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Abstract. We continue our study from [1] on the problem to bound the
number of symbols needed to obtain an element of the second K-group of a
rational function field with given ramification. Here we focus on the case of
Milnor K-groups modulo 2 for fields of characteristic different from 2. To a
given ramification sequence, we associate a quadratic form defined over the
base field and study its properties. In particular, we relate the Witt index of
the quadratic form to the minimal number of symbols necessary to represent
the ramification sequence.
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1. Introduction

Let K1 and K2 denote the functors associating to a field its first and second
K-group. Let E be a field and let F be the function field of the projective line

P1
E over E. Let P

1(1)
E denote the set of closed points of P1

E.
Let m ∈ N. There is a natural exact sequence

0 −→ K2E/m −→ K2F/m
∂

−→
⊕

x∈P
1(1)
E

K1E(x)/m−→K1E/m −→ 0 ,(1.1)

due to Tate (cf. [7, (2.3)]), where ∂ denotes the ramification map. By a ram-
ification sequence we mean an element in the direct sum term whose image in
K1E/m is trivial and which therefore lies in the image of ∂. The group K2F/m
has a canonical set of generators, which are called symbols. Given a ramification
sequence ρ one may ask how many symbols are needed to obtain an element
ξ ∈ K2F/m such that ∂(ξ) = ρ. Without restrictions on E, in [1] for a ramifica-
tion sequence ρ we constructed an element ξ ∈ K2F/m such that ∂(ξ) = ρ and ξ
is a sum of r symbols, where r is the integral part of the degree of ρ divided by
two. We further gave examples where this bound is best possible.

We continue our investigation of the problem of bounding the number of sym-
bols needed for representing a given ramification, but restricted to the case where
m = 2 and char(E) 6= 2. Thus we consider the K-group k2F = K2F/2 which
by Merkurjev’s Theorem is naturally isomorphic to Br2(F ), the 2-torsion part
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of the Brauer group of F . Hence, the problem can be reinterpreted as a prob-
lem in terms of central simple algebras, where symbols correspond to quaternion
algebras.

In this setting we relate the problem to quadratic form theory. The connection
is made via pairs (f, g) of square-free coprime polynomials f, g ∈ E[t]. On the
one hand, any ramification sequence can be represented by such a pair. On the
other hand, any such pair gives rise to a quadratic form over E, closely related
to the so-called Bezoutian of f and g introduced by Sylvester and Cayley.

In Section 2 we recall the necessary notions and statements from Milnor’s
K-theory involved in the above exact sequence (in the case of k2). In Section
3 we study the properties of the Bezoutian of a pair of polynomials (f, g) as
above in our setting. In particular, we characterise the isotropy of this form
(Proposition 3.4) and we obtain a reciprocity law (Corollary 3.9), which together
will be crucial in Section 5.

In Section 4 we consider a pair (f, g) coming from a specific representation of
a symbol and show that the associated Bezoutian is hyperbolic provided that the
symbol is unramified at ∞ (Proposition 4.4).

In Section 5, given a ramification sequence ρ we construct a sequence of poly-
nomials which yields a representation of ρ as a sum of symbols. If ρ is given by
the pair (f, g), we obtain an upper bound on the number of symbols needed to
represent ρ in terms of the Witt index of the Bezoutian of (f, g) (Theorem 5.9).
It refines the bound from [1, Theorem 3.10]: the larger the Witt index, the better
the improvement.

The final section illustrates our study by results and examples for ramification
sequences of small degree. In particular, we obtain a criterion for a ramification
sequence of degree four to be represented by a symbol (Theorem 6.1). This gen-
eralises a result due to Sivatski in [8, Prop. 1.4], which inspired our investigation.

2. Preliminaries

Let F be a field. Let k2F denote the abelian group generated by symbols, which
are elements of the form {a, b} with a, b ∈ F×, subject to the defining relations
that the pairing

{·, ·} : F× × F× −→ k2F

is bilinear, {a, 1− a} = 0 for any a ∈ F× \ {1} and {a2, b} = 0 for all a, b ∈ F×.
It follows from the defining relations that k2F is 2-torsion and that, for any
a, b ∈ F×, we have {a, b} = {b, a}, and further {a, b} = {a + b,−ab} provided
that b 6= −a. Let k1F denote the square class group F×/F×2 in additive notation,
where we write {a} ∈ k1F for the element given by the square class of a ∈ F×

and thus have {a}+{b} = {ab} for a, b ∈ F×. Note that kiF = KiF/2 for i = 1, 2
in the notation used in the introduction.

By a global field we mean a field F that is either a finite extension of Q or a
function field in one variable over a finite field.
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2.1. Proposition. If F is a global field then every element of k2F is a symbol.

Proof. This follows from the corresponding statement for K2F . It was shown in
[6] that every element of K2F is a symbol, and as k2F = K2F/2 our statement
follows. If char(F ) 6= 2 then one can argue alternatively that by the Hasse-
Minkowski Theorem any quadratic form in six variables of determinant −1 is
isotropic, which implies the statement. �

By a Z-valuation on a field we mean a valuation with value group Z. Given a
Z-valuation v on F we denote by Ov its valuation ring and by κv its residue field.
For a ∈ Ov let a denote the natural image of a in κv. By [7, (2.1)], for n > 2 and
a Z-valuation v on F , there is a unique homomorphism ∂v : k2F −→ k1κv such
that

∂v({f, g}) = v(f) · {g} in k1κv

for f ∈ F× and g ∈ O×
v . For f, g ∈ F× we obtain that f−v(g)gv(f) ∈ O×

v and

∂v({f, g}) = {(−1)v(f)v(g)f−v(g)gv(f)} in k1κv .

We turn to the situation where F is the function field of P1
E over a field E. By

the choice of a generator, we identify F with the rational function field E(t) in
the variable t over E. Let P denote the set of monic irreducible polynomials in
E[t]. Any p ∈ P determines a Z-valuation vp on E(t) that is trivial on E and
such that vp(p) = 1. There is further a unique Z-valuation v∞ on E(t) such that
v∞(f) = − deg(f) for any f ∈ E[t] \ {0}. We set P ′ = P ∪ {∞}. For p ∈ P ′ we
write ∂p for ∂vp and we denote by Ep the residue field of vp. Note that, for p ∈ P,
Ep is naturally isomorphic to E[t]/(p), and E∞ is naturally isomorphic to E.

It follows from [7, Sect. 2] that the sequence

(2.2) 0 −→ k2E −→ k2E(t)
⊕

∂p
−→

⊕

p∈P

k1Ep −→ 0

is split exact. We reformulate this fact and relate (2.2) to (1.1). We set

R
′
2(E) =

⊕

p∈P ′

k1Ep .

(The index 2 is a reminiscence to the fact that we are working with Milnor K-
groups modulo 2.)

For p ∈ P ′, the norm map of the finite extension Ep/E yields a group homo-
morphism k1Ep −→ k1E. Summation over these maps for all p ∈ P ′ yields a
homomorphism N : R′

2(E) −→ k1E . Let R2(E) denote the kernel of N. We call
∂ =

⊕
p∈P ′ ∂p the ramification map. By [2, (7.2.4) and (7.2.5)] we obtain an exact

sequence

0 −→ k2E −→ k2E(t)
∂

−→ R
′
2(E)

N
−→ k1E −→ 0 .(2.3)

In particular, R2(E) is equal to the image of ∂ : k2E(t) −→ R
′
2(E). The elements

of R2(E) are therefore called ramification sequences.
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The choice of the generator of F over E fixes a bijection φ : P
1(1)
E −→ P ′ and

for any x ∈ P
1(1)
E a natural isomorphism between E(x) and Eφ(x). This identifies⊕

x∈P
1(1)
E

k1E(x) with R
′
2(E), and further the sequence (1.1) with (2.3). We will

work with (2.3) in the sequel.
For a finite set S ⊆ P ′ we call

∑
p∈S[Ep : E] the degree of S and denote it by

deg(S). For ρ = (ρp)p∈P ′ ∈ R
′
2(E) we denote Supp(ρ) = {p ∈ P ′ | ρp 6= 0} and

deg(ρ) = deg(Supp(ρ)), and we call this the support and the degree of ρ.
Given a ramification sequence ρ ∈ R2(E), we say that ρ is represented by

ξ ∈ k2E(t) if ∂(ξ) = ρ. The problem at the centre of our study is to obtain a
good upper bound on the smallest n ∈ N such that ρ is represented by a sum of
n symbols in k2E(t).

2.4. Example. Assume that the field E is finite. Then by Proposition 2.1 every
element of k2E(t) is a symbol. In particular, any ramification sequence in R2(E)
is represented by a symbol.

For x ∈ R we set ⌊x⌋ = max{z ∈ Z | z 6 x} and ⌈x⌉ = min{z ∈ Z | z > x}.

In [1, Theorem 3.10] we proved the following statement:

2.5. Theorem. Any ramification sequence ρ ∈ R2(E) is represented by a sum of

n symbols for n = ⌊deg(ρ)
2

⌋.

3. Bezoutians

From now on we assume that the field E has characteristic different from 2. We
study a quadratic form given by two polynomials f, g ∈ E[t] where g is square-
free and f is coprime to g. This quadratic form is obtained by a transfer and
it is closely related to the Bezoutian of the polynomials f and g, introduced by
Sylvester and Cayley. We shall develop some rules of computation, including a
reciprocity law (Theorem 3.8).

We start by recalling some basic concepts and terminology from quadratic form
theory. For a non-degenerate quadratic form ϕ over E, we denote by [ϕ] its Witt
equivalence class, which we view as an element of the Witt ring WE.

For α ∈ WE we denote by diman(α), the dimension of the unique anisotropic
quadratic form ϕ over E such that α = [ϕ], and call this the anisotropic dimension

of α. In other terms, given a quadratic form ϕ over E, we have

dim(ϕ) = diman([ϕ]) + 2iW (ϕ)

where dim(ϕ) and iW (ϕ) are the dimension and the Witt index of ϕ. Unlike
the dimension, the anisotropic dimension of a non-degenerate quadratic form
depends only on its Witt equivalence class. Recall that the fundamental ideal
IE consists of the classes [ϕ] of even-dimensional quadratic forms ϕ over E. We
denote by I2E the square of this ideal. For a ∈ E× we denote by [a] the class
in WE of the one-dimensional quadratic form 〈a〉 over E. Since quadratic forms
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over E are diagonalisable, WE is additively generated by the elements [a] with
a ∈ E×. Note that the unity in WE is the Witt equivalence class [1], which
we simply denote by 1. The element 0 in WE is given by the trivial quadratic
form. A quadratic form over E is said to be split if it is either hyperbolic or Witt
equivalent to a one-dimensional quadratic form. Recall that the discriminant of

a quadratic form ϕ over E is defined as the class of (−1)
n(n−1)

2 det(M) in E×/E×2

where n = dim(ϕ) and where M is the matrix of ϕ with respect to an arbitrary
E-basis. The discriminant is an invariant of the Witt equivalence class of a form.

Let g ∈ E[t] be square-free. Let θ denote the class of t in Eg = E[t]/(g),
n = deg(g), and let sg : Eg −→ E be the E-linear form with sg(θ

i) = 0 for
i = 0, . . . , n− 2 and sg(θ

n−1) = 1.

3.1. Proposition. Let f, g ∈ E[t] be coprime and θ = t+(g) in Eg. The quadratic

map

q : Eg −→ E, x 7→ sg(f(θ)x
2)

is non-degenerate. The quadratic form (Eg, q) has discriminant NEg/E(f(θ))E
×2.

The Witt index of this form is at least ⌊deg(g)−deg(f)
2

⌋. In particular, if f is constant

then (Eg, q) is split.

Proof. Set n = deg(g). Let B = (bij)i,j ∈ Mn(E) be given by

f(θ)θj−1 =

n∑

i=1

bijθ
i−1 .

For j, k = 1, . . . , n we obtain that

sg(f(θ)θ
j−1θk−1) =

n∑

i=1

bijsg(θ
i−1θk−1).

With C1 = (sg(θ
i−1θj−1))i,j ∈ Mn(E) and Cf = (sg(f(θ)θ

i−1θj−1))i,j ∈ Mn(E) we
obtain that Cf = C1 ·B and in particular

det(Cf) = det(C1) · det(B) .

Note that NEg/E(f(θ)) = det(B) and

C1 =




0 . . . 0 1
... . .

.
. .
.

∗

0 . .
.

. .
. ...

1 ∗ . . . ∗




in view of the definition of sg. Therefore

det(Cf) = (−1)⌊
n
2
⌋ ·NEg/E(f(θ)) .

As Cf is the matrix of the quadratic form q with respect to the basis 1, θ, . . . , θn−1,
this confirms that the quadratic form (Eg, q) is non-degenerate of discriminant
NEg/E(f(θ))E

×2 ∈ E×/E×2.
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Furthermore, for k = ⌊deg(g)−deg(f)
2

⌋ the vectors 1, . . . , θk−1 span a totally
isotropic subspace of (Eg, q), so the Witt index of (Eg, q) is at least k. �

We call the quadratic form in Proposition 3.1 the Bezoutian form of f modulo g.
We are indebted to J.-P. Tignol for pointing out to us a different way of obtaining
this quadratic form.

3.2. Proposition (Tignol). Let f, g ∈ E[t] be coprime such that g is monic and

square-free and deg(f) 6 deg(g). Set θ = t + (g) in Eg. For n = deg(g) let

A = (aij)i,j ∈ Mn(E) be the symmetric matrix given by

g(X)f(Y )− f(X)g(Y )

X − Y
=

n∑

i,j=1

aijX
i−1Y j−1.

Then the quadratic forms

Eg → E : x 7→ sg(f(θ)x
2) and En → E : u 7→ utAu

are isometric.

Proof. We factorize

g(X) = (X − θ)h(X)

with h(X) ∈ Eg[X ]. By definition of A we have

n∑

i,j=1

aijX
i−1θj−1 =

g(X)f(θ)− g(θ)f(X)

X − θ
= h(X)f(θ).

We extend sg to an E[X ]-linear map Eg[X ] → E[X ]. We can write

h(X) = Xn−1 + h1(θ)X
n−2 + · · ·+ hn−2(θ)X + hn−1(θ)

with polynomials h1, . . . , hn−1 ∈ E[Y ] of degree at most n − 1. Since g ∈ E[X ]
we obtain recursively for i = 1, . . . , n− 1 that hi is monic of degree i. Hence

sg(h(X)) = sg(hn−1(θ)) = 1 .

For any positive integer k we have
n∑

i,j=1

aijf(θ)
−1X i−1θj+k−2 = h(X)θk−1.

If 1 < k 6 n, then

(Xk−1 − θk−1)h(X) = g(X)(Xk−2 +Xk−3θ + . . .+Xθk−3 + θk−2)

and sg maps the right side to 0, showing that

n∑

i,j=1

aijsg(f(θ)
−1θj+k−2)X i−1 = sg

(
h(X)θk−1

)
= sg

(
h(X)Xk−1

)
= Xk−1.
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The last equality also holds for k = 1. Hence, for any i, k ∈ {1, . . . , n}, we have

n∑

j=1

aijsg(f(θ)
−1θj+k−2) =

{
1 if i = k

0 if i 6= k.

This shows that A is the inverse of
(
sg(f(θ)

−1θi+j−2)
)
i,j
, which is the representing

matrix of q with respect to the E-basis (f(θ)−1θi)n−1
i=0 of Eg. Finally, since A is

symmetric, it is congruent to A−1. This proves the statement. �

More generally, for any two coprime polynomials f, g ∈ E[t], denoting by n
the maximum of deg(f) and deg(g) the matrix A ∈ Mn(E) given by the formula
in Proposition 3.2 defines a non-degenerate n-dimensional quadratic form over
E, called the Hankel-Bezoutian of f and g. This quadratic form has interesting
properties and seems to have been studied considerably in the literature (cf. [3]).
The Bezoutian form of f modulo g coincides with the Hankel-Bezoutian of f
and g in the situation of Proposition 3.2. In general, the two concepts behave
differently.

Given two polynomials f, g ∈ E[t] with g square-free and prime to f , we write

B

(
f

g

)

for the class in WE given by the Bezoutian form of f modulo g.

3.3. Proposition. For any a ∈ E× and f, g, h ∈ E[t] with g square-free and

coprime to fh, one has

B

(
afh2

g

)
= [a] ·B

(
f

g

)
.

Proof. This follows directly from the properties of the transfer by which B

(
∗
g

)

is defined. �

3.4. Proposition. Assume that the field E is infinite. Let f, g ∈ E[t] be coprime

with g monic and square-free. Let θ = t+(g) in Eg. The following are equivalent:

(i) diman
(
B

(
f
g

))
< deg(g).

(ii) There exists f ′ ∈ E[t] such that deg(f ′) 6 deg(g)− 2 and f(θ)f ′(θ) ∈ E×2
g .

(iii) There exists f ′ ∈ E[t] square-free such that deg(f ′) 6 deg(g) − 2,
deg(f ′) ≡ deg(g) mod 2 and f(θ)f ′(θ) ∈ E×2

g .

Proof. Let n = deg(g). Let Ẽ be an algebraic closure of E and Ẽg = Ẽ[t]/(g).
The equation

α =
n∑

i=1

ci(α)θ
n−i for α ∈ Ẽg
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determines Ẽ-linear forms c1, . . . , cn : Ẽg −→ Ẽ. For i = 1, . . . , n we obtain a

quadratic form qi : Ẽg −→ Ẽ, x 7→ ci(f(θ)x
2). The quadratic space (Eg, q1|Eg

)

over E is non-degenerate and its Witt equivalence class is B

(
f
g

)
. Hence, Con-

dition (i) is equivalent to saying that (Eg, q1|Eg
) is isotropic. In particular, (ii)

implies (i). Trivially (iii) implies (ii). It remains to show that (i) implies (iii).
Suppose that there exists x ∈ E×

g with q1(x) = 0 6= q2(x). Then α = f(θ)x2 ∈
E×

g and c1(α) = 0 6= c2(α), whereby α = h(θ) for a polynomial h ∈ E[t] coprime

to g with deg(h) = n − 2. We write h = f ′ · ℓ2 with f ′, ℓ ∈ E[t] such that f ′

is square-free. Then f(θ)f ′(θ) ∈ E×2
g and deg(f ′) = n − 2 − 2 deg(ℓ), whereby

deg(f ′) 6 deg(g)− 2 and deg(f ′) ≡ deg(g) mod 2.
Hence, we are left with showing that the isotropy of (Eg, q1|Eg

) implies the
existence of x ∈ E×

g with q1(x) = 0 6= q2(x).
Suppose first that n = 2. We choose any x ∈ Eg \ {0} with q1(x) = 0. As

Eg is reduced and f(θ) ∈ E×
g , it follows that f(θ)x2 ∈ E×, whereby x ∈ E×

g

and q2(x) 6= 0. Assume now that n > 3. Then q1 is irreducible. Consider the

affine quadrics Q = {x ∈ Ẽg | q1(x) = 0} and Q′ = {x ∈ Ẽg | q2(x) = 0}.

It follows that Q is irreducible as a topological space. We choose β ∈ Ẽg with

c1(β) = 0 6= c2(β). As Ẽ
×
g = Ẽ×2

g , there exists y ∈ Ẽg such that β = f(θ)y2, and
then q1(y) = 0 6= q2(y). Hence Q 6⊆ Q′, whereby Q \ Q′ is a non-empty Zariski

open subset of Q. The complement of Ẽ×
g in Ẽg is a union of n affine hyperplanes,

and therefore does not contain Q. Hence Ẽ×
g ∩ Q is a non-empty Zariski open

subset ofQ. AsQ is irreducible we conclude that (Q\Q′)∩(Ẽ×
g ∩Q) = Ẽ×

g ∩(Q\Q′)
is also a non-empty Zariski open subset of Q. As (Eg, q1) is isotropic, Q is rational
over E. It follows that the set of E-rational points of Q is dense in Q. Hence
Ẽ×

g ∩(Q\Q′) contains an E-rational point. In other words, there exists an element
x ∈ E×

g ∩ (Q \Q′), and then q1(x) = 0 6= q2(x). �

In the sequel we give formulae for computing Bezoutians B

(
f
g

)
where both

f, g ∈ E[t] are monic and square-free. Together with Proposition 3.3 this yields
means of computation for more general situations.

3.5. Proposition. For f, g1, g2 ∈ E[t] pairwise coprime and with g1 and g2 monic

and square-free, we have that

B

(
f

g1g2

)
= B

(
fg2
g1

)
+B

(
fg1
g2

)
.

Proof. Set g = g1g2. Let θ, θ1, θ2 be the images of t in Eg, Eg1 and Eg2 respec-
tively. Define the map Ψ : Eg1 ⊕ Eg2 7→ Eg by

Ψ(h1(θ1) + h2(θ2)) = (h1g2 + h2g1)(θ).
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Then Ψ is a E-vector space isomorphism. For i = 1, 2 one has

sgi = (sg ◦Ψ)|Ei
.

We consider the quadratic maps

q : Eg → E : x 7→ sg(f(θ)x
2) and

qi : Egi → E : xi 7→ sgi
(
(fg3−i)(θi)x

2
i

)
for i = 1, 2.

For x1 = h1(θ1) and x2 = h2(θ2) we have Ψ(x1) = (h1g2)(θ), Ψ(x2) = (h2g1)(θ)
and Ψ(x1)Ψ(x2) = 0, and therefore

q(Ψ(x1 + x2)) = sg
(
f(θ)(Ψ(x1) + Ψ(x2))

2
)

= sg
(
f(θ)Ψ(x1)

2) + sg
(
f(θ)Ψ(x2)

2
)
+ 2sg

(
f(θ)Ψ(x1)Ψ(x2)

)

= sg((fh
2
1g

2
2)(θ)) + sg((fh

2
2g

2
1)(θ))

= (sg ◦Ψ)
(
(fg2h

2
1)(θ1)

)
+ (sg ◦Ψ)

(
(fg1h

2
2)(θ2)

)

= sg1
(
(fg2)(θ1) · x

2
1

)
+ sg2

(
(fg1)(θ2) · x

2
2

)

= q1(x1) + q2(x2).

Hence Ψ is an isometry between (Eg1 , q1) ⊥ (Eg2, q2) and (Eg, q). �

3.6. Corollary. Let n ∈ N and a1, . . . , an ∈ E× pairwise distinct and f ∈ E[t]
such that f(ai) 6= 0 for i = 1, . . . , n. Then

B

(
f∏n

i=1(t− ai)

)
=

n∑

i=1

[
f(ai)

∏

j 6=i

(ai − aj)
]
.

Proof. For g =
∏n

i=1(t − ai) we obtain by an iterative application of Proposi-
tion 3.5 that

B

(
f

g

)
=

n∑

i=1

B

(
f
∏

j 6=i(t− aj)

t− ai

)
=

n∑

i=1

[
f(ai)

∏

j 6=i

(ai − aj)
]
.

�

3.7. Corollary. Let f1, f2, g1, g2 ∈ E[t] with g1 and g2 monic, square-free, rela-

tively coprime and such that fi is coprime to gi for i = 1, 2. Then

B

(
f1
g1

)
+B

(
f2
g2

)
= B

(
f1g2 + f2g1

g1g2

)
.

Proof. Let h = f1g2 + f2g1. For i = 1, 2 we have that hg3−i ≡ fi g
2
3−i mod gi.

Using Proposition 3.5 and Proposition 3.3 we thus obtain that

B

(
h

g1g2

)
= B

(
hg2
g1

)
+B

(
hg1
g2

)
= B

(
f1
g1

)
+B

(
f2
g2

)
.

�
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The Bezoutians studied here satisfy a reciprocity law, which will turn out to
be very useful in the sequel of the article.

3.8.Theorem. Let f, g ∈ E[t] be monic, square-free and relatively coprime. Then

B

(
f

g

)
+B

(
g

f

)
=

{
0 if deg(f) ≡ deg(g) mod 2,
1 if deg(f) 6≡ deg(g) mod 2.

Proof. It follows using Corollary 3.7 and Proposition 3.3 that

B

(
f

g

)
+B

(
g

f

)
= B

(
f 2 + g2

fg

)
= B

(
(f + g)2

fg

)
= B

(
1

fg

)
.

By Proposition 3.1 this element of WE is given by the split quadratic form of
dimension deg(fg) and of trivial discriminant. This yields the statement. �

Given two elements α, β ∈ WE, we write α ∼ β if β = cα for some c ∈ E×,
that is, if α and β are given by quadratic forms over E that are similar.

3.9. Corollary. Let f, g ∈ E[t] be square-free, relatively coprime and such that

deg(f) ≡ deg(g) mod 2. Then

B

(
f

g

)
∼ B

(
g

f

)
.

Proof. Let a, b ∈ E× and f ′, g′ ∈ E[t] monic such that f = af ′ and g = bg′.
Using Theorem 3.8 we obtain that

B

(
f

g

)
= [a] ·B

(
f ′

g′

)
= [−a] ·B

(
g′

f ′

)
= [−ab] ·B

(
g

f

)
.

�

4. Bezoutians related to a symbol

We want to compute the Bezoutian of two coprime polynomials that come from
a particular representation of a symbol.

4.1. Proposition. Let σ be a symbol in k2E(t). Then there exist f, g ∈ E[t]
square-free, coprime and with g of even degree such that

σ = {f, g}

and ∂p(σ) = 0 for every prime factor p of f .

Proof. We choose q, r, s ∈ E[t] square-free and pairwise coprime with σ = {qs, rs}.
Then

σ = {qs+ rs,−qr} = {qs+ rs− qr, (q + r)qrs} .

We thus have σ = {f ′, g′} for two coprime polynomials f ′, g′ ∈ E[t] such that g′

is a multiple of qrs. We may assume that f ′, g′ and f ′(1 − g′) are all different
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from 1, because otherwise σ = 0 and the statement holds trivially. Using now
that 0 = {f ′, 1− f ′} = {1− g′, g′} = {f ′(1− g′), 1− f ′(1− g′)}, we rewrite

σ = {f ′, g′} = {f ′, g′(1− f ′)} = {f ′(1− g′), (1− f ′(1− g′))g′} .

At least one of the polynomials g′, g′(1−f ′) and (1−f ′(1−g′))g′ has even degree.
Hence, in any case we obtain a representation

σ = {f ′′, g′′}

with f ′′, g′′ ∈ E[t] coprime and where g′′ is of even degree and a multiple of qrs.
We write f ′′ = fh2 and g′′ = gh′2 with f, g ∈ E[t] square-free and h, h′ ∈ E[t].
Then f and g are coprime and square-free, g has even degree and

σ = {f, g} .

Furthermore, f is coprime to g′′ and thus to qrs. Since σ = {qs, rs} we conclude
that ∂p(σ) = 0 for every p ∈ P not dividing qrs, so in particular for every prime
factor of f . �

4.2. Lemma. Let f, g, h ∈ E[t] be monic, square-free and pairwise coprime, and

let a, b ∈ E× be such that ∂p({af, bgh}) = 0 for every p ∈ P not dividing g. Then

B

(
af

g

)
=





0 if (deg(f), deg(g), deg(h)) ≡ (0, 0, 0) mod 2,
[b]− [ab] if (deg(f), deg(g), deg(h)) ≡ (0, 0, 1) mod 2,

[a] if (deg(f), deg(g), deg(h)) ≡ (0, 1, 0) mod 2,
[a] + [b]− [ab] if (deg(f), deg(g), deg(h)) ≡ (0, 1, 1) mod 2,

[a]− [ab] if (deg(f), deg(g), deg(h)) ≡ (1, 0, 0) mod 2,
[a] + [b] if (deg(f), deg(g), deg(h)) ≡ (1, 0, 1) mod 2,
−[ab] if (deg(f), deg(g), deg(h)) ≡ (1, 1, 0) mod 2,
[b] if (deg(f), deg(g), deg(h)) ≡ (1, 1, 1) mod 2,

Furthermore, if ∂∞({af, bgh}) = 0, then

B

(
af

g

)
=

{
0 if deg(g) is even,

[a] + [b]− [ab] otherwise.

Proof. We have

B

(
af

g

)
= [a] ·B

(
f

g

)
= −[a] ·B

(
g

f

)
+

{
0 if deg(fg) is even,
[a] otherwise.

Set σ = {af, bgh}. For every p ∈ P dividing f we have {bgh} = ∂p(σ) = 0 in
k1Ep. Hence, bgh is a square modulo f , whereby

B

(
g

f

)
= [b] ·B

(
h

f

)
= −[b] ·B

(
f

h

)
+

{
0 if deg(fh) is even,
[b] otherwise.

For every p ∈ P dividing h we have {af} = ∂p(σ) = 0. Hence af is a square
modulo h, whereby

B

(
f

h

)
= B

(a
h

)
=

{
0 if deg(h) is even,
[a] otherwise.
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This together shows the first part of the statement.
Note further that

∂∞(σ) =





0 if (deg(f), deg(gh)) ≡ (0, 0) mod 2,
{a} if (deg(f), deg(gh)) ≡ (0, 1) mod 2,
{b} if (deg(f), deg(gh)) ≡ (1, 0) mod 2,

{−ab} if (deg(f), deg(gh)) ≡ (1, 1) mod 2.

Suppose now that ∂∞(σ) = 0. In each case where f or gh has odd degree, we

conclude that at least one of a, b and −ab is a square, that B

(
af
g

)
is split of

trivial discriminant and that [1] − [a] − [b] + [ab] = [〈1,−a,−b, ab〉] = 0. This
yields the second part of the statement. �

4.3. Example. Let E = Qp for a prime number p with p ≡ 5 mod 8. Hence
−1 ∈ Q×2

p and 2 6∈ Q×2
p . For a = 2 and b = p, the polynomials f = t(t − 2),

g = (t−1)(t−p)(t+2p−2) and h = t−p+2 satisfy the conditions in Lemma 4.2

with (deg(f), deg(g), deg(h)) ≡ (0, 1, 1) mod 2. In this case B

(
af
g

)
is given by

the anisotropic quadratic form 〈2, 2p, p〉.

4.4. Proposition. Let f, g, h ∈ E[t] be square-free and pairwise coprime with

deg(g) even and such that ∂p({f, gh}) = 0 for all p ∈ P not dividing g as well as

for p = ∞. Then

B

(
f

g

)
= 0 .

Proof. This follows from Lemma 4.2. �

It follows from Proposition 4.1 that any symbol σ ∈ k2E(t) with ∂∞(σ) = 0
has representations σ = {f, g} = {f, gh} with f, g ∈ E[t] and h = 1 such that
the conditions in Proposition 4.4 are satisfied.

5. Splitting sequences

Given ramification sequence ρ, we shall now construct a sequence of polyno-
mials that yields a representation of ρ as the ramification of a sum of symbols.
This leads to an improved bound on the length of such a representation of ρ.

Given g ∈ E[t] monic and square-free and f ∈ E[t] coprime to g, we denote by

R

(
f
g

)
the element ρ ∈ R2(E) defined by ρp = {f} for p ∈ P dividing g and by

ρp = 0 for all other p ∈ P.
For a finite subset S ⊆ P we set

PS =
∏

p∈S

p ∈ E[t]

and observe that this polynomial is monic and square-free.
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Consider a ramification sequence ρ ∈ R2(E). We fix a finite subset S ⊆ P
such that Supp(ρ) ⊆ S ∪ {∞}. We set deg(S) =

∑
p∈S deg(p) and g = PS. Then

R

(
f
g

)
= ρ for a polynomial f ∈ E[t] coprime to g which is determined by S up

to a square modulo g. We set

BS(ρ) = B

(
f

g

)
.

The aim of this section is to relate ρ to BS(ρ).

5.1. Proposition. We have the following:

(a) The discriminant of BS(ρ) is the square class corresponding to ρ∞ ∈ k1E.

(b) BS(ρ) ∈ IE if and only if deg(S) is even.
(c) BS(ρ) ∈ I2E if and only if deg(S) is even and ρ∞ = 0.

Proof. Part (b) is obvious and (c) follows from (a) and (b) by using [5, Chap. II,
Corollary 2.2]. It remains to show (a). Since ρ ∈ R2(E) = ker(N), we obtain in
k1E that

0 = N(ρ) =
∑

p∈Supp(ρ)

NEp/E(ρp) = ρ∞ +
∑

p∈S

NEp/E(ρp) .

With g = PS and f ∈ E[t] coprime to g such that ρ = R

(
f
g

)
, it follows that

ρ∞ =
∑

p∈S

NEp/E(f + (p)) = NEg/E(f + (g)) .

By Proposition 3.1 the last term is given by the discriminant of B
(

f
g

)
= BS(ρ).

�

5.2. Proposition. Let r ∈ N, f0, . . . , fr ∈ E[t] square-free with fr ∈ E× and such

that, with fr+1 = 1, we have that fi−1 and fi are relatively coprime and fi−1fi+1

is a square modulo fi for i = 1, . . . , r. Then

R

(
f1
f0

)
= ∂




⌈ r
2
⌉∑

k=1

{f2k−2f2k, f2k−1}



 .

Furthermore, for s = |{i ∈ {1, . . . , r} | deg(fi) 6≡ deg(fi−1) mod 2}| we have

diman

(
B

(
f1
f0

))
6 s 6 r and dimanB

(
f1
f0

)
≡ s mod 2 .

Proof. For i = 1, . . . , r we have that R
(

fi−1fi+1

fi

)
= 0 because fi−1fi+1 is a square

modulo fi. In particular R
(

fr−1

fr

)
= R

(
fr+1

fr

)
= 0, as fr+1 = 1.
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With n = ⌈ r
2
⌉ we obtain from the conditions that

∂

(
n∑

k=1

{f2k−2f2k, f2k−1}

)
= ∂

(
r∑

i=1

{fi−1, fi}

)

=
r∑

i=1

(
R

(
fi−1

fi

)
+R

(
fi
fi−1

))

=
r∑

i=1

R

(
fi−1

fi

)
+

r−1∑

i=0

R

(
fi+1

fi

)

= R

(
f1
f0

)
+

(
r−1∑

i=1

R

(
fi−1fi+1

fi

))
+R

(
fr−1

fr

)

= R

(
f1
f0

)
.

We prove the second part of the statement by induction on r. If r = 0 then

f1 = 1 and diman(B
(

f1
f0

)
) = deg(f0) = s = 0 and the claim holds trivially.

Suppose now that r > 0. For s′ = |{i ∈ {2, . . . , r} | deg(fi) 6≡ deg(fi−1) mod 2}|
we obtain by the induction hypothesis that

dimanB

(
f2
f1

)
6 s′ 6 r − 1 and dimanB

(
f2
f1

)
≡ s′ mod 2 .

If deg(f0) ≡ deg(f1) mod 2, then s = s′ and

B

(
f1
f0

)
∼ B

(
f0
f1

)
= B

(
f2
f1

)
.

If deg(f0) 6≡ deg(f1) mod 2, then s = s′ + 1 and

B

(
f1
f0

)
∼ B

(
f0
f1

)
+ [c] = B

(
f2
f1

)
+ [c] ,

for some c ∈ E×. In either case we conclude that

dimanB

(
f1
f0

)
6 s 6 r and dimanB

(
f1
f0

)
≡ s mod 2 .

�

For r ∈ N and f0, . . . , fr such as in Proposition 5.2 and with R

(
f1
f0

)
= ρ, we

call (f0, . . . , fr) a splitting sequence of ρ, and refer to the number r as its length.
We say that the splitting sequence (f0, . . . , fr) is strictly decreasing if we have
deg(fi) < deg(fi−1) for i = 1, . . . , r.

5.3. Corollary. Let r be the length of a splitting sequence of ρ. Then ρ is repre-

sented by a sum of n symbols for n = ⌈ r
2
⌉.

Proof. This is immediate from Proposition 5.2. �
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One may ask whether any representation of ρ by a given number of symbols
can be obtained from a splitting sequence via Proposition 5.2.

Having thus shown that a splitting sequence gives rise to a representation of ρ
by a sum of symbols, we turn to the problem of constructing splitting sequences of
small length. Recall that we are assuming throughout that Supp(ρ) ⊆ S ∪ {∞}.

5.4. Proposition. There exists a strictly decreasing splitting sequence of ρ start-

ing with PS. The length of any such splitting sequence is at most deg(S).

Proof. We set f0 = PS. If f0 = 1 then (f0) is the desired sequence. Otherwise
deg(f0) > 0 and we choose f1 ∈ E[t] square-free and coprime to f0 such that

deg(f1) < deg(f0) and R

(
f1
f0

)
= ρ. For i > 1 with deg(fi−1) > 0 we choose

recursively f ′
i ∈ E[t] as the unique polynomial with deg(f ′

i) < deg(fi−1) and
f ′
i ≡ fi−2 mod fi−1 and then let fi denote the square-free part of f ′

i , and we stop
the process and set r = i− 1 as soon as deg(fi−1) = 0. In this way we obtain a
strictly decreasing splitting sequence of ρ starting with PS.

Suppose now that r ∈ N is the length of a strictly decreasing splitting sequence
of ρ starting with PS , say (f0, . . . , fr). As deg(fi−1)−deg(fi) > 1 for i = 1, . . . , r
and further deg(fr) = 0, we conclude that

deg(S) = deg(f0)− deg(fr) =

r∑

i=1

(deg(fi−1)− deg(fi)) > r .
�

5.5. Corollary. If dimanBS(ρ) = deg(S), then the length of any strictly decreas-

ing splitting sequence of ρ starting with PS is equal to deg(S).

Proof. Let g = PS and choose f ∈ E[t] coprime to g with R

(
f
g

)
= ρ. Let r ∈ N

be the length of a strictly decreasing splitting sequence for ρ starting with g. As

BS(ρ) = B

(
f
g

)
we obtain that dimanBS(ρ) 6 r 6 deg(S) by Proposition 5.2

and Proposition 5.4. Hence, if dimanBS(ρ) = deg(S) then r = deg(S). �

We give an example where the hypothesis in Corollary 5.5 is satisfied for an
arbitrary given degree.

5.6. Example. Let E0 be a field, d > 3 and a1, . . . , ad ∈ E×
0 pairwise different.

Let b1, . . . , bd−1 be indeterminates over E0 and set E = E0((b1)) . . . ((bd−1)) and
bd = b1 · · · bd−1. Consider

ξ =
∑d

i=1{(1− ai)t+ ai, bi}

in k2E(t) and ρ = ∂(ξ). Note that Supp(ρ) = {t − ai
ai−1

| i = 1, . . . , d} and thus

deg(ρ) = d. Using Corollary 3.6 we obtain for S = Supp(ρ) that

BS(ρ) =
∑d

i=1[bici]

for certain c1, . . . , cd ∈ E×
0 . It follows that dimanBS(ρ) = d = deg(S).
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5.7. Lemma. Assume that E is infinite. Let g ∈ E[t] be square-free and f ∈ E[t]
coprime to g. There exist m ∈ N and square-free polynomials f1, . . . , fm ∈ E[t]
such that, with f0 = g and f−1 = f the following are satisfied for i = 1, . . . , m:

• deg(fi) 6 deg(fi−1)− 2 and deg(fi) ≡ deg(g) mod 2;
• fi−1 and fi are relatively coprime;

• fifi−2 is a square modulo fi−1;

• deg(fm) = dimanB
(

f
g

)
.

Furthermore, under these conditions

m 6 1
2

(
deg(g)− dimanB

(
f

g

))
and B

(
fi−1

fi

)
∼ B

(
f

g

)
for i = 1, . . . , m.

Proof. Assume r ∈ N and polynomials f0, . . . , fr with f0 = g are given satisfying

all of the given conditions not involving dimanB
(

f
g

)
. Then by Corollary 3.9 we

have

B

(
fi−1

fi

)
∼ B

(
fi
fi−1

)
= B

(
fi−2

fi−1

)
for i = 1, . . . , r .

Thus B

(
fi−1

fi

)
∼ B

(
f
g

)
and dimanB

(
fi−1

fi

)
= dimanB

(
f
g

)
for i = 1, . . . , r.

Furthermore, as deg(fi−1) − deg(fi) > 2 for i = 1, . . . , r and f0 = g we obtain
that

deg(g)− deg(fr) =

(
r∑

i=1

(deg(fi−1)− deg(fi))

)
> 2r.

As deg(fr) > dimanB
(

fr−1

fr

)
= dimanB

(
f
g

)
, we conclude that

r 6 1
2

(
deg(g)− dimanB

(
f

g

))
.

This shows the last part of the statement.
We now construct recursively a sequence of square-free polynomials as claimed.

We set f−1 = f and f0 = g. For i > 1, as long as deg(fi−1) > dimanB
(

fi−2

fi−1

)

holds, we use Proposition 3.4 to obtain a square-free polynomial fi ∈ E[t] coprime
to fi−1 such that deg(fi) 6 deg(fi−1) − 2, deg(fi) ≡ deg(fi−1) mod 2 and fifi−2

is a square modulo fi−1. As soon as deg(fi−1) = dimanB
(

fi−2

fi−1

)
holds, we stop

and set m = i− 1. It follows from what we showed in the first part of the proof
that the recursion terminates after finitely many steps. �

5.8. Proposition. Assume that E is infinite. Set d = dimanBS(ρ). There exist

m ∈ N and a strictly decreasing splitting sequence (f0, . . . , fd+m) of ρ starting with

PS such that deg(fi) ≡ deg(fi−1) mod 2 for i = 1, . . . , m and deg(fm+d−i) = i for
i = 0, . . . , d.
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Proof. Let f0 = PS and f−1 ∈ E[t] coprime to f0 with R

(
f−1

f0

)
= ρ. We choose

m ∈ N and f1, . . . , fm ∈ E[t] as in Lemma 5.7. Then deg(fm) = d = dimanBS(ρ)

and B

(
fm−1

fm

)
∼ B

(
f−1

f0

)
= BS(ρ). Set ρ

′ = R

(
fm−1

fm

)
. By Proposition 5.4 and

Corollary 5.5 there exists a strictly decreasing splitting sequence of ρ′ of length
d starting with fm, say (fm, . . . , fd+m). Then (f0, . . . , fd+m) has the required
properties. �

5.9. Theorem. Any splitting sequence ρ with Supp(ρ) ⊆ S ∪ {∞} is represented

by a sum of n symbols where n =
⌈
deg(S)+dimanBS(ρ)

4

⌉
.

Proof. Set d = dimanBS(ρ). In view of Example 2.4 we may assume that E
is infinite. Let m ∈ N and let (f0, . . . , fd+m) be a strictly decreasing splitting
sequence of ρ starting with PS and with the properties formulated in Proposi-
tion 5.8. We have m 6 1

2
(deg(S) − d), whence d + m 6 1

2
(deg(S) + d). The

statement thus follows from Corollary 5.3. �

5.10. Remark. By Theorem 2.5 the ramification sequence ρ is represented by a

sum of n′ symbols for n′ =
⌊
deg(ρ)

2

⌋
symbols. Let us compare n′ with the value of

n in Theorem 5.9 that we obtain for S = Supp(ρ) \ {∞}. Obviously

deg(S) =

{
deg(ρ) if ρ∞ = 0,

deg(ρ)− 1 if ρ∞ 6= 0.

and dimanBS(ρ) 6 deg(S). We conclude that n 6 n′ except in the case where
deg(S) is odd, dimanBS(ρ) = deg(S) and ρ∞ = 0.

Let us look more closely at this case. With d = deg(S) = diman(BS(ρ)) we
obtain that n = d+1

2
= n′+1. The strictly decreasing splitting sequence obtained

from Lemma 5.7 which is used in the proof of Theorem 5.9 has length d. Denoting
this sequence (f0, . . . , fd), we have that deg(fi) = d− i for i = 1, . . . , d. Applying
Proposition 5.2 we obtain that ρ = ∂(

∑n
k=1 σk) where σk = {f2k−2f2k, f2k−1} for

k = 1, . . . , n and fd+1 = 1. As deg(fi) ≡ i + 1 mod 2 for i = 0, . . . , d, it is easy
to see that ∂∞(σk) = 0 for k = 1, . . . , n− 1 and ∂∞(σn) = ∂∞({fd−1, fd}) = {fd}
in k1E. Hence, {fd} = ∂∞(

∑n
k=1 σk) = ρ∞ = 0, whereby fd ∈ E×2. This implies

that σn = {fd−1, fd} = 0 in k2E(t). We conclude that ρ = ∂(
∑n−1

k=1 σk).
Hence, in each case our method applied as in the proof of Theorem 5.9 yields

a representation of ρ by at most n′ symbols.
Note finally that if deg(ρ) is odd and dimanBS(ρ) = deg(ρ)− 4, then n′ = n.

In particular, if deg(ρ) = 5 and ρ∞ = 0, then n > n′ = 2, and we shall see in
Example 6.3 that even in the case where BS(ρ) is split a single symbol may not
be sufficient to represent ρ.

In relation to Theorem 5.9 one may ask the following:
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5.11. Question. Let n ∈ N be such that ρ is represented by a sum of n symbols.

Set S = Supp(ρ) \ {∞}. Is there an upper bound on dimanBS(ρ) in terms of n?

The following result answers Question 5.11 partially in the case where n = 1.

5.12. Theorem. Set S = Supp(ρ) \ {∞} and assume that deg(ρ) is even. If ρ is

represented by a symbol, then BS(ρ) is split.

Proof. By Proposition 4.1 there exist square-free coprime polynomials f, g′ ∈ E[t]
such that σ = {f, g′} and ∂p(σ) = 0 for all p dividing f . It follows that g′ = gh
with g = PS and h ∈ E[t]. Then f, g, h ∈ E[t] are square-free and coprime and

∂p(σ) = 0 holds for all p not dividing g. Then ∂(σ) = R

(
f
g

)
andBS(ρ) = B

(
f
g

)
.

As deg(ρ) is even, the discriminant of BS(ρ) is trivial if and only if deg(g) is even.
By Lemma 4.2 we have (deg(f), deg(g), deg(h)) 6≡ (0, 1, 1) mod 2 and if deg(g) is

odd, then B

(
f
g

)
is split. If deg(g) is even, whereby the discriminant of B

(
f
g

)

is trivial, then Lemma 4.2 yields that B
(

f
g

)
= 0. �

6. Ramification sequences of small degree

We conclude our study with a statement on ramification sequences of degree
four followed by a series of examples of ramification sequences of small degree.

6.1. Theorem. Assume that deg(ρ) = 4 and set S = Supp(ρ) \ {∞}. Then ρ is

represented by a symbol if and only if BS(ρ) is split.

Proof. If E is infinite and dimanBS(ρ) 6 1 then we conclude by Theorem 5.9
that ρ = ∂(σ) for a symbol σ ∈ k2E(t). If E is finite then the same conclusion
holds trivially by Example 2.4. The converse follows from Theorem 5.12. �

6.2. Remark. Assume that deg(ρ) = 4 and let S = Supp(ρ) \ {∞}. If ρ∞ 6= 0,
then with d ∈ E× such that ρ∞ = {d} in k1E, it follows that [1]− [d] ·BS(ρ) = [π]
for a 2-fold Pfister form π over E. Then π is hyperbolic if and only if BS(ρ) is
split, and by Theorem 6.1 this is if and only if ρ is represented by a symbol. In
the special case where S consists of three rational points, this characterisation
was given in [8, Prop. 1.4] with an explicit construction of the form π, which can
actually be retrieved from Corollary 3.6.

In the case where ρ∞ = 0, the criterion in Theorem 6.1 can be reformulated
in similar terms. In this case there is a unique 2-fold Pfister form π over E such
that BS(ρ) ∼ [π], and ρ is represented by a symbol if and only if π is hyperbolic.

Let ρ ∈ R2(E). The following example shows that Theorem 6.1 does not
extend to the case where deg(ρ) = 5.

6.3. Example. Set ξ = {(t−1)(t+1)(t−2)(t−3),−1}+{t(t−1), 7} in k2Q7(t).
Then S = Supp(∂(ξ)) consists of the polynomials t −m with m = −1, 0, 1, 2, 3.
By [4, Theorem 3.6] we have ∂(ξ) 6= ∂(σ) for any symbol σ in k2Q7(t). Using
Corollary 3.6 we obtain that BS(∂(ξ)) = [1], whence BS(∂(ξ)) is split.
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We are going to look at some examples where deg(ρ) = 6 and ρ∞ = 0 and
where ρ is not represented by a symbol. In the first two examples we have that
BS(ρ) = 0 for S = Supp(ρ). In particular, the converse of the implication in
Theorem 5.12 does not hold in general.

6.4. Example. We consider the field E = Qp for a prime number p > 7. We find
α, a, b ∈ Z \ pZ such that a2 + 1 ∈ Q×2

p and α, b2 + 1 6∈ Q×2
p . Set

ξ = {(t2 − a2)(t2 − b2), α}+ {t2 + 1, p} ∈ k2Qp(t) .

By [4, Theorem 3.6] we have that ∂(ξ) 6= ∂(σ) for all symbols σ ∈ k2Qp(t). We
set ρ = ∂(ξ). Set S = Supp(ρ) and note that S consists of the prime factors of
(t2 − a2)(t2 − b2)(t2 + 1). Hence deg(S) = 6. Computation yields that

BS(ρ) = [α] ·B

(
t2 + 1

(t2 − a2)(t2 − b2)

)
+ [p] ·B

(
(t2 − a2)(t2 − b2)

t2 + 1

)

= [〈−α, p〉] ·B

(
(t2 − a2)(t2 − b2)

t2 + 1

)

= [〈−α, p〉] ·B

(
(1 + a2)(1 + b2)

t2 + 1

)
= 0

6.5. Example. Consider E = Qp for a prime number p ≡ ±3 mod 8. Set

ξ = {t(t− 1)(t− 2)(t− 3), 2}+ {t2 + 1, p} ∈ k2Qp(t).

By [4, Theorem 3.6] we have that ∂(ξ) 6= ∂(σ) for any symbol σ ∈ k2Qp(t). Note
that S = Supp(∂(ξ)) is the set of prime factors of g = t(t−1)(t−2)(t−3)(t2+1)
over Qp. Thus deg(S) = 6. Using that t(t− 1)(t− 2)(t− 3) ≡ −10 mod t2 + 1 a
similar computation as in Example 6.4 yields that BS(∂(ξ)) = 0.

By Theorem 5.9, assuming that deg(ρ) = 6 and ρ∞ = 0, the vanishing of
dimanBS(ρ) implies that ρ = ∂(σ1 + σ2) for two symbols σ1 and σ2 in k2E(t).
The following example shows that the converse to this statement does not hold.

6.6. Example. Consider ξ = {(t2 − 1)(t2 − 2),−1} + {t(t − 3), 11} in k2Q11(t).
Note that S = Supp(∂(ξ)) consists of the factors of (t2 − 1)(t2 − 2)t(t − 3) and
thus has degree 6. A computation shows that BS(∂(ξ)) = [〈1, 1, 11, 11〉] 6= 0 in
WQ11. Hence dimanBS(∂(ξ)) = 4.

Recall that BS(ρ) lies in the fundamental ideal IE if and only if deg(S) is
even. The following example illustrates that, in general, for finite subsets S1 and
S2 of P with deg(S1) ≡ deg(S2) mod 2 and Supp(ρ) ⊆ S1∩S2, we may have that
BS1(ρ) 6= BS2(ρ).

6.7. Example. Consider ξ = {t4 − 1,−1} + {t2 − t − 1, 3} ∈ k2Q3(t) and set
ρ = ∂(ξ) and S = Supp(ρ). We have ρ∞ = 0, and since −1 is a square in the
residue field of t2 + 1, we also have ρt2+1(ξ) = 0. It follows that S consists of
the factors of (t2 − 1)(t2 − t − 1). Hence deg(S) = 4, and a computation yields
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that BS(ρ) = [〈1, 1, 3, 3〉] 6= 0 in k2Q3. In particular, ρ is not represented by a
symbol, by Theorem 5.12. Another computation based on Theorem 3.8 further
shows that

B

(
t2 − t− 1

t4 − 1

)
= B

(
t4 − 1

t2 − t− 1

)
= 0 in k2Q3 .

For S ′ = S ∪ {t2 + 1} we obtain that Supp(ρ) = S ⊆ S ′, deg(S ′) = 6 and
PS′ = (t4 − 1)(t2 − t − 1). Since t4 − 1 and t2 − t − 1 are coprime, we conclude
by Proposition 3.5 that

BS′(ρ) = B

(
−1(t2 − t− 1)

t4 − 1

)
+B

(
3(t4 − 1)

t2 − t− 1

)
= 0 6= BS(ρ) .

6.8. Question. Assume that deg(ρ) = 6 and ρ∞ = 0. Set S = Supp(ρ). Does

any of the following two properties imply the other one?

(i) ρ = ∂(σ1 + σ2) for two symbols σ1, σ2 ∈ k2E(t).
(ii) dimanBS(ρ) 6 4.
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