form $p^k q_j$ and hence $k_j q_j$ belongs to $S^2(S_j^*)_{\mathrm{dec}}^{W_j}$. Taking the image of $k_j q_j$ under the homomorphism $S_j^* \longrightarrow S^*$, we see that $k_j q_j \in S^2(S^*)_{\mathrm{dec}}^W$.

Case 2: The *j*-th simple component H_j is of type E_6^{sc} . The center of H_j is μ_3 , hence \tilde{C}_j is a subgroup of μ_3 . If $\tilde{C}_j = 1$, then \tilde{H}_j is a direct factor of H and hence E_6^{sc} is a direct factor of H. This is impossible by the assumption. Therefore, $\tilde{C}_j = \mu_3$ (and hence p = 3). The element \overline{w}_{1j} is a generator of $\tilde{C}^* = \mathbb{Z}/3\mathbb{Z}$, hence k_j is divisible by 3. By [10, §4, type E_6], the form $6q_j$ and hence $2k_jq_j$ belongs to $S^2(S_j^*)_{dec}^{W_j}$. Taking the image of $2k_jq_j$ under the homomorphism $S_j^* \longrightarrow S^*$, we see that $2k_jq_j \in S^2(S^*)_{dec}^W$. The claim is proved.

It follows from the claim that 2α belongs to the kernel of the map $S^2(T^*)^W_{\text{ind}} \longrightarrow S^2(S^*)^W_{\text{ind}}$. By Lemma 5.2, this map is injective, hence $2\alpha = 0$.

Example 11.2. The statement of the proposition is wrong if p = 2. Consider the group $H := (\operatorname{SL}_2)^n / \tilde{C}$, where $\tilde{C} \subset (\mu_2)^n$ consists of all *n*-tuples with trivial product. Then the group $G := (\operatorname{GL}_2)^n / \tilde{C}$ is a strict envelope of H. A G-torsor over a field K is a tuple (Q_1, Q_2, \ldots, Q_n) of quaternion algebras over K such that $[Q_1] + [Q_2] + \cdots + [Q_n] = 0$ in $\operatorname{Br}(K)$. Let φ_i be the reduced norm quadratic form of Q_i . The sum φ of the forms φ_i in the Witt ring W(K) of K belongs to the cube of the fundamental ideal of W(K). The Arason invariant of φ in $H^3(K)$ yields a degree 3 invariant I of G (see [8, page 431]). The restriction Jof I to H belongs to $\operatorname{Inv}_{\mathrm{red}}^3(H) = \operatorname{Im}(\operatorname{Inv}^3(G) \longrightarrow \operatorname{Inv}^3(H))$, and I and J are nontrivial if $n \geq 3$. Note that the invariants I and J are ramified. Moreover, the map $\operatorname{Inv}^3(G) \longrightarrow \operatorname{Inv}^3(\tilde{H}^{\text{gen}})$ factors through $\operatorname{Inv}^3(\tilde{G}^{\text{gen}})$, where \tilde{G}^{gen} is the product of $\operatorname{GL}_1(Q_i^{\text{gen}})$. The group $\operatorname{Inv}^3(\tilde{G}^{\text{gen}})$ is trivial since $\operatorname{GL}_1(Q_i^{\text{gen}})$ have only trivial torsors. It follows that J belong to the kernel of

$$\operatorname{Inv}^{3}(H) \longrightarrow \operatorname{Inv}^{3}(\widetilde{H}^{\operatorname{gen}})$$

hence the map in Proposition 8.2 is not injective.

Theorem 11.3. Let G be a (split) reductive group over an algebraically closed field F. Then $\operatorname{Inv}_{nr}^{3}(G,p) = 0$ for every odd prime $p \neq \operatorname{char}(F)$.

Proof. Let H be the commutator subgroup of G. By Proposition 6.1(2), it suffices to prove that $\operatorname{Inv}_{\operatorname{nr}}^3(H,p) = 0$. Let $\widetilde{H} \longrightarrow H$ be a simply connected cover with kernel \widetilde{C} . Let $\widetilde{C}' \subset \widetilde{C}$ be a subgroup such that $(\widetilde{C}/\widetilde{C}')^*$ is the 2-component of \widetilde{C}^* . Since p is odd, by Proposition 7.1, $\operatorname{Inv}_{\operatorname{nr}}^3(H,p) = \operatorname{Inv}_{\operatorname{nr}}^3(\widetilde{H}/C',p)$. Replacing H by $\widetilde{H}/\widetilde{C}'$, we may assume that \widetilde{C}^* has odd order.

Write \widetilde{H} as a product of simple simply connected groups \widetilde{H}_j and let \widetilde{C}_j be the center of \widetilde{H}_j . If the order of \widetilde{C}_j^* is a power of 2, the projection $\widetilde{C} \longrightarrow \widetilde{C}_j$ is trivial and therefore, the simply connected group \widetilde{H}_j splits off H as a direct factor. Thus, the simply connected simple groups of types B_n , C_n , D_n , E_7 , E_8 , F_4 and G_2 split off H, i.e., $H = H_1 \times H_2$, where H_1 is simply connected and H_2 satisfies the conditions of Proposition 11.1. By the additivity property Corollary 6.3, Propositions 8.1(2) and 11.1, we have $\operatorname{Inv}_{nr}^3(H, p) = 0$.

References

- [1] H. Bermudez and A. Ruozzi, Degree 3 cohomological invariants of groups that are neither simply connected nor adjoint, Preprint (2013).
- [2] S. Blinstein and A. Merkurjev, Cohomological invariants of algebraic tori, Algebra Number Theory 7 (2013), no. 7, 1643–1684.
- [3] F. A. Bogomolov, The Brauer group of quotient spaces of linear representations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 485–516, 688.
- [4] N. Bourbaki, Éléments de mathématique, Masson, Paris, 1981, Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6].
- [5] H. Esnault, B. Kahn, M. Levine, and E. Viehweg, The Arason invariant and mod 2 algebraic cycles, J. Amer. Math. Soc. 11 (1998), no. 1, 73–118.
- [6] R. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological invariants in Galois cohomology, American Mathematical Society, Providence, RI, 2003.

- [7] S. Garibaldi, Unramified cohomology of classifying varieties for exceptional simply connected groups, Trans. Amer. Math. Soc. **358** (2006), no. 1, 359–371 (electronic).
- [8] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, *The book of involutions*, American Mathematical Society, Providence, RI, 1998, With a preface in French by J. Tits.
- [9] A. Merkurjev, Weight two motivic cohomology of classifying spaces for semisimple groups, Preprint, http://www.math.ucla.edu/~merkurev/papers/ssinv.pdf (2013).
- [10] A. Merkurjev, Degree three cohomological invariants of semisimple groups, To appear in JEMS.
- [11] A. Merkurjev, Unramified cohomology of classifying varieties for classical simply connected groups, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 3, 445–476.
- [12] E. Peyre, Unramified cohomology of degree 3 and Noether's problem, Invent. Math. 171 (2008), no. 1, 191–225.
- [13] M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319–393 (electronic).
- [14] D. J. Saltman, Noether's problem over an algebraically closed field, Invent. Math. 77 (1984), no. 1, 71–84.
- [15] D. J. Saltman, Brauer groups of invariant fields, geometrically negligible classes, an equivariant Chow group, and unramified H³, K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Amer. Math. Soc., Providence, RI, 1995, pp. 189–246.
- [16] D. J. Saltman, H³ and generic matrices, J. Algebra **195** (1997), no. 2, 387–422.
- [17] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80.
- [18] B. Totaro, The Chow ring of a classifying space, Algebraic K-theory (Seattle, WA, 1997), Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 249–281.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1555, USA

E-mail address: merkurev@math.ucla.edu