The chain equivalence of totally decomposable orthogonal involutions in characteristic two

A.-H. Nokhodkar

February 21, 2016

Abstract

It is shown that two totally decomposable algebras with involution of orthogonal type over a field of characteristic two are isomorphic if and only if they are chain equivalent.

1 Introduction

The chain equivalence theorem for bilinear Pfister forms describes the isometry class of n-fold Pfister forms in terms of the isometry class of 2 -fold Pfister forms (see [6, (3.2)] and $[1,(\mathrm{~A} .1)]$). There exist some related results in the literature for certain classes of central simple algebras over a field. In [11], the chain equivalence theorem for biquaternion algebras over a field of characteristic not two was proved (see [2] for the corresponding result in characteristic two). Also, the chain equivalence theorem for tensor products of quaternion algebras over a field of arbitrary characteristic was recently obtained in [3].

Let F be a field of characteristic 2 . An algebra with involution (A, σ) over F is called totally decomposable if it decomposes as tensor products of quaternion F-algebras with involution. In [4], a bilinear Pfister form $\mathfrak{P f}(A, \sigma)$, called the Pfister invariant, was associated to every totally decomposable algebra with orthogonal involution (A, σ) over F. In [9, (6.5)], it was shown that the Pfister invariant can be used to classify totally decomposable algebras with orthogonal involution over F. Regarding this result, an analogue chain equivalence for these algebras was defined in $[9,(6.7)]$. A relevant problem then is whether the isomorphism of such algebras with involution implies that they are chain equivalent (see $[9,(6.8)]$). In this work we present a solution to this problem.

2 Preliminaries

In this paper, F is a field of characteristic 2.
Let V be a finite dimensional vector space over F. A bilinear form $\mathfrak{b}: V \times V \rightarrow F$ is called anisotropic if $\mathfrak{b}(v, v) \neq 0$ for every nonzero vector $v \in V$. The form \mathfrak{b} is called metabolic if V has a subspace W with $\operatorname{dim} W=\frac{1}{2} \operatorname{dim} V$ and $\left.\mathfrak{b}\right|_{W \times W}=0$. For $\lambda_{1}, \cdots, \lambda_{n} \in F^{\times}$, the form $\left\langle\left\langle\lambda_{1}, \cdots, \lambda_{n}\right\rangle\right\rangle:=\bigotimes_{i=1}^{n}\left\langle 1, \lambda_{i}\right\rangle$ is called a bilinear Pfister form, where $\left\langle 1, \lambda_{i}\right\rangle$ is the diagonal form $\mathfrak{b}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=x_{1} y_{1}+$ $\lambda_{i} x_{2} y_{2}$. By [5, (6.3)], a bilinear Pfister form is either metabolic or anisotropic. We say that $\mathfrak{b}=\left\langle\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle\right\rangle$ and $\mathfrak{b}^{\prime}=\left\langle\left\langle\beta_{1}, \cdots, \beta_{n}\right\rangle\right\rangle$ are simply P-equivalent,
if either $n=1$ and $\alpha_{1} F^{\times 2}=\beta_{1} F^{\times 2}$ or $n \geqslant 2$ and there exist $1 \leqslant i<j \leqslant n$ such that $\left\langle\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right\rangle \simeq\left\langle\left\langle\beta_{i}, \beta_{j}\right\rangle\right\rangle$ and $\alpha_{k}=\beta_{k}$ for all other k. We say that \mathfrak{b} and \mathfrak{b}^{\prime} are chain P-equivalent, if there exist bilinear Pfister forms $\mathfrak{b}_{0}, \cdots, \mathfrak{b}_{m}$ such that $\mathfrak{b}_{0}=\mathfrak{b}, \mathfrak{b}_{m}=\mathfrak{b}^{\prime}$ and every \mathfrak{b}_{i} is simply P-equivalent to \mathfrak{b}_{i-1}.

A quaternion algebra over F is a central simple F-algebra of degree 2. Every quaternion algebra Q has a quaternion basis, i.e., a basis $\{1, u, v, w\}$ satisfying $u^{2}+u \in F, v^{2} \in F^{\times}$and $u v=w=v u+v$. It is easily seen that every element $v \in Q \backslash F$ with $v^{2} \in F^{\times}$extends to a quaternion basis $\{1, u, v, u v\}$ of Q. A tensor product of two quaternion algebras is called a biquaternion algebra.

An involution on a central simple F-algebra A is an antiautomorphism of A of period 2. Involutions which restrict to the identity on F are said to be of the first kind. An involution of the first kind is either symplectic or orthogonal (see $[7,(2.5)])$. The discriminant of an orthogonal involution σ is denoted by $\operatorname{disc} \sigma$ (see $[7,(7.2)]$). If K / F is a field extension, the scalar extension of (A, σ) to K is denoted by $(A, \sigma)_{K}$. We also use the notation $\operatorname{Alt}(A, \sigma)=\{a-\sigma(a) \mid a \in A\}$.

Let (A, σ) be a totally decomposable algebra of degree 2^{n} with orthogonal involution over F. In [9], it was shown that there exists a unique, up to isomorphism, subalgebra $S \subseteq F+\operatorname{Alt}(A, \sigma)$ such that (i) $x^{2} \in F$ for $x \in S$; (ii) $\operatorname{dim}_{F} S=\operatorname{deg}_{F} A=2^{n}$; (iii) S is self-centralizing; (iv) S is generated as an F-algebra by n elements. Also, S has a set of alternating generators, i.e., a set $\left\{u_{1}, \cdots, u_{n}\right\}$ consisting of units such that $S \simeq F\left[u_{1}, \cdots, u_{n}\right]$ and $u_{i_{1}} \cdots u_{i_{l}} \in$ $\operatorname{Alt}(A, \sigma)$ for every $1 \leq l \leq n$ and $1 \leq i_{1}<\cdots<i_{l} \leq n$. We denote the isomorphism class of the subalgebra S by $\Phi(A, \sigma)$. Note that $\Phi(A, \sigma)$ is commutative by $[9,(3.2(i))]$. Also, if $\operatorname{deg}_{F} A \leqslant 4$, then $\Phi(A, \sigma)$ is unique as a set. In fact if A is a quaternion algebra, then $\Phi(A, \sigma)=F+\operatorname{Alt}(A, \sigma)$ by dimension count. If A is a biquaternion algebra, then $\Phi(A, \sigma)=F+\operatorname{Alt}(A, \sigma)^{+}$, where $\operatorname{Alt}(A, \sigma)^{+}$ is the set of square-central elements in $\operatorname{Alt}(A, \sigma)$ (see [10, (4.4)] and [10, (3.9)]).

Let $(A, \sigma)=\bigotimes_{i=1}^{n}\left(Q_{i}, \sigma_{i}\right)$ be a decomposition of (A, σ) and choose $\alpha_{i} \in F^{\times}$ such that disc $\sigma_{i}=\alpha_{i} F^{\times 2}, i=1, \cdots, n$. As in [4], we call the form $\left\langle\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle\right\rangle$ the Pfister invariant of (A, σ) and we denote it by $\mathfrak{P f}(A, \sigma)$. Note that by [4, (7.2)], the Pfister invariant is independent of the decomposition of (A, σ).

With the above notations, we have the following results.
Theorem 2.1. ([9, (5.7)]) For a totally decomposable algebra of degree 2^{n} with orthogonal involution (A, σ) over F, the following conditions are equivalent: (i) $(A, \sigma) \simeq\left(M_{2^{n}}(F), t\right)$, where t is the transpose involution. (ii) $\mathfrak{P f}(A, \sigma) \simeq$ $\langle\langle 1, \cdots, 1\rangle\rangle$. (iii) $x^{2} \in F^{2}$ for every $x \in \Phi(A, \sigma)$.
Theorem 2.2. $([9,(6.5)])$ Let (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$ be two totally decomposable algebras with orthogonal involution over F. If $A \simeq A^{\prime}$ and $\mathfrak{P f}(A, \sigma) \simeq \mathfrak{P f}\left(A^{\prime}, \sigma^{\prime}\right)$, then $(A, \sigma) \simeq\left(A^{\prime}, \sigma^{\prime}\right)$.

3 The chain lemma

Our first result, which strengthens [9, (5.6)], gives a natural description of the Pfister invariant.

Lemma 3.1. Let (A, σ) be a totally decomposable algebra of degree 2^{n} with orthogonal involution over F. If $\mathfrak{P f}(A, \sigma) \simeq\left\langle\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle\right\rangle$ for some $\alpha_{1}, \cdots, \alpha_{n} \in$ F^{\times}, then there exists a decomposition $(A, \sigma) \simeq \bigotimes_{i=1}^{n}\left(Q_{i}, \sigma_{i}\right)$ into quaternion F algebras with involution such that $\operatorname{disc} \sigma_{i}=\alpha_{i} F^{\times 2}, i=1, \cdots, n$.

Proof. By $[9,(5.5)]$ and $[9,(5.6)]$ there exists a set of alternating generators $\left\{u_{1}, \cdots, u_{n}\right\}$ of $\Phi(A, \sigma)$ such that $u_{i}^{2}=\alpha_{i}, i=1, \cdots, n$. If $\alpha_{i} \in F^{2}$ for every i, the result follows from (2.1). Thus (by re-indexing if necessary) we may assume that $\alpha_{n} \notin F^{2}$. It is enough to prove that there exists a decomposition $(A, \sigma) \simeq$ $\bigotimes_{i=1}^{n}\left(Q_{i}, \sigma_{i}\right)$ such that $u_{i} \in \operatorname{Alt}\left(Q_{i}, \sigma_{i}\right), i=1, \cdots, n$. We use induction on n. The case $n=1$ is evident, so suppose that $n>1$. Let $B=C_{A}\left(u_{n}\right)$ be the centralizer of u_{n} in A and set $K=F\left[u_{n}\right]=F\left(\sqrt{\alpha}_{n}\right)$. By [9, (6.3)] and [9, (6.4)], $\left(B,\left.\sigma\right|_{B}\right)$ is a totally decomposable algebra with orthogonal involution over K and $\left\{u_{1}, \cdots, u_{n-1}\right\}$ is a set of alternating generators of $\Phi\left(B,\left.\sigma\right|_{B}\right)$. By induction hypothesis there exists a decomposition

$$
\left(B,\left.\sigma\right|_{B}\right) \simeq_{K}\left(Q_{1}^{\prime}, \sigma_{1}^{\prime}\right) \otimes_{K} \cdots \otimes_{K}\left(Q_{n-1}^{\prime}, \sigma_{n-1}^{\prime}\right)
$$

into quaternion K-algebras with involution such that $u_{i} \in \operatorname{Alt}\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)$ for $i=$ $1, \cdots, n-1$. By dimension count we have $\Phi\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)=K+K u_{i}$. Since $K^{2} \subseteq F$ and $u_{i}^{2} \in F$, we get $x^{2} \in F$ for every $x \in \Phi\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)$. By $[9,(6.1)]$ there exists a quaternion F-algebra $Q_{i} \subseteq Q_{i}^{\prime}$ such that $\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right) \simeq_{K}\left(Q_{i},\left.\sigma\right|_{Q_{i}}\right) \otimes(K, \mathrm{id})$ and $u_{i} \in \operatorname{Alt}\left(Q_{i},\left.\sigma\right|_{Q_{i}}\right), i=1, \cdots, n-1$. Set $Q_{n}=C_{A}\left(Q_{1} \otimes \cdots \otimes Q_{n-1}\right)$. Then Q_{n} is a quaternion F-algebra and $(A, \sigma) \simeq\left(Q_{1},\left.\sigma\right|_{Q_{1}}\right) \otimes \cdots \otimes\left(Q_{n},\left.\sigma\right|_{Q_{n}}\right)$. Since $u_{n} \in K=Z(B) \subseteq C_{A}\left(Q_{1} \otimes \cdots \otimes Q_{n-1}\right)=Q_{n}$, we obtain $u_{n} \in Q_{n}$. Finally [8, (3.5)] implies that $u_{n} \in \operatorname{Alt}\left(Q_{n},\left.\sigma\right|_{Q_{n}}\right)$. This completes the proof.

Lemma 3.2. Let K / F be a field extension satisfying $K^{2} \subseteq F$. Let Q and Q^{\prime} be quaternion algebras over F and let $v^{\prime} \in Q^{\prime} \backslash F$ with $v^{\prime 2} \in F^{\times}$. If there exists an isomorphism of K-algebras $f: Q_{K}^{\prime} \simeq Q_{K}$ such that $f\left(v^{\prime} \otimes 1\right) \in Q \otimes F$, then there exists $\eta \in K$ such that $f\left(Q^{\prime} \otimes F\right) \subseteq Q \otimes F[\eta]$. In addition, if $\{1, u, v, u v\}$ and $\left\{1, u^{\prime}, v^{\prime}, u^{\prime} v^{\prime}\right\}$ are respective quaternion bases of Q and Q^{\prime} and $f\left(v^{\prime} \otimes 1\right)=v \otimes 1$, then $f\left(u^{\prime} \otimes 1\right)=1 \otimes \lambda+u \otimes 1+v \otimes \eta$ for some $\lambda \in F$.

Proof. The first statement follows from the second, since $f\left(u^{\prime} \otimes 1\right)$ and $f\left(v^{\prime} \otimes 1\right)$ generate $f\left(Q^{\prime} \otimes F\right)$ as an F-algebra. To prove the second statement write $f\left(u^{\prime} \otimes 1\right)=1 \otimes \eta_{1}+u \otimes \eta_{2}+v \otimes \eta_{3}+u v \otimes \eta_{4}$ for some $\eta_{1}, \cdots, \eta_{4} \in K$. Since

$$
\begin{aligned}
v \otimes 1 & =f\left(v^{\prime} \otimes 1\right)=f\left(\left(u^{\prime} v^{\prime}+v^{\prime} u^{\prime}\right) \otimes 1\right) \\
& =f\left(u^{\prime} \otimes 1\right)(v \otimes 1)+(v \otimes 1) f\left(u^{\prime} \otimes 1\right)=v \otimes \eta_{2}+v^{2} \otimes \eta_{4}
\end{aligned}
$$

we get $\eta_{4}=0$ and $\eta_{2}=1$, i.e., $f\left(u^{\prime} \otimes 1\right)=1 \otimes \eta_{1}+u \otimes 1+v \otimes \eta_{3}$. Hence

$$
\begin{aligned}
f\left(\left(u^{\prime 2}+u^{\prime}\right) \otimes 1\right)= & f\left(u^{\prime} \otimes 1\right)^{2}+f\left(u^{\prime} \otimes 1\right) \\
= & 1 \otimes \eta_{1}^{2}+u^{2} \otimes 1+v^{2} \otimes \eta_{3}^{2}+(u v+v u) \otimes \eta_{3} \\
& +1 \otimes \eta_{1}+u \otimes 1+v \otimes \eta_{3} \\
= & 1 \otimes \eta_{1}^{2}+\left(u^{2}+u\right) \otimes 1+v^{2} \otimes \eta_{3}^{2}+1 \otimes \eta_{1}
\end{aligned}
$$

As $f\left(\left(u^{\prime 2}+u^{\prime}\right) \otimes 1\right) \in F$ and $K^{2} \subseteq F$, the above relations imply that $\eta_{1} \in F$, proving the result.

The following definition was given in [9, (6.7)].
Definition 3.3. Let $(A, \sigma)=\bigotimes_{i=1}^{n}\left(Q_{i}, \sigma_{i}\right)$ and $\left(A^{\prime}, \sigma^{\prime}\right)=\bigotimes_{i=1}^{n}\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)$ be two totally decomposable algebras with orthogonal involution over F. We say that (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$ are simply equivalent if either $n=1$ and $\left(Q_{1}, \sigma_{1}\right) \simeq\left(Q_{1}^{\prime}, \sigma_{1}^{\prime}\right)$
or $n \geqslant 2$ and there exist $1 \leqslant i<j \leqslant n$ such that $\left(Q_{i}, \sigma_{i}\right) \otimes\left(Q_{j}, \sigma_{j}\right) \simeq\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right) \otimes$ $\left(Q_{j}^{\prime}, \sigma_{j}^{\prime}\right)$ and $\left(Q_{k}, \sigma_{k}\right) \simeq\left(Q_{k}^{\prime}, \sigma_{k}^{\prime}\right)$ for $k \neq i, j$. We say that (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$ are chain equivalent if there exist totally decomposable algebras with involution $\left(A_{0}, \tau_{0}\right), \cdots,\left(A_{m}, \tau_{m}\right)$ such that $(A, \sigma)=\left(A_{0}, \tau_{0}\right),\left(A^{\prime}, \sigma^{\prime}\right)=\left(A_{m}, \tau_{m}\right)$ and for every $i=0, \cdots, m-1,\left(A_{i}, \tau_{i}\right)$ and $\left(A_{i+1}, \tau_{i+1}\right)$ are simply equivalent. We write $(A, \sigma) \approx\left(A^{\prime}, \sigma^{\prime}\right)$ if (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$ are chain equivalent.

Since the symmetric group is generated by transpositions, for every isometry ρ of $\{1, \cdots, n\}$ we have

$$
\bigotimes_{i=1}^{n}\left(Q_{i}, \sigma_{i}\right) \approx \bigotimes_{i=1}^{n}\left(Q_{\rho(i)}, \sigma_{\rho(i)}\right)
$$

Lemma 3.4. Let $(A, \sigma)=\bigotimes_{i=1}^{3}\left(Q_{i}, \sigma_{i}\right)$ and $\left(A^{\prime}, \sigma^{\prime}\right)=\bigotimes_{i=1}^{3}\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)$ be totally decomposable algebras with orthogonal involution over F. Let $\alpha_{i} \in F^{\times}$(resp. $\left.\alpha_{i}^{\prime} \in F^{\times}\right)$be a representative of the class $\operatorname{disc} \sigma_{i}\left(\right.$ resp. disc $\left.\sigma_{i}^{\prime}\right), i=1,2,3$. Suppose that $A \simeq A^{\prime},\left\langle\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right\rangle \simeq\left\langle\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right\rangle\right\rangle$ and $\alpha_{3}=\alpha_{3}^{\prime}$. If $\left\langle\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right\rangle$ is metabolic, then (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$ are chain equivalent.

Proof. By [1, (A.5)] there exists $\beta \in F$ such that $\left\langle\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right\rangle \simeq\langle\langle 1, \beta\rangle\rangle$. Thus, according to (3.1) and (2.1), one can write

$$
\begin{aligned}
& \left(Q_{1}, \sigma_{1}\right) \otimes\left(Q_{2}, \sigma_{2}\right) \simeq\left(M_{2}(F), t\right) \otimes\left(Q_{0}, \sigma_{0}\right), \\
& \left(Q_{1}^{\prime}, \sigma_{1}^{\prime}\right) \otimes\left(Q_{2}^{\prime}, \sigma_{2}^{\prime}\right) \simeq\left(M_{2}(F), t\right) \otimes\left(Q_{0}^{\prime}, \sigma_{0}^{\prime}\right),
\end{aligned}
$$

where $\left(Q_{0}, \sigma_{0}\right)$ and $\left(Q_{0}^{\prime}, \sigma_{0}^{\prime}\right)$ are quaternion algebras with orthogonal involution over F and $\operatorname{disc} \sigma_{0}=\operatorname{disc} \sigma_{0}^{\prime}=\beta F^{\times 2}$. It follows that $A \simeq M_{2}(F) \otimes Q_{0} \otimes Q_{3}$ and $A^{\prime} \simeq M_{2}(F) \otimes Q_{0}^{\prime} \otimes Q_{3}^{\prime}$. Since $A \simeq A^{\prime}$, we get $Q_{0} \otimes Q_{3} \simeq Q_{0}^{\prime} \otimes Q_{3}^{\prime}$. We also have

$$
\mathfrak{P f}\left(Q_{0} \otimes Q_{3}, \sigma_{0} \otimes \sigma_{3}\right) \simeq\left\langle\left\langle\beta, \alpha_{3}\right\rangle\right\rangle \simeq \mathfrak{P f}\left(Q_{0}^{\prime} \otimes Q_{3}^{\prime}, \sigma_{0}^{\prime} \otimes \sigma_{3}^{\prime}\right)
$$

which implies that $\left(Q_{0}, \sigma_{0}\right) \otimes\left(Q_{3}, \sigma_{3}\right) \simeq\left(Q_{0}^{\prime}, \sigma_{0}^{\prime}\right) \otimes\left(Q_{3}^{\prime}, \sigma_{3}^{\prime}\right)$ by (2.2). Thus,

$$
\begin{aligned}
(A, \sigma) & =\bigotimes_{i=1}^{3}\left(Q_{i}, \sigma_{i}\right) \approx\left(M_{2}(F), t\right) \otimes\left(Q_{0}, \sigma_{0}\right) \otimes\left(Q_{3}, \sigma_{3}\right) \\
& \approx\left(M_{2}(F), t\right) \otimes\left(Q_{0}^{\prime}, \sigma_{0}^{\prime}\right) \otimes\left(Q_{3}^{\prime}, \sigma_{3}^{\prime}\right) \approx \bigotimes_{i=1}^{3}\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)=\left(A^{\prime}, \sigma^{\prime}\right)
\end{aligned}
$$

Lemma 3.5. $([9,(6.3)])$ Let (A, σ) be a totally decomposable algebra with orthogonal involution over F. For every $v \in \Phi(A, \sigma)$ with $v^{2} \in F^{\times} \backslash F^{\times 2}$, there exists a σ-invariant quaternion F-algebra $Q \subseteq A$ such that $v \in \Phi\left(Q,\left.\sigma\right|_{Q}\right)$.
Proof. By [9, (6.3)], there exists a σ-invariant quaternion F-algebra $Q \subseteq A$ containing v. Write $v=\lambda+w$ for some $\lambda \in F$ and $w \in \operatorname{Alt}(A, \sigma)$. Then $w \in$ $\operatorname{Alt}\left(Q,\left.\sigma\right|_{Q}\right)$ by $[8,(3.5)]$, hence $v=\lambda+w \in F+\operatorname{Alt}\left(Q,\left.\sigma\right|_{Q}\right)=\Phi\left(Q,\left.\sigma\right|_{Q}\right)$.

Lemma 3.6. Let $(A, \sigma)=\bigotimes_{i=1}^{3}\left(Q_{i}, \sigma_{i}\right)$ and $\left(A^{\prime}, \sigma^{\prime}\right)=\bigotimes_{i=1}^{3}\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)$ be two totally decomposable algebras with orthogonal involution over F. If $\mathfrak{P f}(A, \sigma)$ and $\mathfrak{P f}\left(A^{\prime}, \sigma^{\prime}\right)$ are simply P-equivalent and $A \simeq A^{\prime}$, then (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$ are chain equivalent.
Proof. Choose invertible elements $v_{i} \in \operatorname{Alt}\left(Q_{i}, \sigma_{i}\right)$ and $v_{i}^{\prime} \in \operatorname{Alt}\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right), i=$ $1,2,3$. Set $\alpha_{i}=v_{i}^{2} \in F^{\times}$and $\alpha_{i}^{\prime}=v_{i}^{\prime 2} \in F^{\times}$. Then $\mathfrak{P f}(A, \sigma) \simeq\left\langle\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle\right\rangle$ and $\mathfrak{P f}\left(A^{\prime}, \sigma^{\prime}\right) \simeq\left\langle\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right\rangle\right\rangle$. By re-indexing if necessary, we may assume
that $\alpha_{3}=\alpha_{3}^{\prime}$ and $\left\langle\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right\rangle \simeq\left\langle\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right\rangle\right\rangle$. In view of (3.4), it suffices to consider the case where $\left\langle\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right\rangle$ is anisotropic. Set $K=F\left[v_{1}, v_{2}\right]$ and $K^{\prime}=F\left[v_{1}^{\prime}, v_{2}^{\prime}\right]$. Then $K \simeq K^{\prime} \simeq F\left(\sqrt{\alpha}_{1}, \sqrt{\alpha}_{2}\right)$, because $\left\langle\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right\rangle$ is anisotropic. Consider $C_{A}(K) \simeq_{K} Q_{3} \otimes_{F} K$ and $C_{A^{\prime}}\left(K^{\prime}\right) \simeq_{K^{\prime}} Q_{3}^{\prime} \otimes_{F} K^{\prime}$. As $K \simeq K^{\prime}$, one may consider $Q_{3}^{\prime} \otimes_{F} K^{\prime}$ as a quaternion algebra over K, which is isomorphic to $Q_{3} \otimes_{F} K$. Since $\operatorname{disc}\left(\sigma_{3} \otimes \mathrm{id}\right)=\operatorname{disc}\left(\sigma_{3}^{\prime} \otimes \mathrm{id}\right)=\alpha_{3} K^{\times 2}$, by $[7,(7.4)]$ there exists an isomorphism of K-algebras with involution

$$
\begin{equation*}
f:\left(Q_{3}^{\prime} \otimes K^{\prime}, \sigma_{3}^{\prime} \otimes \mathrm{id}\right) \rightarrow\left(Q_{3} \otimes K, \sigma_{3} \otimes \mathrm{id}\right) \tag{1}
\end{equation*}
$$

Dimension count shows that $\operatorname{Alt}\left(Q_{3} \otimes K, \sigma_{3} \otimes \mathrm{id}\right)=v_{3} \otimes K$ and $\operatorname{Alt}\left(Q_{3}^{\prime} \otimes\right.$ $\left.K^{\prime}, \sigma_{3}^{\prime} \otimes \mathrm{id}\right)=v_{3}^{\prime} \otimes K^{\prime}$, hence $f\left(v_{3}^{\prime} \otimes 1\right)=v_{3} \otimes \beta$ for some $\beta \in K$. The relations $v_{3}^{2}=v_{3}^{\prime 2}=\alpha_{3}$ then imply that $\beta=1$, i.e., $f\left(v_{3}^{\prime} \otimes 1\right)=v_{3} \otimes 1 \in Q_{3} \otimes F$. By (3.2) there exists $\eta \in K$ such that $f\left(Q_{3}^{\prime} \otimes F\right) \subseteq Q_{3} \otimes F[\eta]$.

If $\eta \in F$, then $Q_{3}^{\prime} \simeq Q_{3}$. Hence $\left(Q_{3}^{\prime}, \sigma_{3}^{\prime}\right) \simeq\left(Q_{3}, \sigma_{3}\right)$ by [7, (7.4)]. The isomorphism $A \simeq A^{\prime}$ then implies that $Q_{1} \otimes Q_{2} \simeq Q_{1}^{\prime} \otimes Q_{2}^{\prime}$. Thus, $\left(Q_{1}, \sigma_{1}\right) \otimes\left(Q_{2}, \sigma_{2}\right) \simeq$ $\left(Q_{1}^{\prime}, \sigma_{1}^{\prime}\right) \otimes\left(Q_{2}^{\prime}, \sigma_{2}^{\prime}\right)$ by (2.2), i.e., (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$ are simply equivalent. Suppose that $\eta \notin F$, hence $\eta^{2} \in F^{\times} \backslash F^{\times 2}$. As $\eta \in K \simeq \Phi\left(Q_{1} \otimes Q_{2}, \sigma_{1} \otimes \sigma_{2}\right)$, by (3.5) there exists a σ-invariant quaternion algebra $Q_{4} \subseteq Q_{1} \otimes Q_{2}$ such that $\eta \in \Phi\left(Q_{4},\left.\sigma\right|_{Q_{4}}\right)$. Let Q_{5} be the centralizer of Q_{4} in $Q_{1} \otimes Q_{2}$. Then

$$
\begin{equation*}
\left(Q_{1}, \sigma_{1}\right) \otimes\left(Q_{2}, \sigma_{2}\right) \simeq\left(Q_{4},\left.\sigma\right|_{Q_{4}}\right) \otimes\left(Q_{5},\left.\sigma\right|_{Q_{5}}\right) \tag{2}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\mathfrak{P f}\left(Q_{4} \otimes Q_{5},\left.\left.\sigma\right|_{Q_{4}} \otimes \sigma\right|_{Q_{5}}\right) \simeq\left\langle\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right\rangle, \tag{3}
\end{equation*}
$$

by $[4,(7.2)]$. Since $f\left(Q_{3}^{\prime} \otimes F\right) \subseteq Q_{3} \otimes F[\eta]$ and $\eta \in Q_{4}$, we get $f\left(Q_{3}^{\prime} \otimes F\right) \subseteq$ $Q_{3} \otimes Q_{4}$. Let Q_{6} be the centralizer of $f\left(Q_{3}^{\prime} \otimes F\right)$ in $Q_{3} \otimes Q_{4}$. Then

$$
\begin{equation*}
\left(Q_{3}, \sigma_{3}\right) \otimes\left(Q_{4},\left.\sigma\right|_{Q_{4}}\right) \simeq\left(Q_{6},\left.\sigma\right|_{Q_{6}}\right) \otimes f\left(Q_{3}^{\prime} \otimes F, \sigma_{3}^{\prime} \otimes \mathrm{id}\right) \tag{4}
\end{equation*}
$$

By (2) and (4) we have

$$
\begin{align*}
(A, \sigma) & =\left(Q_{1}, \sigma_{1}\right) \otimes\left(Q_{2}, \sigma_{2}\right) \otimes\left(Q_{3}, \sigma_{3}\right) \\
& \approx\left(Q_{4},\left.\sigma\right|_{Q_{4}}\right) \otimes\left(Q_{5},\left.\sigma\right|_{Q_{5}}\right) \otimes\left(Q_{3}, \sigma_{3}\right) \\
& \approx\left(Q_{5},\left.\sigma\right|_{Q_{5}}\right) \otimes\left(Q_{3}, \sigma_{3}\right) \otimes\left(Q_{4},\left.\sigma\right|_{Q_{4}}\right) \\
& \approx\left(Q_{5},\left.\sigma\right|_{Q_{5}}\right) \otimes\left(Q_{6},\left.\sigma\right|_{Q_{6}}\right) \otimes\left(Q_{3}^{\prime}, \sigma_{3}^{\prime}\right) . \tag{5}
\end{align*}
$$

We claim that $\left.\operatorname{disc} \sigma\right|_{Q_{6}}=\left.\operatorname{disc} \sigma\right|_{Q_{4}}$. If this is true, then

$$
\mathfrak{P f}\left(Q_{5} \otimes Q_{6},\left.\left.\sigma\right|_{Q_{5}} \otimes \sigma\right|_{Q_{6}}\right) \simeq \mathfrak{P f}\left(Q_{5} \otimes Q_{4},\left.\left.\sigma\right|_{Q_{5}} \otimes \sigma\right|_{Q_{4}}\right)
$$

Thus, using (3) we obtain

$$
\begin{equation*}
\mathfrak{P f}\left(Q_{5} \otimes Q_{6},\left.\left.\sigma\right|_{Q_{5}} \otimes \sigma\right|_{Q_{6}}\right) \simeq\left\langle\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right\rangle \simeq \mathfrak{P f}\left(Q_{1}^{\prime} \otimes Q_{2}^{\prime}, \sigma_{1}^{\prime} \otimes \sigma_{2}^{\prime}\right) \tag{6}
\end{equation*}
$$

The chain equivalence (5) together with $A \simeq A^{\prime}$ yields $A^{\prime} \simeq Q_{5} \otimes Q_{6} \otimes Q_{3}^{\prime}$, hence $Q_{5} \otimes Q_{6} \simeq Q_{1}^{\prime} \otimes Q_{2}^{\prime}$. By (6) and (2.2) we have $\left(Q_{5},\left.\sigma\right|_{Q_{5}}\right) \otimes\left(Q_{6},\left.\sigma\right|_{Q_{6}}\right) \simeq$ $\left(Q_{1}^{\prime}, \sigma_{1}^{\prime}\right) \otimes\left(Q_{2}^{\prime}, \sigma_{2}^{\prime}\right)$. This, together with (5) yields the desired chain equivalence:

$$
\begin{aligned}
(A, \sigma) & \approx\left(Q_{5},\left.\sigma\right|_{Q_{5}}\right) \otimes\left(Q_{6},\left.\sigma\right|_{Q_{6}}\right) \otimes\left(Q_{3}^{\prime}, \sigma_{3}^{\prime}\right) \\
& \approx\left(Q_{1}^{\prime}, \sigma_{1}^{\prime}\right) \otimes\left(Q_{2}^{\prime}, \sigma_{2}^{\prime}\right) \otimes\left(Q_{3}^{\prime}, \sigma_{3}^{\prime}\right)=\left(A^{\prime}, \sigma^{\prime}\right)
\end{aligned}
$$

We now proceed to prove the claim. Let $v_{6} \in \operatorname{Alt}\left(Q_{6},\left.\sigma\right|_{Q_{6}}\right) \subseteq Q_{3} \otimes Q_{4}$ and $v_{4} \in \operatorname{Alt}\left(Q_{4},\left.\sigma\right|_{Q_{4}}\right)$ be two units. It is enough to show that $v_{6}=\mu\left(1 \otimes v_{4}\right)$ for some $\mu \in F$. The element

$$
v_{6} \in \operatorname{Alt}\left(Q_{6},\left.\sigma\right|_{Q_{6}}\right) \subseteq \operatorname{Alt}\left(Q_{3} \otimes Q_{4},\left.\sigma_{3} \otimes \sigma\right|_{Q_{4}}\right)
$$

is square-central. Hence $v_{6} \in \Phi\left(Q_{3} \otimes Q_{4},\left.\sigma_{3} \otimes \sigma\right|_{Q_{4}}\right)=F\left[v_{3} \otimes 1,1 \otimes v_{4}\right]$ by [10, (4.4)], i.e., there exist $a, b, c, d \in F$ such that

$$
v_{6}=a\left(v_{3} \otimes 1\right)+b\left(1 \otimes v_{4}\right)+c\left(v_{3} \otimes v_{4}\right)+d
$$

Since $\left.\sigma_{3} \otimes \sigma\right|_{Q_{4}}$ is orthogonal, by $[7,(2.6)]$ we have $1 \notin \operatorname{Alt}\left(Q_{3} \otimes Q_{4},\left.\sigma_{3} \otimes \sigma\right|_{Q_{4}}\right)$, hence $d=0$. On the other hand by extending $\left\{v_{3}\right\}$ and $\left\{v_{3}^{\prime}\right\}$ to quaternion bases $\left\{u_{3}, v_{3}, u_{3} v_{3}\right\}$ of Q_{3} and $\left\{u_{3}^{\prime}, v_{3}^{\prime}, u_{3}^{\prime} v_{3}^{\prime}\right\}$ of Q_{3}^{\prime} and using (3.2) for the map f in (1), we get

$$
f\left(u_{3}^{\prime} \otimes 1\right)=1 \otimes \lambda+u_{3} \otimes 1+v_{3} \otimes \eta \in Q_{3} \otimes F[\eta] \subseteq Q_{3} \otimes Q_{4},
$$

for some $\lambda \in F$. Thus,

$$
\begin{align*}
v_{6} f\left(u_{3}^{\prime} \otimes 1\right)+f\left(u_{3}^{\prime} \otimes 1\right) v_{6}= & a\left(v_{3} u_{3}+u_{3} v_{3}\right) \otimes 1+b v_{3} \otimes\left(v_{4} \eta+\eta v_{4}\right) \\
& +c\left(v_{3} u_{3}+u_{3} v_{3}\right) \otimes v_{4}+c \alpha_{3} \otimes\left(v_{4} \eta+\eta v_{4}\right) \\
= & a v_{3} \otimes 1+\left(b v_{3}+c \alpha_{3}\right) \otimes\left(v_{4} \eta+\eta v_{4}\right)+c v_{3} \otimes v_{4} \tag{7}
\end{align*}
$$

As $v_{4}, \eta \in \Phi\left(Q_{4},\left.\sigma\right|_{Q_{4}}\right)$, we have $\eta v_{4}=v_{4} \eta$. Also, $v_{6} \in Q_{6}$ commutes with $f\left(u_{3}^{\prime} \otimes 1\right) \in f\left(Q_{3}^{\prime} \otimes F\right)$, i.e., $v_{6} f\left(u_{3}^{\prime} \otimes 1\right)+f\left(u_{3}^{\prime} \otimes 1\right) v_{6}=0$. Therefore, (7) leads to $a=c=0$, hence $v_{6}=b\left(1 \otimes v_{4}\right)$, proving the claim.

Remark 3.7. Let $K=F(\sqrt{\alpha})$ be a quadratic field extension. Consider a bilinear Pfister form \mathfrak{b} over F and let \mathfrak{b}_{K} be the scalar extension of \mathfrak{b} to K. If \mathfrak{b}_{K} is metabolic then $\mathfrak{b} \otimes\langle\langle\alpha\rangle\rangle$ is also metabolic. In fact if \mathfrak{b} is itself metabolic, the conclusion is evident. Otherwise, \mathfrak{b} is anisotropic and the result follows form [5, (34.29 (2))] and [5, (34.7)]. Note that this implies that if $\mathfrak{b}_{K} \simeq \mathfrak{b}_{K}^{\prime}$ for some bilinear Pfister form \mathfrak{b}^{\prime} over F, then $\mathfrak{b} \otimes\langle\langle\alpha\rangle\rangle \simeq \mathfrak{b}^{\prime} \otimes\langle\langle\alpha\rangle\rangle$.

The following result gives a solution to $[9,(6.8)]$.
Theorem 3.8. Let $(A, \sigma) \simeq \bigotimes_{i=1}^{n}\left(Q_{i}, \sigma_{i}\right)$ and $\left(A^{\prime}, \sigma^{\prime}\right) \simeq \bigotimes_{i=1}^{n}\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)$ be two totally decomposable algebras with orthogonal involution over F. Then $(A, \sigma) \simeq$ ($\left.A^{\prime}, \sigma^{\prime}\right)$ if and only if (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$ are chain equivalent.

Proof. The "if" part is evident. To prove the converse, let $\operatorname{deg}_{F} A=2^{n}$. The case $n \leqslant 2$ is trivial, so suppose that $n \geqslant 3$. By [4, (7.2)] we have $\mathfrak{P f}(A, \sigma) \simeq$ $\mathfrak{P f}\left(A^{\prime}, \sigma^{\prime}\right)$. Hence by $\left[1\right.$, (A. 1)], there exist bilinear Pfister forms $\mathfrak{b}_{0}, \cdots, \mathfrak{b}_{m}$ such that $\mathfrak{b}_{0}=\mathfrak{P f}(A, \sigma), \mathfrak{b}_{m}=\mathfrak{P f}\left(A^{\prime}, \sigma^{\prime}\right)$ and for $i=0, \cdots, m-1, \mathfrak{b}_{i}$ is simply P-equivalent to \mathfrak{b}_{i+1}. Set $\left(A_{0}, \tau_{0}\right)=(A, \sigma)$ and $\left(A_{m}, \tau_{m}\right)=\left(A^{\prime}, \sigma^{\prime}\right)$. By (3.1) every $\mathfrak{b}_{i}, i=1, \cdots, m-1$, can be realised as the Pfister invariant of a totally decomposable algebra with orthogonal involution $\left(A_{i}, \tau_{i}\right)$ over F with $A_{i} \simeq A$. We show that for $i=0, \cdots, m-1,\left(A_{i}, \tau_{i}\right)$ and $\left(A_{i+1}, \tau_{i+1}\right)$ are chain equivalent. By induction, it suffices to consider the case where $m=1$ (i.e., we may assume that $\mathfrak{P f}(A, \sigma)$ and $\mathfrak{P f}\left(A^{\prime}, \sigma^{\prime}\right)$ are simply P-equivalent). If $n=3$ the result follows from (3.6). So suppose that $n \geqslant 4$.

For $i=1, \cdots, n$, choose invertible elements $v_{i} \in \operatorname{Alt}\left(Q_{i}, \sigma_{i}\right)$ and $v_{i}^{\prime} \in$ $\operatorname{Alt}\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)$ and set $\alpha_{i}=v_{i}^{2} \in F^{\times}$and $\alpha_{i}^{\prime}=v_{i}^{\prime 2} \in F^{\times}$. Then $\mathfrak{P f}(A, \sigma) \simeq$ $\left\langle\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle\right\rangle$ and $\mathfrak{P f}\left(A^{\prime}, \sigma^{\prime}\right) \simeq\left\langle\left\langle\alpha_{1}^{\prime}, \cdots, \alpha_{n}^{\prime}\right\rangle\right\rangle$. By re-indexing if necessary, we may assume that

$$
\begin{equation*}
\left\langle\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right\rangle \simeq\left\langle\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right\rangle\right\rangle \quad \text { and } \quad \alpha_{i}=\alpha_{i}^{\prime} \quad \text { for } \quad i=3, \cdots, n . \tag{8}
\end{equation*}
$$

Suppose first that $\alpha_{n} \in F^{\times 2}$. Then $\left(Q_{n}, \sigma_{n}\right) \simeq\left(Q_{n}^{\prime}, \sigma_{n}^{\prime}\right) \simeq\left(M_{2}(F), t\right)$ by (2.1). Set $C=\bigotimes_{i=1}^{n-1} Q_{i}$ and $C^{\prime}=\bigotimes_{i=1}^{n-1} Q_{i}^{\prime}$, so that $C \simeq C_{A}\left(Q_{n}\right) \simeq C_{A^{\prime}}\left(Q_{n}^{\prime}\right) \simeq C^{\prime}$. Using (8) we have

$$
\mathfrak{P f}\left(C,\left.\sigma\right|_{C}\right) \simeq \mathfrak{P f}\left(C^{\prime},\left.\sigma^{\prime}\right|_{C^{\prime}}\right) \simeq\left\langle\left\langle\alpha_{1}, \cdots, \alpha_{n-1}\right\rangle\right\rangle
$$

hence $\left(C,\left.\sigma\right|_{C}\right) \simeq\left(C^{\prime},\left.\sigma^{\prime}\right|_{C^{\prime}}\right)$ by (2.2). By induction hypothesis, $\left(C,\left.\sigma\right|_{C}\right)$ and $\left(C^{\prime},\left.\sigma^{\prime}\right|_{C^{\prime}}\right)$ are chain equivalent. Thus, $(A, \sigma) \approx\left(C,\left.\sigma\right|_{C}\right) \otimes\left(M_{2}(F), t\right)$ and $\left(A^{\prime}, \sigma^{\prime}\right)$ $\approx\left(C^{\prime},\left.\sigma^{\prime}\right|_{C^{\prime}}\right) \otimes\left(M_{2}(F), t\right)$ are also chain equivalent.

Suppose now that $\alpha_{n} \notin F^{\times 2}$. Set $B=C_{A}\left(v_{n}\right), B^{\prime}=C_{A^{\prime}}\left(v_{n}^{\prime}\right), K=F\left[v_{n}\right]$ and $K^{\prime}=F\left[v_{n}^{\prime}\right] \simeq F\left(\sqrt{\alpha}_{n}\right) \simeq K$. Then

$$
\left(B,\left.\sigma\right|_{B}\right) \simeq_{K} \bigotimes_{i=1}^{n-1}\left(Q_{i}, \sigma_{i}\right)_{K} \quad \text { and } \quad\left(B^{\prime},\left.\sigma^{\prime}\right|_{B^{\prime}}\right) \simeq_{K} \bigotimes_{i=1}^{n-1}\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)_{K^{\prime}}
$$

are totally decomposable algebras with orthogonal involution over K and K^{\prime} respectively. Since $A \simeq_{F} A^{\prime}$, we have $B \simeq_{K} B^{\prime}$. Also, using (8) we get

$$
\mathfrak{P f}\left(B,\left.\sigma\right|_{B}\right) \simeq\left\langle\left\langle\alpha_{1}, \cdots, \alpha_{n-1}\right\rangle\right\rangle_{K} \simeq\left\langle\left\langle\alpha_{1}^{\prime}, \cdots, \alpha_{n-1}^{\prime}\right\rangle\right\rangle_{K} \simeq \mathfrak{P f}\left(B^{\prime},\left.\sigma^{\prime}\right|_{B^{\prime}}\right)
$$

Thus, $\left(B,\left.\sigma\right|_{B}\right) \simeq_{K}\left(B^{\prime},\left.\sigma^{\prime}\right|_{B^{\prime}}\right)$ by (2.2). By induction hypothesis we get $\left(B,\left.\sigma\right|_{B}\right)$ $\approx\left(B^{\prime},\left.\sigma^{\prime}\right|_{B^{\prime}}\right)$. Again, using induction, it suffices to consider the case where $\left(B,\left.\sigma\right|_{B}\right)$ and $\left(B^{\prime},\left.\sigma^{\prime}\right|_{B^{\prime}}\right)$ are simply equivalent (note that every totally decomposable algebra with involution $\left(B^{\prime \prime}, \sigma^{\prime \prime}\right)$ over K with $\left(B^{\prime \prime}, \sigma^{\prime \prime}\right) \simeq\left(B,\left.\sigma\right|_{B}\right)$ has a decomposition of the form $\bigotimes_{i=1}^{n-1}\left(Q_{i}^{\prime \prime}, \sigma_{i}^{\prime \prime}\right)_{K}$, where every $\left(Q_{i}^{\prime \prime}, \sigma_{i}^{\prime \prime}\right)$ is a quaternion algebra with orthogonal involution over F). By re-indexing, we may assume that $\left(Q_{n-2}, \sigma_{n-2}\right)_{K} \otimes\left(Q_{n-1}, \sigma_{n-1}\right)_{K} \simeq_{K}\left(Q_{n-2}^{\prime}, \sigma_{n-2}^{\prime}\right)_{K} \otimes\left(Q_{n-1}^{\prime}, \sigma_{n-1}^{\prime}\right)_{K}$ and

$$
\begin{equation*}
\left(Q_{i}, \sigma_{i}\right)_{K} \simeq_{K}\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)_{K^{\prime}}, \quad \text { for } \quad i=1, \cdots, n-3 \tag{9}
\end{equation*}
$$

In particular, $\bigotimes_{i=2}^{n-1}\left(Q_{i}, \sigma_{i}\right)_{K} \approx \bigotimes_{i=2}^{n-1}\left(Q_{i}^{\prime}, \sigma_{i}^{\prime}\right)_{K^{\prime}}$, which implies that

$$
\begin{equation*}
\left\langle\left\langle\alpha_{2}, \cdots, \alpha_{n-1}\right\rangle\right\rangle_{K} \simeq\left\langle\left\langle\alpha_{2}^{\prime}, \cdots, \alpha_{n-1}^{\prime}\right\rangle\right\rangle_{K} . \tag{10}
\end{equation*}
$$

Since $n-3 \geqslant 1$, (9) gives an isomorphism of K-algebras with involution

$$
f:\left(Q_{1}, \sigma_{1}\right) \otimes(K, \mathrm{id}) \simeq\left(Q_{1}^{\prime}, \sigma_{1}^{\prime}\right) \otimes\left(K^{\prime}, \mathrm{id}\right)
$$

The element $1 \otimes v_{n}$ lies in the center of $Q_{1} \otimes K$. Thus, there exist $a, b \in F$ such that $f\left(1 \otimes v_{n}\right)=1 \otimes\left(a+b v_{n}^{\prime}\right)$. Squaring both sides implies that $\alpha_{n}=a^{2}+b^{2} \alpha_{n}$. The assumption $\alpha_{n} \notin F^{2}$ then yields $a=0$ and $b=1$, i.e., $f\left(1 \otimes v_{n}\right)=1 \otimes v_{n}^{\prime}$. As $\left(K^{\prime}, \mathrm{id}\right) \subseteq\left(Q_{n}^{\prime}, \sigma_{n}^{\prime}\right)$, the isomorphism f induces a monomorphism of F-algebras with involution

$$
g:\left(Q_{1}, \sigma_{1}\right) \otimes(K, \mathrm{id}) \hookrightarrow\left(Q_{1}^{\prime}, \sigma_{1}^{\prime}\right) \otimes\left(Q_{n}^{\prime}, \sigma_{n}^{\prime}\right)
$$

with $g\left(1 \otimes v_{n}\right)=1 \otimes v_{n}^{\prime}$. Let Q_{0}^{\prime} be the centralizer of $g\left(Q_{1} \otimes F\right)$ in $Q_{1}^{\prime} \otimes Q_{n}^{\prime}$. Then

$$
\begin{equation*}
\left(Q_{1}^{\prime}, \sigma_{1}^{\prime}\right) \otimes\left(Q_{n}^{\prime}, \sigma_{n}^{\prime}\right) \simeq_{F}\left(Q_{0}^{\prime},\left.\sigma^{\prime}\right|_{Q_{0}^{\prime}}\right) \otimes\left(Q_{1}, \sigma_{1}\right) \tag{11}
\end{equation*}
$$

Since the element $1 \otimes v_{n} \in Q_{1} \otimes K$ commutes with $Q_{1} \otimes F$, we get $1 \otimes v_{n}^{\prime}=$ $g\left(1 \otimes v_{n}\right) \in Q_{0}^{\prime}$, which implies that $1 \otimes v_{n}^{\prime} \in \operatorname{Alt}\left(Q_{0}^{\prime},\left.\sigma^{\prime}\right|_{Q_{0}^{\prime}}\right)$ by $[8,(3.5)]$. Thus,

$$
\begin{equation*}
\left.\operatorname{disc} \sigma^{\prime}\right|_{Q_{0}^{\prime}}=\alpha_{n} F^{\times 2} \in F^{\times} / F^{\times 2} \tag{12}
\end{equation*}
$$

Using (11) we have

$$
\begin{equation*}
\left(A^{\prime}, \sigma^{\prime}\right) \approx\left(Q_{2}^{\prime}, \sigma_{2}^{\prime}\right) \otimes \cdots \otimes\left(Q_{n-1}^{\prime}, \sigma_{n-1}^{\prime}\right) \otimes\left(Q_{0}^{\prime},\left.\sigma^{\prime}\right|_{Q_{0}^{\prime}}\right) \otimes\left(Q_{1}, \sigma_{1}\right) \tag{13}
\end{equation*}
$$

This, together with $A \simeq A^{\prime}$ implies that

$$
\begin{equation*}
Q_{2} \otimes \cdots \otimes Q_{n} \simeq Q_{2}^{\prime} \otimes \cdots \otimes Q_{n-1}^{\prime} \otimes Q_{0}^{\prime} \tag{14}
\end{equation*}
$$

The isometry (10) and (3.7) show that

$$
\left\langle\left\langle\alpha_{2}, \cdots, \alpha_{n-1}, \alpha_{n}\right\rangle\right\rangle \simeq\left\langle\left\langle\alpha_{2}^{\prime}, \cdots, \alpha_{n-1}^{\prime}, \alpha_{n}\right\rangle\right\rangle,
$$

hence, thanks to (12), the Pfister invariants of $(D, \tau):=\left(Q_{2}, \sigma_{2}\right) \otimes \cdots \otimes\left(Q_{n}, \sigma_{n}\right)$ and $\left(D^{\prime}, \tau^{\prime}\right):=\left(Q_{2}^{\prime}, \sigma_{2}^{\prime}\right) \otimes \cdots \otimes\left(Q_{n-1}^{\prime}, \sigma_{n-1}^{\prime}\right) \otimes\left(Q_{0}^{\prime},\left.\sigma^{\prime}\right|_{Q_{0}^{\prime}}\right)$ are isometric. Using (14) and (2.2) we obtain $(D, \tau) \simeq\left(D^{\prime}, \tau^{\prime}\right)$. By induction hypothesis, (D, τ) and $\left(D^{\prime}, \tau^{\prime}\right)$ are chain equivalent. Thus, by (13) we have

$$
\begin{aligned}
\left(A^{\prime}, \sigma^{\prime}\right) & \approx\left(Q_{2}^{\prime}, \sigma_{2}^{\prime}\right) \otimes \cdots \otimes\left(Q_{n-1}^{\prime}, \sigma_{n-1}^{\prime}\right) \otimes\left(Q_{0}^{\prime},\left.\sigma^{\prime}\right|_{Q_{0}^{\prime}}\right) \otimes\left(Q_{1}, \sigma_{1}\right) \\
& =\left(D^{\prime}, \tau^{\prime}\right) \otimes\left(Q_{1}, \sigma_{1}\right) \approx(D, \tau) \otimes\left(Q_{1}, \sigma_{1}\right) \\
& =\left(Q_{2}, \sigma_{2}\right) \otimes \cdots \otimes\left(Q_{n}, \sigma_{n}\right) \otimes\left(Q_{1}, \sigma_{1}\right) \approx(A, \sigma)
\end{aligned}
$$

References

[1] J. Arason, R. Baeza, Relations in I^{n} and $I^{n} W_{q}$ in characteristic 2. J. Algebra 314 (2007), no. 2, 895-911.
[2] A. Chapman, Chain lemma for biquaternion algebras in characteristic 2. arXiv:1305.6212 [math.RA].
[3] A. Chapman, Chain equivalences for symplectic bases, quadratic forms and tensor products of quaternion algebras. J. Algebra Appl. 14 (2015), no. $3,1550030,9 \mathrm{pp}$.
[4] A. Dolphin, Orthogonal Pfister involutions in characteristic two. J. Pure Appl. Algebra 218 (2014), no. 10, 1900-1915.
[5] R. Elman, N. Karpenko, A. Merkurjev, The algebraic and geometric theory of quadratic forms. American Mathematical Society Colloquium Publications, 56. American Mathematical Society, Providence, RI, 2008.
[6] R. Elman, T. Y. Lam, Pfister forms and K-theory of fields. J. Algebra 23 (1972), 181-213.
[7] M.-A. Knus, A. S. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions. American Mathematical Society Colloquium Publications, 44. American Mathematical Society, Providence, RI, 1998.
[8] M. G. Mahmoudi, A.-H. Nokhodkar, On split products of quaternion algebras with involution in characteristic two. J. Pure Appl. Algebra 218 (2014), no. 4, 731-734.
[9] M. G. Mahmoudi, A.-H. Nokhodkar, On totally decomposable algebras with involution in characteristic two. J. Algebra 451 (2016), 208-231.
[10] A.-H. Nokhodkar, On decomposable biquaternion algebras with involution of orthogonal type. LAG preprint server, http://www.math.unibielefeld.de/LAG/man/558.html.
[11] A. S. Sivatski, The chain lemma for biquaternion algebras. J. Algebra 350 (2012), 170-173.
A.-H. Nokhodkar, a.nokhodkar@kashanu.ac.ir

Department of Pure Mathematics, Faculty of Science, University of Kashan, P. O. Box 87317-53153, Kashan, Iran.

