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A. MERKURJEV

Abstract. We prove that if G is a reductive group over an algebraically
closed field F , then for a prime integer p 6= char(F ), the group of unramified
Galois cohomologyH3

nr
(F (BG),Qp/Zp(2)) is trivial for the classifying space

BG of G if p is odd or the commutator subgroup of G is simple.

1. Introduction

The notion of a cohomological invariant of an algebraic group was introduced
by J-P. Serre in [6]. Let G be an algebraic group over a field F and M a
Galois module over F . A degree d invariant of G assigns to every G-torsor
over a field extension K over F an element in the Galois cohomology group
Hd(K,M), functorially in K. In this paper we consider the cohomology groups
Hd(K) = Hd(K,Q/Z(d−1)), where Q/Z(d−1) is defined as the Galois module
of (d−1)-twisted roots of unity. The p-part of this module requires special care
if p = char(F ) > 0. All degree d invariants of G form an abelian group Invd(G).
An invariant is normalized if it takes a trivial torsor to the trivial cohomology
class. The group Invd(G) is the direct sum of the subgroup Invd(G)norm of
normalized invariants and the subgroup of constant invariants isomorphic to
Hd(F ).

The group Invd(G)norm for small values of d is well understood. The group
Inv1(G)norm is trivial if G is connected. There is a canonical isomorphism
Inv2(G)norm ≃ Pic(G) for every reductive group G (see [2, Theorem 2.4]).
M. Rost proved (see [6, Part 2]) that if G is simple simply connected then the
group Inv3(G)norm is cyclic of finite order with a canonical generator called the
Rost invariant. The group Inv3(G)norm for an arbitrary semisimple group G
was studied in [10].

For a prime integer p, write Hd(K, p) and Invd(G, p) for the p-primary com-
ponents of Hd(K) and Invd(G) respectively. If v is a discrete valuation of
a field extension K/F trivial on F with residue field F (v), then there is de-
fined the residue homomorphism ∂v : Hd(K, p) −→ Hd−1(F (v), p) for every
p 6= char(F ). An element a ∈ Hd(K, p) is unramified with respect to v if
∂v(a) = 0. We write Hd

nr(K, p) for the subgroup of all elements unramified
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with respect to every discrete valuation ofK over F . An invariant in Invd(G, p)
is called unramified if all values of the invariant over every K/F belongs to
Hd

nr(K, p). We write Invdnr(G, p) for the group of all unramified invariants.
Let V be a generically free representation of G. There is a nonempty G-

invariant open subscheme U ⊂ V and a versal G-torsor U −→ X for a variety
X over F . We think of X as an approximation of the classifying space BG of
G. The larger the codimension of V \U in V the better X approximates BG.
Abusing notation, we will write BG for X . Note that the stable birational
type of BG is well defined.

The generic fiber of the versal G-torsor is the generic G-torsor over the
function field F (BG) of the classifying space. A theorem of Rost and Totaro
asserts that the evaluation at the generic G-torsor yields an isomorphism be-
tween Invd(G, p) and the subgroup of Hd(F (BG), p) of all elements unramified
with respect to the discrete valuations associated with all irreducible divisors
of BG. This isomorphism restricts to an isomorphism

Invdnr(G, p)
∼
−→ Hd

nr(F (BG), p).

A classical question is whether the classifying space BG of an algebraic
group G is stably rational. To disprove stable rationality of BG it suffices
to show that the map Hd(F, p) −→ Hd

nr(F (BG), p) is not surjective for some
d and p or, equivalently, to find a non-constant unramified invariant of G.
For example, D. Saltman disproved in [14] the Noether Conjecture (that V/G
is stably rational for a faithful representation V of a finite group G over an
algebraically closed field) by proving that H2

nr(F (BG), p) 6= H2(F, p) for some
G and p, i.e., by establishing a non-constant degree 2 invariant of G. E. Peyre
found new examples of finite groups with non-constant unramified degree 3
invariants in [12] . Degree 3 unramified invariants of simply connected groups
(over arbitrary fields) were studied in [11] (classical groups) and [7] (exceptional
groups).

It is still a wide open problem whether there exists a connected algebraic
group G over an algebraically closed field F with the classifying space BG
that is not stably rational. Connected groups have no non-trivial degree 1
invariants. F. Bogomolov proved in [3, Lemma 5.7] (see also [2, Theorem 5.10])
that connected groups have no non-trivial degree 2 unramified invariants. In
[15] and [16], D. Saltman proved that the projective linear group PGLn has no
non-trivial degree 3 unramified invariants.

In the present paper, we study unramified degree 3 invariants of an ar-
bitrary (connected) reductive group G over an algebraically closed field, or
equivalently, the unramified elements in H3(F (BG)). The language of invari-
ants seems easier to work with. The main result is the following theorem (see
Theorems 8.4 and 11.3):

Theorem. Let G be a split reductive group over an algebraically closed field
F and p a prime integer different from char(F ). Then

Inv3nr(G, p) = H3
nr(F (BG), p) = 0
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if p is odd or the commutator subgroup of G is (almost) simple.

Let H be the commutator subgroup of a split reductive group G. We have
Inv3

nr(G, p) = Inv3
nr(H, p) (see Proposition 6.1). If H is a simple group, we

compare the group Inv3(H) with the group Inv3(H̃gen), where H̃gen is the sim-
ply connected cover of H twisted by a generic H-torsor, and use our knowledge
of the unramified degree 3 invariants in the simply connected case. The key

statement is the injectivity of the homomorphism Inv3(H) −→ Inv3(H̃gen) (see
Section 8).

In general, when H is semisimple but not necessarily simple, we consider an
embedding of H into a reductive group G′ as the commutator subgroup. Then
Inv3(G′) is identified with a subgroup of Inv3(H). If G′ is strict, i.e., the center
of G′ is a torus, this subgroup is the smallest possible and is independent of
the choice of G′. We write Inv3

red(H) for this subgroup. It satisfies

Inv3
nr(H, p) ⊂ Inv3red(H, p) ⊂ Inv3(H, p)

for every prime p 6= char(F ). The group Inv3
red(H, p) is easier to control than

Inv3
nr(H, p). We show that Inv3

red(H, p) = 0 which implies that Inv3nr(H, p) is
also trivial.

Acknowledgements. The author thanks J-P. Tignol for valuable remarks
and the Max Planck Institute (Bonn) for hospitality.

2. Basic definitions and facts

Let F be a field. If d ≥ 1, we write Hd(F ) for the Galois cohomology

group Hd(F,Q/Z(d − 1)), with Q/Z(d − 1) the direct sum of colim
n

µ
⊗(d−1)
n ,

where µn is the group of roots of unity of degree n, and the p-component if
p = char(F ) > 0 (see [6, Part 2, Appendix A]). In particular, H1(F ) is the
group of (continuous) characters of the absolute Galois group Gal(Fsep/F ) of
F and H2(F ) is the Brauer group Br(F ). We view Hd as a functor from the
category FieldsF of field extensions of F to the category of abelian groups (or
the category Sets of sets).

Let G be a (linear) algebraic group over a field F . The notion of an invariant
of G was defined in [6] as follows. Consider the functor

TorsG : FieldsF −→ Sets

taking a field K to the set TorsG(K) := H1(K,G) of isomorphism classes of
(right) G-torsors over SpecK. A degree d cohomological invariant of G is then
a morphism of functors

TorsG −→ Hd,

i.e., a functorial in K collection of maps of sets TorsG(K) −→ Hd(K) for all
field extensions K/F . We denote the group of such invariants by Invd(G).

An invariant I ∈ Invd(G) is called normalized if I(E) = 0 for a trivial G-
torsor E. The normalized invariants form a subgroup Invd(G)norm of Invd(G)
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and there is a natural isomorphism

Invd(G) ≃ Hd(F )⊕ Invd(G)norm.

Example 2.1. Let G be a (connected) reductive group over F . It is shown in
[2, Theorem 2.4] that there is an isomorphism

βG : Pic(G)
∼
−→ Inv2(G)norm.

Let G be a split reductive group and H the commutator subgroup of G. Let

π : H̃ −→ H be a simply connected cover with kernel C̃. There are canonical
isomorphisms (see [17, §6])

(2.2) Pic(G)
∼
−→ Pic(H) ≃ C̃∗ := Hom(C̃,Gm).

Take any character χ ∈ C̃∗ and consider the push-out diagram

1 // C̃

χ

��

// H̃
π

//

��

H // 1

1 // Gm
// H ′ // H // 1.

The isomorphism C̃∗ ≃ Pic(H) takes a character χ to the class the line bundle
Lχ on H given by the Gm-torsor H

′ −→ H in the bottom row of the diagram.
For a field extension K/F and an H-torsor E over K, the value of the invariant
βH(Lχ) is equal to δ([E]) ∈ H2(K,Gm) = Br(K), where [E] is the class of E
in H1(K,H) and δ : H1(K,H) −→ H2(K,Gm) is the connecting map for the
bottom exact sequence in the diagram.

If f : G1 −→ G2 is a homomorphism of algebraic groups over F and E1

is a G1-torsor over a field extension K/F , then E2 := (E1 × G2)/G1 is the
G2-torsor over K which we denote by f∗(E1). If I is a degree d invariant of
G2, we define an invariant f ∗(I) of G1 by f ∗(I)(E1) := I(f∗(E1)). Thus, we
have a group homomorphism

(2.3) f ∗ : Invd(G2) −→ Invd(G1)

taking normalized invariants to the normalized ones.
Let G be an algebraic group over a field F and let V be a generically free

representation of G. There is a nonempty G-invariant open subscheme U ⊂ V
such that U is a G-torsor over a variety which we denote by U/G (see [18,
Remark 1.4]). We think of U/G as an approximation of the “classifying space”
BG of G and abusing notation write U/G = BG. The space BG is better
approximated by U/G if the codimension of V \ U in V is large. For our
purposes it suffices to assume that this codimension is at least 3 (see [2]).

Note that by the No-name Lemma, the stable rationality type of BG is
uniquely determined by G.

The generic fiber Egen −→ Spec(F (BG)) of the projection U −→ U/G is
called the generic G-torsor. The value of an invariant of G at the generic
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torsor Egen yields a homomorphism

Invd(G) −→ Hd(F (BG)).

Rost proved (see [6, Part 2, Th. 3.3] or [2, Theorem 2.2]) that this map is
injective, i.e., every invariant is determined by its value at the generic torsor.

We decompose the group of invariants into a direct sum of primary compo-
nents:

Invd(G) =
∐

p prime

Invd(G, p).

Let K be a field extension of F . For a prime integer p, write Hd(K, p) for
the p-primary component of Hd(K). Let v be a discrete valuation of K over
F with residue field F (v). If char(F ) 6= p, there is the residue map (see [6,
Chapter 2])

∂v : H
d(K, p) −→ Hd−1(F (v), p).

An element a ∈ Hd(K, p) is unramified with respect to v if ∂v(a) = 0.
A point x of codimension 1 in BG for an algebraic group G yields a discrete

valuation vx on the function field F (BG) over F . Write A0(BG,Hd, p) for the
group of all elements in Hd(F (BG), p) that are unramified with respect to vx
for all points x of codimension 1 in BG. It is proved in [6, Part 1, Theorem
11.7] that the value of every invariant from Invd(G, p) at the generic G-torsor
Egen belongs to A0(BG,Hd, p). Moreover, we have the following theorem (see
[6, Part 1, Appendix C]):

Theorem 2.4. Let G be an algebraic group over F and p a prime different
from char(F ). Then the evaluation of an invariant at the generic G-torsor
yields an isomorphism

Invd(G, p)
∼
−→ A0(BG,Hd, p).

The inverse isomorphism is defined as follows. Let E be a G-torsor over
a field extension K/F and BG = U/G. We have the following canonical
morphisms:

SpecK = E/G
f
←−− (E × U)/G

h
−−→ U/G = BG.

Note that the groups Hd(K, p) for all d and all field extensions K/F form
a cycle module in the sense of Rost (see [13]). In particular, we have flat
pull-back homomorphisms

Hd(K, p) = A0(SpecK,Hd, p)
f∗

−−→ A0((E × U)/G,Hd, p)
h∗

←−− A0(BG,Hd, p).

The variety (E×U)/G is an open subscheme of the vector bundle (E×V )/G
over SpecK. By the homotopy invariance property, the pull-back homomor-
phism

Hd(K, p) = A0(SpecK,Hd, p) −→ A0((E × V )/G,Hd, p)
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is an isomorphism. Since the inclusion of (E × U)/G into (E × V )/G is a
bijection on points of codimension 1 (by our assumption on the codimension
of V \ U in V ), the restriction homomorphism

A0((E × V )/G,Hd, p) −→ A0((E × U)/G,Hd, p)

is an isomorphism. It follows that f ∗ is an isomorphism.
Let a ∈ A0(BG,Hd, p). The invariant I ∈ Invd(G, p) defined by I(E) =

(f ∗)−1h∗(a) is the inverse image of a under the isomorphism in Theorem 2.4.

3. Decomposable invariants

The group of decomposable degree 3 invariants of a semisimple group was
defined in [10, §1]. We extend this definition to the class of split reductive
groups.

Let G be a split reductive group over F . The ∪-product H2(K)⊗K× −→
H3(K) for any field extension K/F yields a pairing

Inv2(G)norm ⊗ F× −→ Inv3(G)norm.

The subgroup of decomposable invariants Inv3(G)dec is the image of the pairing.

Proposition 3.1. Let G be a split reductive group over F . Then the compo-
sition

Pic(G)⊗ F× ∼
−→ Inv2(G)norm ⊗ F× −→ Inv3(G)dec

is an isomorphism.

Proof. The surjectivity of the composition follows from the definition. Let H
be the commutator subgroup of G. By [10, Theorem 4.2]), the composition is
an isomorphism when G is replaced by H . The injectivity of the composition
for G follows then from the fact that the map Pic(G) −→ Pic(H) in (2.2) is
an isomorphism. �

It follows from the proposition that Inv3(G)dec = 0 if Pic(G) = 0 (for exam-
ple, G is semisimple simply connected) or F is algebraically closed.

We write
Inv3(G)ind := Inv3(G)norm/ Inv

3(G)dec.

4. Unramified invariants

Let K/F be a field extension and p a prime integer different from char(F ).
We write Hd

nr(K/F, p) for the subgroup of all elements in Hd(K, p) that are
unramified with respect to all discrete valuations of K over F . A field ex-
tension L/K yields a natural homomorphism Hd(K) −→ Hd(L) that takes
Hd

nr(K/F, p) into Hd
nr(L/F, p) by [6, Part 1, Proposition 8.2].

Let G be an algebraic group over F . An invariant I ∈ Invd(G, p) is called
unramified if for every field extension K/F and every E ∈ TorsG(K), we have
I(E) ∈ Hd

nr(K/F, p). Note that the constant invariants are always unrami-
fied. We will write Invd

nr(G, p) for the subgroup of all unramified invariants in
Invd(G, p).
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If f : G1 −→ G2 is a group homomorphism, then the map f ∗ in (2.3) takes
Invd

nr(G2, p) into Invdnr(G1, p).

Proposition 4.1. Let G be an algebraic group over F . An invariant I ∈
Invd(G, p) is unramified if and only if the value of I at the generic G-torsor in
Hd(F (BG), p) is unramified. In particular, Invdnr(G, p) ≃ Hd

nr(F (BG), p).

Proof. It suffices to show that the inverse of the isomorphism in Theorem 2.4
takes unramified elements to unramified invariants. Let a ∈ Hd

nr(F (BG), p) ⊂
A0(BG,Hd, p). The corresponding invariant I ∈ Invd(G, p) is defined by
I(E) = (f ∗)−1h∗(a) (see Section 2). Note that h∗ takes unramified elements
to unramified ones and f ∗ yields an isomorphism on the unramified elements
as the function field of (E × U)/G is a purely transcendental extension of K.
It follows that I(E) is unramified for all E, hence the invariant I is unrami-
fied. �

Unramified invariants are constant along rational families of torsors. Pre-
cisely, if K/F is a purely transcendental field extension and E is a G-torsor
over K, then for every invariant I ∈ Invd

nr(G, p) we have

I(E) ∈ Im
(
Hd(F, p) −→ Hd(K, p)

)
.

Indeed, I(E) ∈ Hd
nr(K, p) which is the image of Hd(F, p) in Hd(K, p).

5. Abstract Chern classes

Let A be a lattice (written additively). Consider the symmetric ring S∗(A)
over Z and the group ring Z[A] of A. We use the exponential notation for
Z[A]: every element can be written as a finite sum

∑
a∈A nae

a with na ∈ Z.
There are the abstract Chern classes (see [10, 3c])

ci : Z[A] −→ S
i(A), i ≥ 0

satisfying in particular,

c1
(∑

i

eai
)
=

∑

i

ai ∈ A and c2
(∑

i

eai
)
=

∑

i<j

aiaj ∈ S2(A).

The map c1 is a homomorphism and

c2(x+ y) = c2(x) + c2(y) + c1(x)c1(y)

for all x, y ∈ Z[A].
If A is a W -lattice for a group W acting on A, then all the ci’s are W -

equivariant. It follows that c2 yields a map (not a homomorphism in general)
of groups of W -invariant elements:

cW2 : Z[A]W −→ S
2(A)W .

The group Z[A]W is generated by the elements
∑

eai , where the ai’s form a
W -orbit in A. It follows that the subgroup of S2(A)W generated by the image
of cW2 is generated by

∑
i<j aiaj with the ai’s forming a W -orbit in A and aa′
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for a, a′ ∈ AW . The elements of these two types can be viewed as “obvious”
elements in S2(A)W which we call decomposable.

Write S2(A)Wdec for the subgroup of S2(A)W generated by the decomposable
elements, or equivalently, by the image of cW2 . Set

S
2(A)Wind := S

2(A)W/S2(A)Wdec.

Note that if AW = 0, the map cW2 is a homomorphism and S
2(A)Wind is the

cokernel of cW2 .

Lemma 5.1. Let A1 and A2 be W1- and W2-lattices respectively. Then there
is a canonical isomorphism

S
2(A1 ⊕ A2)

W1×W2

ind ≃ S
2(A1)

W1

ind ⊕ S
2(A2)

W2

ind.

Proof. We have

S
2(A1 ⊕A2)

W1×W2 ≃ S
2(A1)

W1 ⊕ S
2(A2)

W2 ⊕ (AW1

1 ⊗ AW2

2 )

and

Z[A1 ⊕ A2]
W1×W2 ≃ Z[A1]

W1 ⊗ Z[A2]
W2 .

The standard formulas on the Chern classes show that c1(Z[Ai]
Wi) = AWi

i and

S
2(A1 ⊕ A2)

W1×W2

dec ≃ S
2(A1)

W1

dec ⊕ S
2(A2)

W2

dec ⊕ (AW1

1 ⊗AW2

2 ),

whence the result. �

Lemma 5.2. Let 0 −→ A −→ B −→ C −→ 0 be an exact sequence of W -
lattices. Suppose that W acts trivially on A and CW = 0. Then

(1) The sequence

0 −→ S
2(A) −→ S

2(B)W −→ S
2(C)W

is exact.
(2) The natural homomorphism S2(B)Wind −→ S2(C)Wind is injective.

Proof. The first statement is proved in [5, Lemma 4.9]. Since W acts trivially
on A, for every subgroup W ′ ⊂ W , we have H1(W ′, A) = 0, hence the map
BW ′

−→ CW ′

is surjective. The group Z[C]W is generated by elements of
the form

∑
i e

ci , where the ci’s form a W -orbit in C. By the surjectivity
above, applied to the stabilizer W ′ ⊂ W , this orbit can be lifted to a W -
orbit in B. Therefore, the map Z[B]W −→ Z[C]W is surjective. The second
statement follows from this, the first statement of the lemma and the fact that
S2(A) = S2(A)Wdec ⊂ S2(B)Wdec. �

6. Degree 3 invariants of split reductive groups

Let G be a split reductive group over F and let H be the commutator
subgroup of G. Thus, H is a split semisimple group and the factor group
Q := G/H is a split torus.
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Proposition 6.1. 1. The restriction maps Invd(G) −→ Invd(H) and
Invd(G)ind −→ Invd(H)ind are injective.

2. For every prime p 6= char(F ), the restriction map Invd
nr(G, p) −→

Invd
nr(H, p) is an isomorphism.

Proof. For a field extension K/F , the map

j : H1(K,H) −→ H1(K,G)

is surjective asH1(K,Q) = 1 and the groupQ(K) acts transitively on the fibers
of j. It follows that the restriction map Invd(G) −→ Invd(H) is injective. The
injectivity of Invd(G)ind −→ Invd(H)ind follows then from Proposition 3.1.

As Q is a rational variety, the fibers of j are rational families of H-torsors.
Since an unramified invariant of H must be constant on the fibers, it defines
an invariant of G. This proves the second statement. �

Let G be a split reductive group, T ⊂ G a split maximal torus. By [10, 3d],
there is a commutative diagram

0 // CH2(BG)

��

// H
4,2

ét (BG) //

��

Inv3(G)norm //

��

0

0 // CH2(BT ) // H
4,2

ét (BT ) // Inv3(T )norm // 0

with the exact rows, where H
4,2

ét (BH) = H
4
(BH,Z(2)) for an algebraic group

H is the reduced weight two étale motivic cohomology group (see [9, §5]). The
group Inv3(T )norm is trivial as T has no nontrivial torsors and CH2(BT ) =
S2(T ∗) by [2, Example A.5], hence the middle term in the bottom row is
isomorphic to S2(T ∗).

Let N be the normalizer of T in G and W = N/T the Weyl group. The
group W acts naturally on BT . Moreover, if w ∈ W , the composition

BT
w
−→ BT

s
−→ BG,

where s is the natural morphism, coincides with s. Therefore, the image of the
middle vertical homomorphism in the diagram

H
4,2

ét (BG) −→ H
4,2

ét (BT ) = S
2(T ∗)

is contained in the subgroup S2(T ∗)W ofW -invariant elements. By [10, Lemma
3.8], the image of CH2(BG) under this homomorphism is equal to S2(T ∗)Wdec.
Therefore, by diagram chase, we have a homomorphism Inv3(G)norm −→ S2(T ∗)Wind.
The group of decomposable invariants Inv3(G)dec is in the kernel of this map
since Inv3(G)dec vanishes over an algebraic closure of F and the group S2(T ∗)Wind
does not change. Therefore, we have a well-defined homomorphism

αG : Inv3(G)ind −→ S
2(T ∗)Wind.

Theorem 6.2. Let G be a split reductive group over F . Then the map αG is
injective. If G is semisimple, then αG is an isomorphism.
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Proof. The second statement is proved in [10, Theorem 3.9]. The first state-
ment follows from Proposition 6.1(1), the commutativity of the diagram

Inv3(G)ind
αG

//

��

S2(T ∗)Wind

��

Inv3(H)ind
αH

// S2(S∗)Wind,

where H is the commutator subgroup of G and S is a maximal torus of H ,
and the second statement applied to H . �

Proposition 3.1 and Lemma 5.1 yield the following additivity property.

Corollary 6.3. Let H1 and H2 be two split semisimple groups. Then there is
a canonical isomorphism

Inv3(H1 ×H2) ≃ Inv3(H1)⊕ Inv3(H2).

Let H be a split semisimple group over a field F , π : H̃ −→ H a simply

connected cover, S̃ the pre-image of a split maximal torus S of H , so S̃ is a

split maximal torus of H̃. Then S2(S∗) can be viewed with respect to π as

a sublattice of S2(S̃∗) of finite index and we have the following commutative
diagram

Inv3(H)ind
αH

∼
//

π∗

��

S2(S∗)Wind

��

Inv3(H̃)norm Inv3(H̃)ind
α
H̃

∼
// S2(S̃∗)Wind.

IfH is simple, the group S2(S̃∗)W is infinite cyclic with a canonical generator
q (see [6, Part 2, §7]). It follows that S2(S∗)W is also infinite cyclic with

kq a generator for a unique integer k > 0. The invariant R ∈ Inv3(H̃)norm
corresponding to the generator q is called the Rost invariant of H̃. It is a

generator of the cyclic group Inv3(H̃).

7. Change of groups

In this section we prove the following useful property.

Proposition 7.1. Let p be a prime integer different from char(F ), G an alge-
braic group over F , C ⊂ G a finite central diagonalizable subgroup of order not
divisible by p, H = G/C. Then the natural maps Invd(H, p) −→ Invd(G, p)
and Invdnr(H, p) −→ Invd

nr(G, p) are isomorphisms.

Proof. Both functors in the definition of an invariant can be naturally extended
to the category C of F -algebras that are finite product of fields, and every
invariant extends uniquely to a morphism of extended functors. If K −→ L is
a morphism in C and M is an étale K-algebra, then L⊗K M is also an object
of the category C.
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For any K in C we have an exact sequence

H1
ét(K,G) −→ H1

ét(K,H)
δK−→ H2

ét(K,C)

and the group H1
ét(K,C) acts transitively on the fibers of the first map in the

sequence.
Proof of injectivity. Let I ∈ Invd(H, p) be such that f ∗(I) = 0, where

f : G −→ H is the canonical homomorphism. We prove that I = 0. Take
any K in C and E ∈ TorsH(K). As an element of the group H2

ét(K,C) is a
tuple of elements in Br(K) of order prime to p, there is an étale K-algebra L
of (constant) finite rank [L : K] prime to p such that δL(EL) = 0. It follows
that EL = f∗(E

′) for some E ′ ∈ TorsG(L). We have

I(E)L = I(EL) = I(f∗(E
′)) = f ∗(I)(E ′) = 0.

Since [L : K] is prime to p, we have I(E) = 0, i.e., I = 0.
Proof of surjectivity. Let J ∈ Invd(G, p). We construct an invariant I ∈

Invd(H, p) such that J = f ∗(I). Take any K in C and E ∈ TorsH(K). As
above, choose an étaleK-algebra L of finite rank prime to p such that δL(EL) =
0 and an element E ′ ∈ TorsG(L) with EL = f∗(E

′). We set

I(E) =
1

[L : K]
corL/F (J(E

′)).

This is independent of the choice of E ′. Indeed, if EL = f∗(E
′′) for E ′′ ∈

TorsG(L), then there exists ν ∈ H1
ét(L,C) with E ′′ = ν(E ′). Choose an L-

algebra P of constant rank [P : L] prime to p such that νP = 1. It follows that
E ′′

P = E ′

P and therefore,

[P : L] corL/F (J(E
′′)) = corP/F (J(E

′′

P )) = corP/F (J(E
′

P )) = [P : L] corL/F (J(E
′)).

Since [P : L] is prime to p, we have corL/F (J(E
′′)) = corL/F (J(E

′)).
In order to show that the value I(E) is independent of the choice of L,

for the two choices L and L′, it suffices to compare the formulas for L and
LL′ := L⊗F L′:

1

[L : K]
corL/F (J(E

′)) =
[L′ : K]

[LL′ : K]
corL/F (J(E

′)) =
1

[LL′ : K]
corLL′/F (J(E

′

LL′)).

We have constructed the invariant I ∈ Invd(H, p). For any K in C and E ′ ∈
TorsG(K), by the definition of I, we have f ∗(I)(E ′) = I(f∗(E)) = J(E ′), hence
f ∗(I) = J . Note that if J is an unramified invariant, I is also unramified since
the corestriction map preserves unramified elements by [6, Part 1, Proposition
8.6]. �

8. Degree 3 unramified invariants of simple groups

The following statement was proved in [11] (classical groups) and [7] (ex-
ceptional groups).
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Proposition 8.1. Let H be an absolutely simple simply connected group over
F and p a prime different from char(F ).

1. If the Dynkin diagram of H is different from 2An, n odd, and 1D4, then
Inv3

nr(H, p)norm = 0.
2. If H is split, then Inv3

nr(H, p)norm = 0.

Let H be a semisimple group over F , E an H-torsor over Spec(K) for a
field extension K/F . The twist HE := AutH(E) of H by E is a semisimple
group over K. The twisting argument shows that BHE = BHK and there is
a canonical isomorphism Invd(HE) ≃ Invd(HK). If E

gen is a generic H-torsor,

we write Hgen for HEgen

. Let H̃gen −→ Hgen be a simply connected cover.

Proposition 8.2. Let H be a split simple group. Then the composition

Inv3(H)ind −→ Inv3(Hgen)ind −→ Inv3(H̃gen)ind = Inv3(H̃gen)

is injective.

Proof. The statement is clear if H is a simply connected group. The case of
an adjoint group H was considered in [10, Theorem 4.10]. Consider the other
split semisimple groups type-by-type. It suffices to restrict to the p-component
of Inv3(H) for a prime p.

Type An−1, n ≥ 2. We have H = SLn /µm for an integer m dividing n. By
Proposition 7.1, we may assume that m = pr for some r. It is shown in [1,
Theorem 4.1] and Theorem 6.2 that

Inv3(H)ind
∼
−→ S

2(S∗)Wind →֒ (Z/mZ)q.

On the other hand, an H-torsor yields a central simple algebra of degree n
and exponent dividing m. A generic torsor gives an algebra with the exponent

exactly m, hence Inv3(H̃gen) = (Z/mZ)R by [6, Part 2, Theorem 11.5].

Type Dn, n ≥ 4. We have H = O+
2n, the special orthogonal group or

H = HSpin2n, the half-spin group if n is even. It is shown in [6, Part 1,Chapter
VI] in the case char(F ) 6= 2 that Inv3(O+

2n)ind = 0. In general, recall that the
character group of a maximal split torus S is a free group of rank n. Let
x1, x2, . . . , xn be a basis for S∗ such that the Weyl group W acts on the xi’s by
permutations and change of signs. The generator of S2(S∗)W is the quadratic
form q = x2

1 + x2
2 + · · · + x2

n. It is in S
2(S∗)Wdec since c2(

∑
i e

xi + e−xi) = −q.
By [10, Theorem 3.9], Inv3(O+

2n)ind = 0.
Finally, assume that n is even and H = HSpin2n, the half-spin group. It

follows from [1, Theorem 5.1] and Theorem 6.2 that

Inv3(H)ind
∼
−→ S

2(S∗)Wind →֒ (Z/4Z)q

and Inv3(H)ind = 0 if n = 4. On the other hand, an H-torsor yields a central
simple algebra of degree 2n. A generic torsor gives a nonsplit algebra. By [6,

Part 2, Theorem 15.4], Inv3(H̃gen) = (Z/4Z)R if n > 4. �

Remark 8.3. The statement fails for semisimple groups that are not simple,
see Example 11.2.
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Theorem 8.4. Let H be a split simple group over an algebraically closed field
Fand p a prime integer different from char(F ). Then Inv3

nr(H, p) = 0.

Proof. Let I ∈ Inv3nr(H, p). Note that since F is algebraically closed, every
decomposable invariant is trivial.

The pull-back Ĩ of I under the composition in Proposition 8.2 is an unram-

ified invariant. As H̃gen is an inner form of H̃ , by Proposition 8.1, Ĩ = 0 and
hence I = 0 by Proposition 8.2 unless the Dynkin diagram of H is D4.

If H is a simply connected group of type D4, then I = 0 by Proposition 8.1.
If H is a half-spin group of type D4, then I = 0 by [1, Theorem 5.1]. Finally
assume that H is an adjoint group of type D4. By [10, Theorem 4.7], the group
Inv3(H) is cyclic of order 2.

Assume that I 6= 0. The group H̃gen is the spinor group of a central simple
algebra A of degree 8 with and orthogonal involution σ of trivial discriminant.

Consider the corresponding special orthogonal group Ĥgen := O+(A, σ) of

(A, σ). An Ĥgen-torsor over a field K is given by a pair (a, x), where a is
an invertible σ-symmetric element in A and x ∈ K× such that Nrd(a) = x2

and Nrd is the reduced norm map (see [8, 29.27]).

The canonical homomorphism Inv3(Hgen) −→ Inv3(H̃gen) factors through

Inv3(Ĥgen). By [10, §4, type Dn], the pull-back of I in Inv3(Ĥgen) is the class
of the invariant taking a pair (a, x) to the cup-product (x) ∪ [A] ∈ H3(K).
This invariant is ramified as it is non-constant when a runs over a subfield of
A of dimension n fixed by σ element-wise, a contradiction. �

9. Structure of reductive groups

Let H be a split semisimple group over a field F , S ⊂ H a split maximal

torus. Write Λr ⊂ S∗ for the root lattice of H . Let H̃ −→ H be a simply

connected cover and let S̃ for the inverse image of S, a maximal torus in
H̃ . Write Λw for the character group of S̃. This is the weight lattice freely
generated by the fundamental weights. We have

Λr ⊂ S∗ ⊂ Λw.

The center C of H is a finite diagonalizable group with C∗ = S∗/Λr.
LetG be a split reductive group over a field F with the commutator subgroup

H . Choose a split maximal T ⊂ G such that T ∩H = S. The roots of H can
be uniquely lifted to T ∗ (to the roots of G), so the inclusion of Λr into S∗ is

lifted to the inclusion of Λr into T ∗. The composition S̃ −→ S −→ T yields a
homomorphism T ∗ −→ Λw of lattices. Thus, we have the two homomorphisms

(9.1) Λr →֒ T ∗ f
−→ Λw

with the composition the canonical embedding of Λr into Λw. The image of
f in (9.1) is equal to S∗. The center Z of G is a diagonalizable group with
Z∗ = T ∗/Λr. The factor group G/H = T/S is a torus Q with the character
lattice Q∗ = Ker(f).
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We would like to study all split reductive groups with the fixed commutator
subgroup H .

Let H be a split semisimple group over F . Fix a split maximal torus S ⊂ H
and consider the root system of H relative to S with the root and weight
lattices Λr ⊂ Λw respectively.

Consider a category Red(H) with objects split reductive groups G over F
with the commutator subgroup H . A morphism between G1 and G2 in this
category is a group homomorphism G1 −→ G2 over F that is the identity on
H .

Consider another category Lat(H) with objects the diagrams of the form

(9.2) Λr −→ A
f
−→ Λw,

where A is a lattice, Im(f) = S∗ and the composition is the embedding of Λr

into Λw. A morphism in Lat(R) is a morphism between the diagrams which is
identity on Λr and Λw.

Let G be an object in Red(H). Write Z for the center of G. Then T := S ·Z
is a split maximal torus of G. The diagram (9.1) yields then a contravariant
functor

ρ : Red(H) −→ Lat(H).

Proposition 9.3. For every split semisimple group H, the functor ρ is an
equivalence of categories Red(H) and Lat(H)op.

Proof. We construct a functor ε : Lat(H) −→ Red(H) as follows. Given the
diagram (9.2), let T be a split torus with T ∗ = A and Z a diagonalizable
subgroup of T with Z∗ = A/Λr. We view the torus S as a subgroup of T via
the dual surjective homomorphism A −→ Im(f) = S∗.

We embed the center C of H into Z via a homomorphism dual to the
surjective composition

Z∗ = A/Λr −→ Im(f)/Λr = S∗/Λr = C∗.

The sequence

0 −→ A
g
−→ S∗ ⊕ (A/Λr)

h
−→ S∗/Λr −→ 0,

where g(a) = (f(a), a + Λr) and h(x, a + Λr) = (x − f(a)) + Λr is exact. It
follows that the product homomorphism S × Z −→ T is surjective with the
kernel C embedded into S × Z via c 7→ (c, c

−1

), i.e., T ≃ (S × Z)/C.
We set G = (H × Z)/C. The group Z is naturally a subgroup of G which

coincides with the center of G. The torus T is a subgroup of G generated by
S and Z, hence T is a split maximal torus of G. The natural sequence

0 −→ Ker(f) −→ A/Λr −→ Im(f)/Λr −→ 0

is exact. It follows that Z/C is a torus dual to Ker(f). Since G/H ≃ Z/C,
G is a (smooth connected) reductive group with H the commutator subgroup.
The functor ε, by definition, takes the diagram (9.2) to the group G. By
construction, both compositions of ρ and ε are isomorphic to the identity
functors. �
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Let H be a split semisimple group as above. We consider another category
Mor(H) with objects homomorphisms h : B −→ Λw/Λr with B a finitely
generated abelian group, Im(h) = S∗/Λr and torsion free Ker(h). Morphisms
are defined in the obvious way. Consider a contravariant functor

ν : Red(H) −→ Mor(H)

taking a reductive group G to the composition Z∗ −→ C∗ →֒ Λw/Λr, where Z
is the center of G. The kernel of this homomorphism is the character lattice
of the torus Z/C = G/H and hence has no torsion.

Proposition 9.4. For every split semisimple group H, the functor ν is an
equivalence of categories Red(H) and Mor(H)op.

Proof. We construct a functor λ : Mor(H) −→ Red(H) as follows. Let h :
B −→ Λw/Λr be an object in Mor(H) and Z a diagonalizable group with
Z∗ = B. The map h yields an embedding of C into Z and the factor group
Z/C is a torus. Set G = (H × Z)/C as in the proof of Proposition 9.3. The
factor group G/H is isomorphic to the torus Z/C, hence G is a reductive
group with the commutator subgroup H , i.e., G is an object of Red(H). Then
Z is the center of G as the group G/Z ≃ H/C is adjoint. We set λ(h) = G.
By construction, both compositions of ρ and λ are isomorphic to the identity
functors. �

Remark 9.5. It follows from Propositions 9.3 and 9.4 that the categories
Lat(H) and Mor(H) are equivalent. An equivalence between the categories

can be described directly as follows. If Λr −→ A
f
−→ Λw is an object in

Lat(H), then the induced morphism A/Λr −→ Λw/Λr is the corresponding
object in Mor(H). Conversely, let µ : B −→ Λw/Λr be an object in Mor(H).
Write A for the kernel of the homomorphism

h : S∗ ⊕B −→ S∗/Λr

defined by h(x, b) = (x+ Λr)− µ(b). The corresponding object

Λr −→ A
f
−→ Λw

in Lat(H) is defined as follows. The map f is given by the first projection
followed by the inclusion of S∗ into Λw and the inclusion Λr −→ A takes x to
(x, 0). Note that W acts on S∗ ⊕B naturally on S∗ and trivially on B.

A split reductive group G is called strict if the center Z of G is a torus, i.e.,
Z∗ is a lattice. An object G of Red(H) is strict if G is strict. If B −→ Λw/Λr

is the object ν(G) of Mor(H), then G is strict if and only if B is torsion-free.
A semisimple group is strict if and only if it is adjoint. A strict envelope of

a split semisimple group H is a strict object in Red(H).

Example 9.6. The group GLn is a strict envelope of SLn.

Example 9.7. The object G in Red(H) corresponding to the composition
S∗ −→ S∗/Λr →֒ Λw/Λr, viewed as an object of the category Mor(H), is
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strict. We call such G the standard strict envelope of H . By Remark 9.5, the
lattice T ∗ is the subgroup in S∗ ⊕ S∗ consisting of all pairs (x, y) such that
x − y ∈ Λr. Note that the Weyl group acts naturally on the first component
of S∗ ⊕ S∗ and trivially on the second.

A strict envelope of H behaves like an “injective resolution” of H .

Lemma 9.8. Let G1 and G2 be two objects in Red(H). If G2 is strict, then
there is a morphism G1 −→ G2 in Red(H).

Proof. Let hi : Bi −→ Λw/Λr be the object ν(Gi) in Mor(H) for i = 1, 2. By
assumption, B2 is a free Z-module. Therefore, there is a group homomorphism
g : B2 −→ B1 such that g ◦ h1 = h2, i.e., g is a morphism in Mor(H). By
Proposition 9.4, there is a morphism G1 −→ G2 in Red(H) corresponding to
g. �

10. Reductive invariants

Let H be a split semisimple group and G is a reductive group with the
commutator subgroup H , i.e., G is an object in Red(H). By Proposition 6.1,
the map Invd(G) −→ Invd(H) is injective. We view Invd(G) as a subgroup of
Invd(H). If G′ is a strict envelope of H , then it follows from Lemma 9.8 that
Invd(G′) ⊂ Invd(G). Therefore, the subgroup Invd(G′) is independent of the
choice of the strict resolution G′ of G. We write Invdred(H) for this subgroup
and call the invariants in this group the reductive invariants. By Proposition
6.1, for any prime p 6= char(F ) we have

(10.1) Invdnr(H, p) ⊂ Invdred(H, p) ⊂ Invd(H, p).

Let A be a lattice and q ∈ S2(A). We can view q as an integral quadratic

form on the lattice Â dual to A. The polar bilinear form h of q is the image of
q under the polar map pol : S2(A) −→ A⊗A, aa′ 7→ a⊗a′ +a′⊗a. The polar

form h is symmetric and even, i.e., h(x, x) ∈ 2Z for all x ∈ Â. Conversely,
if h ∈ A ⊗ A is a symmetric even bilinear form, then q(x) = 1

2
h(x, x) is an

integral quadratic form with the polar form h.
Let {α1, α2 . . . αn} be a set of simple roots of an irreducible root system,

{w1, w2, . . . , wn} the corresponding fundamental weights generating the weight
lattice Λw and W the Weyl group. Let di be the square of the length of the
co-root α∨

i . (We assume that the length of the shortest co-root is 1.) Consider
the bilinear form

h =

n∑

i=1

wi ⊗ diαi =
∑

i,j

wi ⊗ dicijwj ∈ Λw ⊗ Λw,

where (cij) is the Cartan matrix (see [4, Chapitre VI]). The matrix (dicij)
is symmetric with even diagonal terms, hence h is a symmetric even bilinear
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form. The corresponding quadratic form

q =
1

2

n∑

i=1

diwiαi ∈ S
2(Λw)

is W -invariant by [10, Lemma 3.2]. It follows that the polar form h of q is also
W -invariant.

Consider the three embeddings i1, i2, j = i1 + i2 : Λw −→ Λ2
w := Λw ⊕ Λw

given by x 7→ (x, 0), (0, x), (x, x) respectively, and the two quadratic forms
q(1), q(2) that are the images of q under the maps S2(i1), S

2(i2) : S
2(Λw) −→

S2(Λ2
w) respectively. We let W act on Λ2

w naturally on the first summand and
trivially on the second.

Let A be the sublattice of Λ2
w of all pairs (x, y) such that x − y ∈ Λr.

Note that Im(j) ⊂ A. In particular, S2(j)(q) ∈ S2(A). Moreover, since
h ∈ (Λr ⊗ Λw) ∩ (Λw ⊗ Λr) by [9, Lemma 2.1], we have (ik ⊗ j)(h) ∈ A ⊗ A
and (j ⊗ ik)(h) ∈ A⊗A for k = 1, 2.

Write m : Λ2
w ⊗ Λ2

w −→ S
2(Λ2

w) for the canonical homomorphism. We have
m(ik ⊗ j)(h) ∈ S2(A) and m(j ⊗ ik)(h) ∈ S2(A) for k = 1, 2.

Proposition 10.2. We have q(1) − q(2) ∈ S2(A)W with the polar form h(1) −
h(2) = (j ⊗ i1)(h)− (i2 ⊗ j)(h) ∈ A⊗ A.

Proof. By construction, q(1) − q(2) is W -invariant. We have

q(1) − q(2) = (q(1) + q(2))− 2q(2)

= q(1) + q(2) −m(i2 ⊗ i2)(h)

= q(1) + q(2) +m(i1 ⊗ i2)(h)−m(j ⊗ i2)(h)

= S
2(j)(q)−m(j ⊗ i2)(h) ∈ S

2(A).

The second statement follows from the equality j = i1 + i2. �

Corollary 10.3. The image of h(1) − h(2) under the map

A⊗ A
p1⊗1
−→ Λw ⊗ A,

where p1 is the first projection, coincides with the image of h under the natural
map

Λw ⊗ Λr
1⊗i1−→ Λw ⊗ A.

Proof. The statement follows from Proposition 10.2 and the equalities p1 ◦ j =
p1 ◦ i1 = 1 and p1 ◦ i2 = 0. �

Let H̃ be a split simply connected cover of H with a split maximal torus S̃,

thus S̃∗ = Λw. Consider the standard strict envelope G̃ of H̃ (see Example 9.7).

The character group T̃ ∗ of the maximal torus T̃ of G̃ coincides with the group

A as above. If H̃ is simple, by Proposition 9.7, q̄ := q(1)−q(2) ∈ S2(T̃ ∗)W . The

form q̄ maps to q under the natural map S
2(T̃ ∗)W −→ S

2(S̃∗)W = S
2(Λw)

W .
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In the general case,

H̃ = H̃1 × H̃2 × · · · × H̃s,

with H̃j the simple simply connected components of H̃. The components define

a basis q1, q2, . . . , qs of S2(H̃∗)W . Every qj has a lift q̄j ∈ S2(T̃ ∗)W as above.
Lemma 5.2 then yields the following statement.

Corollary 10.4. The map S2(T̃ ∗)W −→ S2(S̃∗)W is surjective and S2(T̃ ∗)Wind −→

S2(S̃∗)Wind is an isomorphism. In particular, S2(T̃ ∗)Wind is generated by the
classes of the forms q̄j.

We will write αij for the simple roots of the j-th component and wij for the
corresponding fundamental weights, etc.

Let C̃ ⊂ H̃ be a central subgroup and set G := G̃/C̃ and T := T̃ /C̃. The

character group C̃∗ is a factor group of Λw/Λr. Consider the composition

(10.5) S
2(T̃ ∗)

pol
−→ T̃ ∗ ⊗ T̃ ∗ p1

−→ Λw ⊗ T̃ ∗ −→ C̃∗ ⊗ T̃ ∗.

Note that S2(T ∗) is contained in the kernel of the composition.
By Corollary 10.3, the image of qj under this composition is equal to

∑

i,j

dijwij ⊗ (αij , 0),

where x denotes the image of an x ∈ T̃ ∗ in C̃∗.

Let T̃j ⊂ T̃ be a maximal torus of of the j-th simple component of G̃, so

that T̃ = T̃1×· · · ·×T̃s. Let C̃j be the image of the projection C̃ −→ T̃j . Then

C̃∗

j can be viewed as a subgroup of C̃∗ and wij ∈ C̃∗

j .

Proposition 10.6. Let q :=
∑s

j=1 kj q̄j ∈ S2(T̃ ) be a linear combination with

integer coefficients kj. If q has trivial image under the composition (10.5) (for

example, if q ∈ S2(T ∗)), then the order of wij in C̃∗

j divides kjdij for all i and
j.

Proof. We have
∑

i,j kjdijwij⊗ (αij , 0) = 0 in C̃∗⊗ T̃ ∗. Note that the elements

(αij , 0) form part of a basis of T̃ ∗ (with the complement (wij, wij)). It follows

that kjdijwij = 0 in C̃∗

j for all i and j, whence the result. �

11. Degree 3 unramified invariants of reductive groups

We assume that the base field F is algebraically closed.

Proposition 11.1. Let H be a (split) semisimple group over F with the com-
ponents of the Dynkin diagram of types Am for some m or E6. Suppose that
E sc
6 does not split off H as a direct factor. Then Inv3red(H, p) = Inv3

nr(H, p) = 0
for all odd primes p 6= char(F ).
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Proof. Let H̃ −→ H be a simply connected cover with kernel C̃ and G̃ be the

standard strict envelope of H̃. By Proposition 7.1, replacing C̃ if necessary, we

may assume that C̃∗ is a p-group. Set G := G̃/C̃. We choose split maximal tori

S ⊂ H , S̃ ⊂ H̃, T ⊂ G, T̃ ⊂ G̃ as in Section 10. The group Q := G/H = G̃/H̃
is a torus.

By Proposition 6.1, it suffices to prove that Inv3(G, p) = 0. By Theorem
6.2, we are reduced to proving that S2(T ∗)Wind{p} = 0.

By Lemma 5.2(1) and Corollary 10.4, the rows of the diagram

0 // S2(Q∗) // S2(T ∗)W
� _

��

// S2(S∗)W
� _

��

0 // S2(Q∗) // S2(T̃ ∗)W // S2(S̃∗)W // 0

are exact.
Let α ∈ S2(T ∗)Wind{p}. Since p is odd, it sufficient to show that 2α = 0. The

element α lifts to a form q ∈ S
2(T ∗)W . Recall that S2(S̃∗)W is a free abelian

group with basis {qj}. Hence the image of q in S2(S̃∗)W is equal to
∑s

j=1 kjqj

for some kj ∈ Z. Write q̄ for
∑s

j=1 kj q̄j ∈ S2(T̃ ∗)W . Therefore, in S2(T̃ ∗)W we

have q = q̄ + t for some t ∈ S2(Q∗).
Note that since the Dynkin diagram of H is simply laced all the integer dij

are equal to 1 for all i and j. The images of q and t are trivial under (10.5),

hence so is q̄. By Proposition 10.6, the order of wij in C̃∗

j divides kj for all i
and j.

We claim that the class of 2kjqj is contained in S2(S∗)Wdec for all j.

Case 1: The j-th simple component G̃j is of type Am for some m, i.e,

H̃j = SLm+1. The center of H̃j is µm+1, hence C̃j = µpr for some r. The

element w1j is a generator of C̃∗ = Z/prZ, hence the order of w1j is equal
to pr. Therefore, kj is divisible by pk. As p is odd, by [1, 4.2], the form

pkqj and hence kjqj belongs to S2(S∗

j )
Wj

dec. Taking the image of kjqj under the

homomorphism S∗

j −→ S∗, we see that kjqj ∈ S2(S∗)Wdec.

Case 2: The j-th simple component H̃j is of type E sc
6 . The center of H̃j is

µ3, hence C̃j is a subgroup of µ3. If C̃j = 1, then H̃j is a direct factor of H
and hence E sc

6 is a direct factor of H . This is impossible by the assumption.

Therefore, C̃j = µ3 (and hence p = 3). The element w1j is a generator of

C̃∗ = Z/3Z, hence kj is divisible by 3. By [10, §4, type E6], the form 6qj
and hence 2kjqj belongs to S2(S∗

j )
Wj

dec. Taking the image of 2kjqj under the

homomorphism S∗

j −→ S∗, we see that 2kjqj ∈ S2(S∗)Wdec. The claim is proved.
It follows from the claim that 2α belongs to the kernel of the map

S2(T ∗)Wind −→ S2(S∗)Wind. By Lemma 5.2, this map is injective, hence 2α =
0. �
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Example 11.2. The statement of the proposition is wrong if p = 2. Consider

the group H := (SL2)
n/C̃, where C̃ ⊂ (µ2)

n consists of all n-tuples with trivial

product. Then the group G := (GL2)
n/C̃ is a strict envelope of H . A G-torsor

over a field K is a tuple (Q1, Q2, . . . , Qn) of quaternion algebras over K such
that [Q1]+[Q2]+· · ·+[Qn] = 0 in Br(K). Let ϕi be the reduced norm quadratic
form of Qi. The sum ϕ of the forms ϕi in the Witt ring W (K) of K belongs
to the cube of the fundamental ideal of W (K). The Arason invariant of ϕ in
H3(K) yields a degree 3 invariant I of G (see [8, page 431]). The restriction J
of I to H belongs to Inv3red(H) = Im

(
Inv3(G) −→ Inv3(H)

)
, and I and J are

nontrivial if n ≥ 3. Note that the invariants I and J are ramified. Moreover,

the map Inv3(G) −→ Inv3(H̃gen) factors through Inv3(G̃gen), where G̃gen is the

product of GL1(Q
gen
i ). The group Inv3(G̃gen) is trivial since GL1(Q

gen
i ) have

only trivial torsors. It follows that J belong to the kernel of

Inv3(H) −→ Inv3(H̃gen),

hence the map in Proposition 8.2 is not injective.

Theorem 11.3. Let G be a (split) reductive group over an algebraically closed
field F . Then Inv3nr(G, p) = 0 for every odd prime p 6= char(F ).

Proof. Let H be the commutator subgroup of G. By Proposition 6.1(2), it suf-

fices to prove that Inv3
nr(H, p) = 0. Let H̃ −→ H be a simply connected cover

with kernel C̃. Let C̃ ′ ⊂ C̃ be a subgroup such that (C̃/C̃ ′)∗ is the 2-component

of C̃∗. Since p is odd, by Proposition 7.1, Inv3nr(H, p) = Inv3nr(H̃/C ′, p). Re-

placing H by H̃/C̃ ′, we may assume that C̃∗ has odd order.

Write H̃ as a product of simple simply connected groups H̃j and let C̃j be

the center of H̃j. If the order of C̃∗

j is a power of 2, the projection C̃ −→ C̃j

is trivial and therefore, the simply connected group H̃j splits off H as a direct
factor. Thus, the simply connected simple groups of types Bn, Cn, Dn, E7 ,
E8 , F4 and G2 split off H , i.e., H = H1 × H2, where H1 is simply connected
and H2 satisfies the conditions of Proposition 11.1. By the additivity property
Corollary 6.3, Propositions 8.1(2) and 11.1, we have Inv3nr(H, p) = 0. �
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nected groups, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 3, 445–476.
[12] E. Peyre, Unramified cohomology of degree 3 and Noether’s problem, Invent. Math. 171

(2008), no. 1, 191–225.
[13] M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319–393 (elec-

tronic).
[14] D. J. Saltman, Noether’s problem over an algebraically closed field, Invent. Math. 77

(1984), no. 1, 71–84.
[15] D. J. Saltman, Brauer groups of invariant fields, geometrically negligible classes, an

equivariant Chow group, and unramified H3, K-theory and algebraic geometry: con-
nections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Amer.
Math. Soc., Providence, RI, 1995, pp. 189–246.

[16] D. J. Saltman, H3 and generic matrices, J. Algebra 195 (1997), no. 2, 387–422.
[17] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un
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