
INCOMPRESSIBILITY OF PRODUCTS

NIKITA A. KARPENKO

Abstract. We show that the conjectural criterion of p-incompressibility for products
of projective homogeneous varieties in terms of the factors, previously known in a few
special cases only, holds in general. We identify the properties of projective homogeneous
varieties actually needed for the proof to go through. For instance, generically split (non-
homogeneous) varieties also satisfy these properties.

Let F be a field. A smooth complete irreducible F -variety X is incompressible, if every
rational self-map X 99K X is dominant. This means that cdimX = dimX , where the
canonical dimension cdimX is defined as the minimum of dimY for Y running over
closed irreducible subvarieties of X admitting a rational map X 99K Y .

For the whole exposition, let p be a fixed prime number. Canonical p-dimension

cdimpX is defined as the minimum of dimY for Y running over closed irreducible sub-

varieties of X admitting a degree 0 correspondence X
p′

 Y of p-prime multiplicity. The

variety X is p-incompressible, if every degree 0 self-correspondence X
p′

 X of p-prime
multiplicity is dominant, i.e., if cdimpX = dimX . The closure of the graph of a rational
map is a degree 0 correspondence of multiplicity 1; therefore a p-incompressible (for at
least one p) variety is incompressible.

Studying canonical p-dimension, instead of the integral Chow group CH, it is more
appropriate to use the Chow group Ch with coefficients in Fp := Z/pZ. Multiplicities of
correspondences as well as degrees of 0-cycles take then values in Fp. We also consider
the Chow motives with coefficients in Fp, see [2, Chapter XII].

Now we are going to introduce a class of varieties, called nice here, for which we can
prove that the following criterion holds (see Theorem 9): the product X × Y of F -
varieties X and Y is p-incompressible if and only if the varieties XF (Y ) and YF (X) are
p-incompressible.

A smooth complete variety is split, if its motive decomposes into a finite direct sum
of Tate motives. By Tate motive, we mean an arbitrary shift of the motive of the point
SpecF . For instance, an (absolutely) cellular variety is split, [2, Corollary 66.4].

A smooth complete variety X is nice, if it has the following three properties:
(i) The variety X is geometrically split, that is, there exists a field extension L/F such

that the L-variety XL is split.
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(ii) The variety X is A-trivial (cf. [11, Definition 2.3]), that is, for any field extension
L/F with X(L) 6= ∅, the degree homomorphism deg : Ch0(XL) → Fp is an isomorphism.
(iii) For any field extension L/F , one has cdimpX ≥ d, where d is the minimal integer

such that there exist an element a ∈ ChdXL and an element b ∈ Chd(XL(X)) with
deg(aL(X) · b) = 1 (see Remarks 3 and 4).

Remark 1. The definition of “nice” depends on the prime p. We should probably better
say “p-nice”, but we keep saying “nice” for short. The same applies to “split” and “A-
trivial”. On the other hand, we do not abbreviate “p-incompressible”.

Remark 2. A nice variety remains nice under any base field extension. On the other
hand, it is not clear if the product of two nice varieties is necessarily nice.

Remark 3. Property (iii), referring to the function field of XL, is well-defined because
any A-trivial variety is geometrically integral, see [11, Remark 2.4]. In particular, any
nice variety is geometrically integral.

Remark 4. The opposite to the inequality in (iii) always holds (cf. [9, Proof of Theorem
5.8, part “≤”]). Indeed, take the minimal d such that there exist a ∈ ChdX , and b ∈
Chd(XF (X)) with deg(aF (X) · b) = 1. We may assume that a = [Y ] and b = [Z] for closed
subvarieties Y ⊂ X and Z ⊂ XF (X). Since the product [YF (X)] · [Z] ∈ Ch(XF (X)), which is
a 0-cycle class of degree 1, can be represented by a 0-cycle with support on the intersection
YF (X) ∩ Z (see [3, §8.1]), the variety YF (X) has a 0-cycle of degree 1, that is, there exists
a degree 0 correspondence X  Y of multiplicity 1 (see [2, Page 328] concerning the
relation between correspondences and 0-cycles). Therefore cdimp X ≤ dim Y = d.

Here is our basic example of nice varieties:

Example 5. Any projective homogeneous (under an action of a semi-simple affine alge-
braic group) variety over a p-special field is nice: see [13] for (i), [11, Example 2.5] for (ii),
and [6, Proposition 6.1] for (iii). A field F is p-special, if it has no finite extension fields
of degree prime to p. The condition that F is p-special is only needed for (iii).

A smooth complete geometrically irreducible F -variety is generically split, if for any
field extension L/F with X(L) 6= ∅, the L-variety XL is split.

Example 6. Any generically split variety is nice. Indeed, (i) holds for L = F (X), (ii)
holds by [9, discussion after Remark 5.6], and (iii) holds by [9, Theorem 5.8 with Remark
5.6].

The direct product of two projective homogeneous varieties is also projective homo-
geneous and therefore – over a p-special field – nice. Similarly, the direct product of
two generically split varieties is generically split (and nice). The mixed product (over a
p-special field) turns out to be nice as well:

Example 7. Over a p-special field, the direct product X of a projective homogeneous
variety by a generically split one is nice. Indeed, X is, clearly, geometrically split and
A-trivial. Property (iii) can be obtained for X in the same way as it is obtained for a
projective homogeneous variety in [6, Proposition 6.1]. The upper motive U(X), used in
the proof of [6, Proposition 6.1], is defined for X in [7]; [5, Theorem 5.1 and Proposition
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5.2], also used in the proof of [6, Proposition 6.1], can be proved for X by almost literal
repetition of their proofs; the same is valid for [7, Theorem 1.1], used in the proof of [5,
Proposition 5.2].

The following well-known criterion of p-incompressibility for projective homogeneous
varieties actually holds for arbitrary A-trivial varieties:

Lemma 8. An A-trivial variety X is p-incompressible if and only if mult ρ = mult ρt for
any degree 0 correspondence ρ : X  X, where ρt is the transpose of ρ. In particular,

this criterion holds for any nice variety X.

Proof. We almost repeat the proof of [5, Lemma 2.7].
If X is p-compressible, there exists a correspondence α : X  Y of degree 0 and

multiplicity 1 to a proper closed subvariety Y ⊂ X . Considering α as a correspondence
X  X , we have multα = 1 and multαt = 0. Therefore the “only if” part of Lemma 8
holds for arbitrary smooth complete irreducible varieties X , not only for A-trivial ones.

The other way round, suppose that we are given a degree 0 correspondence α : X  X
with multα 6= multαt. Adding a multiple of the diagonal class and multiplying by an
element of Fp, we may achieve that multα = 1 and multαt = 0. In this case the pull-back
of α with respect to the morphism XF (X) → X ×X induced by the generic point of the
second factor of the product X × X , is a 0-cycle class of degree 0. Since X is A-trivial,
the degree homomorphism Ch0(XF (X)) → Fp is an isomorphism. Therefore the pull-back
of α is 0. By the continuity property of Chow groups [2, Proposition 52.9], there exists a
non-empty open subset U ⊂ X such that the pull-back of α to X×U is already 0. By the
localization sequence [2, Proposition 57.9], it follows that α is the push-forward of some
degree 0 correspondence β : X  Y ∈ ChdimX(X × Y ), where Y is the proper closed
subset Y := X \U of X . Since mult β = multα = 1, the variety X is p-compressible. �

The main result of this note is the “≥” part of equality (10) in the following theorem:

Theorem 9. Let X and Y be nice F -varieties such that the product X × Y is also nice.

The variety X × Y is p-incompressible if and only if the varieties XF (Y ) and YF (X) are

p-incompressible. Moreover

(10) cdimp(X × Y ) = cdimpXF (Y ) + cdimp YF (X)

provided that at least one of the three varieties XF (Y ), YF (X), X × Y is p-incompressible.

Corollary 11. The product X × Y of projective homogeneous F -varieties X and Y is

p-incompressible if and only if the varieties XF (Y ) and YF (X) are p-incompressible. More-

over, (10) holds provided that at least one of the varieties XF (Y ), YF (X), X × Y is p-
incompressible.

Proof. Since canonical p-dimension of a variety does not change under any base field
extension of degree prime to p (see [16, Proposition 1.5]), we may assume that F is
p-special. By Example 5, X , Y , and X × Y are nice in this case so that Theorem 9
applies. �

Partial cases of Corollary 11, dealing with some special types of projective homogeneous
varieties, have been recently proved in [8] and [4]. For an older result in this direction see
Example 13 below.
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The p-incompressibility criterion, given in Theorem 9 for nice products of two nice
varieties, immediately generalizes to finite products of arbitrary length:

Corollary 12. For n ≥ 1, let X1, . . . , Xn be F -varieties such that every sub-product of

the product X := X1×· · ·×Xn is nice. Then X is p-incompressible if and only if for every

i = 1, . . . , n the variety (Xi)F (X1×···×Xi−1×Xi+1×Xn) is p-incompressible. The criterion also

holds if for any i = 1, . . . , n the variety Xi is projective homogeneous or generically split.

Proof. Assuming that the statement holds for some n ≥ 1, we prove it for n + 1. Set
X := X1 × · · · × Xn and Y := Xn+1. If X × Y = X1 × · · · × Xn+1 is p-incompressible,
XF (Y ) and YF (X) are p-incompressible, and it follows by induction hypothesis that the
variety (Xi)F (X1×···×Xi−1×Xi+1×Xn+1) is p-incompressible for any i = 1, . . . , n + 1.
The other way round, if (Xi)F (X1×···×Xi−1×Xi+1×Xn+1) is p-incompressible for any i, then,

in particular, YF (X) is p-incompressible and – by induction hypothesis – XF (Y ) is p-
incompressible. It follows that X × Y is p-incompressible. The first statement is proved.
Since any finite direct product of projective homogeneous or generically split varieties

over a p-special field is nice (see Example 7), the second statement follows. �

Example 13. For purpose of computing the essential dimension of finite groups, Corollary
12 for Severi-Brauer varieties X1, . . . , Xn has been obtained in [10]. A second and simpler
proof has been given in [8]. The third proof, given here (see Proof of Theorem 9), is
particularly simple. The result has numerous further applications, see, e.g., [14, 15].

Example 14. For purpose of computing the essential dimension of representations of
finite groups, introduced in [12], Corollary 12 for Weil transfers of generalized Severi-
Brauer varieties has been obtained in [8] under assumption that the corresponding central
simple algebras are balanced. Corollary 12 shows that this assumption is superfluous.
Another area of applications for this result is provided in [1].

Proof of Theorem 9. We start by introducing some notation and by making some prelim-
inary observations.
We fix a field extension F̄ /F splitting both X and Y . For any finite direct product T of

copies ofX and Y , we write T̄ for TF̄ . We work with the Chow group Ch T̄ with coefficients
in Fp. Note that for any field extension E/F̄ , the change of field homomorphism Ch T̄ =
ChTF̄ → ChTE is an isomorphism, so that we may identify ChTE with Ch T̄ . For a
geometrically integral F -variety S (e.g., S = X , S = Y , or S = X × Y ), an element
c ∈ Ch T̄ = ChTF̄ = ChTF̄ (S) is F (S)-rational, if it lies in the image of the change of field
homomorphism ChTF (S) → ChTF̄ (S).

Since the varieties X̄ and Ȳ are split, any correspondence λ : T̄  T̄ ′, where T
and T ′ are finite direct products of copies of X and Y , decomposes in a finite sum of
external products c × c′ with homogeneous c ∈ Ch T̄ and c′ ∈ Ch T̄ ′. This makes it
easy to perform computations with correspondences. For instance, the composition of
composable correspondences (e′ × e′′) ◦ (c× c′) is equal to

(15) (e′ × e′′) ◦ (c× c′) = deg(c′ · e′) · (c× e′′).

For e ∈ Ch T̄ , (c× c′)∗(e) = deg(c · e) · c′, where (c × c′)∗ : Ch T̄ → Ch T̄ ′ is the induced
by c× c′ homomorphism, see [2, §62]. If b ∈ Ch T ′

F̄ (T )
= Ch T̄ ′ is the image of λ under the
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pull-back with respect to the morphism T̄ ′

F̄ (T )
→ T̄ × T̄ ′, given by the generic point of T ,

then λ decomposes as

(16) λ = [T̄ ]× b+ . . . ,

where . . . stands for a sum of c × c′ with codim c > 0 (and dim c′ > dim b). If the
correspondence λ has degree 0, then it decomposes as

λ = (mult λ) · ([T̄ ]× [pt′]) + . . . ,

where pt′ is a rational point on T̄ ′ and where . . . stands for a sum of c×c′ with codim c =
dim c′ > 0; if moreover dimT = dimT ′, then

(17) λ = (mult λ) · ([T̄ ]× [pt′]) + (mult λt) · ([pt]× [T̄ ′]) + . . . ,

where pt is a rational point on T̄ and where . . . stands for a sum of c× c′ with codim c =
dim c′ > 0 and dim c = codim c′ > 0.

In order to prove Theorem 9 in whole, we only need to prove equality (10). We start
the prove of its (more difficult) “≥” part now. If the variety X × Y is p-incompressible,
the “≥” part is however trivial. We therefore assume that the F (X)-variety YF (X) is
p-incompressible, that is, cdimp YF (X) = dimY .

Let d be an integer such that there exist F -rational a ∈ Chd(X̄ × Ȳ ) and F (X × Y )-
rational b ∈ Chd(X̄ × Ȳ ) with deg(a · b) = 1. Since the product X × Y is nice, we have
cdimp(X × Y ) ≥ d. Our aim is to show that d ≥ cdimpXF (Y ) + dimY .

Let α ∈ Ch(X̄ × Ȳ × X̄ × Ȳ ) be the push-forward of a under the diagonal morphism
of X̄ × Ȳ . The element α is F -rational. Note that α = (a × [X̄ ] × [Ȳ ]) · ∆, where
∆ ∈ Ch(X̄ × Ȳ × X̄ × Ȳ ) is the diagonal class.

Let β be a homogeneous F -rational preimage of b under the flat pull-back

Ch
(

(X̄ × Ȳ )× (X̄ × Ȳ )
)

→ Ch(X̄ × Ȳ )F̄ (X×Y ),

along the morphism induced by the generic point of the first factor of the product (X̄ ×
Ȳ )× (X̄ × Ȳ ). For existence of β, see [2, Corollary 57.11].

Let δ ∈ Ch(Ȳ × X̄× Ȳ ) be the image of the diagonal class of Y under the push-forward
with respect to the closed imbedding Ȳ × Ȳ →֒ Ȳ × X̄ × Ȳ induced by a closed rational
point ptX̄ on X̄ . Since the element [ptX̄ ] ∈ Ch X̄ is F (X)-rational, the element δ is also
F (X)-rational.

Finally, let γ ∈ Ch(X̄× Ȳ × Ȳ ) be the class of the graph of the projection X̄× Ȳ → Ȳ .
The element γ is F -rational.

We consider the elements α, β, γ, δ as correspondences and take their composition ρ in
the following order:

ρ : Ȳ
δ
 X̄ × Ȳ

β
 X̄ × Ȳ

α
 X̄ × Ȳ

γ
 Ȳ .

The correspondence ρ : Ȳ  Ȳ is F (X)-rational.
Let ptȲ be a rational point on Ȳ . Since the variety Y is A-trivial, the class [ptȲ ] does

not depend on the choice of ptȲ . A direct computation shows that

ρ∗([ptȲ ]) = [ptȲ ],
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where ρ∗ : Ch Ȳ → Ch Ȳ is the homomorphism induced by ρ. Indeed,

[ptȲ ]
δ∗7→ [ptX̄ ]× [ptȲ ]

β∗

7→ b
α∗7→ [ptX̄ ]× [ptȲ ]

γ∗
7→ [ptȲ ],

where the image under β∗ is computed via the formulae (16) and (15).
The general formula ρ∗([ptȲ ]) = (mult ρ)[ptȲ ] implies that mult ρ = 1. Since the

A-trivial F (X)-variety YF (X) is p-incompressible while ρ is F (X)-rational, it follows by
Lemma 8 that mult ρt = 1. The general formula ρ∗([Ȳ ]) = (mult ρt)[Ȳ ] shows now that
ρ∗([Ȳ ]) = [Ȳ ]. We therefore have

[Ȳ ]
δ∗7→ [ptX̄ ]× [Ȳ ]

β∗

7→ b′
α∗7→ [ptX̄ ]× [Ȳ ] + . . .

γ∗
7→ [Ȳ ]

for some b′ ∈ Ch(X̄ × Ȳ ), where . . . stands for a sum of c× c′ with dim c = codim c′ > 0
so that the whole sum is an arbitrary element of ChdimY (X̄ × Ȳ ) mapped to [Ȳ ] under
γ∗.
The diagonal class ∆ ∈ Ch(X̄×Ȳ ×X̄×Ȳ ) is the external product of the diagonal classes

∆X ∈ Ch(X̄ × X̄) and ∆Y ∈ Ch(Ȳ × Ȳ ). Multiplying decompositions (17) of ∆X and
∆Y , we get a decomposition of ∆. This decomposition of ∆ possesses a unique summand
ending with [ptX̄ ] × [Ȳ ]. This unique summand starts with [X̄ ] × [ptȲ ]. Moreover, any
other summand ends with c × c′ such that dim c > 0 or codim c′ > 0. The resulting
decomposition of α = (a × [X̄ ] × [Ȳ ]) · ∆ also possesses a unique summand ending with
[ptX̄ ] × [Ȳ ]. This unique summand starts now with a′ := a · ([X̄] × [ptȲ ]). Any other
summand still ends with c× c′, where dim c > 0 or codim c′ > 0. Therefore, by (15), we
must have deg(a′ · b′) = 1 in order to get the right image of b′ under α∗.
Let pr be the projection X̄ × Ȳ → X̄ . It follows that deg(a′′ · b′′) = 1, where

a′′ := pr
∗
(a′) ∈ Ch X̄ and b′′ := pr

∗

(

([X̄ ]× [ptȲ ]) · b
′
)

∈ Ch X̄.

Since a′′ is F (Y )-rational and b′′ is F (X × Y )-rational, it follows by Remark 4 that
dim a′′ ≥ cdimpXF (Y ). Since dim a′′ = dim a′ = dim a− dimY = d− dimY , we get that
d ≥ cdimp XF (Y ) + dimY . The “≥” part of equality (10) is proved.

The proof of the “≤” part, given in [8, Lemma 3.4] for projective homogeneous X and
Y , also works in our current settings. For reader’s convenience, let us reproduce it. As in
[8, Lemma 3.4], we prove the more general inequality

cdimp(X × Y ) ≤ cdimpX + cdimp YF (X)

without any p-incompressibility assumption (on XF (Y ), on YF (X), or on X × Y ).
We set x := cdimpX and y := cdimp YF (X). Since the variety X is nice, we can find

F -rational aX ∈ Chx X̄ and F (X)-rational bX ∈ Chx X̄ with deg(aX · bX) = 1. Similarly,
since the variety YF (X) is nice, we can find F (X)-rational aY ∈ Chy Ȳ and F (X)(Y )-
rational bY ∈ Chy Ȳ with deg(aY · bY ) = 1. Let αY ∈ ChdimX+y(X × Y ) be an F -rational
preimage of aY under the pull-back along the morphism ȲF̄ (X) → X̄ × Ȳ induced by the
generic point of X . We set

a := (aX × [Ȳ ]) · αY ∈ Chx+y(X̄ × Ȳ ) and b := bX × bY ∈ Chx+y(X̄ × Ȳ ).

The element a is F -rational, the element b is F (X × Y )-rational. We have the relation
deg(a · b) = deg(aX · bX) · deg(aY · bY ) = 1 showing by Remark 4 that cdimp(X × Y ) ≤
x+ y. �
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