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Abstract

It is shown that two totally decomposable algebras with involution of

orthogonal type over a field of characteristic two are isomorphic if and

only if they are chain equivalent.

1 Introduction

The chain equivalence theorem for bilinear Pfister forms describes the isometry
class of n-fold Pfister forms in terms of the isometry class of 2-fold Pfister forms
(see [6, (3.2)] and [1, (A.1)]). There exist some related results in the literature
for certain classes of central simple algebras over a field. In [11], the chain
equivalence theorem for biquaternion algebras over a field of characteristic not
two was proved (see [2] for the corresponding result in characteristic two). Also,
the chain equivalence theorem for tensor products of quaternion algebras over
a field of arbitrary characteristic was recently obtained in [3].

Let F be a field of characteristic 2. An algebra with involution (A, σ) over F
is called totally decomposable if it decomposes as tensor products of quaternion
F -algebras with involution. In [4], a bilinear Pfister form Pf(A, σ), called the
Pfister invariant, was associated to every totally decomposable algebra with
orthogonal involution (A, σ) over F . In [9, (6.5)], it was shown that the Pfister
invariant can be used to classify totally decomposable algebras with orthogonal
involution over F . Regarding this result, an analogue chain equivalence for
these algebras was defined in [9, (6.7)]. A relevant problem then is whether
the isomorphism of such algebras with involution implies that they are chain
equivalent (see [9, (6.8)]). In this work we present a solution to this problem.

2 Preliminaries

In this paper, F is a field of characteristic 2.
Let V be a finite dimensional vector space over F . A bilinear form b : V ×V → F
is called anisotropic if b(v, v) 6= 0 for every nonzero vector v ∈ V . The form b is
called metabolic if V has a subspace W with dimW = 1

2 dimV and b|W×W = 0.
For λ1, · · · , λn ∈ F×, the form 〈〈λ1, · · · , λn〉〉 :=

⊗n
i=1〈1, λi〉 is called a bilinear

Pfister form, where 〈1, λi〉 is the diagonal form b((x1, x2), (y1, y2)) = x1y1 +
λix2y2. By [5, (6.3)], a bilinear Pfister form is either metabolic or anisotropic.
We say that b = 〈〈α1, · · · , αn〉〉 and b′ = 〈〈β1, · · · , βn〉〉 are simply P-equivalent,
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if either n = 1 and α1F
×2 = β1F

×2 or n > 2 and there exist 1 6 i < j 6 n
such that 〈〈αi, αj〉〉 ≃ 〈〈βi, βj〉〉 and αk = βk for all other k. We say that b and
b′ are chain P-equivalent, if there exist bilinear Pfister forms b0, · · · , bm such
that b0 = b, bm = b′ and every bi is simply P-equivalent to bi−1.

A quaternion algebra over F is a central simple F -algebra of degree 2. Every
quaternion algebra Q has a quaternion basis, i.e., a basis {1, u, v, w} satisfying
u2 + u ∈ F , v2 ∈ F× and uv = w = vu+ v. It is easily seen that every element
v ∈ Q \ F with v2 ∈ F× extends to a quaternion basis {1, u, v, uv} of Q. A
tensor product of two quaternion algebras is called a biquaternion algebra.

An involution on a central simple F -algebra A is an antiautomorphism of A
of period 2. Involutions which restrict to the identity on F are said to be of the
first kind. An involution of the first kind is either symplectic or orthogonal (see
[7, (2.5)]). The discriminant of an orthogonal involution σ is denoted by discσ
(see [7, (7.2)]). If K/F is a field extension, the scalar extension of (A, σ) to K
is denoted by (A, σ)K . We also use the notation Alt(A, σ) = {a−σ(a) | a ∈ A}.

Let (A, σ) be a totally decomposable algebra of degree 2n with orthogo-
nal involution over F . In [9], it was shown that there exists a unique, up to
isomorphism, subalgebra S ⊆ F + Alt(A, σ) such that (i) x2 ∈ F for x ∈ S;
(ii) dimF S = degF A = 2n; (iii) S is self-centralizing; (iv) S is generated as an
F -algebra by n elements. Also, S has a set of alternating generators, i.e., a set
{u1, · · · , un} consisting of units such that S ≃ F [u1, · · · , un] and ui1 · · ·uil ∈
Alt(A, σ) for every 1 ≤ l ≤ n and 1 ≤ i1 < · · · < il ≤ n. We denote the isomor-
phism class of the subalgebra S by Φ(A, σ). Note that Φ(A, σ) is commutative
by [9, (3.2 (i))]. Also, if degF A 6 4, then Φ(A, σ) is unique as a set. In fact if
A is a quaternion algebra, then Φ(A, σ) = F +Alt(A, σ) by dimension count. If
A is a biquaternion algebra, then Φ(A, σ) = F + Alt(A, σ)+, where Alt(A, σ)+

is the set of square-central elements in Alt(A, σ) (see [10, (4.4)] and [10, (3.9)]).
Let (A, σ) =

⊗n
i=1(Qi, σi) be a decomposition of (A, σ) and choose αi ∈ F×

such that discσi = αiF
×2, i = 1, · · · , n. As in [4], we call the form 〈〈α1, · · · , αn〉〉

the Pfister invariant of (A, σ) and we denote it by Pf(A, σ). Note that by [4,
(7.2)], the Pfister invariant is independent of the decomposition of (A, σ).

With the above notations, we have the following results.

Theorem 2.1. ([9, (5.7)]) For a totally decomposable algebra of degree 2n with

orthogonal involution (A, σ) over F , the following conditions are equivalent:

(i) (A, σ) ≃ (M2n(F ), t), where t is the transpose involution. (ii) Pf(A, σ) ≃
〈〈1, · · · , 1〉〉. (iii) x2 ∈ F 2 for every x ∈ Φ(A, σ).

Theorem 2.2. ([9, (6.5)]) Let (A, σ) and (A′, σ′) be two totally decomposable al-

gebras with orthogonal involution over F . If A ≃ A′ and Pf(A, σ) ≃ Pf(A′, σ′),
then (A, σ) ≃ (A′, σ′).

3 The chain lemma

Our first result, which strengthens [9, (5.6)], gives a natural description of the
Pfister invariant.

Lemma 3.1. Let (A, σ) be a totally decomposable algebra of degree 2n with

orthogonal involution over F . IfPf(A, σ) ≃ 〈〈α1, · · · , αn〉〉 for some α1, · · · , αn ∈
F×, then there exists a decomposition (A, σ) ≃ ⊗n

i=1(Qi, σi) into quaternion F -

algebras with involution such that discσi = αiF
×2, i = 1, · · · , n.
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Proof. By [9, (5.5)] and [9, (5.6)] there exists a set of alternating generators
{u1, · · · , un} of Φ(A, σ) such that u2

i = αi, i = 1, · · · , n. If αi ∈ F 2 for every i,
the result follows from (2.1). Thus (by re-indexing if necessary) we may assume
that αn /∈ F 2. It is enough to prove that there exists a decomposition (A, σ) ≃⊗n

i=1(Qi, σi) such that ui ∈ Alt(Qi, σi), i = 1, · · · , n. We use induction on n.
The case n = 1 is evident, so suppose that n > 1. Let B = CA(un) be the
centralizer of un in A and set K = F [un] = F (

√
αn). By [9, (6.3)] and [9, (6.4)],

(B, σ|B) is a totally decomposable algebra with orthogonal involution over K
and {u1, · · · , un−1} is a set of alternating generators of Φ(B, σ|B). By induction
hypothesis there exists a decomposition

(B, σ|B) ≃K (Q′

1, σ
′

1)⊗K · · · ⊗K (Q′

n−1, σ
′

n−1),

into quaternion K-algebras with involution such that ui ∈ Alt(Q′

i, σ
′

i) for i =
1, · · · , n− 1. By dimension count we have Φ(Q′

i, σ
′

i) = K +Kui. Since K2 ⊆ F
and u2

i ∈ F , we get x2 ∈ F for every x ∈ Φ(Q′

i, σ
′

i). By [9, (6.1)] there exists
a quaternion F -algebra Qi ⊆ Q′

i such that (Q′

i, σ
′

i) ≃K (Qi, σ|Qi
)⊗ (K, id) and

ui ∈ Alt(Qi, σ|Qi
), i = 1, · · · , n − 1. Set Qn = CA(Q1 ⊗ · · · ⊗ Qn−1). Then

Qn is a quaternion F -algebra and (A, σ) ≃ (Q1, σ|Q1
)⊗ · · · ⊗ (Qn, σ|Qn

). Since
un ∈ K = Z(B) ⊆ CA(Q1 ⊗ · · · ⊗Qn−1) = Qn, we obtain un ∈ Qn. Finally [8,
(3.5)] implies that un ∈ Alt(Qn, σ|Qn

). This completes the proof.

Lemma 3.2. Let K/F be a field extension satisfying K2 ⊆ F . Let Q and Q′ be

quaternion algebras over F and let v′ ∈ Q′ \F with v′2 ∈ F×. If there exists an

isomorphism of K-algebras f : Q′

K ≃ QK such that f(v′⊗1) ∈ Q⊗F , then there

exists η ∈ K such that f(Q′ ⊗ F ) ⊆ Q ⊗ F [η]. In addition, if {1, u, v, uv} and

{1, u′, v′, u′v′} are respective quaternion bases of Q and Q′ and f(v′⊗1) = v⊗1,
then f(u′ ⊗ 1) = 1⊗ λ+ u⊗ 1 + v ⊗ η for some λ ∈ F .

Proof. The first statement follows from the second, since f(u′⊗1) and f(v′⊗1)
generate f(Q′ ⊗ F ) as an F -algebra. To prove the second statement write
f(u′ ⊗ 1) = 1⊗ η1 + u⊗ η2 + v ⊗ η3 + uv ⊗ η4 for some η1, · · · , η4 ∈ K. Since

v ⊗ 1 = f(v′ ⊗ 1) = f((u′v′ + v′u′)⊗ 1)

= f(u′ ⊗ 1)(v ⊗ 1) + (v ⊗ 1)f(u′ ⊗ 1) = v ⊗ η2 + v2 ⊗ η4,

we get η4 = 0 and η2 = 1, i.e., f(u′ ⊗ 1) = 1⊗ η1 + u⊗ 1 + v ⊗ η3. Hence

f((u′2 + u′)⊗ 1) = f(u′ ⊗ 1)2 + f(u′ ⊗ 1)

= 1⊗ η21 + u2 ⊗ 1 + v2 ⊗ η23 + (uv + vu)⊗ η3

+ 1⊗ η1 + u⊗ 1 + v ⊗ η3

= 1⊗ η21 + (u2 + u)⊗ 1 + v2 ⊗ η23 + 1⊗ η1.

As f((u′2 + u′) ⊗ 1) ∈ F and K2 ⊆ F , the above relations imply that η1 ∈ F ,
proving the result.

The following definition was given in [9, (6.7)].

Definition 3.3. Let (A, σ) =
⊗n

i=1(Qi, σi) and (A′, σ′) =
⊗n

i=1(Q
′

i, σ
′

i) be two
totally decomposable algebras with orthogonal involution over F . We say that
(A, σ) and (A′, σ′) are simply equivalent if either n = 1 and (Q1, σ1) ≃ (Q′

1, σ
′

1)
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or n > 2 and there exist 1 6 i < j 6 n such that (Qi, σi)⊗ (Qj , σj) ≃ (Q′

i, σ
′

i)⊗
(Q′

j , σ
′

j) and (Qk, σk) ≃ (Q′

k, σ
′

k) for k 6= i, j. We say that (A, σ) and (A′, σ′)
are chain equivalent if there exist totally decomposable algebras with involution
(A0, τ0), · · · , (Am, τm) such that (A, σ) = (A0, τ0), (A

′, σ′) = (Am, τm) and for
every i = 0, · · · ,m−1, (Ai, τi) and (Ai+1, τi+1) are simply equivalent. We write
(A, σ) ≈ (A′, σ′) if (A, σ) and (A′, σ′) are chain equivalent.

Since the symmetric group is generated by transpositions, for every isometry
ρ of {1, · · · , n} we have

⊗n
i=1(Qi, σi) ≈

⊗n
i=1(Qρ(i), σρ(i)).

Lemma 3.4. Let (A, σ) =
⊗3

i=1(Qi, σi) and (A′, σ′) =
⊗3

i=1(Q
′

i, σ
′

i) be totally

decomposable algebras with orthogonal involution over F . Let αi ∈ F× (resp.
α′

i ∈ F×) be a representative of the class discσi (resp. discσ′

i), i = 1, 2, 3. Sup-
pose that A ≃ A′, 〈〈α1, α2〉〉 ≃ 〈〈α′

1, α
′

2〉〉 and α3 = α′

3. If 〈〈α1, α2〉〉 is metabolic,

then (A, σ) and (A′, σ′) are chain equivalent.

Proof. By [1, (A.5)] there exists β ∈ F such that 〈〈α1, α2〉〉 ≃ 〈〈1, β〉〉. Thus,
according to (3.1) and (2.1), one can write

(Q1, σ1)⊗ (Q2, σ2) ≃ (M2(F ), t)⊗ (Q0, σ0),

(Q′

1, σ
′

1)⊗ (Q′

2, σ
′

2) ≃ (M2(F ), t)⊗ (Q′

0, σ
′

0),

where (Q0, σ0) and (Q′

0, σ
′

0) are quaternion algebras with orthogonal involution
over F and discσ0 = discσ′

0 = βF×2. It follows that A ≃ M2(F ) ⊗ Q0 ⊗ Q3

and A′ ≃ M2(F ) ⊗ Q′

0 ⊗ Q′

3. Since A ≃ A′, we get Q0 ⊗ Q3 ≃ Q′

0 ⊗ Q′

3. We
also have

Pf(Q0 ⊗Q3, σ0 ⊗ σ3) ≃ 〈〈β, α3〉〉 ≃ Pf(Q′

0 ⊗Q′

3, σ
′

0 ⊗ σ′

3),

which implies that (Q0, σ0)⊗ (Q3, σ3) ≃ (Q′

0, , σ
′

0)⊗ (Q′

3, σ
′

3) by (2.2). Thus,

(A, σ) =
⊗3

i=1(Qi, σi) ≈ (M2(F ), t)⊗ (Q0, σ0)⊗ (Q3, σ3)

≈ (M2(F ), t)⊗ (Q′

0, σ
′

0)⊗ (Q′

3, σ
′

3) ≈
⊗3

i=1(Q
′

i, σ
′

i) = (A′, σ′).

Lemma 3.5. ([9, (6.3)]) Let (A, σ) be a totally decomposable algebra with ortho-

gonal involution over F . For every v ∈ Φ(A, σ) with v2 ∈ F× \F×2, there exists

a σ-invariant quaternion F -algebra Q ⊆ A such that v ∈ Φ(Q, σ|Q).

Proof. By [9, (6.3)], there exists a σ-invariant quaternion F -algebra Q ⊆ A
containing v. Write v = λ + w for some λ ∈ F and w ∈ Alt(A, σ). Then w ∈
Alt(Q, σ|Q) by [8, (3.5)], hence v = λ+ w ∈ F +Alt(Q, σ|Q) = Φ(Q, σ|Q).

Lemma 3.6. Let (A, σ) =
⊗3

i=1(Qi, σi) and (A′, σ′) =
⊗3

i=1(Q
′

i, σ
′

i) be two

totally decomposable algebras with orthogonal involution over F . If Pf(A, σ)
and Pf(A′, σ′) are simply P-equivalent and A ≃ A′, then (A, σ) and (A′, σ′) are
chain equivalent.

Proof. Choose invertible elements vi ∈ Alt(Qi, σi) and v′i ∈ Alt(Q′

i, σ
′

i), i =
1, 2, 3. Set αi = v2i ∈ F× and α′

i = v′2i ∈ F×. Then Pf(A, σ) ≃ 〈〈α1, α2, α3〉〉
and Pf(A′, σ′) ≃ 〈〈α′

1, α
′

2, α
′

3〉〉. By re-indexing if necessary, we may assume
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that α3 = α′

3 and 〈〈α1, α2〉〉 ≃ 〈〈α′

1, α
′

2〉〉. In view of (3.4), it suffices to consider
the case where 〈〈α1, α2〉〉 is anisotropic. Set K = F [v1, v2] and K ′ = F [v′1, v

′

2].
Then K ≃ K ′ ≃ F (

√
α1,

√
α2), because 〈〈α1, α2〉〉 is anisotropic. Consider

CA(K) ≃K Q3 ⊗F K and CA′(K ′) ≃K′ Q′

3 ⊗F K ′. As K ≃ K ′, one may
consider Q′

3 ⊗F K ′ as a quaternion algebra over K, which is isomorphic to
Q3⊗F K. Since disc(σ3⊗ id) = disc(σ′

3⊗ id) = α3K
×2, by [7, (7.4)] there exists

an isomorphism of K-algebras with involution

f : (Q′

3 ⊗K ′, σ′

3 ⊗ id) → (Q3 ⊗K,σ3 ⊗ id). (1)

Dimension count shows that Alt(Q3 ⊗ K,σ3 ⊗ id) = v3 ⊗ K and Alt(Q′

3 ⊗
K ′, σ′

3 ⊗ id) = v′3 ⊗K ′, hence f(v′3 ⊗ 1) = v3 ⊗ β for some β ∈ K. The relations
v23 = v′23 = α3 then imply that β = 1, i.e., f(v′3 ⊗ 1) = v3 ⊗ 1 ∈ Q3 ⊗ F . By
(3.2) there exists η ∈ K such that f(Q′

3 ⊗ F ) ⊆ Q3 ⊗ F [η].
If η ∈ F , then Q′

3 ≃ Q3. Hence (Q
′

3, σ
′

3) ≃ (Q3, σ3) by [7, (7.4)]. The isomor-
phism A ≃ A′ then implies that Q1⊗Q2 ≃ Q′

1⊗Q′

2. Thus, (Q1, σ1)⊗(Q2, σ2) ≃
(Q′

1, σ
′

1)⊗ (Q′

2, σ
′

2) by (2.2), i.e., (A, σ) and (A′, σ′) are simply equivalent. Sup-
pose that η /∈ F , hence η2 ∈ F× \ F×2. As η ∈ K ≃ Φ(Q1 ⊗ Q2, σ1 ⊗ σ2),
by (3.5) there exists a σ-invariant quaternion algebra Q4 ⊆ Q1 ⊗Q2 such that
η ∈ Φ(Q4, σ|Q4

). Let Q5 be the centralizer of Q4 in Q1 ⊗Q2. Then

(Q1, σ1)⊗ (Q2, σ2) ≃ (Q4, σ|Q4
)⊗ (Q5, σ|Q5

), (2)

which implies that

Pf(Q4 ⊗Q5, σ|Q4
⊗ σ|Q5

) ≃ 〈〈α1, α2〉〉, (3)

by [4, (7.2)]. Since f(Q′

3 ⊗ F ) ⊆ Q3 ⊗ F [η] and η ∈ Q4, we get f(Q′

3 ⊗ F ) ⊆
Q3 ⊗Q4. Let Q6 be the centralizer of f(Q′

3 ⊗ F ) in Q3 ⊗Q4. Then

(Q3, σ3)⊗ (Q4, σ|Q4
) ≃ (Q6, σ|Q6

)⊗ f(Q′

3 ⊗ F, σ′

3 ⊗ id). (4)

By (2) and (4) we have

(A, σ) = (Q1, σ1)⊗ (Q2, σ2)⊗ (Q3, σ3)

≈ (Q4, σ|Q4
)⊗ (Q5, σ|Q5

)⊗ (Q3, σ3)

≈ (Q5, σ|Q5
)⊗ (Q3, σ3)⊗ (Q4, σ|Q4

)

≈ (Q5, σ|Q5
)⊗ (Q6, σ|Q6

)⊗ (Q′

3, σ
′

3). (5)

We claim that discσ|Q6
= discσ|Q4

. If this is true, then

Pf(Q5 ⊗Q6, σ|Q5
⊗ σ|Q6

) ≃ Pf(Q5 ⊗Q4, σ|Q5
⊗ σ|Q4

).

Thus, using (3) we obtain

Pf(Q5 ⊗Q6, σ|Q5
⊗ σ|Q6

) ≃ 〈〈α1, α2〉〉 ≃ Pf(Q′

1 ⊗Q′

2, σ
′

1 ⊗ σ′

2). (6)

The chain equivalence (5) together with A ≃ A′ yields A′ ≃ Q5 ⊗ Q6 ⊗ Q′

3,
hence Q5 ⊗Q6 ≃ Q′

1 ⊗Q′

2. By (6) and (2.2) we have (Q5, σ|Q5
)⊗ (Q6, σ|Q6

) ≃
(Q′

1, σ
′

1)⊗ (Q′

2, σ
′

2). This, together with (5) yields the desired chain equivalence:

(A, σ) ≈ (Q5, σ|Q5
)⊗ (Q6, σ|Q6

)⊗ (Q′

3, σ
′

3)

≈ (Q′

1, σ
′

1)⊗ (Q′

2, σ
′

2)⊗ (Q′

3, σ
′

3) = (A′, σ′).
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We now proceed to prove the claim. Let v6 ∈ Alt(Q6, σ|Q6
) ⊆ Q3 ⊗ Q4 and

v4 ∈ Alt(Q4, σ|Q4
) be two units. It is enough to show that v6 = µ(1 ⊗ v4) for

some µ ∈ F . The element

v6 ∈ Alt(Q6, σ|Q6
) ⊆ Alt(Q3 ⊗Q4, σ3 ⊗ σ|Q4

)

is square-central. Hence v6 ∈ Φ(Q3 ⊗Q4, σ3 ⊗ σ|Q4
) = F [v3 ⊗ 1, 1⊗ v4] by [10,

(4.4)], i.e., there exist a, b, c, d ∈ F such that

v6 = a(v3 ⊗ 1) + b(1⊗ v4) + c(v3 ⊗ v4) + d.

Since σ3 ⊗σ|Q4
is orthogonal, by [7, (2.6)] we have 1 /∈ Alt(Q3⊗Q4, σ3⊗σ|Q4

),
hence d = 0. On the other hand by extending {v3} and {v′3} to quaternion
bases {u3, v3, u3v3} of Q3 and {u′

3, v
′

3, u
′

3v
′

3} of Q′

3 and using (3.2) for the map
f in (1), we get

f(u′

3 ⊗ 1) = 1⊗ λ+ u3 ⊗ 1 + v3 ⊗ η ∈ Q3 ⊗ F [η] ⊆ Q3 ⊗Q4,

for some λ ∈ F . Thus,

v6f(u
′

3⊗ 1) + f(u′

3⊗ 1)v6 = a(v3u3 + u3v3)⊗ 1 + bv3 ⊗ (v4η + ηv4)

+ c(v3u3 + u3v3)⊗ v4 + cα3 ⊗ (v4η + ηv4)

= av3⊗ 1 + (bv3 + cα3)⊗ (v4η + ηv4) + cv3⊗ v4. (7)

As v4, η ∈ Φ(Q4, σ|Q4
), we have ηv4 = v4η. Also, v6 ∈ Q6 commutes with

f(u′

3 ⊗ 1) ∈ f(Q′

3 ⊗F ), i.e., v6f(u
′

3 ⊗ 1) + f(u′

3 ⊗ 1)v6 = 0. Therefore, (7) leads
to a = c = 0, hence v6 = b(1⊗ v4), proving the claim.

Remark 3.7. Let K = F (
√
α) be a quadratic field extension. Consider a

bilinear Pfister form b over F and let bK be the scalar extension of b to K. If
bK is metabolic then b ⊗ 〈〈α〉〉 is also metabolic. In fact if b is itself metabolic,
the conclusion is evident. Otherwise, b is anisotropic and the result follows form
[5, (34.29 (2))] and [5, (34.7)]. Note that this implies that if bK ≃ b′K for some
bilinear Pfister form b′ over F , then b⊗ 〈〈α〉〉 ≃ b′ ⊗ 〈〈α〉〉.

The following result gives a solution to [9, (6.8)].

Theorem 3.8. Let (A, σ) ≃ ⊗n
i=1(Qi, σi) and (A′, σ′) ≃ ⊗n

i=1(Q
′

i, σ
′

i) be two

totally decomposable algebras with orthogonal involution over F . Then (A, σ) ≃
(A′, σ′) if and only if (A, σ) and (A′, σ′) are chain equivalent.

Proof. The “if” part is evident. To prove the converse, let degF A = 2n. The
case n 6 2 is trivial, so suppose that n > 3. By [4, (7.2)] we have Pf(A, σ) ≃
Pf(A′, σ′). Hence by [1, (A. 1)], there exist bilinear Pfister forms b0, · · · , bm
such that b0 = Pf(A, σ), bm = Pf(A′, σ′) and for i = 0, · · · ,m− 1, bi is simply
P-equivalent to bi+1. Set (A0, τ0) = (A, σ) and (Am, τm) = (A′, σ′). By (3.1)
every bi, i = 1, · · · ,m − 1, can be realised as the Pfister invariant of a totally
decomposable algebra with orthogonal involution (Ai, τi) over F with Ai ≃ A.
We show that for i = 0, · · · ,m−1, (Ai, τi) and (Ai+1, τi+1) are chain equivalent.
By induction, it suffices to consider the case where m = 1 (i.e., we may assume
thatPf(A, σ) andPf(A′, σ′) are simply P-equivalent). If n = 3 the result follows
from (3.6). So suppose that n > 4.
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For i = 1, · · · , n, choose invertible elements vi ∈ Alt(Qi, σi) and v′i ∈
Alt(Q′

i, σ
′

i) and set αi = v2i ∈ F× and α′

i = v′2i ∈ F×. Then Pf(A, σ) ≃
〈〈α1, · · · , αn〉〉 and Pf(A′, σ′) ≃ 〈〈α′

1, · · · , α′

n〉〉. By re-indexing if necessary, we
may assume that

〈〈α1, α2〉〉 ≃ 〈〈α′

1, α
′

2〉〉 and αi = α′

i for i = 3, · · · , n. (8)

Suppose first that αn ∈ F×2. Then (Qn, σn) ≃ (Q′

n, σ
′

n) ≃ (M2(F ), t) by (2.1).

Set C =
⊗n−1

i=1 Qi and C′ =
⊗n−1

i=1 Q′

i, so that C ≃ CA(Qn) ≃ CA′(Q′

n) ≃ C′.
Using (8) we have

Pf(C, σ|C) ≃ Pf(C′, σ′|C′) ≃ 〈〈α1, · · · , αn−1〉〉,

hence (C, σ|C) ≃ (C′, σ′|C′) by (2.2). By induction hypothesis, (C, σ|C ) and
(C′, σ′|C′) are chain equivalent. Thus, (A, σ) ≈ (C, σ|C)⊗(M2(F ), t) and (A′, σ′)
≈ (C′, σ′|C′)⊗ (M2(F ), t) are also chain equivalent.

Suppose now that αn /∈ F×2. Set B = CA(vn), B
′ = CA′(v′n), K = F [vn]

and K ′ = F [v′n] ≃ F (
√
αn) ≃ K. Then

(B, σ|B) ≃K

⊗n−1
i=1 (Qi, σi)K and (B′, σ′|B′) ≃K

⊗n−1
i=1 (Q

′

i, σ
′

i)K′ ,

are totally decomposable algebras with orthogonal involution over K and K ′

respectively. Since A ≃F A′, we have B ≃K B′. Also, using (8) we get

Pf(B, σ|B) ≃ 〈〈α1, · · · , αn−1〉〉K ≃ 〈〈α′

1, · · · , α′

n−1〉〉K ≃ Pf(B′, σ′|B′).

Thus, (B, σ|B) ≃K (B′, σ′|B′) by (2.2). By induction hypothesis we get (B, σ|B)
≈ (B′, σ′|B′). Again, using induction, it suffices to consider the case where
(B, σ|B) and (B′, σ′|B′) are simply equivalent (note that every totally decom-
posable algebra with involution (B′′, σ′′) over K with (B′′, σ′′) ≃ (B, σ|B) has

a decomposition of the form
⊗n−1

i=1 (Q
′′

i , σ
′′

i )K , where every (Q′′

i , σ
′′

i ) is a quater-
nion algebra with orthogonal involution over F ). By re-indexing, we may assume
that (Qn−2, σn−2)K ⊗ (Qn−1, σn−1)K ≃K (Q′

n−2, σ
′

n−2)K ⊗ (Q′

n−1, σ
′

n−1)K and

(Qi, σi)K ≃K (Q′

i, σ
′

i)K′ , for i = 1, · · · , n− 3, (9)

In particular,
⊗n−1

i=2 (Qi, σi)K ≈ ⊗n−1
i=2 (Q

′

i, σ
′

i)K′ , which implies that

〈〈α2, · · · , αn−1〉〉K ≃ 〈〈α′

2, · · · , α′

n−1〉〉K . (10)

Since n− 3 > 1, (9) gives an isomorphism of K-algebras with involution

f : (Q1, σ1)⊗ (K, id) ≃ (Q′

1, σ
′

1)⊗ (K ′, id).

The element 1⊗ vn lies in the center of Q1 ⊗K. Thus, there exist a, b ∈ F such
that f(1⊗vn) = 1⊗ (a+bv′n). Squaring both sides implies that αn = a2+b2αn.
The assumption αn /∈ F 2 then yields a = 0 and b = 1, i.e., f(1⊗vn) = 1⊗v′n. As
(K ′, id) ⊆ (Q′

n, σ
′

n), the isomorphism f induces a monomorphism of F -algebras
with involution

g : (Q1, σ1)⊗ (K, id) →֒ (Q′

1, σ
′

1)⊗ (Q′

n, σ
′

n),
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with g(1 ⊗ vn) = 1 ⊗ v′n. Let Q′

0 be the centralizer of g(Q1 ⊗ F ) in Q′

1 ⊗ Q′

n.
Then

(Q′

1, σ
′

1)⊗ (Q′

n, σ
′

n) ≃F (Q′

0, σ
′|Q′

0
)⊗ (Q1, σ1). (11)

Since the element 1 ⊗ vn ∈ Q1 ⊗ K commutes with Q1 ⊗ F , we get 1 ⊗ v′n =
g(1⊗ vn) ∈ Q′

0, which implies that 1⊗ v′n ∈ Alt(Q′

0, σ
′|Q′

0
) by [8, (3.5)]. Thus,

discσ′|Q′

0
= αnF

×2 ∈ F×/F×2. (12)

Using (11) we have

(A′, σ′) ≈ (Q′

2, σ
′

2)⊗ · · · ⊗ (Q′

n−1, σ
′

n−1)⊗ (Q′

0, σ
′|Q′

0
)⊗ (Q1, σ1). (13)

This, together with A ≃ A′ implies that

Q2 ⊗ · · · ⊗Qn ≃ Q′

2 ⊗ · · · ⊗Q′

n−1 ⊗Q′

0. (14)

The isometry (10) and (3.7) show that

〈〈α2, · · · , αn−1, αn〉〉 ≃ 〈〈α′

2, · · · , α′

n−1, αn〉〉,

hence, thanks to (12), the Pfister invariants of (D, τ) := (Q2, σ2)⊗· · ·⊗(Qn, σn)
and (D′, τ ′) := (Q′

2, σ
′

2)⊗ · · · ⊗ (Q′

n−1, σ
′

n−1)⊗ (Q′

0, σ
′|Q′

0
) are isometric. Using

(14) and (2.2) we obtain (D, τ) ≃ (D′, τ ′). By induction hypothesis, (D, τ) and
(D′, τ ′) are chain equivalent. Thus, by (13) we have

(A′, σ′) ≈ (Q′

2, σ
′

2)⊗ · · · ⊗ (Q′

n−1, σ
′

n−1)⊗ (Q′

0, σ
′|Q′

0
)⊗ (Q1, σ1)

= (D′, τ ′)⊗ (Q1, σ1) ≈ (D, τ) ⊗ (Q1, σ1)

= (Q2, σ2)⊗ · · · ⊗ (Qn, σn)⊗ (Q1, σ1) ≈ (A, σ).
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