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Abstract. By Merkurjev’s Theorem every central simple algebra of expo-
nent two is Brauer equivalent to a tensor product of quaternion algebras. In
particular, if every quaternion algebra over a given field is split, then there
exists no central simple algebra of exponent two over this field. This note
provides an independent elementary proof for the latter fact.
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Central simple algebras and the Brauer group of a field are a classical topic
in algebra. The aim of this note is to give an elementary proof for the existence
of certain splitting fields for central simple algebras of exponent two.


Let K be a field. Let A be a central simple K-algebra. We say that A is
split if it is a matrix algebra over K. The index of A is defined as the degree
of the unique K-division algebra Brauer equivalent to A. The exponent of A is
the order of the class of A in the Brauer group of A.


By [1, Theorem 4.5.13] the exponent divides the index and both numbers
have the same prime factors. Examples can easily be constructed showing that
any pair of natural numbers fulfilling these two constraints occur as the index
and the exponent of a central simple algebra over some field.


By [1, Corollary 4.5.9] the index of A is equal to the smallest degree [L : K]
of a finite separable field extension L/K such that the L-algebra AL = A⊗K L
is split. Apart from this condition on the degree, little is known about the
finite extensions that split A. For example, if A has prime index p, it is an open
problem (for p > 3) whether there exists a cyclic extension of degree p of K that
splits A. The only way to obtain general statements on the existence of splitting
fields of a certain type based on the index and the exponent seems to be the
Merkurjev-Suslin Theorem [1, Theorem 2.5.7], a generalisation of Merkurjev’s
result from [3] on central simple algebras of exponent two.


Let Br2(K) denote the 2-torsion part of Br(K). Merkurjev’s Theorem [1,
Theorem 1.5.8] tells us that Br2(K) is generated by the classes of the K-quat-
ernion algebras. (By [1, Theorem 9.1.4] this statement also holds in characteris-
tic 2, where it is due to Teichmüller.) There are different proofs of Merkurjev’s
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Theorem in the literature (see the references in the introduction of [1, Chap. 8]),
but all of them are quite involved.


Merkurjev’s Theorem implies that any element of Br2(K) is split by a finite
Galois extension with 2-elementary abelian Galois group, so in particular by
a 2-extension. In some applications to the study of algebras with involution
and their cohomological invariants, only the latter fact is needed. This moti-
vates looking for a more elementary argument for this consequence. This note
provides such an argument, fitting into the basic part of the theory of central
simple algebras and their involutions.


A finite extension L/K is called a 2-extension if it is separable and if the
degree of its normal closure is a power of 2. By classical Galois theory and the
fact that 2-groups are solvable, this is equivalent to the existence of r ∈ N and a
tower of fields (Li)


r
i=0


with L0 = K, Lr = L, and where Li/Li−1 is a separable
quadratic extension for i = 1, . . . , r.


Lemma 1. Let L/K be a finite 2-extension. If every K-quaternion algebra is


split, then every L-quaternion algebra is split.


Proof: Suppose first that [L : K] = 2 and consider an L-quaternion algebra Q.
Let B denote the corestriction (norm) of Q with respect to L/K as defined in
[2, §3.B]. Then B is a central simple K-algebra of degree 4 and exponent at
most 2. By a theorem due to Albert [2, §16], B is isomorphic a tensor product
of two K-quaternion algebras. Assume now that every K-quaternion algebra
is split. Then B is split. In view of [2, (2.22) and (3.1)] this implies that Q is
extended from a K-quaternion algebra. By the assumption this K-quaternion
algebra is split. Hence Q is split.


This argument shows the statement in the case of a separable quadratic
extension L/K. The general case then follows by induction, since any finite
2-extension is reached by a finite tower of separable quadratic extensions. �


Let L/K be a field extension. We denote by Br(L/K) the kernel of the
natural homomorphism Br(K) −→ Br(L). For an element α ∈ Br(K) we
denote by αL its image in Br(L), and we say that L/K splits α or that α splits


over L if αL = 0. The index of α ∈ Br(K), denoted ind(α), is the minimal
degree of a field extension L/K such that αL = 0.


Lemma 2. Let L/K be a finite 2-extension. If every K-quaternion algebra is


split, then Br(L/K) = 0.


Proof: Let r ∈ N and let (Li)
r
i=0


be a tower of fields such that L0 = K, Lr = L
and Li/Li−1 is a separable quadratic extension for i = 1, . . . , r. Assume that
there exists a nontrivial element α ∈ Br(L/K). Then for some s ∈ {1, . . . , r}
we have that αLs−1


6= 0 and αLs
= 0. Since [Ls : Ls−1] = 2 it follows that


ind(αLs−1
) = 2. Set L′ = Ls−1. Then L′/K is a finite 2-extension and αL′ is


the class of a non-split L′-quaternion algebra. By Lemma 1 it follows that there
exists a non-split K-quaternion algebra. �


We denote by char(K) the characteristic of K. We further write K× for the
multiplicative group of K and K×2 for the subgroup of non-zero squares.
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Proposition. Assume that K× = K×2 and that K is not algebraically closed.


Let L/K be a proper finite field extension of K of minimal degree. Then


Br(M/L) = 0 for every finite 2-extension M/L.


Proof: Consider an arbitrary L-quaternion algebra Q. If char(K) = 2, then as
K× = K×2 we have that K is perfect, hence L is perfect, and as char(L) = 2
it follows that Q is split. Suppose now that char(K) 6= 2.


The hypothesis that L/K has minimal degree among all proper field exten-
sions of K implies that every polynomial f ∈ K[T ] with deg(f) < [L : K] is
split. We fix an element x ∈ L\K. Then L = K[x], whereby Q ≃ (f(x), g(x))L
for two nonzero polynomials f, g ∈ K[T ] of degree strictly smaller than [L : K].
Hence f and g are split. Since K× = K×2 we may choose f and g to be
monic. If one of f or g is constant then it is equal to 1, whereby Q is split.
As −1 ∈ K×2 we also have that Q ≃ (f(x),−g(x))L. If f and g are linear,
then f − g is a square in K, and it follows that Q is split. In the general case,
writing f =


∏m
i=1


fi and g =
∏n


i=1
gi with m,n ∈ N and monic linear polyno-


mials f1, . . . , fm, g1, . . . , gn ∈ K[T ], we conclude that (fi(x), gj(x))L is split for
any i ∈ {1, . . . ,m} and any j ∈ {1, . . . , n}. By the bilinearity of the quaternion
pairing L× × L× −→ Br(L), it follows that Q is split.


Hence, we have shown that every L-quaternion algebra is split. By Lemma 2
this yields the statement. �


We say that K is quadratically closed if every quadratic polynomial in K[T ]
is split, or equivalently, if K admits no quadratic field extension.


Lemma 3. Assume there exists an element α ∈ Br(K) satisfying the following:


(a) For any finite 2-extension L/K we have αL 6= 0.
(b) For any proper finite field extension K ′/K, there exists a 2-extension L/K ′


such that αL = 0.


Then K is quadratically closed.


Proof: Suppose that K is not quadratically closed. We fix a quadratic field
extension K ′/K. By (b) there exists a finite 2-extension L′/K ′ with αL′ = 0.
Let K ′′ denote the relative separable closure of K inside L′. Then K ′′/K is a
finite 2-extension and [L′ : K ′′] ≤ [K ′ : K] = 2. Since αL′ = 0 it follows that
ind(αK ′′) ≤ 2. If ind(αK ′′) = 2, then we may choose a separable quadratic
extension L/K ′′ such that αL = 0. If ind(α) = 1 then we set L = K ′′. In either
case L/K is a finite 2-extension such that αL = 0, in contradiction to (a). �


Lemma 4. Let α ∈ Br2(K) with α 6= 0. There exists a finite field extension


L/K such that [L : K] = 1


2
ind(α) and ind(αL) = 2.


Proof: LetD be the central K-division algebra whose class in Br(K) is α. Since
α + α = 0 6= α, it follows by [2, (2.8) and (3.1)] that there exists a symplectic
involution σ on D. Let L/K be a separable field extension contained in D with
σ|L = idL and maximal for these properties. Using [2, (4.12)] it follows that
[L : K] = 1


2
ind(α) and thus ind(αL) = 2. �


We are ready to prove the main statement.
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Theorem. Every element of Br(K) of order a power of 2 is split by a finite


2-extension of K.


Proof: Consider an element α ∈ Br(K) of order 2r where r ∈ N. If 2α is
split by a 2-extension K ′/K, then αK ′ ∈ Br2(K


′), and if furthermore αK ′ is
split by a 2-extension L/K ′, then L/K is a 2-extension splitting α. Hence, the
statement follows by induction on r from the case where α ∈ Br2(K).


Suppose now that α ∈ Br2(K) and that α is not split by any finite 2-extension
of K. Using Zorn’s Lemma we obtain an algebraic field extension K ′/K that
is maximal for the property that αK ′ is not split by any finite 2-extension of
K ′. By Lemma 3 this maximality implies that K ′ is quadratically closed. On
the other hand αK ′ 6= 0, whereby K ′ is not algebraically closed. Let L/K ′ be a
proper finite field extension of minimal degree. Then 1 < [L : K ′] < ind(αK ′),
by Lemma 4. Hence, αL 6= 0 and by the maximality of K ′ there exists a finite
2-extension M/L such that αM = 0. This contradicts the Proposition. �


Corollary. Assume that every K-quaternion algebra is split. Then every ele-


ment of Br(K) has odd order.


Proof: Since Br(K) is a torsion group it suffices to show that Br2(K) = 0.
Consider α ∈ Br2(K). By the Theorem we have that α ∈ Br(L/K) for some
finite 2-extension L/K. Since every K-quaternion algebra is split, we obtain
by Lemma 2 that Br(L/K) = 0, whereby α = 0. �


It would be desirable to have a more explicit version of the above Theorem
that provides a bound on the degree of a splitting 2-extension for α ∈ Br2(K)
in terms of ind(α). The proof presented here does not yield any such bound, as
it uses Zorn’s Lemma.


Question 1. Is every element α ∈ Br2(K) split by a 2-extension L/K of degree


[L : K] = ind(α)?


Equivalently, one may ask whether any finite-dimensional division algebra of
exponent two contains a separable quadratic extension of its centre.


The answer to Question 1 is known to be positive when ind(α) ≤ 8; for
ind(α) = 8 this follows from a theorem due to Rowen (cf. [5, p. 279, Exercise 32]
and [4, Theorem 1]).


We mention another open problem related to the above Corollary.


Question 2. If K is quadratically closed, does it follow that Br2(L) = 0 for


every finite field extension L/K?
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