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Abstract. Motivated by the motivic Galois group and the Kostant-Kumar
results on equivariant cohomology of flag varieties, we provide a uniform de-
scription of motivic (direct sum) decompositions with integer coefficients of
versal flag varieties in terms of integer representations of the associated affine
nil-Hecke algebra H.


More generally, we establish an equivalence between the h-motivic subcat-
egory generated by the motive of E/B and the category of projective modules
of the associated rational algebra D of push-pull operators, where E is a tor-
sor for a split semisimple linear algebraic group G over a field k, B is a Borel
subgroup of G, h is an algebraic oriented cohomology theory in the sense of
Levine-Morel (e.g. Chow ring CH or an algebraic cobordism Ω). The algebra
D can be think of as an integer-analogue of the ’Hopf-algebra of the h-motivic
Galois group of E/B.


As an application, taking h = CH and specializing the coefficients to the
finite field Fp we obtain that p-modular projective representations of D = H
are generated by an irreducible H-module corresponding to the generalized
Rost-Voevodsky motive for (G, p).
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1. Introduction


Let G be a split semisimple linear algebraic group over a field k, let E be a
G-torsor over K/k. Consider a twisted form E/B over K of the variety of Borel
subgroups G/B of G, e.g., a variety of (complete) flags of ideals in a central division
algebra over K. In general, such a variety neither have a K-rational point nor any
(relative) cellular filtration over K.


Consider the pseudo-abelian tensor category of Grothendieck-Chow motives of
smooth projective varieties over K with coefficients in a ring R. The main result
of [25] says that the motive of E/B with finite coefficients (R = Fp) is always a
direct sum of Tate twists of some indecomposable motive RE,p, a generalization
of the Rost-Voevodsky motive. In other words, the tensor subcategory 〈E/B〉Fp


generated by all direct summands of E/B is, indeed, generated by RE,p, i.e.,


〈E/B〉Fp = 〈RE,p〉.


The motive RE,p has several remarkable properties. For instance, it is closely
related to various cohomological invariants of G-torsors. If p is not a torsion prime
of G or if the coefficient ring R has characteristic 0, then RE,p coincides with the
motive of a point, so 〈E/B〉Fp gives the subcategory of Tate motives. While being
indecomposable over k, the motive RE,p becomes isomorphic to a direct sum of
Tate motives over the splitting field k̄ of E (as k̄ one can always take the algebraic
closure of k or the function field of E/B). Moreover, the generating function of
RE,p over k̄ (counting the number of Tate motives in each dimension) is given
by an explicit cyclotomic polynomial involving the p-exceptional degrees of V.Kac
[19]. For example, if E is a G-torsor, where G is an exceptional group of type F4


and E splits by a cubic field extension, then RE3
corresponds to the Rost-Serre


cohomological invariant and RE,3|k̄ ≃ F3 ⊕ F3(4)⊕ F3(8).
As for integer coefficients (R = Z) only very few facts are known concerning


the category 〈E/B〉Z. An integer version of the motive RE was introduced and
discussed in [26]; in [5], [10] it was shown that 〈E/B〉Z is not Krull-Schmidt (the
uniqueness of a direct sum decomposition fails).


In the present paper we cover all the mentioned cases (R = Z,Fp). More gen-
erally, we consider the category of h-correspondences with coefficients in R, where
h is any algebraic oriented Borel-Moore homology of [23] (e.g. Chow groups, con-
nective K-theory, elliptic cohomology, algebraic cobordism Ω of Levine-Morel) and
R = h(K) is its coefficient ring. Let 〈E/B〉h denote the respective tensor sub-
category generated by indecomposable summands of the h-motive of E/B. Our
main result (Theorem 8.1) establishes an equivalence between the motivic category
〈E/B〉h and certain category of finitely generated projective DF -modules


(1) 〈E/B〉h ≃ Proj DF ,


where DF is the R-algebra defined using the formal push-pull operators for the
group G and the theory h. So it provides a direct link between integer/modular
h-motivic decompositions of twisted flag varieties and integer/modular representa-
tions of Hecke-type algebras DF .


If E is a versal (generic) torsor, then DF can be replaced by the formal affine
Demazure algebra DF . The theory of such algebras and formal push-pull operators
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has been recently developed in [6], [18], [7], [8], [9] motivated by Bernstein-Gelfand-
Gelfand [2], Demazure [11], [12], Bressler-Evens [3], [4] and Kostant-Kumar [21],
[20] results. The key properties of DF are


• it is a free module over the T -equivariant oriented cohomology ring S =
hT (K) of a point, where T is a split maximal torus in G;
• its S-dual D⋆


F = HomS(DF ,S) is isomorphic to the T -equivariant oriented
cohomology hT (G/B) of G/B [9] and
• its structure (generators and relations) is very close to those of the affine
Hecke algebra [18].


For example, if h = CH (Chow groups) and R = Fp as before, then DF = Hnil,p


is the affine nil-Hecke algebra (in the notation of Ginzburg [16, §12]) over Fp which
is a free module of rank |W | over the polynomial ring S = Fp[x1, . . . , xn], where
n is the rank of G and W is the Weyl group, and D⋆


F ≃ CHT (G/B;Fp) is the
T -equivariant Chow groups. For a versal torsor E the equivalence (1) then turns
into


〈RE,p〉 ≃ Proj Hnil,p


meaning that all indecomposable projective Hnil,p-modules are isomorphic to each
other (up to a shift). Moreover, their ranks over S equal to the p-part of the product
of p-exceptional degrees of the group G.


Roughly speaking, the algebra DF can be viewed as an integral analogue of
the Hopf-algebra of the motivic Galois group of E/B (see e.g. [1]). Indeed, if
taken with Q-coeffcients (or if E is split), the algebra DF becomes isomorphic to
EndR h(G/B) ≃M|W |(R) and, hence, the category ProjDF can be identified with
the category of representations ProjQ[Gm] = RepGm with Gm known to be the
motivic Galois group of 〈E/B〉Q. Observe that in general, DF is not a matrix
algebra over R.


In the paper we restrict ourselves to varieties E/B of Borel subgroups only.
However, by [5] we have 〈E/B〉h = 〈E/P 〉h for any special parabolic subgroup P .
Hence, B can be replaced by any such P without affecting the equivalence (1).
For instance, for G = PGLpn , h = CH , R = Z and E corresponding to a generic
central division algebra A of degree pn we get


〈SB(A)〉Z ≃ ProjHnil,Z,


where SB(A) is the Severi-Brauer variety of A and Hnil,Z is the affine nil-Hecke
algebra with integer coefficients.


The paper is organized as follows. In section 2 we recall definitions and basic facts
concerning Borel-Moore homology h and the respective category of h-motives. We
state a version of the Künneth isomorphism for cellular spaces. In the next section
we generalize it to the equivariant setting. In section 4 we introduce the convolution
product on the equivariant cohomology of group powers and study its properties.
In the next section we identify this equivariant cohomology with the endomorphism
ring on equivariant cohomology of G/B and then in section 6 with the formal affine
Demazure algebra. In section 7 we introduce the notion of a rational algebra of
push-pull operators DF and identify it with the subring of rational endomorhisms.
In the last section we prove the equivalence (1) and provide some applications and
examples.
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2. Oriented (co-)homology


We recall definitions of an algebraic oriented Borel-Moore homology and of the
respective category of correspondences. We also recall a version of the Künneth
isomorphism for cellular spaces (Lemmas 2.4 and 2.5).


Fix a smooth scheme S over a field k. Let SchS denote the category of finite
type quasi-projective separated S-schemes and let SmS denote its full subcategory
consisting of smooth quasi-projective S-schemes.


Following [23, Def. 5.1.3] consider an oriented graded Borel-Moore homology the-
ory h• defined on some admissible [23, (1.1)] subcategory V of SchS . So that there
are pull-backs f∗ : h•(X) → h•+d(Y ) for l.c.i. morphisms f : Y → X in V of rela-
tive dimension d and push-forwards f∗ : h•(Y ) → h•(X) for projective morphisms
f : X → Y in V . According to [23, Prop. 5.2.1] the Borel-Moore homology h• re-
stricted to SmS defines an algebraic oriented cohomology theory h


• (with values in
the category of graded commutative rings with unit) in the sense of [23, Def. 1.1.2]
by


h
dimS X−•(X) := h•(X), X ∈ SmS .


If the (co-)dimension is clear from the context we will write simply h(X).


Following [26, §2] (see also [14, §63]) we define the category of h-correspondences
h-CorrS over S. The objects are pairs ([X → S], i), where [X → S] is an isomor-
phism class of a smooth projective map X → S and i ∈ Z. The morphisms are
defined by


Homh-CorrS(([Y → S], i), ([X → S], j)) :=
⊕


l


Homi−j([Yl → S], [X → S]),


taken over all connected components Yl of Y , where


Hom•([Yl → S], [X → S]) := hdimS Yl+•(Yl ×S X).


The composition of morphisms is given by the correspondence product. Namely, if
pi : X1×S X2×S X3 → Xj ×S Xj′ denotes the projection obtained by removing the
i-th coordinate, then given α ∈ h(X1 ×S X2) and β ∈ h(X2 ×S X3) we set


(2) β ◦ α := (p2)∗(p
∗
1(β) · p


∗
3(α)) ∈ h(X1 ×S X3).


Let h-Corr+S denote the additive completion of h-CorrS . We simply write X for


the respective class in h-Corr+S .


Definition 2.1. (cf. [23, (CD’)]) Let X be smooth projective over S. Suppose
that there is a filtration by proper closed subschemes


∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn = X


such that


• each irreducible component Xij of Xi \Xi−1 is a locally trivial affine fibra-
tion over S of rank dij , and


• the closure of Xij in X admits a resolution of singularities X̃ij → Xij


over S; we set gij : X̃ij → Xij →֒ X and, therefore, (gij)∗(1X̃ij
) ∈ hdij(X).


We call such X (together with the filtration) a cellular space over S.


Definition 2.2. We say that the theory h satisfies the cellular decomposition (CD)
property if given a cellular space X over S the respective elements (gij)∗(1X̃ij


) form


a h(S)-basis of h(X).
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Example 2.3. The property (CD) holds for any oriented Borel-Moore homology
h over a field k of characteristic 0.


Indeed, the same reasoning as in [14, Thm. 66.2] shows that for every Z ∈ SmS


there is an isomorphism
∑


(gij)∗(1)× idZ :
⊕


ij


CH•−dij (Z)→ CH•(Z ×S X).


By the Yoneda lemma (cf. [14, Lemma 63.9]) the latter induces an isomorphism in
the category CH-Corr+S (cf. [14, Cor. 66.4]).


Following [29, §2] consider the specialization functor Ω-Corr+S → CH-Corr+S ,
[f : Y → X ] 7→ f∗(1Y ). It is surjective on the classes of objects and morphisms.
Moreover, for every X the kernel of


ΩdimS X(X ×S X) −→ CHdimS X(X ×S X)


is Ω>1(k) · Ω•(X ×S X) by [23, Rem.4.5.6]. Hence for every y in this kernel


y◦(dimS X+1) ∈ ΩdimS X(X ×S X) ∩ (Ω>(dimSX+1)(k) · Ω•(X ×S X)).


So y = 0 since Ω<0(Y ) = 0. Therefore, the kernel of


EndΩ-Corr+S
(X, i)→ EndCH-Corr+S


(X, i)


consists of nilpotents.
Finally, by [29, Lemma 2.1] the isomorphism


∑
ij(gij)∗(1) in CH-Corr+S can be


lifted to an isomorphism in the category Ω-Corr+S . Specializing it via Ω → h we
obtain the desired isomorphism.


From this point on we assume that h satisfies the property (CD).


Lemma 2.4. Let X be a cellular space over S. Then there is an isomorphism in
h-Corr+S ∑


ij


(gij)∗(1X̃ij
) :


⊕


ij


(S, dij)→ X,


where (gij)∗(1X̃ij
) ∈ hdij (X) = Hom


h-Corr+S
((S, dij), X).


Proof. Transversal base change implies that there is an isomorphism
∑


(gij)∗(1)× idZ :
⊕


ij


h•−dij(Z ×S S)→ h•(Z ×S X)


for any Z smooth projective over S. So by the Yoneda lemma (cf. [14, Lemma 63.9])
it induces an isomorphism in h-Corr+S (cf. [14, Cor. 66.4]). �


Lemma 2.5. The pairing (·, ·) : h(X) ⊗h(S) h(X) → h(S) given by (a, b) = p∗(ab)
is non-degenerate and the map


f : (h(X ×S X), ◦)→ Endh(S) h(X) given by a 7→ fa, fa(x) = (p2)∗(p
∗
1(x) · a)


is an h(S)-linear isomorphism of graded rings. In particular, it gives an h(S)-linear
isomorphism


(hdimS X(X ×S X), ◦) ≃ End
h-Corr+S


(X).


Observe that the endomorphism ring of h(S)-linear operators Endh(S)(h(X)) is
a graded ring. Its n-th graded component consists of operators increasing the
codimension by n. By definition the subring of degree-0 operators (preserving the
codimension) coincides with End


h-Corr+S
(X).
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Proof. By the previous lemma there is an isomorphism


⊕


ij


h(S) =


∞⊕


k=−∞


Hom((S, k),⊕ij(S, dij))
≃
→


∞⊕


k=−∞


Hom((S, k), X) = h(X),


where each component is given by x 7→ x · (gij)∗(1). Let
∑


ij aij : X → ⊕ij(S, dij)


be the inverse isomorphism in h-Corr+S . Observe that


aij ∈ Hom(X, (S, dij)) = hdim(X/S)−dij
(X).


Since aij ◦ (gij)∗(1) = p∗(aij · (gij)∗(1)) = δi,j , the pairing (·, ·) is non-degenerate.
The pairing (·, ·) gives an isomorphism h(X)→ Homh(S)(h(X), h(S)) and, hence,


an isomorphism Endh(S) h(X)
≃
→ h(X)⊗h(S) h(X). Consider the composition


ρ : h(X ×S X)
f
→ Endh(S) h(X)


≃
→ h(X)⊗h(S) h(X)


and a map π : h(X)⊗ h(X)→ h(X ×S X) given by π(a⊗ b) = p∗1(a) · p
∗
2(b).


By definition, we have


fp∗


1
(a)p∗


2
(b)(x) = (p2)∗(p


∗
1(x)p


∗
1(a)p


∗
2(b)) = (x, a)b.


Hence, ρ(π(a ⊗ b)) = a⊗ b and the map ρ is surjective. By the property (CD) for
X ×S X → X , h(X ×S X) is a free h(X)-module of rank rkh(S)h(X). Thus, ρ is
a surjective homomorphism between free modules of the same rank, hence, it is an
isomorphism. �


3. The equivariant Künneth isomorphism


In the present section we introduce an equivariant Borel-Moore homology fol-
lowing [7, §2] and [17]. We provide an equivariant analogue of the Künneth isomor-
phism (Lemma 3.7).


Let G be a smooth group scheme over S. Consider an admissible subcategory
VG of the category of G-varieties X ∈ SchS with G-equivariant morphisms. By
a G-equivariant oriented (graded) Borel-Moore homology theory we will call an
additive functor hG• from VG to graded abelian groups such that


1. There are pull-backs for l.c.i. maps and push-forwards for projective maps that
satisfy


(TS) (l.c.i. base change) For a Cartesian square X ′ f ′


//


g′


��


Y ′


g


��
X


f // Y


where f (hence


f ′) is l.c.i. and g (hence g′) is projective, we have f∗g∗ = g′∗(f
′)∗.


(Loc) (localization) If U ⊂ X is an openG-equivariant embedding with Z = X\U ,
then there is a right exact sequence:


h
G
• (Z)→ h


G
• (X)→ h


G
• (U)→ 0.
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2. The functor h
G
• restricted to SmS defines a graded G-equivariant oriented co-


homology theory h
•
G in the sense of [9] (we refer to [9, §2, A1-9] for the precise


definition) by


h
dimS X−•
G (X) := h


G
• (X), X ∈ SmS.


In addition to the axioms of [9, §2] we require that hG satisfies the following stronger
version of the homotopy invariance axiom:


(HI) (extended homotopy invariance) Let p : Y → X be a G-equivariant torsor of
a vector bundle of rank r over X , then the pull-back induced by projection


p∗ : h•G(X)→ h
•
G(Y )


is an isomorphism.


If a variety is smooth we will always use the cohomology notation.


Example 3.1. Given a linear algebraic group G over a field k of characteristic zero
an example of such G-equivariant Borel-Moore homology theory hG• was constructed
in [17] as follows.


Consider a system of G-representations Vi and its open subsets Ui ⊆ Vi such
that


• G acts freely on Ui and the quotient Ui/G exists as a scheme over k,
• Vi+1 = Vi ⊕Wi for some representation Wi,
• Ui ⊆ Ui ⊕Wi ⊆ Ui+1, and Ui ⊕Wi → Ui+1 is an open inclusion, and
• codim(Vi \ Ui) strictly increases.


Such a system is called a good system of representations of G.
Let X ∈ Schk be a G-variety. Following [17, §3 and §5] the inverse limit induced


by pull-backs


lim
←−
i


h•−dimG+dimUi(X ×
G Ui), X ×G Ui = (X ×k Ui)/G,


does not depend on the choice of the system (Vi, Ui) and, hence, defines the G-
equivariant oriented homology group h


G
• (X).


In the present paper we will extensively use the following property (cf. [9, §2,
A6]) of an equivariant theory


(Tor) Let X → X/G be a G-torsor over S and a G′-equivariant map for some
group scheme G′ over S. Then there is an isomorphism


h
•
G×G′(X)


≃
−→ h


•
G′(X/G).


that is natural with respect to the maps of pairs


(φ, γ) : (X,G×G′)→ (X1, G1 ×G′
1), φ(x · (g, g′)) = φ(x) · γ(g, g′).


Observe that the theory of Example 3.1 satisfies this property by [17, Prop. 27].


We have the following equivariant analogues of Definitions 2.1 and 2.2


Definition 3.2. Let X ∈ VG. Suppose that there is a filtration by G-equivariant
proper closed subschemes


∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn = X


such that


• each irreducible component Xij of Xi \ Xi−1 is a G-equivariant (locally
trivial) affine fibration over S of rank dij , and
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• the closure of Xij in X admits a G-equivariant resolution of singularities


gij : X̃ij → Xij over S.


We call such X (together with the filtration) a G-equivariant cellular space over S.


Definition 3.3. We say that the equivariant theory h
G satisfies the cellular de-


composition (CD) property if given a G-equivariant cellular space X over S the
respective elements (gij)∗(1X̃ij


) form a h
G(S)-basis of hG(X).


Lemma 3.4. Suppose a morphism f : X → Y in Smk factors as f : X
z
→ L


j
→ Y


where p : L → X is a vector bundle, z : X → L is a zero section and j is an open
embedding.


Then for every projective map a : Y ′ → Y and X ′ = X ×Y Y ′ the following
diagram of pull-back and push-forward maps commutes (we omit the grading)


h(X ′)
a′


∗ // h(X)


h(Y ′)


f ′∗


OO


a∗ // h(Y )


f∗


OO


Proof. Observe that the map f ′ : X ′ → Y ′ factors as X ′ z′


→ L ×Y Y ′ j′


→ Y ′ where
z′ is the zero section of the vector bundle p′ : L′ = L ×Y Y ′ → X ′ and j′ is an
open embedding. Let b denote the canonical map L′ → L. Since j and j′ are flat,
we have j∗a∗ = b∗j


′∗ by the l.c.i. base change for oriented theories. Note that by
the homotopy invariance z∗ = (p∗)−1 and z′∗ = (p′∗)−1. Since p and p′ are flat,
p∗a′∗ = b∗p


′∗. Then z∗b∗ = a′∗z
′∗ and


f∗a∗ = z∗j∗a∗ = z∗b∗j
′∗ = a′∗z


′∗j′∗ = a′∗f
′∗. �


Remark 3.5. If (Vi, Ui) is a good system of representations of Example 3.1, then for
anyG-varietyX the connecting mapsX×GUi → X×GUi+1 factor as in Lemma 3.4,
i.e., we have X ×G Ui → X ×G (Ui ⊕Wi)→ X ×G Ui+1.


Example 3.6. Let hG be the equivariant theory of Example 3.1. Then the property
(CD) holds for hG.


Indeed, consider a good system of representations {(Vj , Uj)}j for X . The sub-
varieties Xi ×


G Uj , i = 0 . . . n form a cellular filtration on X ×G Uj over S ×G Uj.


Note that X̃i ×
G Uj is a resolution of singularities of Xi ×


G Uj. By (CD) for h


the set {(fi ×G idUj )∗(1)}i forms a basis of h(X ×G Uj) as a h(S ×G Uj)-module.
By Lemma 3.4 the following diagram commutes:


h(X̃i ×G Uj+1)
(gi,j+1)∗ //


ĩ∗j
��


h(X ×G Uj+1)


i∗j


��
h(X̃i ×G Uj)


(gi,j)∗ // h(X ×G Uj)


So i∗m((fi ×G idUj+1
)∗(1)) = (fi ×G idUj )∗(1), which implies that the elements


fi∗(1) = limj((fi ×G idUj )∗(1)) form a basis of hG(X) over hG(S).


From this point on we assume that hG• satisfies the property (CD). As for usual
oriented theories we then obtain
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Lemma 3.7. The pairing (·, ·) : hG(X) ⊗hG(S) h
G(X) → h


G(S) given by (a, b) =
p∗(ab) is non-degenerate and the map


f : (hG(X×SX), ◦)→ EndhG(S) h
G(X) given by a 7→ fa, fa(x) = (p2)∗(p


∗
1(x) ·a)


is an h
G(S)-linear isomorphism of rings. In particular, there is an h


G(S)-linear
isomorphism


(hGdimS X(X ×S X), ◦)→ End
hG-Corr+S


(hG(X)),


where h
G-Corr+S is the respective category of G-equivariant correspondences.


4. The convolution product


In the present section we introduce the convolution product on the equivariant
Borel-Moore homology (Definition 4.3) of group power. We relate this product to
the usual correspondence product for the associated torsors (Lemma 4.6) and study
its behaviour under the base change (diagram (6)).


Let G be a smooth algebraic group over k and let E be a G-torsor over k (G acts


on the right). By definition there is an isomorphism ρ : E×k G
≃
→ E×k E given on


points by (e, g) 7→ (e, eg). For each i ≥ 0 it induces an isomorphism


ρi : E ×k G
i −→ Ei+1, (e, g1, g2, . . . , gi) 7→ (e, eg1, eg2, . . . , egi).


Consider the composition


γi : E
i+1 ρ−1


i−→ E ×k G
i = E ×k G


i pr
−→ Gi.


The coordinate-wise right Gi+1-action on Ei+1 induces an action on E ×k G
i and,


hence, on Gi. For instance, on points it is given by


(3) (e, g1, . . . , gi) · (h1, . . . , hi+1) = (eh1, h
−1
1 g1h2, . . . , h


−1
1 gihi+1).


Consider projections pj : E
i+1 → Ei obtained by removing the j-th coordinate


and the respective Gi-action on Ei. For each i ≥ 1, 1 ≤ j ≤ i + 1 there is a
commutative diagram of Gi-equivariant maps


(4) Ei+1 γi //


pj


��


Gi


πj


��
Ei


γi−1 // Gi−1


where π1(g1, . . . , gi) = (g−1
1 g2, . . . , g


−1
1 gi) and πj(g1, . . . , gi) = (g1, . . . , ĝj−1, . . . , gi)


for j > 1.


Example 4.1. For i = 1 it gives a commutative diagram of G-equivariant maps


E ×k E
γ1 //


pj


��


G


πj


��
E


γ0 // Spec k


where γ0, π1, π2 are the structure maps, p1, p2 are the corresponding projections and
γ1(e, eg) = g. Moreover, if E is trivial, then γ1 = π1 : G×kG→ G, (g1, g2) 7→ g−1


1 g2.
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Let H be an algebraic subgroup of G such that G/H is a smooth variety over k.
We can view Gi as an H-torsor over Gi/H , where H acts on Gi via the jth coor-
dinate of Gi+1. By definition, the Hi-equivariant map πj factors as


πj : G
i q
−→ Gi/H


π̄j
−→ Gi−1,


where the second map π̄j is a fibration with a fibre G/H .


Example 4.2. The map π1 factors through the quotient maps modulo the diagonal
action


π1 : G
i q
−→ Gi/∆(H)


π̄1−→ Gi/∆(G) = Gi−1.


which are equivariant with respect to the usual coordinate-wise Hi-action.


Consider an equivariant Borel-Moore homology theory h. For every 1 6 j 6 i+1
consider the action of the j-th copy of H on Gi. The property (Tor) gives an
isomorphism


(5) hHi(Gi/H)
≃
−→ hHi+1(Gi),


where Hi+1 acts on Gi as in (3). Unless explicitly mentioned we will always identify
these two rings.


Set S = hH(G0) = hH(k) and set the convolution product on S to be the usual
intersection product.


Definition 4.3. Assume that G/H is a smooth projective variety over k. We define
the S-linear convolution product ′◦′ on hHi(Gi−1), i ≥ 2 to be the composite


hHi(Gi−1)⊗ hHi(Gi−1)
π̄∗


i−1⊗π̄∗


i+1


−→ hHi+1(Gi)⊗ hHi+1(Gi)
′·′


−→


hHi+1(Gi)
(π̄i)∗
−→ hHi(Gi−1),


where hHi+1(Gi) is identified with hHi(Gi/H) via (5) and π̄i is projective because
so is G/H .


The central object of the present paper is the convolution ring (hH2(G), ◦), i.e.,
the case i = 2. In the next sections we will show that (hB2(G), ◦) (where B is a
Borel subgroup of a semisimple split G) can be identified with the formal affine
Demazure algebra.


Example 4.4. In the case i = 3 the convolution ring (hH3(G2), ◦) is isomorphic
to h∆(H)((G/H)2) with respect to the usual correspondence product. Indeed, the


maps πi : G
3 → G2, i = 2, 3, 4 induce ∆(H)-equivariant projections (G/H)3 →


(G/H)2. The isomorphism then follows by (Tor).
Observe that if G/H is an H-equivariant cellular space and hH satisfies (CD),


then by Lemma 3.7 there is an S-linear ring isomorphism


(hH3(G2), ◦) ≃ EndS hH(G/H).


Lemma 4.5. For i ≥ 1 the map π1 induces an injective ring homomorphism with
respect to the convolution products


(hHi(Gi−1), ◦)
π̄∗


1−→ (hHi+1 (Gi), ◦).
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Proof. For i = 1 it follows from the fact that the convolution product on hH2(G)
is S-linear.


For i ≥ 2 for each i − 1 ≤ j ≤ i + 1 we have πj ◦ π1 = π1 ◦ πj+1. Since push-
forwards commute with flat pull-backs by (TS), there are commutative diagrams
in equivariant cohomology


hHi+1(Gi)
π̄∗


1 //


(π̄i)∗


��


hHi+2(Gi+1)


(π̄i+1)∗


��
hHi(Gi−1)


π̄∗


1 //


π̄∗


i−1,π̄
∗


i+1


OO


hHi+1(Gi)


π̄∗


i ,π̄
∗


i+2


OO


Finally, there is a Hi-equivariant section of the map π̄1 : G
i/∆(H) → Gi−1 given


by (g1, . . . , gi−1) 7→ (1, g1, . . . , gi−1), so π̄∗
1 is injective. �


Lemma 4.6. The map γ1 induces a ring homomorphism


(hH2(G), ◦)
γ∗


1−→ (hH2 (E2), ◦)
≃
−→ (h((E/H)2), ◦),


where the last ring is viewed with respect to the correspondence product (2).


Proof. By (TS) the diagram (4) gives rise to commutative diagrams in cohomology


hH3(G2)
γ∗


2 //


(π̄2)∗


��


hH3(E3)


(p2)∗


��
hH2(G)


γ∗


1 //


π̄∗


1 ,π̄
∗


3


OO


hH2(E2)


p∗


1 ,p
∗


3


OO


The last isomorphism follows by (Tor). �


Let k̄ denote the splitting field of a G-torsor E so that Gk̄ = Ek̄. Since the
base change preserves the convolution product, combining Lemmas 4.5 and 4.6 we
obtain two commutative diagrams of convolution (correspondence) rings


γ∗
1 : hH2(G)


pr∗ //


resk̄/k


��


hH2(E ×k G)
ρ∗


1


≃
// hH2(E2)


resk̄/k


��
γ∗
1 : hH2(Gk̄)


π̄∗


1 // hH2(G2
k̄
/∆(H))


q∗ // hH2(G2
k̄
)


and


γ∗
0 : hH(k)


ρ∗


0◦pr
∗


//


resk̄/k ≃


��


hH(E)


resk̄/k


��
γ∗
0 : hH(k̄)


q∗◦π̄∗


1 // hH(Gk̄)


where resk̄/k is the base change map. Combining these two diagrams we obtain a
commutative diagram of convolution rings


(6) hH(E) ⊗S hH2(G)
(p∗


1 ,γ
∗


1 ) //


resk̄/k


��


hH2(E2)


resk̄/k


��
hH(Gk̄)⊗S hH2(Gk̄)


(p∗


1 ,γ
∗


1 )// hH2(G2
k̄
),
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where the left convolution rings are hH(E)- and hH(Gk̄)-linear.


5. The subring of push-pull operators


In the present section we prove that if H is the Borel subgroup of a split semisim-
ple linear algebraic group, then the convolution ring hH2(G) of Definition 4.3 can be
identified with the subring of push-pull operators (Corollary 5.3). Our arguments
are essentially based on the Bruhat decomposition of G stated using the G-orbits
on the product G/H ×k G/H and the resolution of singularities (8).


As before assume that G/H is a smooth projective variety over k. In the notation
of the previous section consider the H2-equivariant maps of Example 4.2.


π1 : G
2 q
−→ G2/∆(H)


π̄1−→ G2/∆(G) = G, (g1, g2) 7→ g−1
1 g2.


Since G2 is a ∆(G)-torsor over G (∆(H)-torsor over G2/∆(H)), by the property
(Tor) the induced ∆(G) ×H2-equivariant pull-backs on cohomology coincide with
the forgetful maps


(7) γ∗
1 : hH2(G) ≃ h∆(G)×H2(G2) �


� π̄∗


1 //


≃


��


h∆(H)×H2(G2)
q∗ //


≃


��


hH2(G2)


≃


��
hG((G/H)2) �


� // hH((G/H)2) // h((G/H)2)


Moreover, by Lemma 4.5 it is a commutative diagram of convolution rings.


Let G be a split semisimple linear algebraic group over k and let h be an equivari-
ant theory that satisfies property (CD). We fix a Borel subgroup B of G containing
a split maximal torus T . By Bruhat decomposition (e.g. [27])


G = ∐w∈WBẇB, ẇ ∈ NT ,


is the disjoint union of B2-orbits of G, where W = NT /T is the Weyl group and NT


is the normalizator of T in G. Projecting this decomposition onto X = G/B gives a
B-equivariant cellular filtration onX by closuresXw of affine spacesXw = BẇB/B
of dimension l(w) (the length of w).


The preimage π−1
1 (BẇB) is a ∆(G)-orbit in G2 (here H = B). Let Ow denote


its image via G2 → X2 and let Ow denote its closure. Observe that both Ow and
Ow are ∆(G)-invariant in X2. By properties of the Bruhat decomposition (see [27,
§1]) it follows that the projection Ow → X2 → X is a torsor of a vector bundle over
X with fibre Xw. Indeed, the transition functions are affine since they are given
by the action of B on the left on BẇB/B that is by T acting on the product of
the respective root subgroups


∏
α∈Φ+∩w(Φ−) Uα via the conjugation and, hence, by


T acting on the product of the respective Ga’s via the multiplication t · x = α(t)x,
t ∈ T , x ∈ Ga. So X2 is a G-equivariant (G acts diagonally) cellular space over X
with filtration given by the closures Ow.


Assume that for each w ∈ W we are given a G-equivariant resolution of sin-


gularities Õw → Ow. Let [Õw]G denote the respective class in h
dimk X−l(w)
G (X2).


Then by the property (CD) the cohomology hG(X
2) (resp. hB(X


2) and h(X2)) is a


free module over hG(X) (resp. over hB(X) and h(X)) with basis {[Õw]G}w∈W


(resp. {[Õw]B}w∈W and {[Õw]}w∈W ). Hence, the forgetful maps of (7) send


[Õw]G 7→ [Õw]B 7→ [Õw] and change the coefficients by − ⊗hG(X) hB(X) and
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− ⊗hB(X) h(X) respectively, where the map S = hG(X) →֒ hB(X) → h(X) is
the classical characteristic map.


We now construct such G-equivariant resolutions as follows. For the i-th simple
reflection si we denote Xsi (resp. Osi) simply by Xi (resp. by Oi). Let Pi be the
minimal parabolic subgroup corresponding to a simple root αi and let qi : X →
G/Pi denote the respective quotient map.


Lemma 5.1. We have Oi = X ×G/Pi
X and, in particular, Oi is smooth.


Proof. We have (g1B, g2B) ∈ X ×G/Pi
X , g1, g2 ∈ G if and only if g1Pi = g2Pi, so


g2 = g1h for some h ∈ Pi. Since Pi = B ∪ BsiB, it means that either g2B = g1B
or g2B = g1BsiB, so (g1B, g2B) ∈ Osi ∪∆X = Oi. �


For any w ∈ W we choose a reduced decomposition w = si1si2 . . . sil and set
Iw = (i1, i2, . . . , il). Consider a variety


(8) ÕIw = X ×G/Pi1
X ×G/Pi2


. . .×G/Pil
X.


The projection on the first and the last factor pr : ÕIw → X ×k X gives a G-
equivariant resolution of singularities of Ow.


Theorem 5.2. For H = B or 1, the image of [ÕIw ]H ∈ hH(X ×k X) under the
Künneth isomorphism


(hH(X ×k X), ◦)
≃
−→ EndhH(k)(hH(X))


is the composition of push-pull operators q∗i1qi1∗ ◦ . . . ◦ q
∗
il
qil∗.


Proof. By definition the image of [ÕIw ]H is the hH(k)-linear operator


h
•
H(X)


p∗


1−→ hH(X ×k X)
·[ÕIw ]
−→ hH(X ×k X)


p2∗
−→ h


•−l(w)
H (X).


By the projection formula and (TS) it can be also written as


h
•
H(X)


pr∗l+1


−→ hH(ÕIw )
pr1∗−→ h


•−l(w)
H (X),


where prj denotes the projection on the j-th coordinate (recall that pj denotes the
projection obtained by removing the j-th coordinate).


By the property (TS) we obtain a commutative diagram


hH(X)
pr∗2 //


qil∗


��


hH(Õil )


pr1∗


��


pr∗23 // hH(Õ(il−1,il))


pr12∗


��


pr∗234 // . . . // hH(ÕIw )


��
hH(G/Pil)


q∗il // hH(X)


qil−1∗


��


pr∗2 // hH(Õil−1
)


pr1∗


��


. . .


��
hH(G/Pil−1


)
q∗il−1 // hH(X)


qil−2∗


��


. . .


��
. . . // . . . // hH(X)


where prijk... denote the projection on the i-th, j-th, k-th, . . ., coordinates. The
result then follows since the top horizontal row gives pr∗l+1 and the right vertical
column gives pr1∗. �
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Combining Diagram (7) and Theorem 5.2 we obtain


Corollary 5.3. There is a commutative diagram of convolution rings


hB2(G)
�


� π̄∗


1 // h∆(B)×B2(G2)
≃ //


q∗


��


hB(X
2)


≃ //


��


EndS(hB(X))


��
hB2(G2)


≃ // h(X2)
≃ // EndR(h(X))


where the image of (hB2(G), ◦) in EndS(hB(X)) is the subring generated by the
push-pull operators q∗i qi∗ (of degree (−1)) and the image of the forgetful map S =
h
•
G(X) → h


•
B(X) (of degrees ’•’) and the last vertical arrow is induced by the


augmentation map S→ R = h(k).


6. Self-duality of the algebra of push-pull operators


In the present section we identify the convolution ring hB2(G) with the formal
affine Demazure algebra DF of [18] and show that it is self-dual with respect to
the convolution product (Theorem 6.2). Our arguments are based on the results
of [18], [7], [8] and, especially, [9]. We use the notation of [9].


Recall that algebraic oriented cohomology theories h correspond (up to uni-
versality) to one-dimensional commutative formal group laws F (u, v): the formal
group law corresponds to h by means of the Quillen formula expressing the first
characteristic classes


ch1(L1 ⊗ L2) = F (ch1(L1), c
h


1(L2))


and the respective cohomology theory h is defined from F by tensoring with the
algebraic cobordism


h(−) = Ω(−)⊗Ω(k) R,


where Ω(k) → R defines F by specializing the coefficients in the Lazard ring (see
[9, §2] for details). For example, the additive formal group law correspond to Chow
groups and the periodic multiplicative law corresponds to K-theory.


By [9, Thm. 3.3] the completed B-equivariant coefficient ring S = hB(k) can
be identified with the formal group algebra R[[T ∗]]F , where T ∗ is the group of
characters of a split maximal torus T ⊂ B and F is the respective formal group
law.


Following [9, §5] consider the localized algebra Q = R[[T ∗]]F [
1
xα


]α (where α


runs through all simple roots) and the smash products QW = Q#RR[W ] and
SW = S#RR[W ] with the multiplication given by


qδw · q
′δw′ = q(wq′)δww′


for q, q′ ∈ Q (respectively S) and w,w′ ∈W (the Weyl group). Consider the duals
Q⋆


W = HomQ(QW ,Q) and S⋆
W = HomS(SW ,S). By definition Q⋆


W and S⋆
W can


be identified with the ring of functions Hom(W,Q) and Hom(W,S) respectively
As in [18, Def. 6.2, 6.3] for each simple root αi of the root system for G define


the push-pull element


Yi = (1 + δi)
1


x−i
∈ QW .


Define the formal affine Demazure algebra DF as the subalgebra of QW generated
by multiplications by S and the elements Yi.
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By [7, Thm. 7.9] (see also [18, Thm. 5.14]) the R-algebra DF satisfies the fol-
lowing (complete) set of relations: for i, j = 1 . . . rk(G) and u ∈ S


• Y 2
i = κiYi, where κi =


1
xi


+ 1
x−i


and xi = xαi ,


• Yiu = si(u)Yi +∆−i(u), where ∆−i(u) =
u−si(u)


x−i
,


• (YiYj)
mij − (YjYi)


mij =
∑


Iw
cIwYIw , where the sum is taken over all re-


duced expressions Iw of elements w of the subgroup 〈si, sj〉 ⊆ W , and the
coefficients cIw are given by the formulas of [18, Prop. 5.8]


Example 6.1. If F corresponds to Chow groups, then DF = Hnil is the affine
nil-Hecke algebra over Z in the notation of [16]. If F corresponds to K-theory, then
DF is the 0-affine Hecke algebra over Z (q → 0 in the affine Hecke algebra). If
F corresponds to the generic hyperbolic formal group law of [8, §9], then by [8,
Prop. 9.2] the constant part of DF is isomorphic to the localized classical Iwahori-
Hecke algebra.


Let D⋆
F = HomS(DF ,S) denote its dual. Observe that the main result of [9]


(Thm. 8.2 loc.cit.) says that D⋆
F is isomorphic to the R-algebra hT (X).


Theorem 6.2. Let G be a split semisimple linear algebraic group over a field k
and let h be an equivariant theory that satisfies property (CD).


Then the convolution algebra (hB2(G), ◦) is isomorphic (as an R-algebra) to the
formal affine Demazure algebra DF . So there is an R-algebra isomorphism


(D⋆
F , ◦) ≃ (DF , ·)


Proof. By Corollary 5.3 the ring (hB2(G), ◦) ≃ (hB(X), ◦) is isomorphic to the
subalgebra of EndS(hB(X)) generated by the image of the forgetful map hG(X)→
hB(X) and push-pull operators q∗i qi∗. Since the mapB → B/T is an affine fibration,
the natural map hB(X)→ hT (X) is an isomorphism. Hence we may identify S with
hT (k) and EndS(hB(X)) with EndS(hT (X)). Observe that these identifications
preserve push-pull operators. The inclusion of T -fixed point set W → X gives
an embedding hT (X) → hT (W ) = S⋆


W ⊆ Q⋆
W . By [9, Corollary 8.7] there is the


following commutative diagram


(9) hT (X) //


q∗i qi∗


��


S⋆
W
�


� // Q⋆
W


Ai


��
hT (X) // S⋆


W
�


� // Q⋆
W


where the Hecke operator Ai is given by


Ai(f)(x) = f(x · Yi) for x ∈ QW , f ∈ Q⋆
W .


Moreover, the forgetful map


S ∼= hG(X)→ hT (X) = ⊕w∈WS


is given by the formula s 7→ (w · s)w∈W for any s ∈ S. Then the multiplication in
hT (X) = S∗


W by the image of any element in s ∈ hG(X) induces a right multipli-
cation by s in Q∗


W . Since QW is a free Q-module of finite rank, the natural map
ı : QW → EndQ(Q⋆


W ) given by ı(x)(f)(y) = f(yx) is an inclusion. Note that every
Ai lies in the image of ı. Then by diagram (9) the image of hB2(G) is isomorphic
to a subalgebra of QW generated by S and Yi which is DF . �
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7. The rational algebra of push-pull operators


In the present section we introduce the rational algebra of push-pull operators
DF and show that it can be identified with the subring of rational endomorphisms
of G/B (Theorem 7.5).


The B2-equivariant isomorphism E ×k G→ E ×k E, (e, g) 7→ (e, eg) induces an
isomorphismE×BG/B → E/B×kE/B. For all w ∈W fix a reduced decomposition
Iw = (i1, . . . , il) and the corresponding Bott-Samelson resolution XIw → G/B of
the Schubert cell. This map is B-equivariant, so it descends to a map YIw =
E ×B XIw → E ×B G/B.


Lemma 7.1. The classes [YIw ] form a basis of h(E/B ×k E/B) over h(E/B),
where the module structure is given by the pullback of the projection pr∗1 : h(E/B)→
h(E/B ×k E/B).


Proof. Since B is special, G-torsor E splits over the function field of E/B. Then by
[25, Lemma 3.3] projection pr1 : E/B ×k E/B → E/B is a cellular fibration in the
sense of [25, Definition 3.1] so that (E/B)2 is a cellular space over E/B. Let ξ be the
generic point of E/B. The pullback of an open embedding j∗ : h(E/B ×k E/B)→
h(ξ ×k E/B) ≃ h(G/B) is surjective and any preimage of R-basis of h(G/B) gives
a basis of h(E/B ×k E/B). Thus it is sufficient to check that j∗ sends [YIw ] to a
basis of h(ξ ×k E/B). Let p : E → E/B be the projection. Note that


E ×B XIw ×(E/B×kE/B) ξ ×k E/B = p−1(ξ) ×B XIw = ξ ×XIw ,


since p−1(ξ)→ ξ is a trivial B-torsor. Thus j∗([YIw ]) = [ξ×Xiw ] that forms a basis
of h(ξ × E/B) = h(ξ ×G/B) over h(ξ) = R. �


Consider a B-equivariant map


f : E ×B G→ B\G, (e, g)B 7→ Bg.


Let X ′
Iw


= (Pi1 × . . . × Pil)/B
l where Bl-action on Pi1 × . . . × Pil is given by


(p1, . . . , pl) · (b1, . . . , bl) = (b−1
1 p1b2, . . . , b


−1
l pl). Then X ′


Iw
gives the Bott-Samelson


class for B\G.


Lemma 7.2. The composition hB(B\G)
f∗


→ hB(E ×B G) ≃ h(E/B ×k E/B) maps
[X ′


Iw
]B to [YIw ].


Proof. Consider the map Pi1 ×
B Pi2 ×


B . . . ×B Pil → G given by (p1, . . . , pl) →
p1 . . . pl. It is B-equivariant with respect to the left multiplication, so it descends
to a map MIw = E ×B Pi1 ×


B Pi2 ×
B . . . ×B Pil → E ×B G. By construction we


have an isomorphism


MIw ≃ YIw ×E×B(G/B) (E ×
B G).


Then [MIw ]B is mapped to [YIw ] via the isomorphism h(E×BG/B)→ hB(E×BG).
Thus it is sufficient to check that f∗[X ′


Iw
]B = [MIw ]B, which follows from the fact


that
MIw = E ×B (Pi1 × . . .× Pil/B


l−1) ≃ (E ×B G)×B\G X ′
Iw . �


Lemma 7.3. (cf. [25, Corollary 3.4]) The composition


(p∗1, γ
∗
1) : hB(E)⊗S hB2(G) −→ hB2(E2) ≃ h((E/B)2)


of the diagram (6) (for H = B) is an isomorphism.
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Proof. Consider the basis of hB2(G) over S given by the classes of Bott-Samelson
resolutions ζIw . Then by Lemma 7.2 γ∗


1 (ζIw ) forms a basis of hB2(E2) over hB(E)
induced by the respective cellular filtration. �


Consider the restriction map h(E/B) → h(Ek̄/B) = h(Xk̄) on cohomology in-
duced by the scalar extension k̄/k (here k̄ is a splitting field of E). Let h(X) denote
its image.


Corollary 7.4. The image of the ring homomorphism


resk̄/k : (h(E/B ×k E/B), ◦) −→ (h(Xk̄ ×k̄ Xk̄), ◦).


is the subalgebra generated by the multiplication by the elements of h(X) and the
push-pull operators q∗i qi∗ : h(X)→ h(G/Pi)→ h(X) for all simple roots αi.


Proof. Follows by (6), Lemma 7.3 and Corollary 5.3. �


There is a natural action of W on h(X) that comes from the W -action on E/T .
So we can endow h(X) ⊗S QW with a structure of an R-algebra. Let DF denote
its subalgebra h(X)⊗S DF . We call it the rational algebra of push-pull operators.
We endow DF (and DF ) with a grading assuming that all Yi’s have degree (−1)


and elements of h
•
(X) (and of S = h


•
B(k)) have degree ’•’. By D


(m)


F we denote its
degree m homogeneous component. Let N = dimX .


Theorem 7.5. Consider the restriction


resk̄/k : End
h-Corr+k


(E/B) −→ End
h-Corr+


k̄


(Xk̄)


on endomorphism rings of the respective motives (i.e., preserving the grading of


h(X)). Its image can be identified with D
(0)


F via the injective forgetful map


φ :
(
(h(X)⊗S hG(X


2
k̄))


(N), ◦
)
−→


(
h
N(X2


k̄), ◦
)
.


Proof. By (7) both hG(X
2) and h(X2) are free modules over hG(X) and h(X) with


basis given by the classes [ÕIw ]G and [ÕIw ] respectively. The map φ sends [ÕIw ]G 7→


[ÕIw ] and leaves the coefficients invariant. The result follows by Corollary 7.4,
Corollary 5.3 and Theorem 6.2. �


We say that a (co-)homology theory h satisfies the Dimension Axiom if


(Dim) For any smooth variety Y over k we have hn(Y ) = 0 for all n > dimY .


Example 7.6. Any theory h over a field k of characteristic 0 obtained by special-
ization of coefficients of the Lazard ring (e.g. Chow groups, connective K-theory,
algebraic cobordism Ω) satisfies (Dim).


The graded K-theory K0(−)[β, β−1] of [23, Example 1.1.5] does not satisfy
(Dim).


Observe that the image of the characteristic map c : S → h(X) is contained in


h(X) (see [15, Thm. 4.5]). Consider both the induced map c : D
(0)
F → D


(0)


F and the


restriction map resk̄/k : (hB(E)⊗S DF )
(0) → D


(0)


F .


Lemma 7.7. Assume that the theory h satisfies (Dim), then the kernels of c and
resk̄/k are nilpotent.
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In other words, there is a commutative diagram of maps of convolution rings


D
(0)
F


γ∗


1 //


c


%%❏
❏


❏


❏


❏


❏


❏


❏


❏


❏


h
N((E/B)2)


resk̄/k����


D
(0)


F


with nilpotent kernels.


Proof. Let f = c or resk̄/k. Then x ∈ ker f means that x =
∑


w aw[ÕIw ]G with


f(aw) = 0. By Theorem 5.2 each [ÕIw ] corresponds to the composite of push-


pull elements YIw in DF , so that x corresponds to
∑


w awYIw ∈ D
(0)


F and x◦n


corresponds to


(
∑


w


awYIw )
n =


∑


w


aw,nYIw , aw,n ∈ (ker f)n,


Since ker f is contained in the augmentation ideal, (ker f)n ⊂ S(≥n). Finally,
observe that deg YIw ≤ −N , hence, for n > 2N we get x◦n = 0. �


Lemma 7.8. If E is a versal G-torsor, then the map γ∗
1 and, hence, c, of the


lemma 7.7 is surjective.


Proof. Observe that if E is versal, then it admits an open G-equivariant embedding
into AN


k . So the projection E ×k Gi → Gi in the definition of γi factors through
AN


k ×k G
i. By (Loc) and (HI) the induced pullback γ∗


i is surjective. �


8. Applications to representation theory of Hecke rings


Let G be a split semisimple linear algebraic group over a field k and let E be a
G-torsor over k. Let k̄ be a splitting field of E and let E/B be the twisted form of
G/B by means of E. By definition, we have


E/B ×k k̄ ≃ G/B ×k k̄.


Let h, hB be an (B-equivariant) oriented theory over k that satisfies both (CD) and
(Dim) axioms, e.g., Chow groups, connective K-theory or algebraic cobordism Ω.
Let R = h(k) and S = hB(k) be the respective coefficient rings.


Consider the endomorphism ring of the h-motive of E/B


CF = (End
h-Corr+


k
(E/B), ◦).


By definition, any direct sum decomposition of the motive [E/B] is given by a
complete set of primitive pairwise orthogonal idempotents on CF so that 〈E/B〉h ≃
Proj CF . Our main result (Theorem 7.5) together with Lemma 7.7 says that the
restriction map gives a surjective ring homomorphism with nilpotent kernel


resk̄/k : CF → D
(0)


F .


By the standard idempotent lifting (see e.g. [25, §2 and Prop. 2.6]) we then obtain


Proj CF ≃ ProjD
(0)


F , so that we get the following
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Theorem 8.1. There is a one-to-one correspondence between direct sum decom-
positions of the h-motive [E/B] and direct sum decompositions of DF -module DF .
This correspondence, induces an equivalence between the category 〈E/B〉h and the
category Proj DF of finitely generated projective DF -modules.


If E is versal, then the algebra DF can be replaced by the algebra DF .


Observe that in general the ring DF is not Krull-Schmidt (and not semi-simple).


Lemma 8.2. If the coefficient ring R is Artinian, then both CF and DF and, hence,
the categories 〈E/B〉h and Proj DF satisfy the Krull-Schmidt property (uniqueness
of a direct sum decomposition).


Proof. If R is Artinian, then both DF and CF are Artinian (as DF is finite di-
mensional over R). So they are both Noetherian which implies that the respective
tautological modules DF and CF have finite length and, hence, the Krull-Schmidt
property holds for both DF and CF . �


As a direct application of the main result of [25] one obtains the following charac-
terization of modular representations of the (affine) nil-Hecke algebra (F is additive
and h = CH).


Corollary 8.3. Let G be a split semisimple linear algebraic group over a field k.
Consider the affine nil-Hecke algebra Hnil for G with coefficients in R = Fp, p is
a prime. Then


Proj Hnil ≃ 〈RE,p〉,


where E is a versal G-torsor.
In particular, all indecomposable submodules of Hnil are free S-modules iso-


morphic to each other and their S-rank equals to the p-part of the product of p-
exceptional degrees of G.


Proof. The S-rank coincides with the number of Tate motives in the decomposition


of RE,p over a splitting field of E, that is
∏r


i=1
1−tdip


ki


1−tdi
|t=1 (in the notation of [25])


which is equal to the p-part p
∑r


i=1
ki of p-exceptional degrees of [19, p.73]. �


Example 8.4. Consider the root system of type A1. In this case T ∗ = Zω (G =
SL2) or T


∗ = Zα (G = PGL2), α = 2ω is the simple root and ω is the fundamental
weight. The Weyl group W = {1, s} acts by s : ω 7→ −ω, where s is the simple
reflection. By definition, S = R[[x]]F (where x = xω or x = xα), Q = S[ 1x ],
QW = {q(x)δw | q(x) ∈ Q, w ∈W} with


q(−Fx)δs = s(q(x))δs = δsq(x),


where −Fx is the formal inverse of x. Observe that xα = xω+ω = F (xω , xω) in S.
The R-algebra DF is a free left S-submodule of rank 2 in QW with basis


{1, Y = 1
−Fxα


+ 1
xα


δs}.


It satisfies the relations


Y 2 = κY and Y q(x) = q(−Fx)Y +∆(q(x)),


where κ = 1
−Fxα


+ 1
xα


and ∆(q(x)) = q(x)−q(−Fx)
x−α


.
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Let p = a+ bY , a, b ∈ S be an idempotent in DF , i.e., p
2 = p. Since deg p = 0,


we have deg a = 0 and deg b = 1 (the coefficient aij ∈ R at uivj in F (u, v) has
degree 1− i− j). Then


(a+bY )2 = a2+abY+bY a+bY bY = a2+abY+b(s(a)Y+∆(a))+b(s(b)Y+∆(b))Y =
(
a2 + b∆(a)


)
+
(
ab+ bs(a) + bs(b)κ+ b∆(b)


)
Y.


So that
a2 + b∆(a) = a and ab+ bs(a) + bs(b)κ+ b∆(b) = b.


Assume b is a non-zero divisor, then we obtain (in S)


(10) a2 + b∆(a) = a and a+ s(a) + s(b)κ+∆(b) = 1.


In the case h = CH and R = Z (F (u, v) = u + v) we have κ = 0, −Fx = −x,
xα = 2xω, a ∈ Z, b = cx, c ∈ Z and, (10) becomes


a = 0 and ∆(b) = cx
−xω


= 1


or
a = 1 and ∆(b) = cx


−xω
= −1


which have solutions only if x = xω and c = ±1. Therefore, DF has only two
indecomposable submodules corresponding to the idempotents 1− xY and xY .


The latter translates into the following well-known fact concerning motivic de-
compositions:


The Chow motive of a conic E/B (for a versal G-torsor E) decomposes as a
direct sum of two indecomposable summands if and only if G = SL2, i.e.. E is
trivial and E/B = P1. In this case each summand correspond to the (shifted) Tate
motive.
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Sup. (4) 7 (1974), 53–88.


[13] D. Edidin, W. Graham, Equivariant intersection theory. Invent. Math. 131 (1998), no.3,
595–634.







MOTIVIC DECOMPOSITIONS AND REPRESENTATIONS 21


[14] R. Elman, N. Karpenko, A. Merkurjev, Algebraic and geometric theory of quadratic forms.
AMS Colloquium Publ. 56, AMS, Providence, RI, 2008. 435 pp.


[15] S. Gille, K. Zainoulline, Equivariant pretheories and invariants of torsors, Transf. Groups 17
(2012), no.2, 471–498.


[16] V. Ginzburg, Geometric methods in the representation theory of Hecke algebras and quantum
groups, Representation Theories and Algebraic Geometry Nato ASI Series Volume 514, 1998,
pp 127-183
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