LOCAL-GLOBAL PRINCIPLE FOR REDUCED NORMS OVER FUNCTION FIELDS OF *p*-ADIC CURVES

R. PARIMALA, R. PREETI, AND V. SURESH

ABSTRACT. Let F be the function field of a p-adic curve. Let D be a central simple algebra over F of period n and $\lambda \in F^*$. We show that if n is coprime to p and $D \cdot (\lambda) = 0$ in $H^3(F, \mu_n^{\otimes 2})$, then λ is a reduced norm. This leads to a Hasse principle for the $SL_1(D)$, namely an element $\lambda \in F^*$ is a reduced norm from D if and only if it is a reduced norm locally at all discrete valuations of F.

1. INTRODUCTION

Let K be a p-adic field and F a function field in one-variable over K. Let Ω_F be the set of all discrete valuations of F. Let G be a semi-simple simply connected linear algebraic group defined over F. It was conjectured in ([5]) that the Hasse principle holds for principal homogeneous spaces under G over F with respect to Ω_F ; i.e. if X is a principal homogeneous space under G over F with $X(F_{\nu}) \neq \emptyset$ for all $\nu \in \Omega_F$, then $X(F) \neq \emptyset$. If G is $SL_1(D)$, where D is a central simple algebra over F of square free index, it follows from the injectivity of the Rost invariant ([19]) and a Hasse principle for $H^3(F, \mu_n)$ due to Kato ([16]), that this conjecture holds. This conjecture has been subsequently settled for classical groups of type B_n , C_n and D_n ([14], [23]). It is also settled for groups of type 2A_n with the assumption that n + 1is square free ([14], [23]).

The main aim of this paper is to prove that the conjecture holds for $SL_1(D)$ for any central simple algebra D over F with index coprime to p. In fact we prove the following (11.1)

Theorem 1.1. Let K be a p-adic field and F a function field in one-variable over K. Let D be a central simple algebra over F of index coprime to p and $\lambda \in F^*$. If $D \cdot (\lambda) = 0 \in H^3(F, \mu_n^{\otimes 2})$, then λ is a reduced norm from D.

This together with Kato's result on the Hasse principle for $H^3(F, \mu_n)$ gives the following (11.2)

Theorem 1.2. Let K be p-adic field and F the function field of a curve over K. Let Ω_F be the set of discrete valuations of F. Let D be a central simple algebra over F of index coprime to p and $\lambda \in F^*$. If λ is a reduced norm from $D \otimes F_{\nu}$ for all $\nu \in \Omega_F$, then λ is a reduced norm from D.

In fact we may restrict the set of discrete valuations to the set of divisorial discrete valuations of F; namely those discrete valuations of F centered on a regular proper model of F over the ring of integers in K.

Here are the main steps in the proof. We reduce to the case where D is a division algebra of period ℓ^d with ℓ a prime not equal to p. Given a central division algebra D over F of period $n = \ell^d$ with $\ell \neq p$ and $\lambda \in F^*$ with $D \cdot (\lambda) = 0 \in H^3(F, \mu_n^{\otimes 2})$, we construct a degree ℓ extension L of F and $\mu \in L^*$ such that $N_{L/F}(\mu) = \lambda$, $(D \otimes L) \cdot (\mu) = 0$ and the index of $D \otimes L$ is strictly smaller than the index of D. Then, by induction on the index of D, μ is a reduced norm from $D \otimes L$ and hence $N_{L/F}(\mu) = \lambda$ is a reduced norm from D.

Let \mathscr{X} be a regular proper 2-dimensional scheme over the ring of integers in K with function field F and X_0 the reduced special fibre of \mathscr{X} . By the patching techniques of Harbater-Hartman-Krashen ([9], [10]), construction of such a pair (L, μ) is reduced to the construction of compatible pairs (L_x, μ_x) over F_x for all $x \in X_0$ (7.5), where for any $x \in X_0$, F_x is the field of fractions of the completion of the regular local ring at x on \mathscr{X} . We use local and global class field theory to construct such local pairs (L_x, μ_x) . Thus this method cannot be extended to the more general situation where F is a function field in one variable over a complete discretely valued field with arbitrary residue field.

Here is the brief description of the organization of the paper. In §3, we prove a few technical results concerning central simple algebras and reduced norms over global fields. These results are key to the later patching construction of the fields L_x and $\mu_x \in L_x$ with required properties.

In $\S4$ we prove the following local variant of (1.1)

Theorem 1.3. Let F be a complete discrete valued field with residue field κ . Suppose that κ is a local field or a global field. Let D be a central simple algebra over F of period n. Suppose that n is coprime to $char(\kappa)$. Let $\alpha \in H^2(F, \mu_n)$ be the class of Dand $\lambda \in F^*$. If $\alpha \cdot (\lambda) = 0 \in H^3(F, \mu_n^{\otimes 2})$, then λ is a reduced norm from D.

Let A be a complete regular local ring of dimension 2 with residue field κ finite, field of fractions F and maximal ideal $m = (\pi, \delta)$. Let ℓ be a prime not equal to char(κ). Let D be a central simple algebra over F of index ℓ^n with $n \ge 1$ and α the class of D in $H^2(F, \mu_{\ell^n})$. Suppose that D is unramified on A except possibly at π and δ . In §5, we analyze the structure of D. We prove that index of D is equal to the period of D. A similar analysis is done by Saltman ([25]) with the additional assumption that F contains all the primitive ℓ^n -roots of unity, where ℓ^n is the index of D. Let $\lambda \in F^*$. Suppose that $\lambda = u\pi^r \delta^t$ for some unit $u \in A$ and $r, s \in \mathbb{Z}$ and $\alpha \cdot (\lambda) = 0 \in H^3(F, \mu_{\ell^n}^{\otimes 2})$. In §6, we construct possible pairs (L, μ) with L/F of degree $\ell, \mu \in L$ such that $N_{L/F}(\mu) = \lambda$, ind $(D \otimes L) < \operatorname{ind}(D)$ and $\alpha \cdot (\mu) = 0 \in H^3(L, \mu_{\ell^n}^{\otimes 2})$.

Let K be a p-adic field and F a function field of a curve over K. Let ℓ be a prime not equal to p, D a central division algebra over F of index ℓ^n and α the class of D in $H^2(F, \mu_{\ell^n})$. Let $\lambda \in F^*$ with $\alpha \cdot (\lambda) = 0 \in H^3(F, \mu_{\ell^n}^{\otimes 2})$. Let \mathscr{X} be a normal proper model of F over the ring of integers in K and X_0 its reduced special fibre. In §7, we reduce the construction of (L, μ) to the construction of local (L_x, μ_x) for all $x \in X_0$ with some compatible conditions along the "branches".

Further assume that \mathscr{X} is regular and $\operatorname{ram}_{\mathscr{X}}(\alpha) \cup \operatorname{supp}_{\mathscr{X}}(\lambda) \cup X_0$ is a union of regular curves with normal crossings. We group the components of X_0 into 8 types depending on the valuation of λ , index of D and the ramification type of D along those components. We call some nodal points of X_0 as special points depending on the type of components passing through the point. We also say that two components of X_0 are type 2 connected if there is a sequence of type 2 curves connecting these two components. We prove that there is a regular proper model of F with no special points and no type 2 connection between certain types of component (8.6).

Starting with a model constructed in (8.6), in §9, we construct (L_P, μ_P) for all nodal points of X_0 (9.8) with the required properties. In §10, using the class field results of §3, we construct (L_η, μ_η) for each of the components η of X_0 which are compatible with (L_P, μ_P) when P is in the component η .

Finally in §11, we prove the main results by piecing together all the constructions of §7, §9 and §10.

2. Preliminaries

In this section we recall a few definitions and facts about Brauer groups, Galois cohomology groups, residue homomorphisms and unramified Galois cohomology groups. We refer the reader to ([4]) and ([8]).

Let K be a field and $n \ge 1$. Let ${}_{n}\operatorname{Br}(K)$ be the *n*-torsion subgroup of the Brauer group $\operatorname{Br}(K)$. Assume that n is coprime to the characteristic of K. Let μ_{n} be the group of n^{th} roots of unity. For $d \ge 1$ and $m \ge 0$, let $H^{d}(K, \mu_{n}^{\otimes m})$ denote the d^{th} Galois cohomology group of K with values in $\mu_{n}^{\otimes m}$. We have $H^{1}(K, \mu_{n}) \simeq K^{*}/K^{*n}$ and $H^{2}(K, \mu_{n}) \simeq {}_{n}\operatorname{Br}(K)$. For $a \in K^{*}$, let $(a)_{n} \in H^{1}(K, \mu_{n})$ denote the image of the class of a in K^{*}/K^{*n} . When there is no ambiguity of n, we drop n and denote $(a)_{n}$ by (a). If K is a product of finitely many fields K_{i} , we denote $\prod H^{d}(K_{i}, \mu_{n}^{\otimes m})$ by $H^{d}(K, \mu_{n}^{\otimes m})$.

Every element of $H^1(K, \mathbb{Z}/n\mathbb{Z})$ is represented by a pair (E, σ) , where E/F is a cyclic extension of degree dividing n and σ a generator of $\operatorname{Gal}(E/F)$. Let $r \geq 1$. Then $(E, \sigma)^r \in H^1(K, \mathbb{Z}/n\mathbb{Z})$ is represented by the pair (E', σ') where E' is the fixed field of the subgroup of $\operatorname{Gal}(E/F)$ generated by $\sigma^{n/d}$, where $d = \operatorname{gcd}(n, r)$ and $\sigma' = \sigma^r$. In particular if r is coprime to n, then $(E, \sigma)^r = (E, \sigma^r)$. Let $(E, \sigma) \in H^1(K, \mathbb{Z}/n\mathbb{Z})$ and $\lambda \in K^*$. Let $(E, \sigma, \lambda) = (E/F, \sigma, \lambda)$ denote the cyclic algebra over K

$$(E, \sigma, \lambda) = E \oplus Ly \oplus \cdots \oplus Ey^{n-1}$$

with $y^n = \lambda$ and $ya = \sigma(a)y$. The cyclic algebra (E, σ, λ) is a central simple algebra and its index is the order of λ in $K^*/N_{E/K}(E^*)$ ([1, Theorem 18, p. 98]). The pair (E, σ) represents an element in $H^1(K, \mathbb{Z}/n\mathbb{Z})$ and the element $(E, \sigma) \cdot (\lambda) \in H^2(K, \mu_n)$ is represented by the central simple algebra (E, σ, λ) . In particular $(E, \sigma, \lambda) \otimes E$ is a matrix algebra and hence $\operatorname{ind}(E, \sigma, \lambda) \leq [E : F]$.

For $\lambda, \mu \in K^*$ we have ([1, p. 97])

$$(E, \sigma, \lambda) + (E, \sigma, \mu) = (E, \sigma, \lambda\mu) \in H^2(K, \mu_n).$$

In particular $(E, \sigma, \lambda^{-1}) = -(E, \sigma, \lambda)$.

Let (E, σ, λ) be a cyclic algebra over a field K and L/K be a field extension. Since E/K is separable, $E \otimes_K L$ is a product of field extensions E_i , $1 \leq i \leq t$, of L with E_i and E_j isomorphic over L and E_i/L is cyclic with Galois group a subgroup of the Galois group of E/K. Then $(E, \sigma, \lambda) \otimes L$ is Brauer equivalent to (E_i, σ_i, λ) for any i, with a suitable σ_i . In particular if L is a finite extension of K and EL is the composite of E and L in an algebraic closure of K, then EL/L is cyclic with Galois group isomorphic to a subgroup of the Galois group of E/K and $(E, \sigma, \lambda) \otimes L$ is Brauer equivalent to (EL, σ', λ) for a suitable σ' .

Lemma 2.1. Let E/F be a cyclic extension of degree n, σ a generator of Gal(E/F)and $\lambda \in F^*$. Let m be a factor of n and d = n/m. Let M/F be the subextension of E/F with [M:F] = m. Then $(E/F, \sigma, \lambda) \otimes F(\sqrt[d]{\lambda}) = (M(\sqrt[d]{\lambda})/F(\sqrt[d]{\lambda}), \sigma \otimes 1, \sqrt[d]{\lambda})$.

Proof. We have
$$(E, \sigma)^d = (M, \sigma) \in H^1(F, \mathbb{Z}/n\mathbb{Z})$$
 and hence

$$(E, \sigma, \lambda) \otimes F(\sqrt[d]{\lambda}) = (E(\sqrt[d]{\lambda})/F(\sqrt[d]{\lambda}), \sigma \otimes 1, \lambda) = (E(\sqrt[d]{\lambda})/F(\sqrt[d]{\lambda}), \sigma \otimes 1, (\sqrt[d]{\lambda})^d) = (E(\sqrt[d]{\lambda})/F(\sqrt[d]{\lambda}), \sigma \otimes 1)^d \cdot (\sqrt[d]{\lambda}) = (M(\sqrt[d]{\lambda})/F(\sqrt[d]{\lambda}), \sigma \otimes 1, \sqrt[d]{\lambda}).$$

Let K be a field with a discrete valuation ν , residue field κ and valuation ring R. Suppose that n is coprime to the characteristic of κ . For any $d \geq 1$, we have the residue map $\partial_K : H^d(K, \mu_n^{\otimes i}) \to H^{d-1}(\kappa, \mu_n^{\otimes i-1})$. We also denote ∂_K by ∂ . An element α in $H^d(K, \mu_n^{\otimes i})$ is called unramified at ν or R if $\partial(\alpha) = 0$. The subgroup of all unramified elements is denoted by $H^d_{nr}(K/R, \mu_n^{\otimes i})$ or simply $H^d_{nr}(K, \mu_n^{\otimes i})$. Suppose that K is complete with respect to ν . Then we have an isomorphism $H^d(\kappa, \mu_n^{\otimes i}) \xrightarrow{\sim} H^d_{nr}(K, \mu_n^{\otimes i})$ and the composition $H^d(\kappa, \mu_n^{\otimes i}) \xrightarrow{\sim} H^d_{nr}(K, \mu_n^{\otimes i}) \hookrightarrow H^d(K, \mu_n^{\otimes i})$ is denoted by ι_{κ} or simply ι .

Let K be a complete discretely valued field with residue field κ , ν the discrete valuation on K and $\pi \in K^*$ a parameter. Suppose that n is coprime to the characteristic of κ . Let $\partial : H^2(K, \mu_n) \to H^1(\kappa, \mathbb{Z}/n\mathbb{Z})$ be the residue homomorphism. Let E/K be a cyclic unramified extension of degree n with residue field E_0 and σ a generator of $\operatorname{Gal}(E/K)$ with $\sigma_0 \in \operatorname{Gal}(E_0/\kappa)$ induced by σ . Then (E, σ, π) is a division algebra over K of degree n. For any $\lambda \in K^*$, we have

$$\partial(E,\sigma,\lambda) = (E_0,\sigma_0)^{\nu(\lambda)}$$

For $\lambda, \mu \in K^*$, we have

$$\partial((E,\sigma,\lambda)\cdot(\mu)) = (E_0,\sigma_0)\cdot((-1)^{\nu(\lambda)\nu(\mu)}\theta),$$

where θ is the image of $\frac{\lambda^{\nu(\mu)}}{\mu^{\nu(\lambda)}}$ in the residue field.

Suppose E_0 is a cyclic extension of κ of degree n. Then there is a unique unramified cyclic extension E of K of degree n with residue field E_0 . Let σ_0 be a generator of $\operatorname{Gal}(E_0/\kappa)$ and $\sigma \in \operatorname{Gal}(E/K)$ be the lift of σ_0 . Then σ is a generator of $\operatorname{Gal}(E/K)$. We call the pair (E, σ) the *lift of* (E_0, σ_0) .

Let X be an integral regular scheme with function field F. For every point x of X, let $\mathcal{O}_{X,x}$ be the regular local ring at x and $\kappa(x)$ the residue field at x. Let $\hat{\mathcal{O}}_{X,x}$ be the completion of $\mathcal{O}_{X,x}$ at its maximal ideal m_x and F_x the field of fractions of $\hat{\mathcal{O}}_{X,x}$. Then every codimension one point x of X gives a discrete valuation ν_x on F. Let $n \geq 1$ be an integer which is a unit on X. For any $d \geq 1$, the residue homomorphism $H^d(F, \mu_n^{\otimes j}) \to H^{d-1}(\kappa(x), \mu_n^{\otimes (j-1)})$ at the discrete valuation ν_x is denoted by ∂_x . An element $\alpha \in H^d(F, \mu_n^{\otimes m})$ is said to be ramified at x if $\partial_x(\alpha) \neq 0$ and unramified at x if $\partial_x(\alpha) = 0$. If X = Spec(A) and x a point of X given by $(\pi), \pi$ s prime element, we also denote F_x by F_{π} and $\kappa(x)$ by $\kappa(\pi)$.

Lemma 2.2. Let K be a complete discretely valued field and ℓ a prime not equal to the characteristic of the residue field of K. Suppose that K contains a primitive ℓ^{th} root of unity. Let L/K be a cyclic field extension or the split extension of degree ℓ . Let $\mu \in L$ and $\lambda = N_{L/K}(\mu) \in K$. Then there exists $\theta \in L$ with $N_{L/K}(\theta) = 1$ such that $L = K(\mu\theta)$ and θ is sufficiently close to 1.

Proof. Since [L:K] is a prime, if $\mu \notin K$, then $L = K(\mu)$. In this case $\theta = 1$ has the required properties. Suppose that $\mu \in K$. If $L = \prod K$, let $\theta_0 \in K^* \setminus \{\pm 1\}$

sufficiently close to 1 and $\theta = (\theta_0, \theta_0^{-1}, 1, \dots, 1)$. Suppose L is a field. Let σ be a generator of $\operatorname{Gal}(L/K)$. Since L/K is cyclic, we have $L = K(\sqrt[\ell]{a})$ for some $a \in K^*$. For any sufficiently large $n, \theta = (1 + \pi^n \sqrt[\ell]{a})^{-1} \sigma (1 + \pi^n \sqrt[\ell]{a}) \in L$ has the required properties.

Lemma 2.3. Let K be a field and E/K be a finite extension of degree coprime to char(K). Let L/K be a sub-extension of E/K and e = [E : L]. Suppose L/K is Galois and $E = L(\sqrt[e]{\pi})$ for some $\pi \in L^*$. Then E/K is Galois if and only if E contains a primitive e^{th} root of unity and for every $\tau \in Gal(L/K), \tau(\pi) \in E^{*e}$.

Proof. Suppose that E/K is Galois. Let $f(X) = X^e - \pi \in L[X]$. Since [E:L] = eand $E = L(\sqrt[e]{\pi})$, f(X) is irreducible in L[X]. Since f(X) has one root in E and E/L is Galois, f(X) has all the roots in E. Hence E contains a primitive e^{th} root of unity. Let $\tau \in \text{Gal}(L/K)$. Then τ can be extended to an automorphism $\tilde{\tau}$ of E. We have $\tau(\pi) = \tilde{\tau}(\pi) = (\tilde{\tau}(\sqrt[e]{\pi}))^e \in E^{*e}$.

Conversely, suppose that E contains a primitive e^{th} root of unity and $\tau(\pi) \in E^{*e}$ for every $\tau \in \text{Gal}(L/K)$. Let

$$g(X) = \prod_{\tau \in Gal(L/K)} (X^e - \tau(\pi)).$$

Then $g(X) \in K[X]$ and g(X) splits completely in E. Since e is coprime to char(K), the splitting field E_0 of g(X) over K is Galois. Since L/K is Galois and E is the composite of L and E_0 , E/K is Galois.

Lemma 2.4. Let F be a complete discretely valued field with residue field κ and $\pi \in F$ a parameter. Let e be a natural number coprime to the characteristic of κ . If L/F is a totally ramified extension of degree e, then $L = F(\sqrt[e]{v\pi})$ for some $v \in F$ which is a unit in the valuation ring of F. Further if e is a power of a prime ℓ and $\theta \in F^* \setminus F^{*\ell}$ is a norm form L, then $L = F(\sqrt[e]{\theta})$.

Proof. Since F is a complete discretely valued field, there is a unique extension of the valuation ν on F to a valuation ν_L on L. Since L/F is totally ramified extension of degree e and e is coprime to $\operatorname{char}(\kappa)$, the residue field of L is κ and $\nu_L(\pi) = e$. Let $\pi_L \in L$ with $\nu_L(\pi_L) = 1$. Then $\pi = w\pi_L^e$ for some $w \in L$ with $\nu_L(w) = 0$. Since the residue field of L is same as the residue field of F, there exists $w_1 \in F$ with $\nu(w_1) = 0$ and the image of w_1 is same as the image of w in the residue field κ . Since L is complete and e is coprime to $\operatorname{char}(\kappa)$, by Hensel's Lemma, there exists $u \in L$ such that $w = w_1 u^e$. Thus $\pi = w\pi_L^e = w_1 u^e \pi_L^e = w_1 (u\pi_L)^e$. In particular $w_1^{-1}\pi \in L^{*e}$ and hence $L = F(\sqrt[e]{v\pi})$ with $v = w_1^{-1}$.

Let $\theta \in F^* \setminus F^{*e}$. Suppose that θ is a norm from L. Let $\mu \in L$ with $N_{L/F}(\mu) = \theta$. Since $L = F(\sqrt[e]{v\pi})$ with $v \in F$ a unit in the valuation ring of F and $\pi \in F$ a parameter, $\sqrt[e]{v\pi} \in L$ is a parameter at the valuation of L. Write $\mu = w_0(\sqrt[e]{v\pi})^s$ for some $w_0 \in L$ a unit at the valuation of L and $s \in \mathbb{Z}$. As above, we have $w_0 = v_1 u_1^e$ for some $v_1 \in K$ and $u_1 \in L$. Since $v_1 \in F$, we have

$$\theta = N_{L/F}(\mu) = N_{L/F}(w_0(\sqrt[e]{v\pi})^s) = N_{L/F}(v_1u_1^e(\sqrt[e]{v\pi})^s) = v_1^e N_{L/F}(u_1)^e(v\pi)^s.$$

Since e is a power of a prime ℓ and $\theta \notin F^{*\ell}$, s is coprime to ℓ and hence $L = F(\sqrt[e]{\theta})$.

Lemma 2.5. Let k be a local field and ℓ a prime not equal to the characteristic of the residue field of k. Let L_0/k be a an extension of degree ℓ and $\theta_0 \in k^*$. If $\theta_0 \notin k^{*\ell}$ and θ_0 is a norm from L_0 , then $L_0 = k(\sqrt[\ell]{\theta_0})$.

PARIMALA, PREETI, AND SURESH

Proof. Suppose that L_0/k is ramified. Since $\theta_0 \notin k^{*\ell}$, by (2.4), $L_0 = k(\sqrt[\ell]{\theta_0})$.

Suppose that L_0/k is unramified. Let π be a parameter in k and write $\theta_0 = u\pi^r$ with u a unit in the valuation ring of k. Since θ_0 is a norm from L_0 , ℓ divides r. Since θ_0 not an ℓ^{th} power in k, u is not an ℓ^{th} power in k and $k(\sqrt[\ell]{\theta_0}) = k(\sqrt[\ell]{u})$ is an unramified extension of k of degree ℓ . Since k is a local field, there is only one unramified field extension of k of degree ℓ and hence $L_0 = k(\sqrt[\ell]{u}) = k(\sqrt[\ell]{\theta_0})$.

Lemma 2.6. Suppose F is a complete discretely valued field with residue field κ a local field. Let ℓ be prime not equal to $char(\kappa)$. Let L/F be a degree ℓ field extension with θ a norm from L. If $\theta \notin F^{*\ell}$, then $L \simeq F(\sqrt[\ell]{\theta})$.

Proof. If L/F is a ramified extension, then by (2.4), $L \simeq F(\sqrt[\ell]{\theta})$. Suppose that L/F is an unramified extension. Let L_0 be the residue field of L. Then L_0/κ is a field extension of degree ℓ and the image $\overline{\theta}$ of θ in κ is a norm from L_0 . Since $\theta \notin F^{*\ell}$, $\overline{\theta}$ is not an ℓ^{th} power in κ . Since κ is a local field, $L_0 \simeq \kappa(\sqrt[\ell]{\theta})$ (2.5) and hence $L \simeq F(\sqrt[\ell]{\theta})$.

Lemma 2.7. Let F be a complete discretely valued field with residue field k a global field. Let L/F be an unramified cyclic extension of degree coprime to char(k) and L_0 the residue field of L. Let $\theta \in F$ be a unit in the valuation ring of F and $\overline{\theta}$ be the image of θ in k. Suppose that θ is a norm from L. If $\mu_0 \in L_0$ with $N_{L_0/k}(\mu_0) = \overline{\theta}$, then there exists $\mu \in L$ such that $N_{L/F}(\mu) = \theta$ and the image of μ in L_0 is μ_0 .

Proof. Let σ be a generator of the Galois group of L/F and σ_0 be the induced automorphism of L_0/k . Since $\theta \in F$ is a norm from L, there exists $\mu' \in L$ with $N_{L/F}(\mu') = \theta$. Since θ is a unit at the discrete valuation of F, $\mu' \in L$ is a unit at the discrete valuation of L. Let $\overline{\mu'}$ be the image of μ' in L_0 . Then $N_{L_0/k}(\overline{\mu'}) = \overline{\theta}$ and hence $\overline{\mu'}\mu_0^{-1} \in L_0$ is a norm one element. Thus there exist $a \in L_0$ such that $\overline{\mu'}\mu_0^{-1} =$ $a^{-1}\sigma_0(a)$. Let $b \in L$ be a lift of a and $\mu = \mu'b\sigma(b)^{-1}$. Then $N_{L/F}(\mu) = N_{L/F}(\mu') = \theta$ and the image of μ in L_0 is μ_0 .

For $L = \prod_{1}^{\ell} F$, let σ be the automorphism of L given by $\sigma(a_1, \dots, a_{\ell}) = (a_2, \dots, a_{\ell}, a_1)$. Then any σ^i , $1 \le i \le \ell - 1$ is called a *generator* of $\operatorname{Gal}(L/F)$.

Lemma 2.8. Let F be a field and ℓ a prime not equal to the characteristic of F. Let L be a cyclic extension of F or the split extension of degree ℓ and σ a generator of the Galois group of L/F. Suppose that there exists an integer $t \ge 1$ such that F does not contain a primitive $\ell^{t^{\text{th}}}$ root of unity. Let $\mu \in L$ with $N_{L/F}(\mu) = 1$ and $m \ge t$. If $\mu \in L^{*\ell^{2m}}$, then there exists $b \in L^*$ such that $\mu = b^{-\ell^m} \sigma(b^{\ell^m})$.

Proof. Suppose $L = \prod F$ and $\mu \in L^{*\ell^s}$ for some $s \ge 1$ with $N_{L/F}(\mu) = 1$. Then $\mu = (\theta_1^s, \dots, \theta_\ell^s) \in L$ with $\theta_1^s \dots \theta_\ell^s = 1$. Let $b = (1, \theta_1, \dots, \theta_{\ell-1}) \in L^*$. Then $\mu = b^{-s}\sigma(b^s)$.

Suppose L/F is a cyclic field extension. Write $\mu = \mu_0^{\ell^{2m}}$ for some $\mu_0 \in L$. Let $\mu_1 = \mu_0^{\ell^m}$. Then $\mu = \mu_1^{\ell^m}$. Let $\theta_0 = N_{L/F}(\mu_0)$ and $\theta_1 = N_{L/F}(\mu_1)$. Then $\theta_1 = \theta_0^{\ell^m}$. Since $N_{L/F}(\mu) = 1$, we have $\theta_1^{\ell^m} = N_{L/F}(\mu_1^{\ell^m}) = 1$. If $\theta_1 \neq 1$, then F contains a primitive $\ell^{m^{\text{th}}}$ root of unity. Since $m \geq t$ and F has no primitive $\ell^{\ell^{\text{th}}}$ root of unity, $\theta_1 = 1$. Hence $N_{L/F}(\mu_1) = 1$ and by Hilbert 90, $\mu_1 = b^{-1}\sigma(b)$ for some $b \in L$. Thus $\mu = \mu_1^{\ell^m} = b^{-\ell^m}\sigma(b^{\ell^m})$.

LOCAL-GLOBAL PRINCIPLE

3. Global fields

In this a section we prove a few technical results concerning Brauer group of global fields and reduced norms. We begin with the following.

Lemma 3.1. Let k be a global field, ℓ a prime not equal char(k), $n, d \geq 2$ and $r \geq 1$ be integers. Let E_0 be a cyclic extension of k, σ_0 a generator of the Galois group of E_0/k and $\theta_0 \in k^*$. Let $\beta \in H^2(k, \mu_{\ell^n})$ be such that $r\ell\beta = (E_0, \sigma_0, \theta_0) \in H^2(k, \mu_{\ell^n})$. Let S be a finite set of places of k containing all the places of κ with $\beta \otimes k_{\nu} \neq 0$. Suppose for each $\nu \in S$, there is a field extension L_{ν} of k_{ν} of degree ℓ or L_{ν} is the split extension of k_{ν} of degree ℓ and $\mu_{\nu} \in L^*_{\nu}$ such that

- 1) $N_{L_{\nu}/k_{\nu}}(\mu_{\nu}) = \theta_0$
- 2) $r\beta \otimes L_{\nu} = (E_0 \otimes L_{\nu}, \sigma_0 \otimes 1, \mu_{\nu})$
- 3) $ind(\beta \otimes E_0 \otimes L_{\nu}) < d.$

Then there exists a field extension L_0/k of degree ℓ and $\mu_0 \in L_0$ such that

1) $N_{L_0/k}(\mu_0) = \theta_0$ 2) $r\beta \otimes L_0 = (E_0 \otimes L_0, \sigma_0 \otimes 1, \mu_0)$ 3) $ind(\beta \otimes E_0 \otimes L_0) < d$ 4) $L_0 \otimes k_\nu \simeq L_\nu$ for all $\nu \in S$. 5) μ_0 is close to μ_ν for all $\nu \in S$.

Proof. Let Ω_k be the set of all places of k and

 $S' = S \cup \{\nu \in \Omega_k \mid \theta_0 \text{ is not a unit at } \nu \text{ or } E_0/k \text{ is ramified at } \nu\}$

Let $\nu \in S' \setminus S$. Then $\beta \otimes k_{\nu} = 0$. Let L_{ν} be a field extension of k_{ν} of degree ℓ such that $\theta_0 \in N(L_{\nu}^*)$. Let $\mu_{\nu} \in L_{\nu}$ with $N_{L_{\nu}/k_{\nu}}(\mu_{\nu}) = \theta_0$. Since $\beta \otimes k_{\nu} = 0$, $\operatorname{ind}(\beta \otimes E_0 \otimes L_{\nu}) = 1 < d$. Since the corestriction map cor : $H^2(L_{\nu}, \mu_{\ell^n}) \to H^2(k_{\nu}, \mu_{\ell^n})$ is injective (cf. [17, Theorem 10, p. 237]) and $\operatorname{cor}(E_0 \otimes L_{\nu}, \sigma_0 \otimes 1, \mu_{\nu}) = (E_0 \otimes k_{\nu}, \sigma_0 \otimes 1, \theta_0) = r\ell\beta \otimes k_{\nu} = 0$, $(E_0 \otimes L_{\nu}, \sigma_0 \otimes 1, \mu_{\nu}) = 0 = r\beta \otimes L_{\nu}$. Thus, if necessary, by enlarging S, we assume that S contains all those places ν of k with either θ_0 is not a unit at ν or E_0/k is ramified at ν and that there is at least one $\nu \in S$ such that L_{ν} is a field extension of k_{ν} of degree ℓ .

Let $\nu \in S$. By (2.2), there exists $\theta_{\nu} \in L_{\nu}$ such that $N_{L_{\nu}/k_{\nu}}(\theta_{\nu}) = 1$, $L_{\nu} = k_{\nu}(\theta_{\nu}\mu_{\nu})$ and θ_{ν} is sufficiently close to 1. In particular $\theta_{\nu} \in L_{\nu}^{\ell^{n}}$ and hence $r\beta \otimes L_{\nu} = (E_{0} \otimes L_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}\theta_{\nu})$ Thus, replacing μ_{ν} by $\mu_{\nu}\theta_{\nu}$, we assume that $L_{\nu} = k_{\nu}(\mu_{\nu})$. Let $f_{\nu}(X) = X^{\ell} + b_{\ell-1,\nu}X^{\ell-1} + \cdots + b_{1,\nu}X + (-1)^{\ell}\theta_{0} \in k_{\nu}[X]$ be the minimal polynomial of μ_{ν} over k_{ν} .

By Chebotarev density theorem ([7, Theorem 6.3.1]), there exists $\nu_0 \in \Omega_k \setminus S$ such that $E_0 \otimes k_{\nu_0}$ is the split extension of k_{ν_0} . By the strong approximation theorem ([3, p. 67]), choose $b_j \in k$, $0 \leq j \leq \ell - 1$ such that each b_j is sufficiently close enough to $b_{j,\nu}$ for all $\nu \in S$ and each b_j is an integer at all $\nu \notin S \cup \{\nu_0\}$. Let $L_0 = k[X]/(X^{\ell} + b_{\ell-1}X^{\ell-1} + \cdots + b_1X + (-1)^{\ell}\theta_0)$ and $\mu_0 \in L_0$ be the image of X. We now show that L_0 and μ_0 have the required properties.

Since each b_j is sufficiently close enough to $b_{j,\nu}$ at each $\nu \in S$, it follows from Krasner's lemma that $L_0 \otimes k_{\nu} \simeq L_{\nu}$ and the image of $\mu_0 \otimes 1$ in L_{ν} is close to μ_{ν} for all $\nu \in S$ (cf. [26, Ch. II, §2]). Since L_{ν} is a field extension of k_{ν} of degree ℓ for at least one $\nu \in S$, L_0 is a field extension of degree ℓ over k. Since $X^{\ell} + b_{\ell-1}X^{\ell-1} + \cdots + (-1)^{\ell}\theta_0$ is the minimal polynomial of μ_0 , we have $N(\mu_0) = \theta_0$. To show that $\operatorname{ind}(\beta \otimes E_0 \otimes L_0) < d$ and $r\beta = (E_0, \sigma_0, \mu_0) \in H^2(L_0, \mu_{\ell^n})$, by Hasse-Brauer-Noether theorem (cf. [3, p. 187]), it is enough to show that for every place w of L_0 , $\operatorname{ind}(\beta \otimes E_0 \otimes L_w) < d$ and $r\beta \otimes L_w = (E_0, \sigma_0, \mu_0) \otimes L_w \in H^2(L_w, \mu_{\ell^n})$.

Let w be a place of L_0 and ν a place of k lying below w. Suppose that $\nu \in S$. Then $L_0 \otimes k_{\nu} \simeq L_{\nu}$. Suppose $L_{\nu} = \prod k_{\nu}$ is the split extension. Then $L_w \simeq k_{\nu}$. By the assumption on L_{ν} , we have $\operatorname{ind}(\beta \otimes E_0 \otimes k_{\nu}) < d$. Since μ_{ν} is close to μ_0 , we have $r\beta \otimes L_{\nu} = (E_0 \otimes L_{\nu}, \sigma_0, \mu_{\nu}) = (E_0 \otimes L \otimes k_{\nu}, \sigma_0, \mu_0)$.

Suppose that L_{ν} is a field extension of k_{ν} of degree ℓ . Then $L_{w} \simeq L_{0} \otimes k_{\nu} \simeq L_{\nu}$ and by the assumption on L_{ν} , we have $r\beta \otimes L_{\nu} = (E_{0}, \sigma_{0}, \mu_{\nu}) \otimes L_{\nu}$ and $\operatorname{ind}(\beta \otimes E_{0} \otimes L_{\nu}) < d$. Since μ_{0} is close to μ_{ν} , we have $r\beta \otimes L_{\nu} = (E_{0} \otimes L_{\nu}, \sigma_{0}, \mu_{\nu}) = (E_{0} \otimes L \otimes k_{\nu}, \sigma_{0}, \mu_{0})$.

Suppose that $\nu \notin S$ and $\nu \neq \nu_0$. Then θ_0 is a unit at ν , E_0/k is unramified at ν and $\beta \otimes k_{\nu} = 0$. Since each b_j is an integer at ν and μ_0 is a root of the polynomial $X^{\ell} + b_{\ell-1}X^{\ell-1} + \cdots + b_1X + (-1)^{\ell}\theta_0$, μ_0 is an integer at w. Since θ_0 is a unit at ν , μ_0 is a unit at w. In particular $(E_0 \otimes L_w, \sigma_0, \mu_0) = 0 = r\beta \otimes L_w$. If $\nu = \nu_0$, then by the choice of ν_0 , $\beta \otimes k_{\nu} = 0$, $E_0 \otimes k_{\nu}$ is the split extension of k_{ν} and hence $(E_0, \sigma_0, \mu_0) \otimes L_w = 0 = r\beta \otimes L_w$.

Corollary 3.2. Let k be a global field, ℓ a prime not equal char(k), n and $r \ge 1$ be integers. Let $\theta_0 \in k^*$, $r \ge 1$ and $\beta \in H^2(k, \mu_{\ell^n})$. Suppose that $r\ell\beta = 0 \in H^2(k, \mu_{\ell^n})$ and $\beta \ne 0$. Then there exists a field extension L_0/k of degree ℓ and $\mu_0 \in L_0$ such that $N_{L_0/k}(\mu_0) = \theta_0$, $r\beta \otimes L_0 = 0$ and $ind(\beta \otimes L_0) < ind(\beta)$.

Proof. Let S be a finite set of places of k containing all the places of k with $\beta \neq 0$. Let $\nu \in S$. If $\theta_0 \notin k_{\nu}^{*\ell}$, then, let $L_{\nu} = k_{\nu}(\sqrt[\ell]{\theta_0})$ and $\mu_v = \sqrt[\ell]{\theta_0} \in L_{\nu}$. If $\theta_0 \in k_{\nu}^{*\ell}$, then, let L_{ν}/k_{ν} be any field extension of degree ℓ and $\mu_{\nu} = \sqrt[\ell]{\theta_0} \in k_{\nu} \subset L_{\nu}$. In both the cases, we have $N_{L_{\nu}/k_{\nu}}(\mu_v) = \theta_0$. Since L_{ν}/k_{ν} is a degree ℓ field extension, ℓ divides ind(β) and k_{ν} is a local field, ind($\beta \otimes L_{\nu}$) < ind(β) ([3, p. 131]). Since $r\ell\beta = 0$ and L_{ν}/k_{ν} is a field extension of degree ℓ , $r\beta \otimes L_{\nu} = 0$. Let $E_0 = k$. Then, by (3.1), there exist a field extension L_0/k of degree ℓ and $\mu \in L_0$ with required properties.

Lemma 3.3. Let k be a global field and ℓ a prime not equal to char(k). Let E_0/k be a cyclic extension of degree a power of ℓ and σ_0 a generator of $Gal(E_0/k)$. Let $n \ge 1$, $\theta_0 \in k^*$ and $\beta \in H^2(k, \mu_{\ell^n})$ be such that $r\ell\beta = (E_0, \sigma_0, \theta_0)$ for some $r \ge 1$. Suppose that $r\beta \otimes E_0 \neq 0$. If ν is a place of k such that $\sqrt[\ell]{\theta_0} \notin k_{\nu}$, then $ind(\beta \otimes E_0 \otimes k_{\nu}(\sqrt[\ell]{\theta_0})) < ind(\beta \otimes E_0)$.

Proof. Write $r\ell = m\ell^d$ with m coprime to ℓ . Then $d \ge 1$. Since $m\ell^d\beta = r\ell\beta = (E_0, \sigma_0, \theta_0)$, we have $m\ell^d\beta \otimes E_0 = 0$. Since m is coprime to ℓ and the period of β is a power of ℓ , it follows that $\ell^d\beta \otimes E_0 = 0$. Since $r\beta \otimes E_0 \neq 0$, $\ell^{d-1}\beta \otimes E_0 \neq 0$ and $per(\beta \otimes E_0) = \ell^d$.

Let ν be a place of k. Suppose that $\sqrt[\ell]{\theta_0} \notin E_0 \otimes k_{\nu}$. Then $[E_0 \otimes k_{\nu}(\sqrt[\ell]{\theta_0}) : E_0 \otimes k_{\nu}] = \ell$ and hence $\operatorname{ind}(\beta \otimes E_0 \otimes k_{\nu}(\sqrt[\ell]{\theta_0})) < \operatorname{ind}(\beta \otimes E_0)$ ([3, p. 131]). Suppose that $\sqrt[\ell]{\theta_0} \in E_0 \otimes k_{\nu}$. Then $E_0 \otimes k_{\nu}(\sqrt[\ell]{\theta_0}) = E_0 \otimes k_{\nu}$. Write $E_0 \otimes k_{\nu} = \prod E_i$ with each E_i a cyclic field extension of k_{ν} . Since E_0/k is a Galois extension, $E_i \simeq E_j$ for all i and j and $m\ell^d\beta \otimes k_{\nu} = (E_0, \sigma_0, \theta_0) \otimes k_{\nu} = (E_i, \sigma_i, \theta_0)$ for all i, for suitable generators σ_i of $\operatorname{Gal}(E_i/k_{\nu})$. Since $\sqrt[\ell]{\theta_0} \in E_0 \otimes k_{\nu}, \sqrt[\ell]{\theta_0} \in E_i$ for all i and hence $\theta_0^{[E_i:\kappa_{\nu}]/\ell} \in N_{E_i/k_{\nu}}(E_i^*)$. Since the period of $(E_i, \sigma_i, \theta_0)$ is equal to the order of the class of θ_0 in the group $k_{\nu}^*/N_{E_i/k_{\nu}}(E_i^*)$ ([1, p. 75]), $\operatorname{per}(E_i, \sigma_i, \theta_0) \leq [E_i: k_{\nu}]/\ell < [E_i: k_{\nu}]$.

Suppose that $\operatorname{per}(\beta \otimes k_{\nu}) \leq [E_i : k_{\nu}]$. Since k_{ν} is a local field, $\operatorname{per}(\beta \otimes E_i) = 1$. Thus $\operatorname{per}(\beta \otimes E_0 \otimes k_{\nu}) = \operatorname{per}(\beta \otimes E_i) = 1 < \ell^d = \operatorname{per}(\beta \otimes E_0)$. Suppose that $\operatorname{per}(\beta \otimes k_{\nu}) > [E_i : k_{\nu}]$. Since $m\ell^d\beta \otimes k_{\nu} = (E_i, \sigma_i, \theta_0)$ and m is coprime to ℓ , we have $\operatorname{per}(\beta \otimes k_{\nu}) \leq \ell^d \operatorname{per}(E_i, \sigma_i, \theta_0)$. Since k_{ν} is a local-field,

$$\operatorname{per}(\beta \otimes E_0 \otimes k_{\nu}) = \operatorname{per}(\beta \otimes E_i) = \frac{\operatorname{per}(\beta \otimes k_{\nu})}{[E_i : k_{\nu}]} \le \frac{\ell^d \operatorname{per}(E_i, \sigma_i, \theta_0)}{[E_i : k_{\nu}]} < \ell^d = \operatorname{per}(\beta \otimes E_0).$$

Since k_{ν} is a local field, period equals index and hence the lemma follows.

Proposition 3.4. Let k be a global field and ℓ a prime not equal to char(k). Let E_0/k be a cyclic extension of degree a power of ℓ and σ_0 a generator of $Gal(E_0/k)$. Let $\theta_0 \in k^*$ and $\beta \in H^2(k, \mu_{\ell^n})$ be such that $r\ell\beta = (E_0, \sigma_0, \theta_0)$ for some $r \ge 1$. Suppose that $r\beta \otimes E_0 \neq 0$. Then there exist a field extension L_0/κ of degree ℓ and $\mu_0 \in L_0$ such that

1) $N_{L_0/k}(\mu_0) = \theta_0$ 2) $ind(\beta \otimes E_0 \otimes L_0) < ind(\beta \otimes E_0)$ 2) $r\beta \otimes L_0 = (E_0 \otimes L_0, \sigma_0 \otimes 1, \mu_0).$

Proof. Let S be the finite set of places of k consisting of all those places ν with $\beta \otimes k_{\nu} \neq 0$. Let $\nu \in S$. Suppose that $\theta_0 \notin k_{\nu}^{\ell}$. Let $L_{\nu} = k_{\nu}(\sqrt[\ell]{\theta_0})$ and $\mu_{\nu} = \sqrt[\ell]{\theta_0} \in L_{\nu}$. Then $N_{L_{\nu}/k_{\nu}}(\mu_{\nu}) = \theta_0$. By (3.3), $\operatorname{ind}(\beta \otimes E_0 \otimes k_{\nu}) < \operatorname{ind}(\beta \otimes E_0)$. In particular $\operatorname{ind}(\beta \otimes E_0 \otimes L_{\nu}) \leq \operatorname{ind}(\beta \otimes E_0 \otimes k_{\nu}) < \operatorname{ind}(\beta \otimes E_0)$. Since $\operatorname{cor}_{L_{\nu}/k_{\nu}}(r\beta \otimes L_{\nu}) = r\ell\beta = (E_0 \otimes k_{\nu}, \sigma_0, \theta_0) = \operatorname{cor}_{L_{\nu}/k_{\nu}}(E_0 \otimes L_{\nu}, \sigma_0 \otimes 1, \mu_{\nu})$ and corestriction is injective (cf. [17, Theorem 10, p. 237]), we have $r\beta \otimes L_{\nu} = (E_0 \otimes L_{\nu}, \sigma_0 \otimes 1, \mu_{\nu})$.

Suppose that $\theta_0 = \mu_{\nu}^{\ell}$ for some $\mu_{\nu} \in k_{\nu}$. Since k_{ν} is local field containing a primitive ℓ^{th} root of unity and $E_0 \otimes k_{\nu}$ is a cyclic extension, there exists a cyclic field extension L_{ν}/k_{ν} of degree ℓ which is not contained in $E_0 \otimes k_{\nu}$. Then $N_{L_{\nu}/k_{\nu}}(\mu_{\nu}) = \mu_{\nu}^{\ell} = \theta_0$. Since L_{ν} is not a subfield of $E_0 \otimes k_{\nu}$, $\operatorname{ind}(\beta \otimes E_0 \otimes L_{\nu}) < \operatorname{ind}(\beta \otimes E_0 \otimes k_{\nu}) \leq \operatorname{ind}(\beta \otimes E_0)$ ([3, p. 131]). Since $\operatorname{cor}_{L_{\nu}/k_{\nu}}(r\beta \otimes L_{\nu}) = r\ell\beta \otimes k_{\nu} = (E_0 \otimes k_{\nu}, \sigma_0 \otimes 1, \mu_{\nu})$, by (cf. [17, Theorem 10, p. 237]), we have $r\beta \otimes L_{\nu} = (E_0 \otimes L_{\nu}, \sigma_0 \otimes 1, \mu_{\nu})$.

By (3.1), we have the required L_0 and μ_0 .

Proposition 3.5. Let k be a global field and ℓ a prime not equal to char(k). Let E_0/k be a cyclic extension of degree a positive power of ℓ and σ_0 a generator of $Gal(E_0/k)$. Let $\theta_0 \in k^*$ and $\beta \in H^2(k, \mu_{\ell^n})$ be such that $r\ell\beta = (E_0, \sigma_0, \theta_0)$ for some $r \geq 1$. Suppose that $r\beta \otimes E_0 = 0$. Let L_0 be the unique subfield of E_0 of degree ℓ over k. Then there exists $\mu_0 \in L_0$ such that 1 $N_{L_0/k}(\mu_0) = \theta_0$ 2 $r\beta \otimes L_0 = (E_0 \otimes L_0, \sigma_0 \otimes 1, \mu_0)$.

Proof. Since $r\beta \otimes E_0 = 0$ and E_0/k is a cyclic extension, we have $r\beta = (E_0, \sigma_0, \mu')$ for some $\mu' \in k$. We have $(E_0, \sigma_0, \mu'^\ell) = \ell r\beta = (E_0, \sigma_0, \theta_0)$. Thus $\theta_0 = N_{E_0/k}(y)\mu'^\ell$. Let $\mu_0 = N_{E_0/L_0}(y)\mu' \in L_0$. Since $L_0 \subset E_0$, we have $r\beta \otimes L_0 = (E_0/L_0, \sigma_0^\ell, \mu') = (E_0/L_0, \sigma_0^\ell, N_{E_0/L_0}(y)\mu') = (E_0/L_0, \sigma_0^\ell, \mu_0)$ (cf. §2) and

$$N_{L_0/k}(\mu_0) = N_{E_0/k}(N_{E_0/L_0}(y)){\mu'}^{\ell} = \theta_0.$$

Corollary 3.6. Let k be a global field and ℓ a prime not equal to char(k). Let E_0/k be a cyclic extension of degree a power of ℓ and σ_0 a generator of $Gal(E_0/k)$. Let

 $\theta_0 \in k^*$ and $\beta \in H^2(k, \mu_{\ell^n})$ be such that $r\ell\beta = (E_0, \sigma_0, \theta_0)$ for some $r \ge 1$. Suppose that $r\beta \otimes E_0 = 0$. Let L_0 be the unique subfield of E_0 of degree ℓ over k. Let S be a finite set of places of k. Suppose for each $\nu \in S$ there exists $\mu_{\nu} \in L_0 \otimes k_{\nu}$ such that • $N_{L_0\otimes k_\nu/k_\nu}(\mu_\nu)=\theta_0$

• $r\beta \otimes L_0 \otimes k_{\nu} = (E_0 \otimes L_0 \otimes k_{\nu}, \sigma_0 \otimes 1, \mu_{\nu}).$ Then there exists $\mu \in L_0$ such that 1) $N_{L_0/k}(\mu) = \theta_0$ 2) $r\beta \otimes L_0 = (E_0 \otimes L_0, \sigma_0 \otimes 1, \mu)$ 3) μ is close to μ_{ν} for all $\nu \in S$.

Proof. By (3.5), there exists $\mu_0 \in L_0$ such that • $N_{L_0/k}(\mu_0) = \theta_0$

• $r\beta \otimes L_0 = (E_0 \otimes L_0, \sigma_0 \otimes 1, \mu_0).$ Let $\nu \in S$. Then we have • $N_{L_0/k}(\mu_0) = \theta_0 = N_{L_0 \otimes k_\nu/k_\nu}(\mu_\nu)$ • $(E_0 \otimes L_0 \otimes k_{\nu}, \sigma_0 \otimes 1, \mu_0) = (E_0 \otimes L_0 \otimes k_{\nu}, \sigma_0 \otimes 1, \mu_{\nu}).$ Let $b_{\nu} = \mu_0 \mu_{\nu}^{-1} \in L_0 \otimes k_{\nu}$. Then $N_{L_0 \otimes k_{\nu}/k_{\nu}}(b_{\nu}) = 1$ and $(E_0 \otimes L_0 \otimes k_{\nu}, \sigma_0 \otimes 1, b_{\nu}) = 1$. Thus, there exists $a_{\nu} \in E_0 \otimes L_0 \otimes k_{\nu}$ with $N_{E_0 \otimes L_0 \otimes k_{\nu}/L_0 \otimes k_{\nu}}(a_{\nu}) = b_{\nu}$. We have $N_{E_0 \otimes L_0 \otimes k_\nu/k_\nu}(a_\nu) = N_{L_0 \otimes k_\nu/\otimes k_\nu}(b_\nu) = 1$. Since E_0/k is a cyclic extension with σ_0 a generator of $\operatorname{Gal}(E_0/k)$, for each $\nu \in S$, there exists $c_{\nu} \in E_0 \otimes L_0 \otimes k_{\nu}$ such that $a_{\nu} = c_{\nu}^{-1}(\sigma_0 \otimes 1)(c_{\nu})$. By the weak approximation, there exists $c \in E_0 \otimes L_0$ such that c is close to c_{ν} for all $\nu \in S$. Let $a = c^{-1}(\sigma \otimes 1)(c) \in E_0 \otimes L_0$ and $\mu = \mu_0 N_{E_0 \otimes L_0/L_0}(c) \in L_0$. Then μ has all the required properties.

4. Complete discretely valued fields

Let F be a complete discretely valued field with residue field κ . Let D be a central simple algebra over F of period n coprime to char(κ). Let $\lambda \in F^*$ and $\alpha \in H^2(F, \mu_n)$ be the class of D. In this section we analyze the condition $\alpha \cdot (\lambda) = 0$ and we use this analysis in the proof of our main result ($\S10$). As a consequence, we also deduce that if κ is either a local field or a global field and $\alpha \cdot (\lambda) = 0$ in $H^3(F, \mu_n^{\otimes 2})$, then λ is a reduced norm from D.

We use the following notation throughout this section:

- F a complete discretely valued field.
- κ the residue field of F.
- ν the discrete valuation on F.
- $\pi \in F^*$ a parameter at ν .
- $n \ge 2$ an integer coprime to char (κ)
- D a central simple algebra over F of period n.
- $\alpha \in H^2(F, \mu_n)$ the class representing D.

Let E_0 be the cyclic extension of κ and $\sigma_0 \in Gal(E_0/\kappa)$ be such that $\partial(\alpha) = (E_0, \sigma_0)$. Let (E, σ) be the lift of (E_0, σ_0) (cf. §2). The pair (E, σ) or E is called the *lift of* the residue of α . The following is well known.

Lemma 4.1. Let $\alpha \in H^2(F,\mu_n)$, (E,σ) the lift of the residue of α . Then $\alpha =$ $\alpha' + (E, \sigma, \pi)$ for some $\alpha' \in H^2_{nr}(F, \mu_n)$. Further $\alpha' \otimes E = \alpha \otimes E$ is independent of the choice of π .

Proof. Since $\partial(E,\sigma,\pi) = \partial(\alpha), \ \alpha' = \alpha - (E,\sigma,\pi) \in H^2_{nr}(F,\mu_n)$ and $\alpha = \alpha' + \alpha'$ $(E, \sigma, \pi).$ **Lemma 4.2.** Let $n \ge 2$ be coprime to $char(\kappa)$ and $\alpha \in H^2(F, \mu_n)$. If $\alpha = \alpha' + (E, \sigma, \pi)$ as in (4.1), then $ind(\alpha) = ind(\alpha' \otimes E)[E:F] = ind(\alpha \otimes E)[E:F]$.

Proof. Cf. ([6, Proposition 1(3)] and [15, 5.15]).

Lemma 4.3. Let E be the lift of the residue of α . Suppose there exists a totally ramified extension M/F which splits α , then $\alpha \otimes E = 0$.

Proof. Write $\alpha = \alpha' + (E, \sigma, \pi)$ as in (4.1). Since $\alpha' \otimes E = \alpha \otimes E$, we have $\alpha' \otimes E \otimes M = 0$. Since $E \otimes M/E$ is totally ramified, the residue field of $E \otimes M$ is same as the residue field of E. Since $\alpha' \otimes E \otimes M = 0$ and $\alpha' \otimes E$ is unramified, it follows from ([28, 7.9 and 8.4]) that $\alpha \otimes E = \alpha' \otimes E = 0$.

Lemma 4.4. Let $n \ge 2$ be coprime to $char(\kappa)$. Let $\alpha \in H^2(F, \mu_n)$ and (E, σ) be the lift of the residue of α . If $\alpha \otimes E = 0$, then $\alpha = (E, \sigma, u\pi)$ for some $u \in F^*$ which is a unit at the discrete valuation and $per(\alpha) = ind(\alpha)$.

Proof. We have $\alpha = \alpha' + (E, \sigma, \pi)$ as in (4.1). Since $\alpha' \otimes E = \alpha \otimes E = 0$, we have $\alpha' = (E, \sigma, u)$ for $u \in F^*$. Since E/F and α' are unramified at the discrete valuation of F, u is a unit at the discrete valuation of F. We have $\alpha = (E, \sigma, u) + (E, \sigma, \pi) = (E, \sigma, u\pi)$. Since E/F is an unramified extension and $u\pi$ is a parameter, $(E, \sigma, u\pi)$ is a division algebra and its period is [E:F]. In particular ind $(\alpha) = per(\alpha)$.

Theorem 4.5. Let F be a complete discretely valued field with residue field κ . Suppose that κ is a local field. Let ℓ be a prime not equal to the characteristic of κ , $n = \ell^d$ and $\alpha \in H^2(F, \mu_n)$. Then $per(\alpha) = ind(\alpha)$.

Proof. Write $\alpha = \alpha' + (E, \sigma, \pi)$ as in (4.1). Then *E* is an unramified cyclic extension of *F* with $\partial(\alpha) = (E_0, \sigma_0)$ and α' is unramified at the discrete valuation of *F*. Let $\overline{\alpha'}$ be the image of α' in $H^2(\kappa, \mu_n)$

Suppose that $per(\partial(\alpha)) = per(\alpha)$. Then $per(\partial(\alpha)) = [E_0 : \kappa]$. Since F is complete discretely valued field and E/F unramified extension, we have $[E_0 : \kappa] = [E : F]$. Thus,

$$0 = per(\alpha)\alpha$$

= $per(\alpha)(\alpha' + (E, \sigma, \pi))$
= $per(\alpha)\alpha' + per(\alpha)(E, \sigma, \pi)$
= $per(\alpha)\alpha' + [E:F](E, \sigma, \pi)$
= $per(\alpha)\alpha'$.

In particular, $per(\alpha')$ divides $per(\alpha) = [E_0, \kappa] = [E : F]$. Since κ is a local field, $\overline{\alpha'} \otimes E_0$ is zero ([3, p.131]) and hence $\alpha' \otimes E$ is zero. By (4.4), we have $\alpha = (E, \sigma, \theta \pi)$ for some $\theta \in F$ which is a unit in the valuation ring. In particular, α is cyclic and $ind(\alpha) = per(\alpha) = [E : F]$.

Suppose that $\operatorname{per}(\partial(\alpha)) \neq \operatorname{per}(\alpha)$. Then $\operatorname{per}(\partial(\alpha)) < \operatorname{per}(\alpha)$. Since $\operatorname{per}(\partial(\alpha)) = \operatorname{per}(E, \sigma, \pi)$, we have $\operatorname{per}(\alpha) = \operatorname{per}(\alpha')$. Since κ is a local field, $\operatorname{per}(\overline{\alpha'}) = \operatorname{ind}(\overline{\alpha'})$. Let E_0 be the residue field of E. Since $\operatorname{per}(\overline{\alpha'}) = \operatorname{per}(\alpha')$ and $\operatorname{per}(\partial(\alpha)) = [E_0 : \kappa]$, we have $[E_0 : \kappa] < \operatorname{per}(\overline{\alpha'})$. Since κ is a local field,

$$\operatorname{ind}(\overline{\alpha}' \otimes E_0) = \frac{\operatorname{per}(\overline{\alpha}')}{[E_0 : \kappa]}$$

Since E is a complete discrete valued field with residue field E_0 and α' is unramified at the discrete valuation of E, we have $\operatorname{ind}(\alpha' \otimes E) = \operatorname{ind}(\overline{\alpha'} \otimes E_0)$. Thus, we have

$$ind(\alpha) = ind(\alpha' \otimes E)[E : F] \quad (by(4.2))$$

= $ind(\overline{\alpha'} \otimes E_0)[E_0 : \kappa]$
= $\frac{per(\overline{\alpha'})}{[E_0:\kappa]}[E_0 : \kappa]$
= $per(\overline{\alpha'}) = per(\alpha).$

Proposition 4.6. Suppose that κ is a local field. Let $n \geq 2$ be coprime to $char(\kappa)$. If L/F is a finite field extension, then the corestriction homomorphism $H^3(L, \mu_n^{\otimes 2}) \rightarrow H^3(F, \mu_n^{\otimes 2})$ is bijective.

Proof. Let k' be the residue field of L. Since k and k' are local fields, $H^3(k, \mu_n^{\otimes 2}) = H^3(k', \mu_n^{\otimes 2}) = 0$ ([27, p. 86]). Since F and L are complete discrete valued fields, the residue homomorphisms $H^3(F, \mu_n^{\otimes 2}) \xrightarrow{\partial_F} H^2(k, \mu_n)$ and $H^3(L, \mu_n^{\otimes 2}) \xrightarrow{\partial_L} H^2(k', \mu_n)$ are isomorphisms (cf. [28, 7.9]). The proposition follows from the commutative diagram

$$\begin{array}{cccc} H^3(L,\mu_n^2) & \xrightarrow{\partial_L} & H^2(k',\mu_n) \\ \downarrow & & \downarrow \\ H^3(F,\mu_n^{\otimes 2}) & \xrightarrow{\partial_F} & H^2(k,\mu_n), \end{array}$$

where the vertical arrows are the corestriction maps ([28, 8.6]).

Lemma 4.7. Let ℓ be a prime not equal to $char(\kappa)$ and $n = \ell^d$ for some $d \ge 1$. Let $\alpha \in H^2(F, \mu_n)$ and $\lambda \in F^*$. Write $\lambda = \theta \pi^r$ for some $\theta, \pi \in F$ with $\nu(\theta) = 0$ and $\nu(\pi) = 1$. Let (E, σ) be the lift of the residue of α and $\alpha = \alpha' + (E, \sigma, \pi)$ as in (4.1). Then

$$\partial(\alpha \cdot (\lambda)) = 0 \iff r\alpha' = (E, \sigma, \theta) \iff r\alpha = (E, \sigma, \lambda).$$

In particular, if $\partial(\alpha \cdot (\lambda)) = 0$ and $r = \nu(\lambda)$ is coprime to ℓ , then $ind(\alpha \otimes F(\sqrt[\ell]{\lambda})) < ind(\alpha)$ and $\alpha \cdot (\sqrt[\ell]{\lambda}) = 0 \in H^3(F(\sqrt[\ell]{\lambda}), \mu_n^{\otimes 2}).$

Proof. Since $r\alpha = r\alpha' + (E, \sigma, \pi^r)$ and $\lambda = \theta \pi^r$, $r\alpha = (E, \sigma, \lambda)$ if and only if $r\alpha' = (E, \sigma, \theta)$.

We have

$$\partial(\alpha \cdot (\lambda)) = \partial((\alpha' + (E, \sigma, \pi)) \cdot (\theta \pi^r)) = r\overline{\alpha}' + (E_0, \sigma_0, \overline{\theta}^{-1}),$$

where $\partial(\alpha) = (E_0, \sigma_0)$.

Thus $\partial(\alpha \cdot (\lambda)) = 0$ if and only if $r\overline{\alpha}' + (E_0, \sigma_0, \overline{\theta}^{-1}) = 0$ if and only if $r\overline{\alpha}' = (E_0, \sigma_0, \overline{\theta})$ if and only if $r\alpha = (E, \sigma, \theta)$ (*F* being complete).

Lemma 4.8. Let $n \ge 2$ be coprime to $char(\kappa)$ and ℓ a prime which divides n. Let $\alpha \in H^2(F, \mu_n), \lambda = \theta \pi^{\ell r} \in F^*$ with θ a unit in the valuation ring of F, π a parameter and $\alpha = \alpha' + (E, \sigma, \pi)$ be as in (4.1). Suppose that $\alpha \cdot (\lambda) = 0 \in H^3(F, \mu_n^{\otimes 2})$ and there exist an extension L_0 of κ of degree ℓ and $\mu_0 \in L_0$ such that

•
$$N_{L_0/\kappa}(\mu_0) = \theta$$
,

- $r\overline{\alpha}' \otimes L_0 = (E_0 \otimes L_0, \sigma_0 \otimes 1, \mu_0).$
- Then, there exist an unramified extension L of F of degree ℓ and $\mu \in L$ such that • residue field of L is L_0 ,
- μ a unit in the valuation ring of L,

• $\overline{\mu} = \mu_0$,

•
$$N_{L/F}(\mu) = \theta$$

• $N_{L/F}(\mu) = \theta$, • $\alpha \cdot (\mu \pi^r) \in H^3(L, \mu_n^{\otimes 2})$ is unramified.

Proof. Since ℓ is a prime and $[L_0:\kappa] = \ell$, $L_0 = \kappa(\mu'_0)$ for any $\mu'_0 \in L_0 \setminus \kappa$. Let $g(X) = X^{\ell} + b_{\ell-1}X^{\ell-1} + \cdots + b_1X + b_0 \in \kappa[X]$ be the minimal polynomial of μ'_0 over κ . Let a_i be in the valuation ring of F mapping to b_i and $f(X) = X^{\ell} + a_{\ell-1}X^{\ell-1} + a_{\ell-1}X^{\ell-1}$ $\cdots + a_1 X + a_0 \in F[X]$. If $\mu_0 \notin \kappa$, then we take $\mu'_0 = \mu_0$. Since $N_{L_0/\kappa}(\mu_0) = \overline{\theta}$, we have $b_0 = (-1)^{\ell} \overline{\theta}$. In this case we take $a_0 = (-1)^{\ell} \theta$. Since g(X) is irreducible in $\kappa[X], f(X) \in F[X]$ is irreducible. Let L = F[X]/(f). Then L/F is the unramified extension with residue field L_0 . If $\mu_0 \in \kappa$, then $\overline{\theta} = N_{L_0/\kappa}(\mu_0) = \mu_0^{\ell}$. Since F is a complete discretely valued field and ℓ is coprime to char(κ), there exists $\mu \in F$ which is a unit in the valuation ring of F which maps to μ_0 and $\mu^{\ell} = \theta$. If $\mu_0 \notin \kappa$, then let $\mu \in L$ be the image of X. Then the image of μ is μ_0 and $N_{L/F}(\mu) = \theta$.

Since L/F, E/F and α' are unramified at the discrete valuation of F, we have $\partial_L(\alpha' \cdot (\mu\pi^r)) = r\overline{\alpha}' \otimes L_0 \text{ and } \partial_L((E,\sigma,\pi) \cdot (\mu\pi^r)) = \partial_L((E \otimes L, \sigma \otimes 1, \mu^{-1}) \cdot (\pi)) =$ $(E_0 \otimes L_0, \sigma_0 \otimes 1, \mu_0^{-1})$. Since $\alpha = \alpha' + (E, \sigma, \pi)$, we have

$$\partial_L(\alpha \cdot (\mu\pi^r)) = \partial_L((\alpha' \otimes L) \cdot (\mu\pi^r)) + \partial_L((E, \sigma, \pi) \cdot (\mu\pi^r)) = r\overline{\alpha}' \otimes L_0 + (E_0 \otimes L_0, \sigma_0 \otimes 1, \mu_0^{-1}) = 0$$

Lemma 4.9. Suppose that κ is a local field. Let ℓ be prime not equal to char(k) and $n = \ell^d$. Let $\alpha \in H^2(F, \mu_n)$ and $\lambda \in F^*$. Suppose $\lambda \notin F^{*\ell}$, $\alpha \neq 0$ and $\alpha \cdot (\lambda) = 0$. Then $ind(\alpha \otimes F(\sqrt[\ell]{\lambda})) < ind(\alpha)$ and $\alpha \cdot (\sqrt[\ell]{\lambda}) = 0 \in H^3(F(\sqrt[\ell]{\lambda}), \mu_n^{\otimes 2}).$

Proof. Suppose $\nu(\lambda)$ is coprime to ℓ . Then, by (4.7), we have $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\lambda})) < 0$ ind(α) and $\alpha \cdot (\sqrt[\ell]{\lambda}) = 0 \in H^3(F(\sqrt[\ell]{\lambda}), \mu_n^{\otimes 2}).$

Suppose that $\nu(\lambda)$ is divisible by ℓ . Write $\lambda = \theta \pi^{\ell d}$ with $\theta \in F$ a unit in the valuation ring of F.

Write $\alpha = \alpha' + (E, \sigma, \pi)$ as in (4.1). Then $\operatorname{ind}(\alpha) = \operatorname{ind}(\alpha' \otimes E)[E : F]$ and $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\theta})) \leq \operatorname{ind}(\alpha' \otimes E(\sqrt[\ell]{\theta}))[E(\sqrt[\ell]{\theta}) : F(\sqrt[\ell]{\theta})]$ (cf. 4.2). If $\sqrt[\ell]{\theta} \in E$, then $F(\sqrt[\ell]{\theta}) \subset E = E(\sqrt[\ell]{\theta})$. In particular $[E(\sqrt[\ell]{\theta}) : F(\sqrt[\ell]{\theta})] = [E : F(\sqrt[\ell]{\theta})] < [E : F].$ Since $\operatorname{ind}(\alpha' \otimes E(\sqrt[\ell]{\theta})) \leq \operatorname{ind}(\alpha' \otimes E)$, it follows that $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\theta})) < \operatorname{ind}(\alpha)$.

Suppose $\sqrt[\ell]{\theta} \notin E$. Since E is unramified extension of F and θ is a unit in the valuation ring of E, $E(\sqrt[\ell]{\theta})$ is an unramified extension of F with residue field $E_0(\sqrt[\ell]{\theta})$, where E_0 is the residue field of E and $\overline{\theta}$ is the image of θ in the residue field. Since F is a complete discretely valued field and θ is not an ℓ^{th} power in $E, \overline{\theta}$ is not an ℓ^{th} power in E_0 and $[E_0(\sqrt[\ell]{\theta}): E_0] = \ell$.

Suppose $\alpha' \otimes E \neq 0$. Then $\overline{\alpha}' \otimes E_0 \neq 0$. Since E_0 is a local field and $\operatorname{ind}(\overline{\alpha}')$ is a power of ℓ , $\operatorname{ind}(\overline{\alpha}' \otimes E_0(\sqrt[\ell]{\overline{\theta}})) < \operatorname{ind}(\overline{\alpha}' \otimes E_0)$ ([3, p. 131]). Hence $\operatorname{ind}(\alpha' \otimes E(\sqrt[\ell]{\overline{\theta}})) < 0$ $\operatorname{ind}(\alpha' \otimes E)$ and $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\theta})) < \operatorname{ind}(\alpha)$.

Suppose that $\alpha' \otimes E = 0$. Then, by (4.4), $\alpha = (E, \sigma, u\pi)$ for some unit u in the valuation ring of F. Since $\alpha \cdot (\lambda) = 0$, $(E, \sigma, u\pi) \cdot (\lambda) = 0$. Since E/F is unramified with residue field E_0 , u, θ are units in the valuation ring of F and π a parameter, by taking the residue of $\alpha \cdot (\lambda) = 0$, we see that $(E_0, \sigma_0, \overline{\theta}^{-1} \overline{u}^{\ell d}) = 0 \in H^2(\kappa, \mu_n)$ (cf. 4.7). In particular, $\overline{\theta u}^{-\ell d}$ is a norm from E_0 . Since $[E_0:k]$ is a power of ℓ and E_0/κ is cyclic, there exists a sub extension L of E_0 such that $[L:\kappa] = \ell$. Then

 $\overline{\theta}\overline{u}^{-\ell d}$ is a norm from L and hence $\overline{\theta}$ is a norm from L. Since $\overline{\theta}$ is not in $\kappa^{*\ell}$, by (2.5), $L = \kappa(\sqrt[\ell]{\overline{\theta}})$. In particular $\sqrt[\ell]{\overline{\theta}} \in E_0$ and hence $\sqrt[\ell]{\overline{\theta}} \in E$. Thus $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\overline{\theta}})) =$ $\operatorname{ind}((E, \sigma, u\pi) \otimes F(\sqrt[\ell]{\overline{\theta}})) < \operatorname{ind}(E, \sigma, u\pi) = \operatorname{ind}(\alpha)$.

Lemma 4.10. Suppose κ is a local field. Let ℓ be a prime not equal to $char(\kappa)$ and $n = \ell^d$. Let $\alpha \in H^2(F, \mu_n)$ and $\lambda \in F^*$. Suppose that κ contains a primitive ℓ^{th} root of unity. If $\alpha \neq 0$ and $\alpha \cdot (\lambda) = 0 \in H^3(F, \mu_n^{\otimes 2})$, then there exist a cyclic field extension L/F of degree ℓ and $\mu \in L^*$ such that $N_{L/F}(\mu) = \lambda$, $ind(\alpha \otimes L) < ind(\alpha)$ and $\alpha \cdot (\mu) = 0 \in H^3(L, \mu_n^{\otimes 2})$. Further, if $\lambda \in F^{*\ell}$, then L/F is unramified and $\mu \in F$.

Proof. Suppose λ is not an ℓ^{th} power in F. Let $L = F(\sqrt[\ell]{\lambda})$ and $\mu = \sqrt[\ell]{\lambda}$. Then, by (4.9), $\operatorname{ind}(\alpha \otimes L) < \operatorname{ind}(\alpha)$ and $\alpha \cdot (\mu) = 0 \in H^3(L, \mu_n^{\otimes 2})$.

Suppose $\lambda = \mu^{\ell}$ for some $\mu \in F^*$. Write $\alpha = \alpha' + (E, \sigma, \pi)$ as in (4.1).

Suppose that $\alpha' \otimes E = 0$. Then, by (4.4), $\alpha = (E, \sigma, u\pi)$ for some $u \in F^*$ which is a unit in the valuation ring of F. Let L be the unique subfield of E with L/F of degree ℓ . Then $\operatorname{ind}(\alpha \otimes L) < \operatorname{ind}(\alpha)$. Since $\operatorname{cor}_{L/F}(\alpha \cdot (\mu)) = \alpha \cdot (\mu^{\ell}) = \alpha \cdot (\lambda) = 0$, by (4.6), $\alpha \cdot (\mu) = 0$ in $H^3(L, \mu_n)$. We also have $\lambda = \mu^{\ell} = N_{L/F}(\mu)$.

Suppose that $\alpha' \otimes E \neq 0$. Let E_0 be the residue field of E. Then E_0/κ is a cyclic field extension of κ of degree equal to the degree of E/F. Since κ is a local field and contains a primitive ℓ^{th} root of unity, there are at least three distinct cyclic field extensions of κ of degree ℓ . Since E_0/κ is a cyclic extension, there is at most one sub extension of E_0 of degree ℓ over κ . Thus there exists a cyclic field extension L_0/κ of degree ℓ such that $E_0 \otimes L_0$ is a field. Let L/F be the unramified extension with residue field L_0 . Then $E \otimes L$ is a field. Let $\overline{\alpha'}$ be the image of α' in $H^2(\kappa, \mu_n)$. Since E is a complete discretely valued field, $\overline{\alpha'} \otimes E_0 \neq 0$. Since $E_0 \otimes L_0/E_0$ is a field extension of degree ℓ and κ is a local field, $\operatorname{ind}(\overline{\alpha'} \otimes E_0 \otimes L_0) < \operatorname{ind}(\overline{\alpha'} \otimes E_0)$ ([3, p. 131]). Since E is a complete discretely valued field, $\operatorname{ind}(\alpha' \otimes E \otimes L) <$ ind $(\alpha' \otimes E)$. Since L/F is unramified, $\partial(\alpha \otimes L) = \partial(\alpha) \otimes L_0$ (cf. [4, Proposition 3.3.1]) and hence the decomposition $\alpha \otimes L = \alpha' \otimes L + (E \otimes L, \sigma \otimes 1, \pi)$ is as in (4.1). Thus, by (4.2), $\operatorname{ind}(\alpha \otimes L) < \operatorname{ind}(\alpha)$. As above, we also have $\lambda = N_{L/F}(\mu)$ and $\alpha \cdot (\mu) = 0 \in H^3(L, \mu_n^{\otimes 2})$.

Lemma 4.11. Suppose κ is a global field. Let ℓ be a prime not equal to $char(\kappa)$ and $n = \ell^d$. Let $\alpha \in H^2(F, \mu_n)$ and $\lambda \in F^*$. If $\alpha \neq 0$ and $\alpha \cdot (\lambda) = 0 \in H^3(F, \mu_n^{\otimes 2})$, then there exist a field extension L/F of degree ℓ and $\mu \in L^*$ such that $N_{L/F}(\mu) = \lambda$, $ind(\alpha \otimes L) < ind(\alpha)$ and $\alpha \cdot (\mu) = 0 \in H^3(L, \mu_n^{\otimes 2})$.

Proof. Suppose that $\nu(\lambda)$ is coprime to ℓ . Then, by (4.7), $L = F(\sqrt[\ell]{\lambda})$ and $\mu = \sqrt[\ell]{\lambda}$ has the required properties.

Suppose that $\nu(\lambda)$ is divisible by ℓ . Let π be a parameter in F. Then $\lambda = \theta \pi^{r\ell}$ with $\nu(\theta) = 0$. Write $\alpha = \alpha' + (E, \sigma, \pi)$ as in (4.1). Let $\overline{\alpha}'$ be the image of α' in $H^2(\kappa, \mu_n)$ and θ_0 the image of θ in κ . Since $\alpha \cdot (\lambda) = 0$, by (4.7), we have $r\ell \overline{\alpha}' = (E_0, \sigma_0, \theta_0)$, where E_0 is the residue field of E and σ_0 induced by σ .

Suppose that $r\overline{\alpha}' \otimes E_0 \neq 0$. Then, by (3.4), there exist a extension L_0/κ of degree ℓ and $\mu_0 \in L_0$ such that $N_{L_0/\kappa}(\mu_0) = \theta_0$, $\operatorname{ind}(\overline{\alpha}' \otimes E_0 \otimes L_0) < \operatorname{ind}(\overline{\alpha}' \otimes E_0)$ and $r\overline{\alpha}' \otimes L_0 = (E_0 \otimes L_0, \sigma_0, \mu_0)$.

Suppose that $r\overline{\alpha}' \otimes E_0 = 0$. Suppose that $E_0 \neq \kappa$. Let L_0 be the unique subfield field of E_0 of degree ℓ over κ . Then, by (3.5), there exists $\mu_0 \in L_0$ such that $N_{L_0/\kappa}(\mu_0) = \theta_0$ and $r\overline{\alpha}' \otimes L_0 = (E_0, \sigma_0, \mu_0)$.

Suppose that $E_0 = \kappa$. Then, by (3.2), there exist a field extension L_0/κ of degree ℓ and $\mu_0 \in L_0$ such that $N_{L_0/k}(\mu_0) = \theta_0$ and $\operatorname{ind}(\overline{\alpha}' \otimes L_0) < \operatorname{ind}(\overline{\alpha}')$.

By (4.8), we have the required L and μ .

Theorem 4.12. Let F be a complete discrete valued field with residue field κ . Suppose that κ is a local field or a global field. Let D be a central simple algebra over F of period n. Suppose that n is coprime to $char(\kappa)$. Let $\alpha \in H^2(F, \mu_n)$ be the class of $D \text{ and } \lambda \in F^*$. If $\alpha \cdot (\lambda) = 0 \in H^3(F, \mu_n^{\otimes 2})$, then λ is a reduced norm from D.

Proof. Write $n = \ell_1^{d_1} \cdots \ell_r^{d_r}$, ℓ_i distinct primes, $d_i > 0$, $D = D_1 \otimes \cdots \otimes D_r$ with each D_i a central simple algebra over F of period power of ℓ_i ([1, Ch. V, Theorem 18]). Let α_i be the corresponding cohomology class of D_i . Since ℓ_i 's are distinct primes, $\alpha \cdot (\lambda) = 0$ if and only if $\alpha_i \cdot (\lambda) = 0$ and λ is a reduced norm from D if and only if λ is a reduced norm from each D_i . Thus without loss of generality we assume that $per(D) = \ell^d$ for some prime ℓ .

We prove the theorem by the induction on the index of D. Suppose that deg(D) =1. Then every element of F^* is a reduced norm from D. We assume that $\deg(D) =$ $n = \ell^d \ge 2.$

Let $\lambda \in F^*$ with $\alpha \cdot (\lambda) = 0 \in H^3(F, \mu_n^{\otimes 2})$. Let ρ be a primitive ℓ^{th} root of unity. Since $[F(\rho):F]$ is coprime to n, λ is a reduced norm from F is and only if λ is a reduced from $D \otimes F(\rho)$. Thus, replacing F by $F(\rho)$, we assume that $\rho \in F$.

Since κ is either a local field or a global field, by (4.10, 4.11), there exist an extension L/F of degree ℓ and $\mu \in L^*$ such that $N_{L/F}(\mu) = \lambda$, $\alpha \cdot (\mu) = 0$ and $\operatorname{ind}(\alpha \otimes L) < \operatorname{ind}(\alpha)$. Thus, by induction, μ is a reduced norm from $D \otimes L$. Since $N_{L/F}(\mu) = \lambda, \lambda$ is a reduced norm from D.

The following technical lemma is used in $\S6$.

Lemma 4.13. Let κ be a finite field and K a function field of a curve over κ . Let $u, v, w \in \kappa^*$ and $\theta \in K^*$. Let ℓ a prime not equal to $char(\kappa)$ and $\theta = wu\lambda$. If κ contains a primitive ℓ^{th} root of unity and $w \notin \kappa^{*\ell}$, then for $r \geq 1$, the element $(v, \sqrt[\ell^r]{\theta})_\ell$ is $H^2(K(\sqrt[\ell^e]{\theta})$ is trivial over $K(\sqrt[\ell^r]{\theta}, \sqrt[\ell^r]{v+u\lambda})$.

Proof. Let $L = K(\sqrt[\ell^r]{\theta}, \sqrt[\ell]{v+u\lambda})$ and $\beta = (v, \sqrt[\ell^r]{\theta})_{\ell}$. Since L is a global field, to show that $\beta \otimes L$ is trivial, it is enough to show that $\beta \otimes L_{\nu}$ is trivial for every discrete valuation ν of L. Let ν be a discrete valuation of L. Since $v \in \kappa^*$, v is a unit at ν . If θ is a unit at ν , then $\beta \otimes L$ is unramified at ν and hence $\beta \otimes L_{\nu}$ is trivial. Suppose that θ is not a unit at ν . Since u and v are units at ν , λ is not a unit. Suppose that $\nu(\lambda) > 0$. Then $v \in L_{\nu}^{*\ell}$ and hence $\beta \otimes L_{\nu}$ is trivial. Suppose that $\nu(\lambda) < 0$. Then $\sqrt[\ell]{u\lambda} \in L_{\nu}$. Since $r \geq 1$, $\theta = uw\lambda$ and $\sqrt[\ell^r]{\theta} \in L_{\nu}$, we have $\sqrt[\ell]{\theta} = \sqrt[\ell]{wu\lambda} \in L_{\nu}$. Hence $\sqrt[\ell]{w} \in L_{\nu}$. Since $w \in \kappa^* \setminus \kappa^{*\ell}$, $v \in \kappa^*$ and κ is a finite field, $\sqrt[\ell]{v} \in \kappa(\sqrt[\ell]{w})$. Since $\kappa(\sqrt[\ell]{w}) \subset L_{\nu}, \beta \otimes L_{\nu}$ is trivial.

We end this section with the following well known facts.

Lemma 4.14. Let F be a complete discrete valued field with the residue field κ . Let $\alpha \in Br(F)$ and L/F an unramified extension with residue field L_0 . Suppose that $per(\alpha)$ is coprime to $char(\kappa)$. Let $\partial(\alpha) = (E_0, \sigma_0)$. If $\partial(\alpha \otimes L)$ is trivial, then E_0 is isomorphic to a subfield of L_0 .

Proof. Let L_0 be the residue field of L. Since L/F is unramified, $(E_0, \sigma_0) \otimes L_0 =$ $\partial(\alpha) \otimes L_0 = \partial(\alpha \otimes L)$ (cf. [4, Proposition 3.3.1]). Since $\alpha \otimes L = 0$, $\partial(\alpha \otimes L) = 0$ and hence E_0 is isomorphic to a subfield of L_0 . **Corollary 4.15.** Let L/F be a cyclic extension of degree n, τ a generator of Gal(L/F)and $\theta \in F^*$. If $\nu(\theta)$ is coprime to n and $ind(L/F, \tau, \theta) = [L : F]$, then $[L : F] = per(\partial(L/F, \tau, \theta))$.

Proof. Let $\beta = (L/F, \tau, \theta)$ and $m = \operatorname{per}(\partial(\beta))$. Since $n = [L : F] = \operatorname{ind}(\beta)$, m divides n. Since $\nu(\theta)$ is coprime to n, $F(\sqrt[m]{\theta})/F$ is a totally ramified extension of degree m with residue field equal to the residue field κ of F. Since $\partial(\beta \otimes F(\sqrt[m]{\theta})) = m\partial(\beta)$, $\beta \otimes F(\sqrt[m]{\theta})$ is unramified. Since $F(\sqrt[n]{\theta})/F(\sqrt[m]{\theta})$ is totally ramified and $\beta \otimes F(\sqrt[n]{\theta})$ is trivial, $\beta \otimes F(\sqrt[m]{\theta})$ is trivial (cf. 4.3). Hence n = m.

5. BRAUER GROUP - COMPLETE TWO DIMENSIONAL REGULAR LOCAL RINGS

Through out this section A denotes a complete regular local ring of dimension 2 with residue field κ and F its field of fractions. Let ℓ be a prime not equal to the characteristic of κ and $n = \ell^d$ for some $d \ge 1$. Let $m = (\pi, \delta)$ be the maximal ideal of A. For any prime $p \in A$, let F_p be the completion of the field of fractions of the completion of the local ring $A_{(p)}$ at p and $\kappa(p)$ the residue field at p.

Lemma 5.1. Let E_{π} be a Galois extension of F_{π} of degree coprime to $char(\kappa)$. Then there exists a Galois extension E of F of degree $[E_{\pi} : F_{\pi}]$ which is unramified on Aexcept possibly at δ and $Gal(E/F) \simeq Gal(E_{\pi}/F_{\pi})$.

Proof. Since A is complete and $m = (\pi, \delta)$, $\kappa(\pi)$ is a complete discretely valued field with residue field κ and the image $\overline{\delta}$ of δ as a parameter. Let E_0 be the residue field of E_{π} . Then $E_0/\kappa(\pi)$ is a Galois extension with $\operatorname{Gal}(E_0/\kappa(\pi)) \simeq \operatorname{Gal}(E_{\pi}/F_{\pi})$. Let L_0 be the maximal unramified extension of $\kappa(\pi)$ contained in E_0 . Then L_0 is also a complete discretely valued field with $\overline{\delta}$ as a parameter. Since E_0/L_0 is a totally ramified extension of degree coprime to $\operatorname{char}(\kappa)$, we have $E_0 = L_0(\sqrt[e]{v\overline{\delta}})$ for some $v \in L_0$ which is a unit at the discrete valuation of L_0 (cf. 2.4).

Since $E_0/\kappa(\pi)$ is a Galois extension, E_0/L_0 and $L_0/\kappa(\pi)$ are Galois extensions. Let κ_0 be the residue field of E_0 . Then the residue field of L_0 is also κ_0 . Since κ_0 is a Galois extension of κ and A is complete, there exists a Galois extension L of F which is unramified on A with residue field κ_0 . Let B be the integral closure of A in L. Then B is a regular local ring with residue field κ_0 (cf. [21, Lemma 3.1]). Let $u \in B$ be a lift of v.

Let $E = L(\sqrt[\epsilon]{u\delta})$. Since L/F is unramified on A, E/F is unramified on A except possibly at δ . In particular E/F is unramified at π with residue field E_0 . By the construction $[E:F] = [E_0:\kappa(\pi)]$. Hence $E \otimes F_{\pi} \simeq E_{\pi}$.

Since L/F is a Galois extension which is unramified at π , we have $\operatorname{Gal}(L/F) \simeq \operatorname{Gal}(L_0/\kappa(\pi))$. Let $\tau \in \operatorname{Gal}(L/F)$ and $\overline{\tau} \in \operatorname{Gal}(L_0/\kappa(\pi))$ be the image of τ . Since $E_0/\kappa(\pi)$ is Galois and $E_0 = L_0(\sqrt[e]{v}\sqrt{\delta})$, by (2.3), E_0 contains a primitive e^{th} root of unity ρ and $\overline{\tau}(v\overline{\delta})) \in E_0^e$. In particular $\rho \in \kappa_0$. Since B is complete with residue field $\kappa_0, \rho \in B$ and hence $\rho \in L \subseteq E$. Since $\overline{\tau}(v\overline{\delta}) = \overline{\tau}(v)\overline{\delta}$ and $v\overline{\delta}, \overline{\tau}(v\overline{\delta}) \in E_0^e$, $\overline{\tau}(v)/v \in E_0^e$. Since $\overline{\tau}(v)$ and v are units at the discrete valuation of L_0 and E_0/L_0 is totally ramified, $\overline{\tau}(v)/v \in L_0^e$. Since B is complete and the image of $\tau(u)/u$ in L_0 is $\overline{\tau}(v)/v, \tau(u)/u \in L^e$. Since $E = L(\sqrt{u\delta}), \tau(u\delta) \in E^e$. Thus, by (2.3), E/F is Galois. Since $E \otimes F_\pi \simeq E_\pi$, $\operatorname{Gal}(E/F) \simeq \operatorname{Gal}(E_\pi/F_\pi)$.

Since A is complete and (π, δ) is the maximal ideal of A, $A/(\pi)$ is a complete discrete valuation ring with $\overline{\delta}$ is a parameter and $A/(\delta)$ is a complete discrete valuation ring with $\overline{\pi}$. The following follows from ([16, Proposition 1.7]).

Lemma 5.2. ([16, Proposition 1.7]) Let $m \ge 1$ and $\alpha \in H^m(F, \mu_n^{\otimes (m-1)})$. Suppose that α is unramified on A except possibly at π and δ . Then

$$\partial_{\overline{\delta}}(\partial_{\pi}(\alpha)) = -\partial_{\overline{\pi}}(\partial_{\delta}(\alpha)).$$

Let $H_{nr}^m(F, \mu_n^{\otimes (m-1)})$ be the intersections of the kernels of the residue homomorphisms $\partial_{\theta} : H^m(F, \mu_n^{\otimes (m-1)}) \to H^{m-1}(\kappa(\theta), \mu_n^{\otimes (m-2)})$ for all primes $\theta \in A$. The following lemma follows from the purity theorem of Gabber.

Lemma 5.3. For $m \ge 1$, $H_{nr}^m(F, \mu_n^{\otimes (m-1)}) \simeq H^m(\kappa, \mu_n^{\otimes (m-1)})$.

Proof. By the purity theorem of Gabber (cf. [24, CH. XVI]), we have $H_{nr}^m(F, \mu_n^{\otimes (m-1)}) \simeq H_{\acute{e}t}^m(A, \mu_n^{\otimes (m-1)})$. Since A is complete, we have $H_{\acute{e}t}^m(A, \mu_n^{\otimes (m-1)}) \simeq H^m(\kappa, \mu_n^{\otimes (m-1)})$ (cf. [20, Corollary 2.7, p.224]).

Lemma 5.4. Let $m \ge 1$ and $\alpha \in H^m(F, \mu_n^{\otimes (m-1)})$. Suppose that α is unramified except possibly at π . Then there exist $\alpha_0 \in H^m(F, \mu_n^{\otimes (m-1)})$ and $\beta \in H^{m-1}(F, \mu_n^{\otimes (m-2)})$ which are unramified on A such that

$$\alpha = \alpha_0 + \beta \cdot (\pi).$$

Proof. Let $\beta_0 = \partial_{\pi}(\alpha)$. By (5.2), $\beta_0 \in H^{m-1}(\kappa(\pi), \mu_n^{\otimes(m-2)})$ is unramified on $A/(\pi)$. Since $A/(\pi)$ is a complete discrete valuation ring with residue field κ , we have $H_{nr}^{m-1}(\kappa(\pi), \mu_n^{\otimes(m-2)}) \simeq H^{m-1}(\kappa, \mu_n^{\otimes(m-2)})$. Since A is a complete regular local ring of dimension 2, $H_{nr}^{m-1}(F, \mu_n^{\otimes(m-2)}) \simeq H^{m-1}(\kappa, \mu_n^{\otimes(m-2)})$ (5.3). Thus, there exists $\beta \in H_{nr}^{m-1}(F, \mu^{\otimes(m-1)})$ which is a lift of β_0 . Then $\alpha_0 = \alpha - \beta \cdot (\pi)$ is unramified on A. Hence $\alpha = \alpha_0 + \beta \cdot (\pi)$.

Corollary 5.5. Let $m \ge 1$ and $\alpha \in H^m(F, \mu_n^{\otimes (m-1)})$ is unramified on A except possibly at π and δ . If $\alpha \otimes F_{\delta} = 0$, then $\alpha = 0$. In particular if $\alpha_1, \alpha_2 \in H^m(F, \mu_n^{\otimes (m-1)})$ unramified on A except possibly at π and δ and $\alpha_1 \otimes F_{\delta} = \alpha_2 \otimes F_{\delta}$, then $\alpha_1 = \alpha_2$.

Proof. Since $\alpha \otimes F_{\delta} = 0$, α is unramified at δ . Thus α is unramified on A except possibly at π . By (5.4), we have $\alpha = \alpha_0 + \beta \cdot (\pi)$ for some $\alpha_0 \in H^m(F, \mu_n^{\otimes(m-1)})$ and $\beta \in H^{m-1}(F, \mu_n^{\otimes(m-2)})$ which are unramified on A. Since $\alpha \otimes F_{\delta} = 0$, we have $(\beta \cdot (\pi)) \otimes F_{\delta} = -\alpha_0 \otimes F_{\delta}$. Since $\beta \cdot (\pi)$ and α_0 are unramified at δ , we have $\overline{\beta} \cdot (\overline{\pi}) = -\overline{\alpha}_0$, where – denotes the image over $\kappa(\delta)$. Since $\kappa(\delta)$ is a complete discrete valued field with $\overline{\pi}$ as a parameter, by taking the residues, we see that the image of β is 0 in $H^{m-1}(\kappa, \mu_n^{\otimes(m-2)})$. Since A is a complete regular local ring, $\beta = 0$ (5.3). Hence $\alpha = \alpha_0$ is unramified on A. Since $\alpha \otimes F_{\delta} = 0$, $\overline{\alpha} = 0 \in H^m(\kappa(\delta), \mu_n^{\otimes(m-1)})$. In particular the image of α in $H^m(\kappa, \mu_n^{\otimes(m-1)})$ is zero. Since A is a complete regular local ring, $\alpha = 0$ (5.3).

Corollary 5.6. Let $m \ge 1$ and $\alpha \in H^m(F, \mu_n^{m-1})$. If α is unramified on A except possibly at π and δ , then $per(\alpha) = per(\alpha \otimes F_{\pi}) = per(\alpha \otimes F_{\delta})$.

Proof. Suppose $t = per(\alpha \otimes F_{\delta})$. Then $t\alpha \otimes F_{\delta} = 0$ and hence, by (5.5), $t\alpha = 0$. Since $per(\alpha \otimes F_{\delta}) \leq per(\alpha)$, it follows that $per(\alpha) = per(\alpha \otimes F_{\delta})$. Similarly, $per(\alpha) = per(\alpha \otimes F_{\pi})$.

Corollary 5.7. Suppose that κ is a finite field. Let $\alpha \in H^2(F, \mu_n)$. If α is unramified except at π and δ , then there exist a cyclic extension E/F and $\sigma \in \text{Gal}(E/F)$ a

generator, $u \in A$ a unit, and $0 \leq i, j < n$ such that $\alpha = (E, \sigma, u\pi^i \delta^j)$ with E/F is unramified on A except at δ and i = 1 or E/F is unramified on A except at π and j = 1.

Proof. Since n is a power of the prime ℓ and $n\alpha = 0$, $\operatorname{per}(\partial_{\pi}(\alpha))$ and $\operatorname{per}(\partial_{\delta}(\alpha))$ are powers of ℓ . Let d' be the maximum of $\operatorname{per}(\partial_{\pi}(\alpha))$ and $\operatorname{per}(\partial_{\delta}(\alpha))$. Then $\partial_{\pi}(d'\alpha) =$ $d'\partial_{\pi}(\alpha) = 0$ and $\partial_{\delta}(d'\alpha) = d'\partial_{\delta}(\alpha) = 0$. In particular $d'\alpha$ is unramified on A. Since κ is a finite field, $d'\alpha = 0$. Hence $\operatorname{per}(\alpha)$ divides d' and $d' = \operatorname{per}(\alpha)$. Thus $\operatorname{per}(\alpha) =$ $\operatorname{per}(\partial_{\pi}(\alpha))$ or $\operatorname{per}(\partial_{\delta}(\alpha))$.

Suppose that $\operatorname{per}(\alpha) = \operatorname{per}(\partial_{\pi}(\alpha))$. Since $\partial_{\pi}(\alpha \otimes F_{\pi}) = \partial_{\pi}(\alpha)$, we have $\operatorname{per}(\partial_{\pi}(\alpha)) \leq \operatorname{per}(\alpha \otimes F_{\pi}) \leq \operatorname{per}(\alpha)$. Thus $\operatorname{per}(\alpha \otimes F_{\pi}) = \operatorname{per}(\partial_{\pi}(\alpha \otimes F_{\pi}))$. Thus, by (4.4), we have $\alpha \otimes F_{\pi} = (E_{\pi}/F_{\pi}, \sigma, \theta\pi)$ for some cyclic unramified extension E_{π}/F_{π} and $\theta \in F_{\pi}$ a unit in the valuation ring of F_{π} .

By (5.1), there exists a Galois extension E/F which is unramified on A except possibly at (δ) such that $E \otimes F_{\pi} \simeq E_{\pi}$. Since E_{π}/F_{π} is cyclic, E/F is cyclic. Since $\theta \in F_{\pi}$ is a unit in the valuation ring of F_{π} and the residue field of F_{π} is a complete discrete valued field with $\overline{\delta}$ as parameter, we can write $\theta = u\delta^{j}\theta_{1}^{n}$ for some unit $u \in A, \theta_{1} \in F_{\pi}$ and $0 \leq j \leq n-1$. Then $\alpha \otimes F_{\pi} \simeq (E, \sigma, u\delta^{j}\pi) \otimes F_{\pi}$. Thus, by (5.5), we have $\alpha = (E, \sigma, u\delta^{i}\pi)$.

If $per(\alpha) = per(\partial_{\delta}(\alpha))$, then, as above, we get $\alpha = (E, \sigma, u\pi^{j}\delta)$ for some cyclic extension E/F which is unramified on A except possibly at π .

The following is proved in ([29, 2.4]) under the assumption that F contains a primitive n^{th} root of unity.

Proposition 5.8. Suppose that κ is a finite field. Let $\alpha \in H^2(F, \mu_n)$. If α is unramified on A except possibly at (π) and (δ) . Then $ind(\alpha) = ind(\alpha \otimes F_{\pi}) = ind(\alpha \otimes F_{\delta})$.

Proof. Suppose that α is unramified on A except possibly at (π) and (δ) . Then, by (5.7), we assume without loss of generality that $\alpha = (E/F, \sigma, \pi \delta^j)$ with E/Funramified on A except possibly at δ . Then $\operatorname{ind}(\alpha) \leq [E : F]$. Since E/F is unramified on A expect possibly at δ , we have $[E : F] = [E_{\pi} : F_{\pi}]$ and $\operatorname{ind}(\alpha \otimes F_{\pi}) = [E_{\pi} : F_{\pi}]$. Thus $[E : F] = [E_{\pi} : F_{\pi}] = \operatorname{ind}(\alpha \otimes F_{\pi}) \leq \operatorname{ind}(\alpha) \leq [E : F]$ and hence $[E : F] = \operatorname{ind}(\alpha \otimes F_{\pi}) = \operatorname{ind}(\alpha)$.

Corollary 5.9. Suppose that κ is a finite field. Let $\alpha \in H^2(F, \mu_n)$. If α is unramified on A except possibly at (π) and (δ) . Then $ind(\alpha) = per(\alpha)$.

Proof. By (5.6), $\operatorname{per}(\alpha) = \operatorname{per}(\alpha \otimes F_{\pi})$ and by (4.5), $\operatorname{ind}(\alpha \otimes F_{\pi}) = \operatorname{per}(\alpha \otimes F_{\pi})$. Thus $\operatorname{per}(\alpha) = \operatorname{ind}(\alpha \otimes F_{\pi})$. By (5.8), we have $\operatorname{ind}(\alpha) = \operatorname{per}(\alpha)$.

The following follows from ([11] and [13]).

Proposition 5.10. Let $\alpha \in H^2(F, \mu_n)$. Let $\phi : \mathscr{X} \to \text{Spec}(A)$ be a sequence of blow-ups and $V = \phi^{-1}(m)$. Then $ind(\alpha) = l.c.m\{ind(\alpha \otimes F_x) \mid x \in V\}$.

Proof. Follows from similar arguments as in the proof of ([11, Theorem 9.11]) and using ([13, Theorem 4.2.1]).

We end this section with the following well known result

Lemma 5.11. Let E/F be a cyclic extension of degree ℓ^d for some $d \ge 1$. If E/F is unramified on A except possibly at δ , then there exist a subextension E_{nr} of E/F and $w \in E_{nr}$ which is a unit in the integral closure of A in E_{nr} such that E_{nr}/F is unramified on A and $E = E_{nr}(\sqrt[\ell^e]{w\delta})$. Further if κ is a finite field, κ contains a primitive ℓ^{th} root of unity and 0 < e < d, then $N_{E_{nr}/F}(w) \in A$ is not an ℓ^{th} power in A.

Proof. Let $E(\pi)$ be the residue field of E at π . Since E/F is unramified at A except possibly at δ , by (5.6), $[E(\pi) : \kappa(\pi)] = [E : F]$. Since E/F is cyclic, $E(\pi)/\kappa(\pi)$ is cyclic. As in the proof of (5.1), there exist a cyclic extension E_0/F unramified on A and a unit w in the integral closure of A in E_0 such that the residue field of $E_0(\sqrt[\ell^e]{w\delta})$ at π is $E(\pi)$. By (5.5), we have $E \simeq E_0(\sqrt[\ell^e]{w\delta})$. Let $E_{nr} = E_0$. Then E_{nr} has the required properties.

Suppose that κ is a finite field and contains a primitive ℓ^{th} root of unity. Let *B* be the integral closure of *A* in E_{nr} . Then *B* is a complete regular local ring with residue field κ' a finite extension of κ .

Let $w_0 = N_{E_{nr}/F}(w) \in A^*$ and $\overline{w}_0 \in \kappa^*$. Suppose that $w_0 \in A^{*\ell}$. Then $\overline{w}_0 \in \kappa^{*\ell}$. Since κ contains a primitive ℓ^{th} root of unity, we have $|\kappa'^*/\kappa'^{*\ell}| = |\kappa^*/\kappa^{*\ell}| = \ell$. Since norm map is surjective from κ' to κ , the norm map induces an isomorphism from $\kappa'^*/\kappa'^{*\ell} \to \kappa^*/\kappa^{*\ell}$. Thus the image of w in κ' is an ℓ^{th} power. Since B is a complete regular local ring, $w \in B^{*\ell}$. Suppose 0 < e < f. Then $\sqrt[\ell]{\delta} \in E$. Since E_{nr}/F is nontrivial unramified extension and $F(\sqrt[\ell]{\delta})/F$ is a nontrivial totally ramified extension of F, we have two distinct degree ℓ subextensions of E/F, which is a contradiction to the fact that E/F is cyclic. Hence $w_0 \notin A^{*\ell}$.

6. Reduced Norms - complete two dimensional regular local rings

Throughout this section we fix the following notation:

- A a complete two dimensional regular local ring
- F the field of fractions of A
- $m = (\pi, \delta)$ the maximal ideal of A
- $\kappa = A/m$ a finite field
- ℓ a prime not equal to char(κ)
- $n = \ell^d$
- $\alpha \in H^2(F, \mu_n)$ is unramified on A except possibly at (π) and (δ)
- $\lambda = w\pi^s \delta^t$, $w \in A$ a unit and $s, t \in \mathbb{Z}$ with $1 \le s, t < n$.

The aim of this section is to prove that if $\alpha \neq 0$ and $\alpha \cdot (\lambda) = 0$, then there exist an extension L/F of degree ℓ and $\mu \in L$ such that $\operatorname{ind}(\alpha \otimes L) < \operatorname{ind}(\alpha)$ and $N_{L/F}(\mu) = \lambda$. We assume that

• F contains a primitive ℓ^{th} root of unity.

We begin with the following

Lemma 6.1. If $\alpha \cdot (\lambda) = 0$, then $s\alpha = (E, \sigma, \lambda)$ for some cyclic extension E of F which is unramified on A except possibly at δ . In particular, if s is coprime to ℓ , then $\alpha = (E', \sigma', \lambda)$ for some cyclic extension E' of F which is unramified on A except possibly at δ .

Proof. By (4.7), there exists an unramified cyclic extension E_{π} of F_{π} such that $s\alpha \otimes F_{\pi} = (E_{\pi}, \sigma, \lambda)$. Let $E(\pi)$ be the residue field of E_{π} . Then $E(\pi)$ is a cyclic extension of $\kappa(\pi)$. By (5.1), there exists a cyclic extension E of F which is unramified on

A except possibly at δ with $E \otimes F_{\pi} \simeq E_{\pi}$. Since E/F is unramified on A except possibly at δ and $\lambda = w\pi^s \delta^t$ with w a unit in A, (E, σ, λ) is unramified on Aexcept possibly at (π) and (δ) . Since α is unramified on A except possibly at (π) and (δ) , $s\alpha - (E, \sigma, \lambda)$ is unramified on A except possibly at (π) and (δ) . Since $s\alpha \otimes F_{\pi} = (E_{\pi}, \sigma, \lambda) = (E, \sigma, \lambda) \otimes F_{\pi}$, by (5.5), $s\alpha = (E, \sigma, \lambda)$.

Lemma 6.2. Suppose that $\alpha \cdot (\lambda) = 0$ and $\lambda \notin F^{*\ell}$. If $\alpha \neq 0$, then $ind(\alpha \otimes F(\sqrt[\ell]{\lambda})) < ind(\alpha)$ and $\alpha \cdot (\sqrt[\ell]{\lambda}) = 0 \in H^3(F(\sqrt[\ell]{\lambda}), \mu_n^{\otimes 2})$.

Proof. Suppose that s is coprime to ℓ . Then, by (6.1), $\alpha = (E', \sigma', \lambda)$ for some cyclic extension E' of F which is unramified on A except possibly at δ . Since $\nu_{\pi}(\lambda) = s$ is coprime to ℓ and E'/F is unramified at π , it follows that $\operatorname{ind}(\alpha) = [E':F]$. In particular, $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\lambda})) \leq [E':F]/\ell < \operatorname{ind}(\alpha)$. Similarly, if t is coprime to ℓ , then $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\lambda})) < \operatorname{ind}(\alpha)$. Further $\alpha \cdot (\sqrt[\ell]{\lambda}) = (E', \sigma', \lambda) \cdot (\sqrt[\ell]{\lambda}) = 0$.

Suppose that s and t are divisible by ℓ . Since $\lambda = w\pi^s \delta^t$, we have $F(\sqrt[\ell]{\lambda}) = F(\sqrt[\ell]{w})$. Let $L = F(\sqrt[\ell]{\lambda}) = F(\sqrt[\ell]{w})$ and B be the integral closure of A in L. Since w is a unit in A, by ([21, Lemma 3.1]), B is a complete regular local ring with maximal ideal generated by π and δ . Since w is not an ℓ^{th} power in F and A is a complete regular local ring, the image of w in A/m is not an ℓ^{th} power. Since $A/(\pi)$ is also a complete regular local ring with residue field A/m, the image of w in $A/(\pi)$ is not an ℓ^{th} power. Since F_{π} is a complete discrete valued field with residue field the field of fractions of $A/(\pi)$, w is not an ℓ^{th} power in F_{π} . Since $\alpha \cdot (\lambda) = 0$ and the residue field of F_{π} is a local field, by (4.9), ind($\alpha \otimes L_{\pi}$) < ind(α). Hence, by (5.8), ind($\alpha \otimes L$) < ind(α).

Since $L_{\pi} = L \otimes F_{\pi}$ and $L_{\delta} = L \otimes F_{\delta}$ are field extension of degree ℓ over F_{π} and F_{δ} respectively and cores $(\alpha \cdot (\sqrt[\ell]{\lambda})) = \alpha \cdot (\lambda) = 0$, by (4.6), $(\alpha \cdot (\sqrt[\ell]{\lambda})) \otimes L_{\pi} = 0$ and $(\alpha \cdot (\sqrt[\ell]{\lambda})) \otimes L_{\delta} = 0$. Hence, by (5.5), $\alpha \cdot (\sqrt[\ell]{\lambda}) = 0$.

Lemma 6.3. Suppose $\alpha = (E/F, \sigma, u\pi\delta^{\ell m})$ for some $m \ge 0$, u a unit in A, E/F a cyclic extension of degree ℓ^d which is unramified on A except possibly at δ and σ a generator of Gal(E/F). Let ℓ^e be the ramification index of E/F at δ and f = d - e. Let $i \ge 0$ be such that $\ell^f + \ell^{di} > \ell m$. Let $v \in A$ be a unit which is not in $F^{*\ell}$ and $L = F(\sqrt[\ell]{v\delta^{\ell f + \ell^{di} - \ell m} + u\pi})$. If f > 0, then $ind(\alpha \otimes L) < ind(\alpha)$

Proof. Let B be the integral closure of A in L and $r = \ell^f + \ell^{di} - \ell m$. Since $\ell^f + \ell^{di} > \ell m$, $L = F(\sqrt[\ell]{v\delta^r + u\pi})$ and $v\delta^r + u\pi$ is a regular prime in A. Thus B is a complete regular local ring (cf. [21, Lemma 3.2]) and π , δ remain primes in B. Note that π and δ may not generate the maximal ideal of B. Let L_{π} and L_{δ} be the completions of L at the discrete valuations given by π and δ respectively. Since $v \notin F^{*\ell}$, $F(\sqrt[\ell]{v})$ is the unique degree ℓ extension of F_{π} which is unramified on A. Since f > 0, there is a subextension E of degree ℓ over F which is unramified on A and hence $F(\sqrt[\ell]{v}) \subset E$.

Since E/F is unramified on A except possibly at δ , by (5.8), $[E:F] = [E_{\pi}:F_{\pi}]$ and hence $\operatorname{ind}(\alpha) = \operatorname{per}(\alpha) = [E:F]$.

Since r is divisible by ℓ , $L_{\pi} \simeq F_{\pi}(\sqrt[\ell]{v})$ and hence $L_{\pi} \subset E_{\pi}$. Thus $\operatorname{ind}(\alpha \otimes L_{\pi}) < \operatorname{ind}(\alpha)$. Since r > 0, $L_{\delta} \simeq F_{\delta}(\sqrt[\ell]{u\pi})$. Since $\alpha = (E/F, \sigma, u\pi\delta^{\ell m})$, $\operatorname{ind}(\alpha \otimes L_{\delta}) < [E \otimes L_{\delta} : L_{\delta}] \leq [E : F]$. In particular by (4.5), $\operatorname{per}(\alpha \otimes F_{\pi}) < \operatorname{ind}(\alpha)$ and $\operatorname{per}(\alpha \otimes F_{\delta}) < \operatorname{ind}(\alpha)$. Since $\alpha \otimes L$ is unramified on B except possibly at π and δ and $H^2(B, \mu_{\ell}) = 0$, $\operatorname{per}(\alpha \otimes L) < \operatorname{ind}(\alpha)$. If d = 1, then $\operatorname{per}(\alpha \otimes L) < \operatorname{ind}(\alpha) = \ell$ and hence $\operatorname{per}(\alpha \otimes L) = \operatorname{ind}(\alpha)$. Suppose that $d \geq 2$.

Let $\phi : \mathscr{X} \to \operatorname{Spec}(B)$ be a sequence of blow-ups such that the ramification locus of $\alpha \otimes L$ is a union of regular curves with normal crossings. Let $V = \phi^{-1}(P)$. To show that $\operatorname{ind}(\alpha \otimes L) < \operatorname{ind}(\alpha)$, by (5.10), it is enough to show that for every point x of V, $\operatorname{ind}(\alpha \otimes L_x) < \operatorname{ind}(\alpha)$.

Let $x \in V$ be a closed point. Then, by (5.9), $\operatorname{ind}(\alpha \otimes L_x) = \operatorname{per}(\alpha \otimes L_x)$. Since $\operatorname{per}(\alpha \otimes L_x) < \operatorname{ind}(\alpha)$, $\operatorname{ind}(\alpha \otimes L_x) < \operatorname{ind}(\alpha)$.

Let $x \in V$ be a codimension zero point. Then $\phi(x)$ is the closed point of Spec(B). Let $\tilde{\nu}$ be the discrete valuation of L given by x. Then $\kappa(\tilde{\nu}) \simeq \kappa'(t)$ for some finite extension κ' over κ and a variable t over κ . Let ν be the restriction of $\tilde{\nu}$ to F.

Suppose that $\nu(\delta^r) < \nu(\pi)$. Then $L \otimes F_{\nu} = F_{\nu}(\sqrt[\ell]{} v \delta^r)$. Since ℓ divides $r, L \otimes F_{\nu} = F_{\nu}(\sqrt[\ell]{} v)$. Since $F(\sqrt[\ell]{} v) \subset E$, $\operatorname{ind}(\alpha \otimes L \otimes F_{\nu}) < \operatorname{ind}(\alpha)$. Suppose that $\nu(\delta^r) > \nu(\pi)$. Then $L \otimes F_{\nu} = F_{\nu}(\sqrt[\ell]{} u\pi)$ and as above $\operatorname{ind}(\alpha \otimes L \otimes F_{\nu}) < \operatorname{ind}(\alpha)$. Suppose that $\nu(\delta^r) = \nu(\pi)$. Let $\lambda = \pi/\delta^r$. Then λ is a unit at ν and $L_{\tilde{\nu}} = F_{\nu}(\sqrt[\ell]{} v + u\lambda)$. We have $u\pi\delta^{\ell m} = u\lambda\delta^{\ell r + \ell m} = u\lambda\delta^{\ell f + \ell^{d i}}$ and

$$\alpha \otimes F_{\nu} = (E \otimes F_{\nu}/F_{\nu}, \sigma \otimes 1, u\pi\delta^{\ell m}) = (E \otimes F_{\nu}/F_{\nu}, \sigma \otimes 1, u\lambda\delta^{\ell^{J}+\ell^{ai}}).$$

Since $[E : F] = \ell^d$, $\alpha \otimes F_{\nu} = (E \otimes F_{\nu}/F_{\nu}, \sigma \otimes 1, u\lambda\delta^{\ell^f})$. Suppose that f = d. Then E/F is unramified and hence every element of A^* is a norm from E. Thus $(E \otimes F_{\nu}/F_{\nu}, \sigma \otimes 1, w_0 u\lambda)$ with $w_0 \in A^* \setminus A^{*\ell}$. Suppose that f < d. Then e = d - f > 0 and hence by (5.11), we have $E = E_{nr}(\sqrt[\ell^e]{w\delta})$, for some unit w in the integral closure of A in E_{nr} , with $N(\sqrt[\ell^d]{w\delta}) = w_1\delta^{\ell^f}$ with $w_1 \in A^* \setminus A^{*\ell}$. Thus

$$\alpha \otimes F_{\nu} = (E \otimes F_{\nu}/F_{\nu}, \sigma \otimes 1, u\lambda\delta^{\ell^{J}}) = (E \otimes F_{\nu}/F_{\nu}, \sigma \otimes 1, w_{0}u\lambda).$$

with $w_0 = w_1^{-1}$.

If $E \otimes F_{\nu}$ is not a field, then $\operatorname{ind}(\alpha \otimes F_{\nu}) < [E : F]$. Suppose $E \otimes F_{\nu}$ is a field. Let $\theta = w_0 u \lambda$. Since $\alpha \otimes F_{\nu} = (E \otimes F_{\nu}/F_{\nu}, \sigma \otimes 1, \theta)$, $\operatorname{ind}(\alpha \otimes L \otimes F_{\nu}) \leq \operatorname{ind}(\alpha \otimes L \otimes F_{\nu}(\sqrt[\ell^{d-1}]{\theta})) \cdot [L \otimes F_{\nu}(\sqrt[\ell^{d-1}]{\theta}) : L \otimes F_{\nu}]$. Since $[L \otimes F_{\nu}(\sqrt[\ell^{d-1}]{\theta}) : L \otimes F_{\nu}] \leq \ell^{d-1} < [E : F]$, it is enough to show that $\alpha \otimes L \otimes F_{\nu}(\sqrt[\ell^{d-1}]{\theta})$ is trivial.

Since $F(\sqrt[\ell]{v})/F$ is the unique subextension of E/F degree ℓ and $[E:F] = \ell^d$, we have $\alpha \otimes F_{\nu}({}^{\ell^{d-1}}\sqrt{\theta}) = (F_{\nu}({}^{\ell^{d-1}}\sqrt{\theta}, \sqrt[\ell]{v})/F({}^{\ell^{d-1}}\sqrt{\theta}), \sigma, {}^{\ell^{d-1}}\sqrt{\theta})$ (cf. 2.1). Let $M = F_{\nu}({}^{\ell^{d-1}}\sqrt{\theta})$. Since κ contains a primitive ℓ^{th} root of unity, we have $\alpha \otimes M = (v, {}^{\ell^{d-1}}\sqrt{\theta})_{\ell}$. Then M is a complete discrete valuation field. Since λ is a unit at ν , θ is a unit at ν . Hence the residue field of M is $\kappa(\nu)({}^{\ell^{d-1}}\sqrt{\theta})$. Since θ and v are units at ν , $\alpha \otimes M = (v, {}^{\ell^{d-1}}\sqrt{\theta})$ is unramified at the discrete valuation of M. Hence it is enough to show that the specialization β of $\alpha \otimes M$ is trivial over $\kappa(\nu)({}^{\ell^{d-1}}\sqrt{\theta}) \otimes L_0$, where L_0 is the residue field of $L \otimes F_{\nu}$ at ν .

Suppose that $L_{\tilde{\nu}}/F_{\nu}$ is ramified. Since $L_{\tilde{\nu}} = F_{\nu}(\sqrt[\ell]{u+v\lambda}), v+u\lambda$ is not a unit at ν . Thus $v = -u\lambda$ modulo $F_{\nu}^{*\ell^d}$ and $\theta = w_0u\lambda = -w_0v$ modulo $F_{\nu}^{*\ell^d}$. In particular $\sqrt[\ell^{d-1}]{\theta} = \sqrt[\ell^{d-1}]{-w_0v}$ modulo $M^{*\ell}$. Since $\overline{v}, \overline{w_0} \in \kappa$ and κ a finite field, $\beta = (\sqrt[\ell^{\ell}]{\overline{v}}, \sqrt[\ell^{d-1}]{\theta}) = (\sqrt[\ell^{\ell}]{\overline{v}}, \sqrt[\ell^{d-1}]{-\overline{w_0v}})$ is trivial.

Suppose that $L_{\tilde{\nu}}/F_{\nu}$ is unramified. Then $L_0 = \kappa(\pi)(\sqrt[\ell]{\overline{\nu} + \overline{u\lambda}})$. Since $\kappa(\pi)$ is a global field and $d-1 \ge 1$, by (4.13), $\beta \otimes L_0(\sqrt[\ell]{d-1}\overline{\theta}) = 0$.

Lemma 6.4. Suppose L_{π}/F_{π} and L_{δ}/F_{δ} are unramified cyclic field extensions of degree ℓ and $\mu_{\pi} \in L_{\pi}$, $\mu_{\delta} \in L_{\delta}$ such that

• $ind(\alpha \otimes L_{\pi}) < d_0$ for some d_0 ,

- $\lambda = N_{L_{\pi}/F_{\pi}}(\mu_{\pi})$ and $\lambda = N_{L_{\delta}/F_{\delta}}(\mu_{\delta})$,
- $\alpha \cdot (\mu_{\pi}) = 0 \in H^3(L_{\pi}, \mu_n^{\otimes 2}), \ \alpha \cdot (\mu_{\delta}) = 0 \in H^3(L_{\delta}, \mu_n^{\otimes 2}),$
- if $\lambda \in F_P^{*\ell}$ and $\alpha = (E/F, \sigma, v\pi)$ for some cyclic extension E/F which is unramified on A except possibly at δ , then $L_{\delta}/F_{\delta} = F_{\delta}(\sqrt[\ell]{v\pi})$.
- Then there exists a cyclic extension L/F of degree ℓ and $\mu \in L$ such that
- $ind(\alpha \otimes L) < d_0$,
- $\lambda = N_{L/F}(\mu),$
- $\alpha \cdot (\mu) = 0 \in H^3(L, \mu_n^{\otimes 2}),$
- $L \otimes F_{\pi} \simeq L_{\pi}$ and $L \otimes F_{\delta} \simeq L_{\delta}$.

Proof. Since $\alpha \cdot (\mu_{\pi}) = 0 \in H^3(L_{\pi}, \mu_n^{\otimes 2})$ and $\lambda = N_{L_{\pi}/F_{\pi}}(\mu_{\pi})$, by taking the corestriction, we see that $\alpha \cdot (\lambda) = 0 \in H^3(F_{\pi}, \mu_n^{\otimes 2})$. Since $\alpha \cdot (\lambda)$ is unramified on A except possibly at π and δ , by (5.5), $\alpha \cdot (\lambda) = 0$.

Suppose that $\lambda \notin F^{*\ell}$. Then, by (2.6) and (6.2), $L = F(\sqrt[\ell]{\lambda})$ and $\mu = \sqrt[\ell]{\lambda}$ have the required properties.

Suppose that $\lambda \in F^{*\ell}$. Let $L(\pi)$ and $L(\delta)$ be the residue fields of L_{π} and L_{δ} respectively. Since L_{π}/F_{π} and L_{δ}/F_{δ} are unramified cyclic extensions of degree ℓ , $L(\pi)/\kappa(\pi)$ and $L(\delta)/\kappa(\delta)$ are cyclic extensions of degree ℓ . Since F contains a primitive ℓ^{th} root of unity, we have $L(\pi) = \kappa(\pi)[X]/(X^{\ell} - a)$ and $L(\delta) = \kappa(\delta)[X]/(X^{\ell} - b)$ for some $a \in \kappa(\pi)$ and $b \in \kappa(\delta)$. Since $\kappa(\pi)$ is a complete discretely valued field with $\overline{\delta}$ a parameter, without loss of generality we assume that $a = \overline{u_1}\overline{\delta}^{\epsilon}$ for some unit $u_1 \in A$ and $\epsilon = 0$ or 1. Similarly we have $b = \overline{u_2}\pi^{\epsilon'}$ for some unit $u_2 \in A$ and $\epsilon' = 0$ or 1.

By (5.7), we assume that $\alpha = (E/F, \sigma, u\pi\delta^j)$ for some cyclic extension E/F which is unramified on A except possibly at δ , u a unit in A and $j \ge 0$. Then $\operatorname{ind}(\alpha) = [E : F]$. Let E_0 be the residue field of E at π . Then $[E : F] = [E_0 : \kappa(\pi)]$. Since $\partial_{\pi}(\alpha) = (E_0/\kappa(\pi), \overline{\sigma})$, $\operatorname{per}(\partial_{\pi}(\alpha)) = [E : F] = \operatorname{ind}(\alpha)$. Since L_{π}/F_{π} is an unramified cyclic extension of degree ℓ and $\operatorname{ind}(\alpha \otimes L_{\pi}) < \operatorname{ind}(\alpha)$, the residue field $L(\pi)$ of L_{π} is the unique degree ℓ subextension of $E_0/\kappa(\pi)$.

Suppose that $\epsilon = \epsilon' = 0$. Since L_{π} and L_{δ} are fields, u_1 and u_2 are not ℓ^{th} powers. Let L/F be the unique cyclic field extension of degree ℓ which is unramified on A. Then $L \otimes F_{\pi} \simeq L_{\pi}$ and $L \otimes F_{\delta} \simeq L_{\delta}$. Let B be the integral closure of A in L. Then B is a regular local ring with maximal ideal (π, δ) and hence by (5.8) $\operatorname{ind}(\alpha \otimes L) < \operatorname{ind}(\alpha)$.

Suppose $\epsilon = 1$. Then $L_{\pi} = F_{\pi}(\sqrt[\ell]{u_1\delta})$ and $L(\pi) = \kappa(\pi)(\sqrt[\ell]{u_1\delta})$. Since $E_0/\kappa(\pi)$ is a cyclic extension containing a totally ramified extension, $E_0/\kappa(\pi)$ is a totally ramified cyclic extension. Thus $\kappa(\pi)$ contains a primitive $\ell^{d^{\text{th}}}$ root of unity and $E_0 = \kappa(\pi)(\sqrt[\ell^d]{u_1\delta})$. In particular F contains a primitive $\ell^{d^{\text{th}}}$ root of unity and $\alpha = (u_1\delta, u\pi\delta^j) = (u_1\delta, u'\pi)$. Since L_{δ}/F_{δ} is an unramified extension of degree ℓ with $\operatorname{ind}(\alpha \otimes L_{\delta}) < \operatorname{ind}(\alpha)$, as above, we have $L_{\delta} = F_{\delta}(\sqrt{u'\pi})$ and hence $\alpha = (u_1\delta, u_2\pi)$. Let $L = F(\sqrt[\ell]{u_1\delta + u_2\pi})$. Then $L \otimes F_{\pi} \simeq L_{\pi}$ and $L \otimes F_{\delta} \simeq L_{\delta}$. Since for any $a, b \in F^*, (a, b) = (a+b, -a^{-1}b)$, we have $\alpha = (u_1\pi + u_2\delta, -u_1^{-1}\pi^{-1}u_2\delta)$. In particular $\operatorname{ind}(\alpha \otimes L) < \operatorname{ind}(\alpha)$.

Suppose that $\epsilon = 0$ and $\epsilon' = 1$. Suppose *j* is coprime to ℓ . Then, by (4.15), $\operatorname{ind}(\alpha) = \operatorname{per}(\partial_{\delta}(\alpha))$ and as in the proof of (5.7), we have $\alpha = (E'/F, \sigma', v\delta\pi^{j'})$ for some cyclic extension E'/F which is unramified on *A* except possibly at π . Thus, we have the required extension as in the case $\epsilon = 1$.

Suppose j is divisible by ℓ . Since $\epsilon = 0$, $L_{\pi} = F_{\pi}(\sqrt[\ell]{u_1})$. Since the residue field $L_{\pi}(\pi)$ of L_{π} is contained in the residue field E_0 of E at π , $F(\sqrt[\ell]{u_1}) \subset E$ and hence E/F is not totally ramified at δ . Since E/F is unramified on A except possibly at δ , by (5.11), $E = E_{nr}(\sqrt[\ell^e]{w\delta})$ for some unit w in the integral closure of A in E_{nr} . Suppose e = 0. Then $E = E_{nr}/F$ is unramified on A. Since κ is a finite field and A is complete, every unit in A is a norm from E/F. Thus multiplying $u\pi\delta^j$ by a norm from E/F we assume that $\alpha = (E/F, \sigma, u_2\pi\delta^j)$. Suppose that e > 0. Then, by (5.11), $N_{E/F}(w\delta) = w_1\delta^{\ell^f}$ with $w_1 \in A^* \setminus A^{*\ell}$. Since $A^*/A^{*\ell}$ is a cyclic group of order ℓ , we have $\alpha = (E/F, \sigma, u_2\pi\delta^{j+j'\ell^f})$ for some j'. Since j is divisible by ℓ and $f \geq 1$, $j + j'\ell^f$ is divisible by ℓ . Hence, we assume that $\alpha = (E/F, \sigma, u_2\pi\delta^{\ell^m})$ for some m. Thus, by (6.3), there exists $i \geq 0$ such that $ind(\alpha \otimes L) < ind(\alpha)$ for $L = F(\sqrt[\ell]{u_1}\delta^{\ell^{f+di}} + u_2\pi\delta^{\ell m})$.

By the choice, we have L/F is the unique unramified extension or $L = F(\sqrt[\ell]{u_1\delta + u_2\pi})$ or $L = F(\sqrt[\ell]{u_1\delta^{\ell^{f+di}} + u_2\pi\delta^{\ell m}})$ with $\ell^{f+di} > \ell m$. Let B be the integral closure of A in L. Then B is a complete regular local ring with π and δ remain prime in B. Since $\lambda = w\pi^s \delta^t$ and $\lambda \in F_P^{*\ell}$, we have $\lambda = w_0^\ell \pi^{\ell s_1} \delta^{\ell t_1}$ for some unit $w_0 \in A$. Let $\mu = w_0 \pi^{s_1} \delta^{t_1} \in F$. Then $N_{L/F}(\mu) = \mu^\ell = \lambda$. Since $\alpha \cdot (\lambda) = 0$, by (4.6), $\alpha \cdot (\mu) = 0$ in $H^3(L_{\pi}, \mu_n^{\otimes 2})$ and $H^3(L_{\delta}, \mu_n^{\otimes 2})$. Hence $\alpha \cdot (\mu)$ is unramified at all height one prime ideals of B. Since B is a complete regular local ring with residue field κ finite, $\alpha \cdot (\mu) = 0$ (5.3).

Lemma 6.5. Suppose that $\nu_{\pi}(\lambda)$ is divisible by ℓ , α is unramified on A except possibly at π and δ , and $\alpha \cdot (\lambda) = 0$. Let L_{π} be a cyclic unramified or split extension of F_{π} of degree ℓ , $\mu_{\pi} \in L_{\pi}$ and $d_0 \geq 2$ such that

- $N_{L_{\pi}/F_{\pi}}(\mu_{\pi}) = \lambda,$
- $ind(\alpha \otimes L_{\pi}) < d_0,$
- $\alpha \cdot (\mu_{\pi}) = 0$ in $H^{3}(L_{\pi}, \mu_{n})$.

Then there exists an extension L over F of degree ℓ and $\mu \in L$ such that

- $N_{L/F}(\mu) = \lambda$,
- $ind(\alpha \otimes L) < d_0$,
- $\alpha \cdot (\mu) = 0 \in H^3(L, \mu_n^{\otimes 2})$ and
- there is an isomorphism $\phi: L_{\pi} \to L \otimes F_{\pi}$ with

$$\phi(\mu_{\pi})(\mu_P \otimes 1)^{-1} \in (L_P \otimes F_{\pi})^{\ell^m},$$

for all $m \geq 1$.

Proof. Since $\nu_{\pi}(\lambda)$ is divisible by $\ell, \lambda = w\pi^{r\ell}\delta^s$ for some $w \in A$ a unit.

Suppose that $L_{\pi} = \prod F_{\pi}$ is a split extension. Let $L = \prod F$ be the split extension of degree ℓ . Since $\mu_{\pi} \in L_{\pi}$, we have $\mu_{\pi} = (\mu_1, \cdots, \mu_{\ell})$ with $\mu_i \in F_{\pi}$. Write $\mu_i = \theta_i \pi^{r_i}$ with $\theta_i \in F_{\pi}$ a unit at its discrete valuation. Since $N_{L_{\pi}/F_{\pi}}(\mu_{\pi}) = \lambda = w\pi^{r\ell}$, $\theta_1 \cdots \theta_{\ell} = w$ and $\pi^{r_1 + \cdots + r_{\ell}} = \pi^{r\ell}$. For $2 \leq i \leq \ell$, let $\bar{\theta}_i$ be the image of θ_i in the residue field $\kappa(\pi)$ of F_{π} . Since $\kappa(\pi)$ is the field of fractions of $A/(\delta)$ and $A/(\delta)$ is a complete discrete valuation ring with $\bar{\delta}$ as a parameter, we have $\bar{\theta}_i = \bar{u}_i \bar{\delta}^{s_i}$ for some unit $u_i \in A$. For $2 \leq i \leq \ell$, let $\tilde{\theta}_i = u_i \delta^{s_i} \in F$, $\tilde{\theta}_1 = w \tilde{\theta}_2^{-1} \cdots \tilde{\theta}_{\ell}^{-1}$ and $\mu = (\tilde{\theta}_1 \pi^{r_1}, \cdots, \tilde{\theta}_{\ell} \pi^{r_{\ell}}) \in L = \prod F$. Then $N_{L/F}(\mu) = \lambda$. Since $\tilde{\theta}_i \pi^{r_i} \mu_i^{-1}$ is a unit at π with image 1 in $\kappa(\pi)$, $\tilde{\theta}_i \pi^{r_i} \mu_i^{-1} \in F_{\pi}^{\ell^m}$ for any $m \geq 1$. In particular $\alpha \cdot (\tilde{\theta}_i \pi^{r_i}) = \alpha \cdot (\mu_i) = 0 \in H^3(F_{\pi}, \mu_n^{\otimes 2})$. Since α is unramified on A except possibly at π and δ and $\tilde{\theta}_i = u_i \delta^{t_i}$ with $u_i \in A$ a unit, $\alpha \cdot (\tilde{\theta}_i \pi^{r_i})$ is unramified on A except possibly at π and δ . Thus, by (5.5), $\alpha \cdot (\tilde{\theta}_i \pi^{r_i}) = 0 \in H^3(F, \mu_n^{\otimes 2})$. Since ind $(\alpha \otimes L_{\pi}) < d_0$ and L_{π} is the split extension, $\operatorname{ind}(\alpha \otimes F_{\pi}) < d_0$. Since α is unramified on A except possibly at π and δ , by (5.8), $\operatorname{ind}(\alpha) < d_0$. Thus L and $\mu = (\tilde{\theta}_1 \pi^{r_1}, \cdots, \tilde{\theta}_{\ell} \pi^{r_{\ell}}) \in L$ have the required properties.

Suppose that L_{π} is a field extension of F_{π} . By (5.1), there exists a cyclic extension L of F of degree ℓ which is unramified on A except possibly at δ with $L \otimes F_{\pi} \simeq L_{\pi}$. Let B be the integral closure of A in L. By the construction of L, either L/F is unramified A or $L = F(\sqrt[\ell]{u\delta})$ for some unit $u \in A$. Replacing δ by $u\delta$, we assume that L/F is unramified on A or $L = F(\sqrt[\ell]{\delta})$. In particular, B is a regular local ring with maximal ideal generated by (π, δ') for $\delta' = \delta$ or $\delta' = \sqrt[\ell]{\delta}$ (cf. [21, Lemma 3.2]). Since α is unramified on A except possibly at π and δ , $\alpha \otimes L$ is unramified on B except possibly at π and δ' . Since $\ln(\alpha \otimes L_{\pi}) < d_0$, by (5.8), $\ln(\alpha \otimes L) = \ln(\alpha \otimes L_{\pi}) < d_0$.

Since L_{π}/F_{π} is unramified and $N_{L_{\pi}/F_{\pi}}(\mu_{\pi}) = \lambda = w\pi^{r\ell}\delta^s$, we have $\mu_{\pi} = \theta_{\pi}\pi^r$ for some $\theta_{\pi} \in L_{\pi}$ which is a unit at its discrete valuation. Let $\overline{\theta}_{\pi}$ be the image of θ_{π} in $L(\pi)$. Since $L(\pi)$ is the field of fractions of the complete discrete valuation ring $B/(\pi)$ and $\overline{\delta'}$ is a parameter in $B/(\pi)$, we have $\overline{\theta}_{\pi} = \overline{v}\overline{\delta'}^t$ for some unit $v \in B$. Since $N_{L(\pi)/\kappa(\pi)}(\overline{\theta}_{\pi}) = \overline{w}\overline{\delta}^s$, it follows that $N_{L(\pi)/\kappa(\pi)}(\overline{v}) = \overline{w}$. Since w is a unit in A, there exists a unit $\tilde{v} \in B$ with $N_{L/F}(\tilde{v}) = w$ and $\overline{\tilde{v}} = \overline{v}$. Let $\mu = \tilde{v}\pi^r\delta'^t \in L$. Then $\mu\mu_{\pi}^{-1} \in L_{\pi}$ is a unit in the valuation ring at π with the image 1 in the residue field $L(\pi)$ and hence $\mu\mu_{\pi}^{-1} \in L_{\pi}^{\ell^m}$ for all $m \geq 1$. In particular $\alpha \cdot (\mu) = \alpha \cdot (\mu_{\pi}) = 0 \in H^3(L_{\pi}, \mu_n^{\otimes 2})$. Since ind $(\alpha \otimes L_{\pi}) < d_0$, by (5.8), ind $(\alpha \otimes L) < d_0$. Since $\alpha \cdot (\mu) = 0$ in $H^3(L_{\pi}, \mu_n^{\otimes 2})$, α is unramified on A except possibly at π and the support of μ on A is at most π , by (5.5), $\alpha \cdot (\mu) = 0$ in $H^3(L, \mu_n^{\otimes 2})$.

Lemma 6.6. Suppose that $\alpha \cdot (\lambda) = 0$ and $\nu_{\delta}(\lambda) = s\ell$. Suppose that $\alpha = (E/F, \sigma, \pi\delta^m)$ for some cyclic extension E/F which is unramified on A except possibly at δ . Let E_{δ} be the lift of the residue of α at δ . If $s\alpha \otimes E_{\delta} = 0$, then there exists an integer $r_1 \geq 0$ such that $w_1 \delta^{mr_1 - s}$ is a norm from the extension E/F for some unit $w_1 \in A$.

Proof. Write $\alpha \otimes F_{\delta} = \alpha' + (E_{\delta}/F_{\delta}, \sigma_{\delta}, \delta)$ as in (4.1). Since $\alpha \otimes E_{\delta} = \alpha' \otimes E_{\delta}$, $s\alpha' \otimes E_{\delta} = 0$. Hence $s\alpha' = (E_{\delta}, \sigma, \theta)$ for some $\theta \in F_{\delta}$. Since α' and E_{δ}/F_{δ} are unramified at δ , we assume that $\theta \in F_{\delta}$ is a unit at δ . Since the residue field $\kappa(\delta)$ of F_{δ} is a complete discrete valued field with the image of π as a parameter, without loss of generality we assume that $\theta = w_0 \pi^{r_1}$ for unit $w_0 \in A$ and $r_1 \geq 0$. Let $\lambda_1 = w_0 \pi^{r_1} \delta^s$. Since $s\alpha' = (E_{\delta}, \sigma_{\delta}, \theta)$, by (4.7), $\alpha \cdot (\lambda_1) = 0 \in H^3(F_{\delta}, \mu_n^{\otimes 2})$. Since α is unramified on A except possibly at π, δ and $\lambda_1 = w_0 \pi^{r_1} \delta^s$ with $w_0 \in A$ a unit, $\alpha \cdot (\lambda_1)$ is unramified in A except possibly at π and δ . Hence, by (5.5), $\alpha \cdot (\lambda_1) = 0 \in H^3(F, \mu_n^{\otimes 2})$. We have

$$0 = \partial_{\pi}(\alpha \cdot (\lambda_1)) = \partial_{\pi}((E/F, \sigma, u\pi\delta^m) \cdot (w_0\pi^{r_1}\delta^s)) = (E(\pi)/\kappa(\pi), \overline{\sigma}, (-1)^{r_1}\overline{u}^{r_1}\overline{w}_1^{-1}\overline{\delta}^{mr_1-s}).$$

Since $(E/F, \sigma, (-1)^{r_1} w_0^{-1} \delta^{mr_1 - s})$ is unramified on A except possibly at π and δ , by (5.5), $(E/F, \sigma, (-1)^{r_1} w_0^{-1} \delta^{mr_1 - s}) = 0$. In particular $(-1)^{r_1} w_0^{-1} \delta^{mr_1 - s}$ is a norm from the extension E/F.

Lemma 6.7. Suppose that $\alpha \cdot (\lambda) = 0$ and $\lambda = w\pi^r \delta^{s\ell}$ for some unit $w \in A$ and r coprime to ℓ . Let E_{δ} be the lift of the residue of α at δ . If $s\alpha \otimes E_{\delta} = 0$, then there exists $\theta \in A$ such that

- $\alpha \cdot (\theta) = 0$,
- $\nu_{\pi}(\theta) = 0$,
- $\nu_{\delta}(\theta) = s$.

Proof. Since r is coprime to ℓ , by (6.1), $\alpha = (E/F, \sigma, \lambda)$ for some cyclic extension E/F which is unramified on A except possible at δ . Let t = [E : F]. Since t is a power of ℓ and r is coprime to ℓ , there exists an integer $r' \geq 1$ such that $rr' \equiv 1$ modulo t. We have

$$\alpha = \alpha^{rr'} = (E/F, \sigma, w\pi^r \delta^{s\ell})^{rr'} = (E/F, \sigma)^r \cdot (w\pi^r \delta^{s\ell})^{r'} = (E/F, \sigma)^r \cdot (w^{r'} \pi \delta^{r's\ell}).$$

Since r is coprime to ℓ , we also have $(E/F, \sigma)^r = (E/F, \sigma^{r'})$ (cf. §2) and hence $\alpha = (E/F, \sigma^r, \pi \delta^{r's\ell})$. Thus, by (6.6), there exist a unit $w_1 \in A$ and $r_1 \geq 0$ such that $w_1 \delta^{r's\ell r_1 - s}$ is a norm from E/F. Since $r'\ell r_1 - 1$ is coprime to ℓ , $r'\ell r_1 - 1$ is coprime to t and hence there exists an integer $r_1 \geq 0$ such that $(r'\ell r_1 - 1)r_2 \equiv 1 \mod t$. In particular $w_1^{r_2} \delta^s \equiv (w_1 \delta^{r's\ell r_1 - s})^{r_2} \mod F^{*t}$ and hence $w_1^{r_2} \delta^s$ is a norm from E/F. Thus $\theta = w_1^{r_2} \delta^s$ has the required properites.

Lemma 6.8. Let E_{π} and E_{δ} be the lift of the residues of α at π and δ respectively. Suppose that $\alpha \cdot (\lambda) = 0$ and $\lambda = w\pi^{r\ell}\delta^{s\ell}$ for some unit $w \in A$. If $\alpha \cdot (\lambda) = 0$, $r\alpha \otimes E_{\pi} = 0$ and $s\alpha \otimes E_{\delta} = 0$, then there exists $\theta \in A$ such that

- $\alpha \cdot (\theta) = 0$,
- $\nu_{\pi}(\theta) = r$,
- $\nu_{\delta}(\theta) = s.$

Proof. By (5.7), we assume that $\alpha = (E/F, \sigma, u\pi\delta^m)$ for some extension E/F which is unramified on A except possible at δ and $m \ge 0$. Without loss of generality, we assume that $0 \le m < [E : F]$. By (6.6), there exists an integer $r_1 \ge 0$ such that $w_1\delta^{mr_1-s}$ is a norm from E/F. Let t = [E - F] and $\theta = (-u\pi + \delta^{t-m})^{r_1-r}w_1^{-1}(-u)^r\pi^r\delta^s$. Since t - m > o, we have $\nu_{\pi}(\theta) = r$ and $\nu_{\delta}(\theta) = s$.

Now we show that $\alpha \cdot (\theta) = 0$. Since t - m > 0, we have $(-u\pi + \delta^{t-m})^{r_1-r} = (-u\pi)^{r_1-r}$ modulo δ and hence $\theta \equiv (-u)^{r_1-r}\pi^{r_1-r}w_1^{-1}(-u)^r\pi^r\delta^s = w_1^{-1}(-u)^{r_1}\pi^{r_1}\delta^s$ modulo F_{δ}^{*t} . Since $w_1\delta^{mr_1-s}$ is a norm from E/F, we have

$$\begin{aligned} (\alpha \cdot (\theta)) \otimes F_{\delta} &= (E/F, \sigma, u\pi\delta^{m}) \cdot (w_{1}^{-1}(-u)^{r_{1}}\pi^{r_{1}}\delta^{s}) \otimes F_{\delta} \\ &= (E/F, \sigma, u\pi\delta^{m}) \cdot (w_{1}^{-1}(-u)^{r_{1}}\pi^{r_{1}}\delta^{s}w_{1}\delta^{mr_{1}-s}) \otimes F_{\delta} \\ &= (E/F, \sigma, u\pi\delta^{m}) \cdot ((-u)^{r_{1}}\pi^{r_{1}}\delta^{mr_{1}}) \otimes F_{\delta} \\ &= (E/F, \sigma, u\pi\delta^{m}) \cdot ((-u\pi\delta^{m})^{r_{1}}) \otimes F_{\delta} = 0. \end{aligned}$$

Thus $\alpha \cdot (\theta)$ is unramified at δ .

We have $(-u\pi + \delta^{t-m})^{r_1-r} \equiv \delta^{t(r_1-r)+m(r-r_1)}$ modulo π and hence

$$\theta \equiv \delta^{t(r_1-r)+m(r-r_1)} w_1^{-1} (-u)^r \pi^r \delta^s \equiv (-u\pi\delta^m)^r (w_1\delta^{mr_1-s})^{-1} \mod F_{\pi}^{*t}.$$

Since $w_1 \delta^{mr_1 - s}$ is a norm from E/F and t = [E : F], we have

$$(\alpha \cdot (\theta)) \otimes F_{\pi} = (E/F, \sigma, u\pi\delta^m) \cdot ((-u\pi\delta^m)^r (w_1\delta^{mr_1-s})^{-1}) \otimes F_{\pi} = (E/F, \sigma, u\pi\delta^m) \cdot ((-u\pi\delta^m)^r) \otimes F_{\pi} = 0.$$

In particular $\alpha \cdot (\theta)$ is unramified at δ .

Let γ be a prime in A with $(\gamma) \neq (\pi)$ and $(\gamma) \neq (\delta)$. Since α is unramified on A except possibly at π and δ , if γ does not divide θ , then $\alpha \cdot (\theta)$ is unramified at γ . Suppose γ divides θ . Then $\gamma = -u\pi + \delta^{t-m}$. Thus $u\pi\delta^m \equiv \delta^t$ modulo γ . Since $\partial_{\gamma}(\alpha \cdot (\theta)) = (E(\theta), \overline{\sigma}, \overline{u\pi}\overline{\delta}^m)$, where $E(\theta)$ is the residue field of E at θ and $\overline{}$ denotes the image modulo γ , we have $\partial_{\gamma}(\alpha \cdot (\theta)) = (E(\theta), \overline{\sigma}, \overline{u\pi}\overline{\delta}^m) = (E(\theta), \overline{\sigma}, \overline{\delta}^t) = 0$.

Hence $\alpha \cdot (\theta)$ is unramified on A. Since $\alpha \cdot (\theta) \otimes F_{\pi} = 0$, by (5.5), we have $\alpha \cdot (\theta) = 0$.

7. Patching

We fix the following data:

- R a complete discrete valuation ring,
- K the field of fractions of R,
- κ the residue field of R,
- ℓ a prime not equal to char(κ) and $n = \ell^d$ for some $d \ge 1$.
- X a smooth projective geometrically integral variety over K,
- F the function field of X,
- $\alpha \in H^2(F, \mu_n), \, \alpha \neq 0,$
- $\lambda \in F^*$ with $\alpha \cdot (\lambda) = 0$,
- \mathscr{X} a normal proper model of X over R and X_0 the reduced special fibre of \mathscr{X} .

• \mathscr{P}_0 a finite set of closed points of X_0 containing all the points of intersection of irreducible components of X_0 .

For $x \in \mathscr{X}$, let A_x be the completion of the regular local ring at x on \mathscr{X} , F_x the field of fractions of \hat{A}_x and $\kappa(x)$ the residue field at x. Let $\eta \in X_0$ be a codimension zero point and $P \in X_0$ be a closed point such that P is in the closure of η . For abuse of the notation we denote the closure of η by η and say that P is a point of η . A pair (P,η) of a closed point P and a codimension zero point of X_0 is called a **branch** if P is in η . Let (P,η) be a branch. Let $F_{P,\eta}$ be the completion of F_P at the discrete valuation on F_P associated to η . Then F_x and F_P are subfields of $F_{P,x}$. Since $\kappa(\eta)$ is the function field of the curve η , any closed point of η gives a discrete valuation on $\kappa(\eta)$. The residue field $\kappa(\eta)_P$ of $F_{P,\eta}$ is the completion of $\kappa(\eta)$ at the discrete valuation on $\kappa(\eta)$ given by P. Let η be a codimension zero point of X_0 and $U \subset \eta$ be a non-empty open subset. Let A_U be the ring of all those functions in F which are regular at every closed point of U. Let t be parameter in R. Then $t \in R_{U_\eta}$. Let \hat{A}_U be the (t)-adic completion of A_U and F_U be the field of fractions of \hat{A}_U . Then $F \subseteq F_U \subseteq F_n$.

We begin with the following result, which follows from ([11, Theorem 9.11]) (cf. proof of [22, Theorem 2.4]).

Proposition 7.1. For each irreducible component X_{η} of X_0 , let U_{η} be a non-empty proper open subset of X_{η} and $\mathscr{P} = X_0 \setminus \bigcup_{\eta} U_{\eta}$, where η runs over the codimension zero points of X_0 . Suppose that $\mathscr{P}_0 \subseteq \mathscr{P}$. Let L be a finite extension of F. Suppose that there exists $N \ge 1$ such that for each codimension zero point η of X_0 , ind($\alpha \otimes$ $L \otimes F_{U_{\eta}}$) $\le N$ and for every closed point $P \in \mathscr{P}$, ind($\alpha \otimes L \otimes F_P$) $\le N$. Then ind($\alpha \otimes L$) $\le N$.

Proof. Let \mathscr{Y} be the integral closure of \mathscr{X} in L and $\phi : \mathscr{Y} \to \mathscr{X}$ be the induced map. Let \mathscr{P}' be a finite set if closed points of \mathscr{Y} containing points of the intersection of distinct irreducible curves on the special fibre Y_0 of \mathscr{Y} and inverse image of \mathscr{P} under ϕ . Let U be an irreducible component of $Y_0 \setminus \mathscr{P}'_0$. Then $\phi(U) \subset U_\eta$ for some U_η and there is a homomorphism of algebras from $L \otimes F_{U_\eta}$ to L_U . (Note that $L \otimes F_{U_\eta}$ may be a product of fields). Since $\operatorname{ind}(\alpha \otimes L \otimes F_{U_\eta}) \leq d$, we have $\operatorname{ind}(\alpha \otimes L_U) \leq N$. Let $Q \in \mathscr{P}'$. Suppose $\phi(Q) = P \in \mathscr{P}$. Then there is a homomorphism of algebras from $L \otimes F_P$ to L_Q . (Once again note that $L \otimes F_P$ may be a product of fields). Since $\operatorname{ind}(\alpha \otimes L \otimes F_P) \leq N$, $\operatorname{ind}(\alpha \otimes L_Q) \leq N$. Suppose that $\phi(Q) \in U_\eta$ for some U_η . Then there is a homomorphism of algebras from $L \otimes F_{U_\eta}$ to L_Q . Thus $\operatorname{ind}(\alpha \otimes L_Q) \leq N$. Therefore, by ([11, Theorem 9.11]), $\operatorname{ind}(\alpha \otimes L) \leq N$.

27

Lemma 7.2. Let η be a codimension zero point of X_0 . Suppose there exists a field extension or split extension L_{η}/F_{η} of degree ℓ and $\mu_{\eta} \in L_{\eta}$ such that

1) $N_{L_{\eta}/F_{\eta}}(\mu_{\eta}) = \lambda$ 2) $ind(\alpha \otimes L_{\eta}) < ind(\alpha)$ 3) $\alpha \cdot (\mu_{\eta}) = 0 \in H^{3}(L_{\eta}, \mu_{n}^{\otimes 2}).$ Then there exists a non-empty open subset U_{η} of η , a split or field extension $L_{U_{\eta}}/F_{U_{\eta}}$ of degree ℓ and $\mu_{U_{\eta}} \in L_{U_{\eta}}$ such that 1) $N_{L_{U_{\eta}}/F_{U_{\eta}}}(\mu_{U_{\eta}}) = \lambda$ 2) $ind(\alpha \otimes L_{\eta}) < ind(\alpha)$ 3) $\alpha \cdot (\mu_{U_{\eta}}) = 0 \in H^{3}(L_{U_{\eta}}, \mu_{n}^{\otimes 2})$ 4) there is an isomorphism $\phi_{U_{\eta}} : L_{U_{\eta}} \otimes F_{\eta} \to L_{\eta}$ with $\phi_{U_{\eta}}(\mu_{U_{\eta}} \otimes 1)\mu_{\eta}^{-1} \equiv 1$ modulo the radical of the integral closure of \hat{R}_{η} in L_{η} . Further if L_{η}/F_{η} is cyclic, then $L_{U_{\eta}}/F_{U_{\eta}}$ is cyclic.

Proof. Suppose $L_{\eta} = \prod F_{\eta}$ is the split extension of degree ℓ . Write $\mu_{\eta} = (\mu_1, \cdots, \mu_{\ell})$ with $\mu_i \in F_{\eta}$. Then $\lambda = N_{L_{\eta}/F_{\eta}}(\mu_{\eta}) = \mu_1 \cdots \mu_{\ell}$. Since $\operatorname{ind}(\alpha \otimes L_{\eta}) = \operatorname{ind}(\alpha \otimes F_{\eta}) < \operatorname{ind}(\alpha)$, by ([11, Proposition 5.8], [18, Proposition 1.17]), there exists a non-empty open subset U_{η} of η such that $\operatorname{ind}(\alpha) \otimes F_{U_{\eta}} < \operatorname{ind}(\alpha)$. Since F_{η} is the completion of F at the discrete valuation given by η , there exist $\theta_i \in F^*$, $1 \leq i \leq \ell$, such that $\theta_i \mu_i^{-1} \equiv 1$ modulo the maximal ideal of \hat{R}_{η} . Let $L_{U_{\eta}} = \prod F_{U_{\eta}}$ and $\mu_{U_{\eta}} = (\lambda(\theta_2 \cdots \theta_{\ell})^{-1}, \theta_2, \cdots, \theta_{\ell}) \in L_{U_{\eta}}$. Then $N_{L_{U_{\eta}/F_{U_{\eta}}}}(\mu_{U_{\eta}}) = \lambda$. Since $\alpha \cdot (\theta_i) \in$ $H^3(F_{U_{\eta}}, \mu_n^{\otimes 2})$ and $\alpha \cdot (\theta_i) = 0 \in H^3(F_{\eta}, \mu_n^{\otimes 2})$, by ([12, Proposition 3.2.2]), there exists a non-empty open subset $V_{\eta} \subseteq U_{\eta}$ such that $\alpha \cdot (\theta_i) = 0 \in H^3(F_{V_{\eta}}, \mu_n^{\otimes 2})$. By replacing U_{η} by V_{η} , we have the required $L_{U_{\eta}}$ and $\mu_{U_{\eta}} \in L_{U_{\eta}}$.

Suppose that L_{η}/F_{η} is a field extension of degree ℓ . Let F_{η}^{h} be the henselization of F at the discrete valuation η . Then there exists a field extension $L_{\eta}^{h}/F_{\eta}^{h}$ of degree ℓ with an isomorphism $\phi_{\eta}^{h}: L_{\eta}^{h} \otimes_{F_{\eta}^{h}} F_{\eta} \to L_{\eta}$. We identify L^{h} with a subfield of L_{η} through ϕ^{h} . Further if L_{η}/F_{η} is cyclic extension, then L^{h}/F^{h} is also a cyclic extension. Let $\tilde{\pi}_{\eta} \in L^{h}$ be a parameter. Then $\tilde{\pi}_{\eta}$ is also a parameter in L_{η} .Write $\mu_{\eta} = u_{\eta}\tilde{\pi}_{\eta}^{r}$ for some $u_{\eta} \in L_{\eta}$ a unit at η . Since $N_{L_{\eta}/F_{\eta}}(\mu_{\eta}) = \lambda$, we have $\lambda =$ $N_{L_{\eta}/F_{\eta}}(u_{\eta})N_{L_{\eta}/F_{\eta}}(\tilde{\pi}_{\eta})$. Since $u_{\eta} \in L_{\eta}$ is a unit at η , $N_{L_{\eta}/F_{\eta}}(u_{\eta}) \in F_{\eta}$ is a unit at η . By ([2, Theorem 1.10]), there exists $u^{h} \in L_{\eta}^{h}$ such that $N_{L_{\eta}^{h}/F_{\eta}^{h}}(u_{\eta}^{h}) = N_{L_{\eta}/F_{\eta}}(u_{\eta})$. Let $\mu_{\eta}^{h} = u_{\eta}^{h}\tilde{\pi}_{\eta} \in L_{\eta}^{h}$. Since F_{η}^{h} is the filtered direct limit of the fields F_{V} , where V ranges over the non-empty open subset of η ([12, Lemma 2.2.1]), there exists a non-empty open subset U_{η} of η , a field extension $L_{U_{\eta}}/F_{U_{\eta}}$ of degree ℓ and $\mu_{U_{\eta}} \in L_{U_{\eta}}$ such that $N_{L_{U_{\eta}}/F_{U_{\eta}}}(\mu_{U_{\eta}}) = \lambda$ and there is an isomorphism $\phi_{U_{\eta}}^{h}: L_{U_{\eta}} \otimes F_{\eta} \simeq L_{\eta}^{h}$ with $\phi_{U_{\eta}}^{h}(\mu_{U_{\eta}}) = \mu_{\eta}^{h}$. By shrinking U_{η} , we assume that $\alpha \cdot (\mu_{U_{\eta}}) = 0 \in H^{3}(L_{U_{\eta}}, \mu_{n}^{\otimes 2})$ ([12, Proposition 3.2.2]).

Lemma 7.3. Suppose that for each codimension zero point η of X_0 there exist a field (not necessarily cyclic) or split extension L_{η}/F_{η} of degree ℓ , $\mu_{\eta} \in F_{\eta}$ and for every closed point P of X_0 there exist a cyclic or split extension L_P/F_P of degree ℓ and $\mu_P \in L_P$ such that for every point x of X_0

1)
$$N_{L_x/F_x}(\mu_x) = \lambda$$

2)
$$\alpha \cdot (\mu_x) = 0 \in H^3(L_x, \mu_x^{\otimes 2})$$

3) $ind(\alpha \otimes L_x) < ind(\alpha)$

4) for any branch (P,η) there is an isomorphism $\phi_{P,\eta}: L_\eta \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$ such that for a generator σ of $Gal(L_P \otimes F_{P,\eta}/F_{P,\eta})$ there exists $\theta_{P,\eta} \in L_P \otimes F_{P,\eta}$ such that

 $\phi_{P,\eta}(\mu_{\eta})\mu_{P}^{-1} = \theta_{P,\eta}^{-\ell^{d}}\sigma(\theta_{P,\eta})^{\ell^{d}}.$ Then there exist

- a field extension L/F of degree ℓ
- a non-empty open subset U_{η} of η for every codimension zero point η of X_0 with $\theta_{U_n} \in L \otimes F_{U_n}$
- for every $P \in \mathscr{P} = X_0 \setminus \cup U_\eta, \ \theta_P \in L \otimes F_P$

such that

1) $ind(\alpha \otimes L) < ind(\alpha)$

2) $N_{L\otimes F_{U_{\eta}}/F_{U_{\eta}}}(\theta_{U_{\eta}}) = \lambda$ and $\alpha \cdot (\theta_{U_{\eta}}) = 0 \in H^{3}(L \otimes F_{U_{\eta}}, \mu_{n}^{\otimes 2})$ for all codimension zero points η of X_{0}

3) $N_{L\otimes F_P/F_P}(\theta_P) = \lambda$ and $\alpha \cdot (\theta_P) = 0 \in H^3(L \otimes F_P, \mu_n^{\otimes 2})$ for all $P \in \mathscr{P}$

4) for any branch (P,η) , $L \otimes F_{P,\eta}/F_{P,\eta}$ is cyclic or split and for a generator σ of $Gal(L \otimes F_{P,\eta}/F_{P,\eta})$ there exists $\gamma_{P,\eta} \in L \otimes F_P$ such that $\theta_{U_\eta}\theta_P^{-1} = \gamma_{P,\eta}^{-\ell^d}\sigma(\gamma_{P,\eta})^{\ell^d}$. Further if for each $x \in X_0$, L_x/F_x is cyclic or split, then L/F is cyclic.

Proof. Let η be a codimension zero point of X_0 . By the assumption, there exist a cyclic or split extension L_{η}/F_{η} and $\mu_{\eta} \in L_{\eta}$ such that $N_{L_x/F_x}(\mu_x) = \lambda$, $\alpha \cdot (\mu_x) = 0 \in H^3(L_x, \mu_x^{\otimes 2})$ and $\operatorname{ind}(\alpha \otimes L_{\eta}) < \operatorname{ind}(\alpha)$. By (7.2), there exist a non-empty open set U_{η} of η , a cyclic or split extension $L_{U_{\eta}}/F_{U_{\eta}}$ of degree ℓ and $\mu_{U_{\eta}} \in L_{U_{\eta}}$ such that $N_{L_{U_{\eta}}/F_{U_{\eta}}}(\mu_{\eta}) = \lambda$, $\alpha \cdot (\mu_x) = 0 \in H^3(L_x, \mu_x^{\otimes 2})$, $\operatorname{ind}(\alpha \otimes L_{U_{\eta}}) < \operatorname{ind}(\alpha)$, $\phi_{\eta} : L_{U_{\eta}} \otimes F_{\eta} \to L_{\eta}$ an isomorphism and $\phi_{\eta}(\mu_{U_{\eta}}) = \mu_{\eta}$. By shrinking U_{η} , if necessary, we assume that $\mathscr{P}_0 \cap U_{\eta} = \emptyset$.

Let $\mathscr{P} = X_0 \setminus \bigcup_{\eta} U_{\eta}$ and $P \in \mathscr{P}$. Then, by the assumption we have a cyclic or split extension L_P/F_P of degree ℓ and for every branch (P, η) there is an isomorphism $\phi_{P,\eta} : L_\eta \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$. Thus $\phi_{P,U_\eta} = \phi_{P,\eta}(\phi_\eta \otimes 1) : L_{U_\eta} \otimes F_\eta \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$ is an isomorphism. Thus, by ([9, Theorem 7.1]), there exists an extension L/F of degree ℓ with isomorphisms $\phi_{U_\eta} : L \otimes F_{U_\eta} \to L_{U_\eta}$ for all codimension zero points η of X_0 and $\phi_P : L \otimes F_P \to L_P$ for all $P \in \mathscr{P}$ such that the following commutative diagram

$$\begin{array}{cccc} L \otimes F_{U_{\eta}} \otimes F_{P,\eta} & \stackrel{\phi_{U_{\eta}} \otimes 1}{\to} & L_{U_{\eta}} \otimes F_{\eta} \otimes F_{P,\eta} \\ \downarrow & & \downarrow \phi_{P,U_{\eta}} \\ L \otimes F_{P} \otimes F_{P,\eta} & \stackrel{\phi_{P} \otimes 1}{\to} & L_{P} \otimes F_{P,\eta} \end{array}$$

where the vertical arrow on the left side is the natural map. Further if each L_x/F_x is cyclic for all $x \in X_0$, then L/F is cyclic ([9, Theorem 7.1]).

Since $\operatorname{ind}(\alpha \otimes L \otimes F_{U_{\eta}}) < \operatorname{ind}(\alpha)$ for all codimension zero points of X_0 and $\operatorname{ind}(\alpha \otimes L \otimes F_P) < \operatorname{ind}(\alpha)$ for all $P \in \mathscr{P}$, by (7.1), $\operatorname{ind}(\alpha \otimes L) < \operatorname{ind}(\alpha)$. In particular L is a field.

For every codimension zero point η of X_0 , let $\theta_{U_\eta} = (\phi_{U_\eta})^{-1}(\mu_{U_\eta}) \in L \otimes F_{U_\eta}$ and for every $P \in \mathscr{P}$, let $\theta_P = (\phi_P)^{-1}(\mu_P) \in L \otimes F_P$. Since ϕ_{U_η} and ϕ_P are isomorphisms, we have the required properties.

Proposition 7.4. Suppose that for each point x of X_0 there exist a cyclic or split extension L_x/F_x of degree ℓ and $\mu_x \in L_x$ such that

- 1) $N_{L_x/F_x}(\mu_x) = \lambda$
- 2) $\alpha \cdot (\mu_x) = 0 \in H^3(L_x, \mu_x^{\otimes 2})$
- 3) $ind(\alpha \otimes L_x) < ind(\alpha)$

4) for any branch (P,η) there is an isomorphism $\phi_{P,\eta}: L_\eta \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$ such that for generator σ of $Gal(L_P \otimes F_{P,\eta}/F_{P,\eta})$ there exists $\theta_{P,\eta} \in L_P \otimes F_{P,\eta}$ such that

 $\phi_{P,\eta}(\mu_{\eta})\mu_P^{-1} = \theta_{P,\eta}^{-\ell^d} \sigma(\theta_{P,\eta})^{\ell^d}.$ Then there exist a cyclic extension L of degree ℓ and $\mu \in L^*$ such that • $N_{L/F}(\mu) = \lambda$ and

- $\bullet \ \alpha \cdot (\mu) = 0 \in H^3(L, \mu_n^{\otimes 2})$
- $ind(\alpha \otimes L) < ind(\alpha)$.

Proof. Let L/F, U_{η} , \mathscr{P} , $\theta_{U_{\eta}}$ and θ_P be as in (7.3). Since each L_x/F_x is cyclic or split, L/F is cyclic. Let σ be a generator of $\operatorname{Gal}(L/F)$. Let (P, η) be a branch. By (7.3), there exists $\gamma_{(P,\eta)} \in L \otimes F_{P,\eta}$ such that $\mu_{U_{\eta}}\mu_P^{-1} = \gamma_{P,\eta}^{-\ell^d} \sigma(\gamma_{P,\eta}^{\ell^d})$. Applying ([10, Theorem 3.6]) for the rational group GL_1 , there exist $\gamma_{U_\eta} \in L \otimes F_{U_\eta}$ and $\gamma_P \in L \otimes F_P$ for every codimension zero point η of X_0 and $P \in \mathscr{P}$ such that for every branch $(P,\eta), \gamma_{P,\eta} = \gamma_{U_{\eta}}\gamma_{P}.$

Let $\mu'_{U_{\eta}} = \mu_{U_{\eta}} \gamma_{U_{\eta}}^{\ell^d} \sigma(\gamma_{U_{\eta}}^{-\ell^d}) \in L \otimes F_{U_{\eta}}$ and $\mu'_P = \mu_P \gamma_P^{-\ell^d} \sigma(\gamma_P^{\ell^d}) \in L \otimes F_P$. If (P, η) is a branch, then we have

$$\begin{aligned} \mu'_{U_{\eta}} &= \mu_{U_{\eta}} \gamma_{U_{\eta}}^{\ell^{a}} \sigma(\gamma_{U_{\eta}}^{-\ell^{a}}) \\ &= \mu_{P} \theta_{P,\eta}^{-\ell^{d}} \sigma(\theta_{P,\eta}^{\ell^{d}}) \gamma_{U_{\eta}}^{\ell^{d}} \sigma(\gamma_{U_{\eta}}^{-\ell^{d}}) \\ &= \mu_{P} \gamma_{P}^{-\ell^{d}} \sigma(\gamma_{P}^{\ell^{d}}) \\ &= \mu'_{P} \in L \otimes F_{P,\eta}. \end{aligned}$$

Hence, by ([9, Proposition 6.3]), there exists $\mu \in L$ such that $\mu = \mu'_{U_n}$ and $\mu = \mu'_P$ for every codimension zero point η of X_0 and $P \in \mathscr{P}$. Clearly $N_{L/F}(\mu) = \lambda$ over F. Let $P \in \mathscr{P}$. Since $\alpha \cdot (\mu_P) = 0$ and $\alpha \cdot (\gamma_P^{\ell^d}) = 0$, $\alpha \cdot (\mu) = 0 \in H^3(L \otimes F_P, \mu_n^{\otimes 2})$. Similarly $\alpha \cdot (\mu) = 0 \in H^3(L \otimes F_{U_\eta}, \mu_n^{\otimes 2})$ for every codimension zero point η of X_0 . Hence, by ([12, Theorem 3.1.5]), $\alpha \cdot (\mu) = 0$ in $H^{3}(L, \mu_{n}^{\otimes 2})$.

Proposition 7.5. Suppose that for each codimension zero point η of X_0 there exist a field (not necessarily cyclic) or split extension L_{η}/F_{η} of degree ℓ , $\mu_{\eta} \in F_{\eta}$ and for every closed point P of X_0 there exist a cyclic or split extension L_P/F_P of degree ℓ and $\mu_P \in L_P$ such that for every point x of X_0

- 1) $N_{L_x/F_x}(\mu_x) = \lambda$
- 2) $\alpha \cdot (\mu_x) = 0 \in H^3(L_x, \mu_x^{\otimes 2})$
- 3) $ind(\alpha \otimes L_x) < ind(\alpha)$

4) for any branch (P,η) there is an isomorphism $\phi_{P,\eta}: L_\eta \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$ such that for a generator σ of $Gal(L_P \otimes F_{P,\eta}/F_{P,\eta})$ there exists $\theta_{P,\eta} \in L_P \otimes F_{P,\eta}$ such that $\phi_{P,\eta}(\mu_{\eta})\mu_{P}^{-1} = \theta_{P,\eta}^{-\ell^{d}}\sigma(\theta_{P,\eta})^{\ell^{d}}.$

Then there exist a field extension N/F of degree coprime to ℓ , a field extension L/Fof degree ℓ and $\mu \in (L \otimes N)^*$ such that

- $N_{L\otimes N/N}(\mu) = \lambda$ and
- $\alpha \cdot (\mu) = 0 \in H^3(L \otimes N, \mu_n^{\otimes 2})$
- $ind(\alpha \otimes L) < ind(\alpha)$.

Proof. Let L/F, U_{η} , \mathscr{P} , $\theta_{U_{\eta}}$, θ_{P} and $\gamma_{P,\eta}$ be as in (7.3). Since L/F is a degree ℓ extension, there exists a field extension N/F of degree coprime to ℓ such that $L \otimes N/N$ is a cyclic extension.

Let \mathscr{Y} be the integral closure of \mathscr{X} in N and Y_0 the reduced special fibre of \mathscr{Y} . Let $\phi: Y_0 \to X_0$ be the induced morphism. Let $y \in Y_0$ and $x = \phi(y) \in X_0$. Then the inclusion $F \subset N$, induces an inclusion $F_x \subset N_y$. Let $L'_y = L \otimes_F F_x \otimes_{F_x} N_y$. Since $L \otimes N/N$ is a cyclic extension of degree ℓ , L'_y/N_y is either cyclic or split extension of degree ℓ .

Let $\eta' \in Y_0$ be a codimension zero point. Then $\eta = \phi(\eta') \in X_0$ is a codimension zero point. Then $F_\eta \subset FL_{\eta'}$, $L \otimes F_{U_\eta} \subset L \otimes F_\eta$ and $\theta_{U_\eta} \in L \otimes F_\eta$. Let $\mu_{\eta'} = \theta_{U_\eta} \otimes 1 \in L \otimes F_\eta \otimes_{F_\eta} N_{\eta'} = L'_{\eta'}$.

Let $Q \in Y_0$ be a closed point and $P = \phi(Q) \in X_0$. Then P is a closed point of X_0 and $F_P \subset N_Q$. Suppose that $P \in U_\eta$ for some codimension zero point η of X_0 . Then $F_{U_\eta} \subset F_P$, $L \otimes F_{U_\eta} \subset L \otimes F_P$ and $\theta_{U_\eta} \in L \otimes F_P$. Let $\mu_Q = \theta_{U_\eta} \otimes 1 \in$ $L \otimes F_P \otimes_{F_P} N_Q = L'_Q$. Suppose that P is not in U_η for any codimension zero point η of X_0 . Let $\mu_Q = \theta_P \otimes 1 \in L \otimes F_P \otimes_{F_P} N_Q$.

Let $y \in Y_0$ and $x = \phi(x) \in X_0$. Since $N_{L_x/F_x}(\mu_x) = \lambda$, $\alpha \cdot (\mu_x) = 0 \in H^3(L_x, \mu_n^{\otimes 2})$ and $\operatorname{ind}(\alpha \otimes F_x) < \operatorname{ind}(\alpha)$, it follows that $N_{L'_y/N_y}(\mu_y) = \lambda$, $\alpha \cdot (\mu_y) = 0 \in H^3(L'_y, \mu_n^{\otimes 2})$ and $\operatorname{ind}(\alpha \otimes L'_y) < \operatorname{ind}(\alpha)$.

Let (Q, η') be a branch in Y_0 and $P = \phi(Q)$, $\eta = \phi(\eta')$. Then (P, η) is a branch in X_0 . The isomorphism $\phi_{P,\eta} : L_\eta \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$ induces an isomorphism $\phi'_{Q,\eta'} : L'_{\eta'} \otimes N_{Q,\eta'} \to L'_Q \otimes N_{Q,\eta'}$. By the choice of $\mu_{\eta'}$ and μ_Q it follows that for any generator σ of $\operatorname{Gal}(L'_Q \otimes N_{Q,\eta'}/N_{Q,\eta'})$ there exists $\theta_{Q,\eta'}$ such that $\phi'_{Q,\eta'}(\mu_{\eta'})\mu_Q^{-1} =$ $\theta_{Q,\eta'}^{-\ell^d}\sigma(\theta_{Q,\eta'})^{\ell^d}$. Thus, by (7.4), there exists a cyclic extension L'/N and $\mu' \in L'$ such that $N_{L'/N}(\mu') = \lambda$, $\operatorname{ind}(\alpha \otimes L') < \operatorname{ind}(\alpha \otimes N)$ and $\alpha \cdot (\mu') = 0 \in H^3(L', \mu_n^{\otimes 2})$. By the construction we have $L' = L \otimes N$.

8. Types of points, special points and type 2 connections

Let $F, \alpha \in H^2(F, \mu_n), \lambda \in F^*$ with $\alpha \cdot (\lambda) = 0 \in H^3(F, \mu_n^{\otimes 2}), \mathscr{X}$ and X_0 be as in (§7). Further assume that

• \mathscr{X} is regular such that $\operatorname{ram}_{\mathscr{X}}(\alpha) \cup \operatorname{supp}_{\mathscr{X}}(\lambda) \cup X_0$ is a union of regular curves with normal crossings.

• the intersection of any two distinct irreducible curves in X_0 is at most one closed point.

We fix the following notation.

• \mathscr{P} is the set of points of intersection of distinct irreducible curves in X_0 .

• $\mathcal{O}_{\mathscr{X},\mathscr{P}}$ is the semi-local ring at the points of \mathscr{P} on \mathscr{X} .

• if a codimension zero point η of X_0 contains a closed point $P \in \mathscr{P}$, then $\pi_\eta \in \mathscr{O}_{\mathscr{X},\mathscr{P}}$ is a prime defining η on $\mathscr{O}_{\mathscr{X},\mathscr{P}}$.

Let η be a codimension zero point of X_0 . For the rest of this paper, let (E_η, σ_η) denote the lift of the residue of α at η . Since $\alpha \in H^2(F, \mu_n)$ with n a power of ℓ , $[E_\eta : F_\eta]$ is a power of ℓ . If α is unramified at η , then $E_\eta = F_\eta$ and let $M_\eta = F_\eta$. If α is ramified at η , then $E_\eta \neq F_\eta$ and there is a unique subextension of E_η of degree ℓ and we denote it by M_η .

Remark 8.1. Let η be a codimension zero point of X_0 . Suppose α is ramified at η . Since $\operatorname{ind}(\alpha \otimes F_{\eta}) = \operatorname{ind}(\alpha \otimes E_{\eta})[E_{\eta} : F_{\eta}]$ (cf. 4.2) and $M_{\eta} \subset E_{\eta}$, it follows that $\operatorname{ind}(\alpha \otimes M_{\eta}) < \operatorname{ind}(\alpha)$.

We divide the codimension zero points η of X_0 as follows:

Type 1: $\nu_{\eta}(\lambda)$ is coprime to ℓ and $\operatorname{ind}(\alpha \otimes F_{\eta}) = \operatorname{ind}(\alpha)$ **Type 2**: $\nu_{\eta}(\lambda)$ is coprime to ℓ and $\operatorname{ind}(\alpha \otimes F_{\eta}) < \operatorname{ind}(\alpha)$ **Type 3**: $\nu_{\eta}(\lambda) = r\ell$, $r\alpha \otimes E_{\eta} \neq 0$ and $\operatorname{ind}(\alpha \otimes F_{\eta}) = \operatorname{ind}(\alpha)$ **Type 4**: $\nu_{\eta}(\lambda) = r\ell$, $r\alpha \otimes E_{\eta} \neq 0$ and $\operatorname{ind}(\alpha \otimes F_{\eta}) < \operatorname{ind}(\alpha)$ **Type 5**: $\nu_{\eta}(\lambda) = r\ell$, $r\alpha \otimes E_{\eta} = 0$ and $\operatorname{ind}(\alpha \otimes F_{\eta}) = \operatorname{ind}(\alpha)$ **Type 6**: $\nu_{\eta}(\lambda) = r\ell$, $r\alpha \otimes E_{\eta} = 0$ and $\operatorname{ind}(\alpha \otimes F_{\eta}) < \operatorname{ind}(\alpha)$.

Let P be a closed point of \mathscr{X} . Suppose P is the point of intersection of two distinct codimension zero points η_1 and η_2 of X_0 . We say that the point P is a

1) special point of type I if η_1 is of type 1 and η_2 is of type 2,

2) special point of type II if η_1 is of type 1 and η_2 is of type 4,

3) special point of type III if η_1 is of type 3 or 5 and η_2 is of type 4,

4) special point of type IV if η_1 is of type 1, 3 or 5 and η_2 is of type 5 with $M_{\eta_2} \otimes F_{P,\eta_2}$ not a field.

Lemma 8.2. Suppose that η_1 and η_2 are two distinct codimension zero points of X_0 and P a point of intersection of η_1 and η_2 . Suppose that α is ramified at η_1 . Let (E_{η_1}, σ_1) be the lift of residue of α at η_1 . If $E_{\eta_1} \otimes F_{P,\eta_1}$ is not a field, then $ind(\alpha \otimes F_P) < ind(\alpha)$.

Proof. Suppose that $E_{\eta_1} \otimes F_{P,\eta_1}$ is not a field. Since E_{η_1}/F_{η_1} is a cyclic extension, $E_{\eta_1} \otimes F_{P,\eta_1} \simeq \prod E_{\eta_1,P}$ with $[E_{\eta_1,P} : F_{P,\eta_1}] < [E_{\eta_1} : F_{\eta_1}]$. We have $(E_{\eta_1}, \sigma_1, \pi_{\eta_1}) \otimes F_{P,\eta_1} = (E_{\eta_1,P}, \sigma_1, \pi_{\eta_1})$ (cf. §2).

Write $\alpha \otimes F_{\eta_1} = \alpha_1 + (E_{\eta_1}, \sigma_1, \pi_{\eta_1})$ as in (4.1). Then $\alpha \otimes F_{P,\eta_1} = \alpha_1 \otimes F_{P,\eta_1} + (E_{\eta_1,P}, \sigma_1, \pi_{\eta_1})$. By (4.2), we have $\operatorname{ind}(\alpha \otimes F_{\eta_1}) = \operatorname{ind}(\alpha_1 \otimes E_{\eta_1})[E_{\eta_1} : F_{\eta_1}]$. We have

$$\inf(\alpha \otimes F_{P,\eta_1}) \leq \inf(\alpha_1 \otimes E_{\eta_1,P})[E_{\eta_1,P}:F_{P,\eta_1}] \\ \leq \inf(\alpha_1 \otimes E_{\eta_1})[E_{\eta_1,P}:F_{P,\eta_1}] \\ < \inf(\alpha_1 \otimes E_{\eta_1})[E_{\eta_1}:F_{\eta_1}] \\ = \inf(\alpha \otimes F_{\eta_1}).$$

Thus, by (5.8), $\operatorname{ind}(\alpha \otimes F_P) < \operatorname{ind}(\alpha)$.

Lemma 8.3. Let $\eta \in X_0$ be a point of codimension zero and P a closed point on η . Let $\mathscr{X}_P \to \mathscr{X}$ be the blow-up at P and γ the exceptional curve in \mathscr{X}_P . If $E_\eta \otimes F_{P,\eta}$ is not a field or η is of type 2, 4 or 6, then γ is of type 2, 4 or 6.

Proof. If $E_{\eta} \otimes F_{P,\eta}$ is not a field, then by (8.2), $\operatorname{ind}(\alpha \otimes F_P) < \operatorname{ind}(\alpha)$. If η is of type 2, 4 or 6, then $\operatorname{ind}(\alpha \otimes F_{\eta}) < \operatorname{ind}(\alpha)$ and hence by (5.8), $\operatorname{ind}(\alpha \otimes F_P) < \operatorname{ind}(\alpha)$. Since $F_P \subset F_{\gamma}$, we have $\operatorname{ind}(\alpha \otimes F_{\gamma}) \leq \operatorname{ind}(\alpha \otimes F_P) < \operatorname{ind}(\alpha)$. Hence γ is of type 2, 4 or 6.

Lemma 8.4. Let η_1 and η_2 be two distinct codimension zero points of X_0 intersecting at a closed point P. Suppose that η_1 is of type 1 or 2 and η_2 is of type 2. Then there exists a sequence of blow-ups $\psi : \mathscr{X}' \to \mathscr{X}$ such that if $\tilde{\eta}_i$ are the strict transforms of η_i , then

1) $\psi: \mathscr{X}' \setminus \psi^{-1}(P) \to \mathscr{X} \setminus \{P\}$ is an isomorphism 2) $\psi^{-1}(P)$ is the union of irreducible regular curves $\gamma_1, \dots, \gamma_m$ 3) $\tilde{\eta}_1 \cap \gamma_1 = \{P_0\}, \ \gamma_i \cap \gamma_{i+1} = \{P_i\}, \ \gamma_m \cap \tilde{\eta}_2 = \{P_m\}, \ \tilde{\eta} \cap \gamma_i = \emptyset$ for all i > 1, $\tilde{\eta}_2 \cap \gamma_i = \emptyset$ for all $i < m, \ \tilde{\eta}_1 \cap \tilde{\eta}_2 = \emptyset, \ \gamma_i \cap \gamma_j = \emptyset$ for all $j \neq i+1$, 4) γ_1 and γ_m are of type 6 and $\gamma_i, \ 1 < i < m$ are of type 2, 4 or 6, 5) $\psi^{-1}(P)$ has no special points.

Proof. Let $\mathscr{X}_P \to \mathscr{X}$ be the blow-up of \mathscr{X} at P and γ the exceptional curve in \mathscr{X}_P . Let $\tilde{\eta}_i$ be the strict transform of η_i . Then $\tilde{\eta}_1$ intersects γ only at one point P_0 and $\tilde{\eta}_2$ intersects γ at only one point P_1 . Since η_2 is of type 2, by (8.3), γ is of type 2, 4 or 6 and hence P_1 is not a special point.

Let $s_1 = \nu_{\eta_1}(\lambda)$, $s_2 = \nu_{\eta_2}(\lambda)$. Then $\nu_{\gamma}(\lambda) = s_1 + s_2$. Suppose $s_1 + s_2 = \ell^{d+1}r_0$ for some integer r_0 , where $\ell^d = \operatorname{ind}(\alpha)$. Since $\ell^d \alpha = 0$, $\ell^d r_0 \alpha = 0$. Thus, γ is of type 6. Hence P_0 is not a special point and \mathscr{X}_P has all the required properties.

Suppose $s_1 + s_2 = \ell^t r_0$ with $t \leq d$ and r_0 coprime to ℓ . Then, blow-up the points P_0 and P_1 and let γ_1 and γ_2 be the exceptional curves in this blow-up. Then we have $\eta_{\gamma_1}(\lambda) = 2s_1 + s_2$ and $\eta_{\gamma_2}(\lambda) = s_1 + 2s_2$. If $2s_1 + s_2$ is not of the form $\ell^{d+1}r_1$ for some $r_1 \geq 1$, then blow-up, the point of intersection of the strict transform of η_1 and γ_1 . If $s_1 + 2s_2$ is not of the form $\ell^{d+1}r_2$ for some $r_2 \geq 1$, then blow-up, the point of intersection of the strict transform of ℓ , there exist i and j such that $is_1 + s_2 = \ell^{d+1}r$ and $s_1 + js_2 = \ell^{d+1}r'$ for some $r, r' \geq 1$. Thus, we get the required finite sequence of blow-ups.

Proposition 8.5. There exists a regular proper model of F with no special points.

Proof. Let $P \in \mathscr{P}$. Then there exist two codimension zero points η_1 and η_2 of X_0 intersecting at P.

Suppose that P is a special point of type I. Let $\psi : \mathscr{X}' \to \mathscr{X}$ be a sequence of blow-ups as in (8.4). Then there are no special points in $\psi^{-1}(P)$. Since there are only finitely many special points in \mathscr{X} , replacing \mathscr{X} by a finite sequence of blow ups at all special points of type I, we assume that \mathscr{X} has no special points of type I.

Suppose P is a special point of type II. Without loss of generality we assume that, η_1 is of type 1 and η_2 is of type 4. Let $\mathscr{X}_P \to \mathscr{X}$ be the blow-up of \mathscr{X} at P and γ the exceptional curve in \mathscr{X}_P . Since η_2 is of type 4, by (8.3), γ is of type 2, 4 or 6. Since η_1 is of type 1 and η_2 is of type 4, $\nu_{\eta_1}(\lambda)$ is coprime to ℓ and $\nu_{\eta_2}(\lambda)$ is divisible by ℓ . Since $\nu_{\gamma}(\lambda) = \nu_{\eta_1}(\lambda) + \nu_{\eta_2}(\lambda)$, $\nu_{\gamma}(\lambda)$ is coprime to ℓ and hence γ is of type 2. Let $\tilde{\eta}_i$ be the strict transform of η_i in \mathscr{X}_P . Then $\tilde{\eta}_i$ and γ intersect at only one point Q_i . Since γ is of type 2, Q_1 is a special point of type I and Q_2 is not a special point. Thus, as above, by replacing \mathscr{X} by a sequence of blow-ups of \mathscr{X} , we assume that \mathscr{X} has no special points of type I or II.

Suppose P is a special point of type III. Without loss of generality assume that η_1 is of type 3 or 5 and η_2 of type 4. Let $\mathscr{X}_P \to \mathscr{X}$ be the blow-up of \mathscr{X} at $P, \gamma, \tilde{\eta}_i$, and Q_i be as above. Since η_2 is of type 4, by (8.3), γ is of type 2, 4 or 6. Since $\nu_{\eta_1}(\lambda)$ and $\nu_{\eta_2}(\lambda)$ are divisible by ℓ , $\nu_{\gamma}(\lambda) = \nu_{\eta_1}(\lambda) + \nu_{\eta_2}(\lambda)$ is divisible by ℓ . Thus γ is of type 4 or 6. Hence Q_2 is not a special point. By (5.7), $\alpha \otimes F_P = (E_P, \sigma, u\pi_{\eta_1}^{d_1}\pi_{\eta_2}^{d_2})$ for some cyclic extension E_P/F_P and $u \in \hat{A}_P$ a unit and at least one of d_i is coprime to ℓ (in fact equal to 1). In particular, $\alpha \otimes F_P$ is split by the extension $F_P(\sqrt[m]{u\pi_{\eta_1}^{d_1}\pi_{\eta_2}^{d_2}})$, where m is the degree of E_P/F_P which is a power of ℓ . Suppose $d_1 + d_2$ is coprime to ℓ . Since $\nu_{\gamma}(\pi_{\eta_1}^{d_1}\pi_{\eta_2}^{d_2}) = d_1 + d_2$, $F_P(\sqrt[m]{u\pi_{\eta_1}^{d_1}\pi_{\eta_2}^{d_2}})$ is totally ramified at γ . Thus, by (4.3), γ is of type 6. Hence Q_1 is not a special point. Suppose that $d_1 + d_2$ is divisible by ℓ . Let π_{γ} be a prime defining γ at Q_1 . Then, we have $u\pi_{\eta_1}^{d_1}\pi_{\eta_2}^{d_2} = w_1\pi_{\eta_1}^{d_1}\pi_{\gamma}^{d_1+d_2}$ for some unit w_1 at Q_1 . Since one of d_i is coprime to ℓ and $d_1 + \tilde{d}_2$ is divisible by ℓ , d_i are not divisible by ℓ . In particular $2d_1 + d_2$ is coprime to ℓ . Let \mathscr{X}_{Q_1} be the blow-up of \mathscr{X}_P at Q_1 and γ' be the generic point of the exceptional curve in \mathscr{X}_{Q_1} . Then $\nu_{\gamma'}(u\pi_{\eta_1}^{d_1}\pi_{\eta_2}^{d_2}) = \nu_{\gamma'}(w_1\pi_{\eta_1}^{d_1}\pi_{\gamma}^{d_1+d_2}) = 2d_1 + d_2$. Since $2d_1 + d_2$ is coprime to ℓ , once again by (4.3), γ' is of type 6. In particular no point on the exceptional curve in \mathscr{X}_{Q_1} is a special point. Thus, replacing \mathscr{X} by a sequence of blow-ups, we assume that \mathscr{X} has no special points of type I, II or III.

Suppose P is a special point of type IV. Without loss of generality assume that, η_1 is of type 1, 3 or 5 and η_2 is of type 5, with $M_{\eta_2} \otimes F_{P,\eta_2}$ not a field. Let $\mathscr{X}_P \to \mathscr{X}$ be the blow-up of \mathscr{X} at P and γ , $\tilde{\eta}_i$, Q_i be as above. Since $M_{\eta_2} \otimes F_{P,\eta_2}$ is not a field, by (8.3), γ is of type 2, 4 or 6. If γ is of type 6, then Q_1 and Q_2 are not special points. Suppose γ is of type 2 or 4. Then Q_1 and Q_2 are special points of type I, II or III. Thus, as above, by replacing \mathscr{X} by a sequence of blow-ups of \mathscr{X} , we assume that \mathscr{X} has no special points.

Let η and η' be two codimension zero points of X_0 (may not be distinct). We say that there is a **type 2 connection** from η to η' if one of the following holds

• one of η or η' is of type 2

• there exist distinct codimension zero points η_1, \dots, η_n of X_0 of type 2 such that η intersects η_1, η' intersects η_n, η_i intersects η_{i+1} for all $1 \le i \le n-1, \eta$ does not intersect η_i for $i > 1, \eta'$ does not intersect η_i for i < n and η_i does not intersect η_j for $j \ne i+1$.

Proposition 8.6. There exists a regular proper model \mathscr{X} of F such that

1) \mathscr{X} has no special points

2) if η_1 and η_2 are two (not necessarily distinct) codimension zero points of X_0 with η_1 of type 3 or 5 and η_2 of type 3, 4 or 5, then there is no type 2 connection between η_1 and η_2 .

Proof. Let \mathscr{X} be a regular proper model with no special points (8.5). Let $m(\mathscr{X})$ be the number of type 2 connections between a point of type 3 or 5 and a point of type 3, 4 or 5. We prove the proposition by induction on $m(\mathscr{X})$. Suppose $m(\mathscr{X}) \geq 1$. We show that there is a sequence of blow-ups \mathscr{X}' of \mathscr{X} with no special points and $m(\mathscr{X}') < m(\mathscr{X})$.

Let η be a codimension zero point of X_0 of type 3 or 5 and η' a codimension zero point of X_0 of types 3, 4 or 5. Suppose η and η' have a type 2 connection. Then there exist η_1, \dots, η_n codimension zero points of X_0 of type 2 with η intersecting η_1 , η' intersecting η_n and η_i intersecting η_{i+1} for $i = 1, \dots, n-1$.

Suppose n = 1. Let Q be the point of the intersection of η and η_1 . Let $\mathscr{X}_Q \to \mathscr{X}$ be the blow-up of \mathscr{X} at Q and γ the exceptional curve in \mathscr{X}_Q . Since η_1 is of type 2, by (8.3), γ is of type 2, 4 or 6. Since η is of type 3 or 5 and η_1 is of type 2, ℓ divides $\nu_{\eta}(\lambda)$ and ℓ does not divide $\nu_{\eta_1}(\lambda)$. Since $\nu_{\gamma}(\lambda) = \nu_{\eta}(\lambda) + \nu_{\eta_1}(\lambda)$, $\nu_{\gamma}(\lambda)$ is not divisible by ℓ and hence γ is of type 2. Let $\tilde{\eta}$ and $\tilde{\eta}_1$ be the strict transform of η and η_1 in \mathscr{X}_Q . Since γ is a point of type 2, the points of intersection of $\tilde{\eta}$ and $\tilde{\eta}_1$ with γ are not special points. Hence \mathscr{X}_Q has no special points. By replacing \mathscr{X} by \mathscr{X}_Q we assume that $n \geq 2$ and \mathscr{X} has no special points.

Let P be the point of intersection of η_1 and η_2 . Let \mathscr{X}' be as in (8.4). Then \mathscr{X}' has no special points and all the exceptional curves in \mathscr{X}' are of type 2, 4 or 6 and the exceptional curves which intersect the strict transforms of η_1 and η_2 are of type 6. In particular the number of type 2 connections between the strict transforms of η and η' is one less than the number of type 2 connections between η and η' . Since all the exceptional curves in \mathscr{X}' are of type 2, 4 or 6, $m(\mathscr{X}') = m(\mathscr{X}) - 1$. Thus, by induction, we have a regular proper model with required properties.

Lemma 8.7. Let \mathscr{X} be as in (8.6) and X_0 the special fibre of \mathscr{X} . Let η be a codimension zero point of X_0 of type 2 and η' a codimension zero point of X_0 of type 3 or 5. Suppose there is a type 2 connection from η to η' . If there is a type 2 connection from η to a type 3 or 5 point η'' , then $\eta' = \eta''$. Further, if η_1, \dots, η_n are

codimension zero points of X_0 of type 2 giving a type 2 connection from η to η' and $\gamma_1, \dots, \gamma_m$ codimension zero points of X_0 of type 2 giving another type 2 connection from η to η' , then n = m and $\eta_i = \gamma_i$ for all *i*.

Proof. Suppose η'' is a codimension zero point of X_0 of type 3 or 5 with type 2 connection to η . Since η is of type 2 and there is a type 2 connection from η' to η'' . Since no two points of type 3 or 5 have a type 2 connection (cf. 8.6), $\eta' = \eta''$. Suppose $\gamma_1, \dots, \gamma_m$ is of type 2 connection from η to η' . If η_i is not equal to γ_i , then we will have type 2 connection from η' to η' and hence a contradiction to the choice of \mathscr{X} (cf. 8.6). Thus n = m and $\eta_i = \gamma_i$ for all i.

Let η be a codimension zero point of X_0 of type 2 and η' be a codimension zero point of X_0 of type 3 or 5. Suppose there is a type 2 connection η_1, \dots, η_n from η to η' . Then, by (8.7), η' and η_n are uniquely defined by η . We call this point of intersection of η_n with η' as **the point of type 2 intersection of** η **and** η' . Once again note that such a closed point is uniquely defined by η .

9. Choice of L_P and μ_P at closed points

Let $F, \alpha \in H^2(F, \mu_n), \lambda \in F^*$ with $\alpha \cdot (\lambda) = 0 \in H^3(F, \mu_n^{\otimes 2})$, \mathscr{X} and X_0 be as in (§7 and §8). Throughout this section we assume that \mathscr{X} has no special points and if η_1 and η_2 are two (not necessarily distinct) codimension zero points of X_0 with η_1 is of type 3 or 5 and η_2 is of type 3, 4 or 5, then there is no type 2 connection between η_1 and η_2 .

Let η be a codimension zero point of X_0 of type 5. Then we call η of **type 5a** if α is unramified at η and of **type 5b** if α is ramified at η . Suppose η is of type 5b. Then α is ramified and hence M_{η} is the unique subextension of E_{η} of degree ℓ , where $(E_{\eta}, \sigma_{\eta})$ is the lift of the residue of α .

For the rest of the paper we assume that κ is a finite field.

Lemma 9.1. Let η be a codimension zero point of X_0 of type 5b. Then $ind(\alpha \otimes M_\eta) < ind(\alpha)$ and there exists $\mu_\eta \in M_\eta$ such that $N_{M_\eta/F_\eta}(\mu_\eta) = \lambda$ and $\alpha \cdot (\mu_\eta) = 0 \in H^3(M_\eta, \mu_n^{\otimes 2})$.

Proof. Since η is of type 5b, α is ramified at η , $\nu_{\eta}(\lambda) = r\ell$ and $r\alpha \otimes E_{\eta} = 0$. By (8.1), ind $(\alpha \otimes M_{\eta}) < \operatorname{ind}(\alpha)$. Write $\alpha \otimes F_{\eta} = \alpha' + (E_{\eta}, \sigma, \pi_{\eta})$ as in (4.1) and $\lambda = \theta_{\eta} \pi_{\eta}^{r\ell}$ where θ_{η} is a unit at η and π_{η} is a parameter at η . Let β_{0} be the image of α' in $H^{2}(\kappa(\eta), \mu_{n})$. Since $\alpha' \otimes E_{\eta} = \alpha \otimes E_{\eta}$ and $r\alpha \otimes E_{\eta} = 0$, $r\beta_{0} \otimes E(\eta) = 0$. Let θ_{0} be the image of θ_{η} in $\kappa(\eta)$. Then, by (3.5), there exists $\mu_{0} \in M_{\eta}(\eta)$, such that $N_{M_{\eta}(\eta)/\kappa(\eta)}(\mu_{0}) = \theta_{0}$ and $r\beta_{0} \otimes M_{\eta}(\eta) = (E_{\eta}(\eta), \sigma, \mu_{0})$. Thus, by (4.8), there exists $\mu_{\eta} \in M_{\eta}$ with the required properties.

Lemma 9.2. Let $P \in \mathscr{P}$, η_1 and η_2 be codimension zero points of X_0 containing P. Suppose that η_1 and η_2 are of type 5. Then there exist a cyclic field extension L_P/F_P of degree ℓ and $\mu_P \in L_P$ such that

1)
$$N_{L_P/F_P}(\mu_P) = \lambda$$
,

- 2) $ind(\alpha \otimes L_P) < ind(\alpha)$,
- 3) $\alpha \cdot (\mu_P) = 0 \in H^3(L_P, \mu_n^{\otimes 2}),$
- 4) if η_i is of type 5a, then $L_P \otimes F_{P,\eta_i}/F_{P,\eta_i}$ is an unramified field extension,
- 5) if η_i is of type 5b, then $L_P \otimes F_{P,\eta_i} \simeq M_{\eta_i} \otimes F_{P,\eta_i}$.

Proof. Since \mathscr{X} has no special points, P is not a special point of type IV. Since η_1 and η_2 are of type 5 intersecting at P, $M_{\eta_1} \otimes F_{P,\eta_1}$ and $M_{\eta_2} \otimes F_{P,\eta_2}$ are fields. Suppose

 η_i is of type 5a. If $\alpha \otimes F_{P,\eta_i} = 0$, then let $L_{P,\eta_i}/F_{P,\eta_i}$ be any cyclic unramified field extension with λ a norm and $\mu_{\eta_i} \in L_{P,\eta_i}$ with $N_{L_{P,\eta_i}/F_{P,\eta_i}}(\mu_{\eta_i}) = \lambda$. If $\alpha \otimes F_{P,\eta_i} \neq 0$, then let $L_{P,\eta_i}/F_{P,\eta_i}$ be a cyclic unramified field extension of degree ℓ and μ_{η_i} be as in (4.10). Suppose η_i is of type 5b. Let $L_{P,\eta_i} = M_{\eta_i} \otimes F_{P,\eta_i}$ and $\mu_{\eta_i} \in M_{\eta_i}$ be as in (9.1). Then, by choice $L_{P,\eta_i}/F_{P,\eta_i}$ are unramified field extensions. By applying (6.4) to L_{P,η_i} and μ_{η_i} , there exist a cyclic field extension L_P/F_P and $\mu_P \in L_P$ with required properties.

Lemma 9.3. Let η be a codimension zero point of X_0 of type 3 and P a closed point on the closure of η . Then, there exists a cyclic field extension $L_{P,\eta}/F_{P,\eta}$ of degree ℓ such that if $\alpha \otimes E_{\eta} \otimes F_{P,\eta} \neq 0$, then $ind(\alpha \otimes E_{\eta} \otimes L_{P,\eta}) < ind(\alpha \otimes E_{\eta} \otimes F_{P,\eta})$.

Proof. Since E_{η}/F_{η} is a cyclic unramified field extension of degree a power of ℓ , $E_{\eta} \otimes F_{P,\eta} \simeq \prod E_{P,\eta}$ for some cyclic field extension $E_{P,\eta}/F_{P,\eta}$ of degree a power of ℓ . Let $E(\eta)_P$ be the residue field of $E_{P,\eta}$. Then $E(\eta)_P/\kappa(\eta)_P$ is a cyclic extension of degree a power of ℓ . Note that either $E(\eta)_P = \kappa(\eta)_P$ or $E(\eta)_P/\kappa(\eta)_P$ is a cyclic extension of degree a positive power of ℓ . If $E(\eta)_P = \kappa(\eta)_P$, then let $L(\eta)_P/\kappa(\eta)_P$ be any cyclic extension of degree ℓ . Suppose $E(\eta)_P \neq \kappa(\eta)_P$. Since $E(\eta)_P/\kappa(\eta)_P$ is a cyclic extension of degree a positive power of ℓ , there is only one subextension of $E(\eta)_P$ which is cyclic over $\kappa(\eta)_P$ of degree ℓ . Since $\kappa(\eta)_P$ is a local field containing primitive ℓ^{th} root of unity, there are at least 2 non-isomorphic cyclic field extensions of $\kappa(\eta)_P$ of degree ℓ . Thus there exists a cyclic field extension $L(\eta)_P/\kappa(\eta)_P$ of degree ℓ which is not isomorphic to a subfield of $E(\eta)_P$. Let $L_{P,\eta}/F_{P,\eta}$ be the unramified extension of degree ℓ with residue field $L(\eta)_P$.

Suppose $\alpha \otimes E_{\eta} \otimes F_{P,\eta} \neq 0$. Then $\alpha \otimes E_{P,\eta} \neq 0$. Since $E_{P,\eta}$ and $L_{P,\eta}$ are cyclic field extensions of $F_{P,\eta}$ and $L_{P,\eta}$ is not isomorphic to a subfield of $E_{P,\eta}$, $E_{P,\eta} \otimes L_{P,\eta}$ is a field and $[E_{P,\eta} \otimes L_{P,\eta} : E_{P,\eta}] = [L_{P,\eta} : F_{P,\eta}] = \ell$. In particular $E(\eta)_P \otimes L(\eta)_P$ is a field and $[E(\eta)_P \otimes L(\eta)_P : E(\eta)_P] = \ell$. Write $\alpha \otimes F_{\eta} = \alpha' + (E_{\eta}, \sigma_{\eta}, \pi_{\eta})$ as in (4.1). Since $\alpha \otimes E_{\eta} = \alpha' \otimes E_{\eta}$, $\alpha \otimes E_{\eta}$ is unramified at η . Let β_P be the image of $\alpha \otimes E_{\eta} \otimes F_{P,\eta}$ in $H^2(E(\eta)_P, \mu_n)$. Since $\alpha \otimes E_{P,\eta} \neq 0$ and $E_{P,\eta}$ is a completely discretely valued field with residue field $E(\eta)_P, \beta_P \neq 0$. Since $E(\eta)_P$ is a local field, ind $(\beta_P \otimes E(\eta)_P \otimes L(\eta)_P) < \operatorname{ind}(\beta_P)$ and hence $\operatorname{ind}(\alpha \otimes E_{\eta} \otimes L_{P,\eta}) = \operatorname{ind}(\alpha \otimes E_{P,\eta} \otimes F_{P,\eta})$.

Lemma 9.4. Let $P \in \mathscr{P}$, η_1 and η_2 be codimension zero points of X_0 containing P. Suppose that η_1 is of type 2 and η_2 is of type 5 or 6. Then there exist $\mu_i \in F_P$, $1 \leq i \leq \ell$, such that

1) $\mu_1 \cdots \mu_\ell = \lambda$, 2) $\nu_{\eta_1}(\mu_1) = \nu_{\eta_1}(\lambda), \ \nu_{\eta_1}(\mu_i) = 0 \text{ for } i \ge 2$, 3) $\nu_{\eta_2}(\mu_i) = \nu_{\eta_2}(\lambda)/\ell \text{ for all } i \ge 1$, 4) $\alpha \cdot (\mu_i) = 0 \in H^3(F_P, \mu_n^{\otimes 2})$.

Proof. Since η_1 is of type 2 and η_2 is of type 5 or 6, we have $\lambda = w \pi_{\eta_1}^{r_1} \pi_{\eta_2}^{r_2 \ell}$ with r_1 coprime to ℓ and $r_2 \alpha \otimes E_{\eta_2} = 0$. Hence, by (6.7), there exists $\theta \in F_P$ such that $\alpha \cdot (\theta) = 0$, $\nu_{\eta_1}(\theta) = 0$ and $\nu_{\eta_2}(\theta) = r_2$. For $i \geq 2$, let $\mu_i = \theta$ and $\mu_1 = \lambda \theta^{1-\ell}$. Then μ_i have the required properties.

Lemma 9.5. Let $P \in \mathscr{P}$, η_1 and η_2 be codimension zero points of X_0 containing P. Suppose that η_1 and η_2 are of type 5 or 6. Then there exist $\mu_i \in F_P$, $1 \leq i \leq \ell$, such that 1) $\mu_1 \cdots \mu_\ell = \lambda$, 2) $\nu_{\eta_j}(\mu_i) = \nu_{\eta_j}(\lambda)/\ell \text{ for all } i \ge 0 \text{ and } j = 1, 2,$ 4) $\alpha \cdot (\mu_i) = 0 \in H^3(F_P, \mu_n^{\otimes 2}).$

Proof. Since η_1 and η_2 are of type 5 or 6, by (6.8), there exists $\theta \in F_P$ such that $\alpha \cdot (\theta) = 0$ and $\nu_{\eta_i}(\theta) = \nu_{\eta_i}(\lambda)/\ell$ for i = 1, 2. For $i \ge 2$, let $\mu_i = \theta \in F_P$ and $\mu_1 = \lambda \theta^{1-\ell} \in F_P$. Then μ_i have the required properties.

Lemma 9.6. Let $P \in \mathscr{P}$, η_1 be a codimension zero point of X_0 of type 3 and η_2 a codimension zero point of X_0 of type 5. Suppose η_1 and η_2 intersect at P. Then there exist a cyclic field extension L_P/F_P of degree ℓ and $\mu_P \in L_P$ such that

- 1) $N_{L_P/F_P}(\mu_P) = \lambda$
- 2) $ind(\alpha \otimes L_P) < ind(\alpha)$
- 3) $\alpha \cdot (\mu_P) = 0 \in H^3(L_P, \mu_n^{\otimes 2})$
- 4) $L_P \otimes F_{P,\eta_i}/F_{P,\eta_i}$ is an unramified field extension

5) if $\lambda \in F_P^{*\ell}$ and $\alpha \otimes E_{\eta_1} \otimes F_{P,\eta_1} \neq 0$, then $ind(\alpha \otimes (E_{\eta_1} \otimes F_{P,\eta_1}) \otimes (L_P \otimes F_{P,\eta_1})) < ind(\alpha \otimes E_{\eta_1} \otimes F_{P,\eta_1})$

6) if η_2 is of type 5b, then $L_P \otimes F_{P,\eta_2} \simeq M_{\eta_2} \otimes F_{P,\eta_2}$.

Proof. Suppose $\lambda \notin F_P^{*\ell}$. Let $L_P = F_P(\sqrt[\ell]{\lambda})$ and $\mu_P = \sqrt[\ell]{\lambda}$. Then $N_{L_P/F_P}(\mu_P) = \lambda$ and by (6.2) 2) and 3) are satisfied. Since η_i is of type 3 or 5, $\nu_{\eta_i}(\lambda)$ is divisible by ℓ and hence 4) is satisfied. Since $\lambda \notin F_P^{*\ell}$, the case 5) does not arise. Suppose that η_2 is of type 5b. Since \mathscr{X} has no special points, $M_{\eta_2} \otimes F_{P,\eta_2}$ is a field. Since λ is a norm from M_{η_2} (9.1), by (2.6), we have $L_P \otimes F_{P,\eta_2} \simeq M_{\eta_2} \otimes F_{P,\eta_2}$.

Suppose that $\lambda \in F_P^{*\ell}$. Let L_{P,η_1} be as in (9.3) and $\mu_{P,\eta_1} = \sqrt[\ell]{\lambda}$. Write $\alpha \otimes F_{\eta_1} = \alpha_1 \otimes (E_{\eta_1}, \sigma_1, \pi_{\eta_1})$ as in (4.1). Then by (4.2), we have $\operatorname{ind}(\alpha \otimes F_{\eta_1}) = \operatorname{ind}(\alpha \otimes E_{\eta_1})[E_{\eta_1} : F_{\eta_1}]$. Since η_1 is of type 3, $\operatorname{ind}(\alpha) = \operatorname{ind}(\alpha \otimes F_{\eta_1})$ and $r_1 \alpha \otimes E_{\eta_1} \neq 0$, where $\nu_{\eta_1}(\lambda) = r_1 \ell$. In particular $\alpha \otimes E_{\eta_1} \neq 0$. By the choice of L_{P,η_1} as in (9.3), we have either $\alpha \otimes E_{\eta_1} \otimes F_{P,\eta_1} = 0$ or $\operatorname{ind}(\alpha \otimes E_{\eta_1} \otimes L_{P,\eta_1}) < \operatorname{ind}(\alpha \otimes E_{\eta_1} \otimes F_{P,\eta_1})$. Thus $\operatorname{ind}(\alpha \otimes E_{\eta_1} \otimes F_{P,\eta_1}) < \operatorname{ind}(\alpha \otimes E_{\eta_1})$. We have $\operatorname{ind}(\alpha \otimes L_{P,\eta_1}) \leq \operatorname{ind}(\alpha \otimes E_{\eta_1} \otimes L_{P,\eta_1})$ and $\operatorname{cores}_{L_{P,\eta_1}/F_{P,\eta_1}} (\alpha \cdot (\mu_{P,\eta_1})) = \alpha \cdot (\lambda) = 0$, by (4.6), $\alpha \cdot (\mu_{P,\eta_1}) = 0 \in H^3(L_{P,\eta_1}, \mu_n^{\otimes 2})$. Since \mathscr{X} has no special points, $M_{\eta_2} \otimes F_{P,\eta_2}$ is a field. Let $L_{P,\eta_2} = M_{\eta_2} \otimes F_{P,\eta_2}$ and $\mu_{P,\eta_2} = \sqrt[\ell]{\lambda}$. Then $N_{L_{P,\eta_2}/F_{P,\eta_2}}(\mu_{P,\eta_2}) = \lambda$ and by (9.1), $\operatorname{ind}(\alpha \otimes L_{P,\eta_2}) < \operatorname{ind}(\alpha)$ and $\alpha \cdot (\mu_{P,\eta_2}) = 0$. Then, by (6.4), there exist L_P and μ_P with required properties. \Box

Lemma 9.7. Let $P \in \mathscr{P}$, η_1 and η_2 be codimension zero points of X_0 of type 3, 4 or 6. Suppose η_1 and η_2 intersect at P. Then there exist a cyclic field extension L_P/F_P of degree ℓ and $\mu_P \in L_P$ such that

- 1) $N_{L_P/F_P}(\mu_P) = \lambda$
- 2) $ind(\alpha \otimes L_P) < ind(\alpha)$
- 3) $\alpha \cdot (\mu_P) = 0 \in H^3(L_P, \mu_n^{\otimes 2})$
- 4) $L_P \otimes F_{P,\eta_i}/F_{P,\eta_i}$ is an unramified field extension,
- 5) if η_i is of type 3, $\lambda \in F_P^{*\ell}$ and $\alpha \otimes E_{\eta_i} \otimes F_{P,\eta_i} \neq 0$, then $ind(\alpha \otimes (E_{\eta_i} \otimes F_{P,\eta_i}) \otimes (L_P \otimes F_{P,\eta_i})) < ind(\alpha \otimes E_{\eta_i} \otimes F_{P,\eta_i})$.

Proof. Suppose $\lambda \notin F_P^{*\ell}$. Let $L_P = F_P(\sqrt[\ell]{\lambda})$ and $\mu_P = \sqrt[\ell]{\lambda}$. Then $N_{L_P/F_P}(\mu_P) = \lambda$ and by (6.2), 2) and 3) are satisfied. Since η_i are of type 3, 4 or 6, $\nu_{\eta_i}(\lambda)$ is divisible by ℓ and hence 4) is satisfied. Since $\lambda \notin F_P^{*\ell}$, 5) does not arise.

Suppose that $\lambda \in F_P^{*\ell}$. If η_i is of type 3, then let L_{P,η_1} be as in (9.3) and $\mu_{P,\eta_1} = \sqrt[\ell]{\lambda}$. Then, as in (9.6), $N_{L_P/F_P}(\mu_P) = \lambda$, $\operatorname{ind}(\alpha \otimes L_{P,\eta_i}) < \operatorname{ind}(\alpha)$ and $\alpha \cdot (\mu_P) = 0 \in H^3(L_P, \mu_n^{\otimes 2})$. Suppose that η_i is of type 4 or 6. Let $L_{P,\eta_i}/F_{P,\eta_i}$ be a cyclic unramified field extension of degree ℓ and μ_{P,η_i} be as in (4.10).

Then, by (6.4), there exist L_P and μ_P with required properties.

Proposition 9.8. Let $P \in \mathscr{P}$. Then there exist a cyclic field extension or split extension L_P/F_P of degree ℓ and $\mu_P \in L_P$ such that

1) $N_{L_P/F_P}(\mu_P) = \lambda$

2) $ind(\alpha \otimes L_P) < ind(\alpha)$

3) $\alpha \cdot (\mu_P) = 0 \in H^3(L_P, \mu_n^{\otimes 2})$

Further, suppose η is a codimension zero point of X_0 containing P.

4) If η is of type 1, then $L_P = F_P(\sqrt[\ell]{\lambda})$ and $\mu_P = \sqrt[\ell]{\lambda}$.

5) Suppose η is of type 2 with a type 2 connection to a type 5 point η' . Let Q be the type 2 intersection of η and η' . If $M_{\eta'} \otimes F_{Q,\eta'}$ is not a field, then $L_P = \prod F_P$ and $\mu_P = (\theta_1, \dots, \theta_\ell)$ with $\theta_i \in F_P$, $\nu_\eta(\theta_1) = \nu_\eta(\lambda)$ and $\nu_\eta(\theta_i) = 0$ for $i \geq 2$.

6) Suppose η is of type 2 with a type 2 connection to a type 5 point η' . Let Q be the type 2 intersection of η and η' . If $M_{\eta'} \otimes F_{Q,\eta'}$ is a field, then $L_P = F_P(\sqrt[\ell]{\lambda})$ and $\mu_P = \sqrt[\ell]{\lambda}$.

7) Suppose η is of type 2 and there is no type 2 connection from η to any type 5 point. Then $L_P = F_P(\sqrt[4]{\lambda})$ and $\mu_P = \sqrt[4]{\lambda}$.

8) If η is of type 3, then $L_P \otimes F_{P,\eta}/F_{P,\eta}$ is an unramified field extension and further if $\lambda \in F_P^{*\ell}$ and $\alpha \otimes E_\eta \otimes F_{P,\eta} \neq 0$, then $ind(\alpha \otimes (E_\eta \otimes F_{P,\eta}) \otimes (L_P \otimes F_{P,\eta})) < ind(\alpha \otimes E_\eta \otimes F_{P,\eta})$.

9) If η is of type 4, then $L_P \otimes F_{P,\eta}/F_{P,\eta}$ is an unramified field extension.

10) If η is of type 5a, then $L_P \otimes \dot{F}_{P,\eta}/\dot{F}_{P,\eta}$ is an unramified field extension.

11) If η is of type 5b, then $L_P \otimes F_{P,\eta} \simeq M_\eta \otimes F_{P,\eta}$ and if $L_P = \prod F_P$, then $\mu_P = (\theta_1, \cdots, \theta_\ell)$ with $\nu_\eta(\theta_i) = \nu_\eta(\lambda)/\ell$.

12) If η is of type 6, then either $L_P \otimes F_{P,\eta}/F_{P,\eta}$ is an unramified field extension or $L_P = \prod F_P$, with $\mu_P = (\theta_1, \cdots, \theta_\ell)$ and $\nu_\eta(\theta_i) = \nu_\eta(\lambda)/\ell$.

Proof. Let η_1 and η_2 be two codimension zero points intersecting at P. By the choice of \mathscr{X} , X_0 is a union of regular curves with normal crossings and hence there are no other codimension zero points of X_0 passing through P.

Case I. Suppose that either η_1 or η_2 , say η_1 , is of type 1. Then $\nu_{\eta_1}(\lambda)$ is coprime to ℓ and hence $\lambda \notin F_P^{*\ell}$. Let $L_P = F_P(\sqrt[\ell]{\lambda})$ and $\mu_P = \sqrt[\ell]{\lambda}$. Then, by (6.2), L_P and μ_P satisfy 1), 2) and 3). By choice 4) is satisfied. Since \mathscr{X} has no special points, η_2 is not of type 2 or 4. Thus 5), 6), 7) and 9) do not arise. Suppose η_2 is of type 3, 5 or 6. Then $\nu_{\eta_2}(\lambda)$ is divisible by ℓ and hence $L_P \otimes F_{P,\eta_2}/F_{P,\eta_2}$ is an unramified field extension. Thus 8), 10) and 12) are satisfied. Suppose η_2 is of type 5b. Since \mathscr{X} has no special points and η_1 is of type 1, $M_{\eta_2} \otimes F_{P,\eta_2}$ is a field. Since λ is a norm from the extension M_{η_2}/F_{η_2} (9.1) and $\lambda \notin F_{P,\eta_2}^{*\ell}$, by (2.6), $M_{\eta_2} \otimes F_{P,\eta_2} \simeq F_{P,\eta_2}(\sqrt[\ell]{\lambda})$ and hence 11) is satisfied.

Case II. Suppose neither η_1 nor η_2 is of type 1. Suppose either η_1 or η_2 is of type 2, say η_1 is of type 2. Then $\nu_{\eta_1}(\lambda)$ is coprime to ℓ and hence $\lambda \notin F_P^{*\ell}$.

Suppose that η_1 has type 2 connection to a codimension zero point η' of X_0 of type 5. Let Q be the closed point on η' which is the type 2 intersection point of η_1 and η' . By the choice of \mathscr{X} , η_2 is of type 2, 5 or 6. Note that if η_2 is also of type 2, then Q is also the point of type 2 intersection of η_2 and η' . Thus if both η_1 and η_2 are of type 2, η' and Q do not depend on whether we start with η_1 or η_2 .

Suppose that $M_{\eta'} \otimes F_{Q,\eta'}$ is not a field. Let $L_P = \prod F_P$. Suppose η_2 is of type 2. Then, let $\mu_P = (\lambda, 1, \dots, 1) \in L_P = \prod F_P$. Suppose η_2 is of type 5. Then by the assumption on \mathscr{X} , $\eta_2 = \eta'$, Q = P. Thus $M_{\eta_2} \otimes F_{P,\eta_2} = M_{\eta'} \otimes F_{Q,\eta'}$ is not a field and hence η_2 is of type 5b. Let $\mu_i \in F_P$ be as in (9.4) and $\mu_P = (\mu_1, \dots, \mu_\ell)$. Suppose η_2 is of type 6. Let $\mu_i \in F_P$ be as in (9.4) and $\mu_P = (\mu_1, \dots, \mu_\ell) \in L_P$. Then, L_P and μ_P satisfy 1) and 3). Since η_1 is of type 2, $\operatorname{ind}(\alpha \otimes F_{\eta_1}) < \operatorname{ind}(\alpha)$ and hence, by (5.8), $\operatorname{ind}(\alpha \otimes F_P) < \operatorname{ind}(\alpha)$ and 2) is satisfied. Since neither η_1 nor η_2 is of type 1, the case 4) does not arise. By choice L_P satisfies 5). Since there is only one type 5 point with a type 2 connection to η_1 or η_2 , the case 6) does not arise. Clearly the case 7) does not arise. Since η_2 is not of type 3, 4 or 5a, the cases 8), 9) and 10) do not arise. By choice of L_P and μ_P , 11) and 12) are satisfied.

Suppose $M_{\eta'} \otimes F_{Q,\eta'}$ is a field. Let $L_P = F_P(\sqrt[\ell]{\lambda})$ and $\mu_P = \sqrt[\ell]{\lambda}$. Since $\lambda \notin F_P^{*\ell}$, by (6.2), L_P and μ_P satisfy 1), 2) and 3). As above the cases 4), 5), 7) and 8) do not arise. By choice 6) is satisfied. Suppose η_2 is of type 5. Then $\eta_2 = \eta'$, Q = Pand $\nu_{\eta_2}(\lambda)$ is divisible by ℓ and hence 9) is satisfied. Suppose η_2 is of type 5b. Since $M_{\eta_2} \otimes F_{P,\eta_2}$ is a field, as in case I, $M_{\eta_2} \otimes F_{P,\eta_2} \simeq L_P \otimes F_{P,\eta_2}$ and hence 10) is satisfied. Since $\lambda \notin F_P^{*\ell}$ and if η_2 is of type 6, $\nu_{\eta_2}(\lambda)$ is divisible by ℓ , $L_P \otimes F_{P,\eta_2}/F_{P,\eta_2}$ is an unramified field extension and hence 11) is satisfied.

Suppose that neither η_1 nor η_2 have a type 2 connection to a point of type 5. In particular η_2 is not of type 5. Then, let $L_P = F_P(\sqrt[\ell]{\lambda})$ and $\mu_P = \sqrt[\ell]{\lambda}$. Then, by (6.2), L_P and μ_P satisfy 1), 2) and 3). Since neither η_1 nor η_2 is of type 1, the case 4) does not arise. Since neither η_1 nor η_2 has type 2 connection to a point of type 5, 5) and 6) do not arise. By the choice of L_P and μ_P , 7) is satisfied. If η_2 is of type 4 or 6, $\nu_{\eta_2}(\lambda)$ is divisible by ℓ , 8), 9) and 12) are satisfied. Since neither η_1 nor η_2 is of type 5, 10) and 11) do not arise.

Case III. Suppose neither of η_i is of type 1 or 2. Suppose that one of the η_i , say η_1 , is of type 3. Since \mathscr{X} has no special points, η_2 is not of type 4 and hence η_2 is of type 3, 5 or 6. If η_2 is of type 5, let L_P and μ_P be as in (9.6). If η_2 is of type 3 or 6, let L_P and μ_P be as in (9.7). Then, 1), 2), 3), 8), 9), 10), 11) and 12) are satisfied and other cases do not arise.

Case IV. Suppose neither of η_i is of type 1, 2 or 3. Suppose that one of the η_i , say η_1 , is of type 4. Since \mathscr{X} has no special points, η_2 is not of type 5. Hence η_2 is of type 4 or 6. Let L_P and μ_P be as in (9.7). Then L_P and μ_P have the required properties.

Case V. Suppose neither of η_i is of type 1, 2, 3 or 4. Suppose that one of the η_i is of type 5, say η_1 is of type 5. Then η_2 is of type 5 or 6. Suppose that η_2 is of type 5. Since \mathscr{X} has no special points, $M_{\eta_i} \otimes F_{P,\eta_i}$ are fields for i = 1, 2. Let L_P and μ_P be as in (9.2). Then L_P and μ_P have the required properties. Suppose that η_2 is of type 6. Suppose $M_{\eta_1} \otimes F_{P,\eta_1}$ is a field. Let $L_{P,\eta_1} = M_{\eta_1} \otimes F_{P,\eta_1}$ and $\mu_{\eta_1} \in M_{\eta_1}$ with $N_{M_{\eta_1}/F_{\eta_1}}(\mu_{\eta_1}) = \lambda$ (cf., 9.1). Let L_P and μ_P be as in (6.5) with $L_P \otimes F_{P,\eta_1} \simeq L_{P,\eta_1}$.

Then L_P and μ_P have the required properties. Suppose that $M_{\eta_1} \otimes F_{P,\eta_1}$ is not a field. Let $L_P = \prod F_P$ and $\mu_i \in F_P$ be as in (9.5) and $\mu_P = (\mu_1, \dots, \mu_\ell) \in L_P$. Then L_P and μ_P have the required properties.

Case VI. Suppose neither of η_i is of type 1, 2, 3, 4 or 5. Then, η_1 and $t_P \eta_2$ are of type 6. Let L_P and μ_P be as in (9.7). Then L_P and μ_P have the required properties. \Box

10. Choice of L_{η} and μ_{η} at codimension zero points.

Let $F, n = \ell^d, \alpha \in H^2(F, \mu_n), \lambda \in F^*$ with $\alpha \neq 0, \alpha \cdot (\lambda) = 0 \in H^3(F, \mu_n^{\otimes 2}), \mathscr{X}, X_0$ and \mathscr{P} be as in (§7, §8 and §9). Assume that \mathscr{X} has no special points and there is no type 2 connection between a codimension zero point of X_0 of type 3 or 5 and a codimension zero point of X_0 of type 3, 4 or 5. Further we assume that for every closed point P of X_0 , the residue field $\kappa(P)$ at P is a finite field. Let P be a closed point P of X_0 . Then there exists $t_P \geq d$ such that there is no primitive $\ell^{t_P^{\text{th}}}$ root of unity in $\kappa(P)$.

For a codimension zero point η of X_0 , let $\mathscr{P}_{\eta} = \eta \cap \mathscr{P}$.

Proposition 10.1. Let η be a codimension zero point of X_0 of type 1. For each $P \in \mathscr{P}_{\eta}$, let (L_P, μ_P) be chosen as in (9.8) and $L_{\eta} = F_{\eta}(\sqrt[\ell]{\lambda})$ and $\mu_{\eta} = \sqrt[\ell]{\lambda} \in L_{\eta}$. Then

1) $N_{L_{\eta}/F_{\eta}}(\mu_{\eta}) = \lambda$ 2) $\alpha \cdot (\mu_{\eta}) = 0 \in H^{3}(L_{\eta}, \mu_{n}^{\otimes 2})$ 3) $ind(\alpha \otimes L_{\eta}) < ind(\alpha)$ 4) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism $\phi_{P,\eta} : L_{\eta} \otimes F_{P,\eta} \to L_{P} \otimes F_{P,\eta}$ and

$$\phi_{P,\eta}(\mu_\eta \otimes 1)(\mu_P \otimes 1)^{-1} = 1.$$

Proof. By choice, we have $N_{L_{\eta}/F_{\eta}}(\mu_{\eta}) = \lambda$. Since η is of type 1, $\nu_{\eta}(\lambda)$ is coprime to ℓ and hence by (4.7), L_{η} and μ_{η} satisfies 2) and 3). Let $P \in \mathscr{P}_{\eta}$. Since η is of type 1, by the choice of L_P and μ_P (cf. 9.8(4)), we have $L_P = F_P(\sqrt[\ell]{\lambda})$ and $\mu_P = \sqrt[\ell]{\lambda}$. Hence L_{η} and μ_{η} satisfy 4).

Lemma 10.2. Let η be a codimension zero point of X_0 . For each $P \in \mathscr{P}_{\eta}$, let $\theta_P \in F_P$ with $\alpha \cdot (\theta_P) = 0 \in H^3(F_{P,\eta}, \mu_n^{\otimes 2})$. Suppose $\nu_{\eta}(\theta_P) = 0$ for all $P \in \mathscr{P}_{\eta}$. Then there exists $\theta_{\eta} \in F_{\eta}$ such that 1) $\alpha \cdot (\theta_{\eta}) = 0 \in H^3(F_{\eta}, \mu_n^{\otimes 2})$ 2) for $P \in \mathscr{P}_{\eta}, \ \theta_P^{-1}\theta_{\eta} \in F_{P,\eta}^{\ell^{2t_P}}$.

Proof. Let $\pi_{\eta} \in F_{\eta}$ be a parameter. Write $\alpha \otimes F_{\eta} = \alpha' + (E_{\eta}, \sigma_{\eta}, \pi_{\eta})$ as in (4.1). Let $E(\eta)$ be the residue field of E_{η} . Since $\alpha \cdot (\theta_P) = 0 \in H^3(F_{P,\eta}, \mu_n^{\otimes 2})$ and $\nu_{\eta}(\theta_P) = 0$, by (4.7), we have $(E(\eta) \otimes \kappa(\eta)_P, \sigma_0, \overline{\theta}_P) = 0 \in H^2(\kappa(\eta)_P, \mu_n)$, where $\overline{\theta}_P$ is the image of $\theta_P \in \kappa(\eta)_P$. Hence $\overline{\theta}_P$ is a norm from $E(\eta) \otimes \kappa(\eta)_P$ for all $P \in \mathscr{P}_{\eta}$. For $P \in \mathscr{P}_{\eta}$, let $\tilde{\theta}_P \in E(\eta) \otimes \kappa(\eta)_P$ with $N_{E(\eta) \otimes \kappa(\eta)_P/\kappa(\eta)_P}(\tilde{\theta}_P) = \overline{\theta}_P$. By weak approximation, there exists $\tilde{\theta} \in \kappa(\eta)$ which is sufficiently close to $\overline{\theta}_P$ for all $P \in \mathscr{P}_{\eta}$. Let $\theta_0 = N_{E(\eta)/\kappa(\eta)}(\tilde{\theta}) \in \kappa(\eta)$. Then θ_0 is sufficiently close to $\overline{\theta}_P$ for all $P \in \mathscr{P}_{\eta}$. In particular, $\theta_0^{-1}\overline{\theta}_P \in \kappa(\eta)_P^{\ell^{2t_P}}$. Let $\theta_\eta \in F_\eta$ have image θ_0 in $\kappa(\eta)$. Then $(E_\eta, \sigma_\eta, \theta_\eta) = 0$ and hence, by (4.7), $\alpha \cdot (\theta_\eta) = 0$. Since $\theta_0^{-1}\overline{\theta}_P \in \kappa(\eta)_P^{\ell^{2t_P}}$ and $F_{P,\eta}$ is a complete discretely valuated field with residue field $\kappa(\eta)_P$, it follows that $\theta_\eta^{-1}\theta_P \in F_{P,\eta}^{\ell^{2t_P}}$.

Proposition 10.3. Let η be a codimension zero point of X_0 of type 2. Suppose there is a type 2 connection between η and a codimension zero point η' of X_0 of type 5. Let Q be the point of type 2 intersection of η and η' . Suppose that $M_{\eta'} \otimes F_{Q,\eta'}$ is not a field. For each $P \in \mathscr{P}_{\eta}$, let $\mu_P = (\theta_1^P, \dots, \theta_\ell^P) \in L_P = \prod F_P$ be as in (9.8). Let $L_\eta = \prod F_\eta$. Then there exists $\mu_\eta = (\theta_1^\eta, \dots, \theta_\ell^\eta) \in L_\eta$ such that

1) $N_{L_{\eta}/F_{\eta}}(\mu_{\eta}) = \lambda$ 2) $\alpha \cdot (\mu_{\eta}) = 0 \in H^{3}(L_{\eta}, \mu_{n}^{\otimes 2})$ 3) $ind(\alpha \otimes L_{\eta}) < ind(\alpha),$ 4) $\mu_{P}^{-1}\mu_{\eta} \in (L_{\eta} \otimes F_{P,\eta})^{\ell^{2t_{P}}}$ for all $P \in \mathscr{P}_{\eta}$.

Proof. Let $i \geq 2$. By choice (cf. 9.8(5)), we have $\nu_{\eta}(\theta_i^P) = 0$ and $\alpha \cdot (\theta_i^P) = 0 \in H^3(F_P, \mu_n^{\otimes 2})$ for all $P \in \mathscr{P}_{\eta}$. By (10.2), there exists $\theta_i^{\eta} \in F_{\eta}$ such that $\alpha \cdot (\theta_i^{\eta}) = 0 \in H^3(F_{\eta}, \mu_n^{\otimes 2})$ and $(\theta_i^P)^{-1}\theta_i^{\eta} \in F_{P,\eta}^{\ell^{2t_P}}$ for all $P \in \mathscr{P}_{\eta}$. Let $\theta_1^{\eta} = \lambda(\theta_2^{\eta} \cdots \theta_\ell^{\eta})^{-1}$. Then $\theta_1^{\eta} \cdots \theta_\ell^{\eta} = \lambda$ and $(\theta_1^P)^{-1}\theta_1^{\eta} \in F_{P,\eta}^{\ell^{2t_P}}$. Since $\alpha \cdot (\lambda) = 0$ and $\alpha \cdot (\theta_i^{\eta}) = 0 \in H^3(F_{\eta}, \mu_n^{\otimes 2})$ for $i \geq 2$, we have $\alpha \cdot (\theta_1) = 0 \in H^3(F_{\eta}, \mu_n^{\otimes 2})$. Hence $L_{\eta} = \prod F_{\eta}$ and $\mu_{\eta} = (\theta_1^{\eta}, \cdots, \theta_\ell^{\eta}) \in L_{\eta}$. Since η is of type 2, $\operatorname{ind}(\alpha \otimes F_{\eta}) < \operatorname{ind}(\alpha)$ and hence L_{η}, μ_{η} have the required properties.

Proposition 10.4. Let η be a codimension zero point of X_0 of type 2. For each $P \in \mathscr{P}_{\eta}$, let (L_P, μ_P) be chosen as in (9.8). Suppose one of the following holds.

• There is a type 2 connection between η and codimension zero point η' of X_0 of type 5 with Q the point of type 2 intersection of η and η' and $M_{\eta'} \otimes F_{Q,\eta'}$ is a field.

• There is no type 2 connection between η and any codimension zero point of X_0 of type 5.

Let $L_{\eta} = F_{\eta}(\sqrt[\ell]{\lambda})$ and $\mu_{\eta} = \sqrt[\ell]{\lambda}$. Then 1) $N_{L_{\eta}/F_{\eta}}(\mu_{\eta}) = \lambda$ 2) $\alpha \cdot (\mu_{\eta}) = 0 \in H^{3}(L_{\eta}, \mu_{n}^{\otimes 2})$ 3) $ind(\alpha \otimes L_{\eta}) < ind(\alpha)$ 4) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism $\phi_{P,\eta} : L_{\eta} \otimes F_{P,\eta} \to L_{P} \otimes F_{P,\eta}$ and

$$\phi_{P,\eta}(\mu_\eta \otimes 1)(\mu_P \otimes 1)^{-1} = 1.$$

Proof. Since $\nu_{\eta}(\lambda)$ is coprime to ℓ , by (4.7), $\alpha \cdot (\mu_{\eta}) = 0 \in H^{3}(L_{\eta}, \mu_{n}^{\otimes 2})$ and $\operatorname{ind}(\alpha \otimes L_{\eta}) < \operatorname{ind}(\alpha)$. Clearly $N_{L_{\eta}/F_{\eta}}(\mu_{\eta}) = \lambda$. By the choice of (L_{P}, μ_{P}) (cf. 9.8), for $P \in \mathscr{P}_{\eta}$, we have $L_{P} = F_{P}(\sqrt[\ell]{\lambda})$ and $\mu_{P} = \sqrt[\ell]{\lambda}$. Thus L_{η} and μ_{η} have the required properties.

Lemma 10.5. Let η be a codimension zero point of X_0 of type 3, 4 or 5a. Let $P \in \eta$. Suppose there exists $L_{P,\eta}/F_{P,\eta}$ a degree ℓ unramified field extension and $\mu_{P,\eta} \in L_{P,\eta}$ such that

1) $N_{L_{P,\eta}/F_{P,\eta}}(\mu_{P,\eta}) = \lambda$, 2) $ind(\alpha \otimes L_{P,\eta}) < ind(\alpha)$, 3) $\alpha \cdot (\mu_{P,\eta}) = 0 \in H^3(L_{P,\eta}, \mu_n^{\otimes 2})$, 4) If η is of type 3, $\lambda \in F_P^{*\ell}$ and $\alpha \otimes E_\eta \otimes F_{P,\eta} \neq 0$, then $ind(\alpha \otimes (E_\eta \otimes F_{P,\eta}) \otimes (L_{P,\eta})) < ind(\alpha \otimes E_\eta \otimes F_{P,\eta})$. Then $ind(\alpha \otimes (E_\eta \otimes F_{P,\eta}) \otimes (L_{P,\eta})) < ind(\alpha)/[E_\eta : F_\eta]$.

Proof. Write $\alpha \otimes F_{\eta} = \alpha' + (E_{\eta}, \sigma_{\eta}, \pi_{\eta})$ as in (4.1). Then, by (4.2), $\operatorname{ind}(\alpha \otimes F_{\eta}) = \operatorname{ind}(\alpha' \otimes E_{\eta})[E_{\eta} : F_{\eta}] = \operatorname{ind}(\alpha \otimes E_{\eta})[E_{\eta} : F_{\eta}]$. Let $t = [E_{\eta} : F_{\eta}]$ and β be the image of α' in $H^{2}(\kappa(\eta), \mu_{n})$.

Suppose η is of type 4. Then $\operatorname{ind}(\alpha \otimes F_{\eta}) < \operatorname{ind}(\alpha)$ and hence $\operatorname{ind}(\alpha \otimes E_{\eta}) = \operatorname{ind}(\alpha \otimes F_{\eta})/t < \operatorname{ind}(\alpha)/t$. We have $\operatorname{ind}(\alpha \otimes (E_{\eta} \otimes F_{P,\eta}) \otimes (L_{P,\eta})) \leq \operatorname{ind}(\alpha \otimes E_{\eta}) < \operatorname{ind}(\alpha)/t$.

Suppose that η is of type 5a. Then α is unramified at η and hence $E_{\eta} = F_{\eta}$ and t = 1. The lemma is clear if $\alpha \otimes F_{P,\eta} = 0$. Suppose $\alpha \otimes F_{P,\eta} \neq 0$. Then $\beta \neq 0$. Since $L_{P,\eta}$ is a an unramified field extension, the residue field $L_P(\eta)$ of $L_{P,\eta}$ is a field extension of $\kappa(\eta)_P$ of degree ℓ . Since $\kappa(\eta)_P$ is a local field and $\operatorname{ind}(\beta)$ is divisible by ℓ , $\operatorname{ind}(\beta \otimes L_P(\eta)) < \operatorname{ind}(\beta)$ ([3, p. 131]). In particular $\operatorname{ind}(\alpha \otimes L_{P,\eta}) < \operatorname{ind}(\alpha)$.

Suppose that η is of type 3. Then $r\alpha \otimes E_{\eta} \neq 0$ and hence $\alpha' \otimes E_{\eta} = \alpha \otimes E_{\eta} \neq 0$. In particular $\operatorname{ind}(\alpha \otimes F_{\eta}) > t$ and $\beta \otimes E(\eta) \neq 0$. If $\alpha \otimes E_{\eta} \otimes F_{P,\eta} = 0$, then $\operatorname{ind}(\alpha \otimes (E_{\eta} \otimes F_{P,\eta}) \otimes (L_{P,\eta})) = 1 < \operatorname{ind}(\alpha)/t$. Suppose that $\alpha \otimes E_{\eta} \otimes F_{P,\eta} \neq 0$. Suppose $\lambda \in F_P^{*\ell}$. Then, by the choice of $L_{P,\eta}$, $\operatorname{ind}(\alpha \otimes (E_{\eta} \otimes F_{P,\eta}) \otimes (L_{P,\eta})) <$ $\operatorname{ind}(\alpha \otimes E_{\eta} \otimes F_{P,\eta}) \leq \operatorname{ind}(\alpha \otimes E_{\eta}) = \operatorname{ind}(\alpha)/t$. Suppose $\lambda \notin F_P^{*\ell}$. Then $\lambda \notin F_{P,\eta}^{*\ell}$. Since $L_{P,\eta}$ is a field extension of degree ℓ and λ is a norm from $L_{P,\eta}$, by (2.6), $L_{P,\eta} \simeq F_{P,\eta}(\sqrt[\ell]{\lambda})$. Since η is of type 3, $\nu_{\eta}(\lambda) = r\ell$ and $\lambda = \theta_{\eta}\pi_{\eta}^{*\ell}$ with $\theta_{\eta} \in F_{\eta}$ a unit at η . Let $\overline{\theta}_{\eta}$ be the image of θ_{η} in $\kappa(\eta)$. Then $\overline{\theta}_{\eta} \notin \kappa(\eta)_P^{\ell}$ and $L_P(\eta) = \kappa(\eta)_P(\sqrt[\ell]{\theta_{\eta}})$. Since $\alpha \cdot (\lambda) = 0$, by (4.7), $r\ell\alpha' = (E_{\eta}, \sigma_{\eta}, \theta_{\eta})$ and hence $r\ell\beta = (E(\eta), \sigma_0, \overline{\theta}_{\eta})$. Thus, by (3.3), $\operatorname{ind}(\beta \otimes E(\eta)_P \otimes L_P(\eta)) < \operatorname{ind}(\beta \otimes E(\eta))$. Thus

$$\operatorname{ind}(\alpha \otimes (E_{\eta} \otimes F_{P,\eta}) \otimes (L_{P,\eta})) = \operatorname{ind}(\alpha' \otimes (E_{\eta} \otimes F_{P,\eta}) \otimes (L_{P,\eta}))$$
$$= \operatorname{ind}(\beta \otimes E(\eta)_{P} \otimes L_{P}(\eta))$$
$$< \operatorname{ind}(\beta \otimes E(\eta)) = \operatorname{ind}(\alpha' \otimes E_{\eta})$$
$$= \operatorname{ind}(\alpha \otimes E_{\eta}) = \operatorname{ind}(\alpha)/t.$$

Proposition 10.6. Let η be a codimension zero point of X_0 of type 3, 4 or 5a. For each $P \in \mathscr{P}_{\eta}$, let (L_P, μ_P) be chosen as in (9.8). Then there exist a field extension L_{η}/F_{η} of degree ℓ and $\mu_{\eta} \in L_{\eta}$ such that

1) $N_{L_{\eta}/F_{\eta}}(\mu_{\eta}) = \lambda$

2) $\alpha \cdot (\mu_{\eta}) = 0 \in H^3(L_{\eta}, \mu_n^{\otimes 2})$

3) $ind(\alpha \otimes L_{\eta}) < ind(\alpha)$

4) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism $\phi_{P,\eta} : L_{\eta} \otimes F_{P,\eta} \to L_{P} \otimes F_{P,\eta}$ and

$$\phi_{P,\eta}(\mu_\eta \otimes 1)(\mu_P \otimes 1)^{-1} \in (L_P \otimes F_{P,\eta})^{\ell^{2t_P}}$$

Proof. Write $\alpha \otimes F_{\eta} = \alpha' + (E_{\eta}, \sigma_{\eta}, \pi_{\eta})$ as in (4.1). By (4.7), $r\ell\alpha' = (E_{\eta}, \sigma_{\eta}, \theta_{\eta})$. Let β be the image of α' in $H^{2}(\kappa(\eta), \mu_{n})$ and $E(\eta)$ the residue field of E_{η} . Then $r\ell\beta = (E(\eta), \sigma_{0}, \theta_{0}) \in H^{2}(\kappa(\eta), \mu_{n})$, where σ_{0} is the automorphism of $E(\eta)$ induced by σ_{η} and θ_{0} is the image of θ_{η} in $\kappa(\eta)$.

Let S be a finite set of places of $\kappa(\eta)$ containing the places given by closed points of \mathscr{P}_{η} and places ν of $\kappa(\eta)$ with $\beta \otimes \kappa(\eta)_{\nu} \neq 0$. For each $\nu \in S$, we now give a cyclic field extension $L_{\nu}/\kappa(\eta)_{\nu}$ of degree ℓ and $\mu_{\nu} \in L_{\nu}$ satisfying the conditions of (3.1) with $E_0 = E(\eta)$ and $d = \operatorname{ind}(\alpha)/t$.

Let $\nu \in S$. Then ν is given by a closed point P of η . If $P \in \mathscr{P}$, let $L_{P,\eta} = L_P \otimes F_{P,\eta}$ and $\mu_{P,\eta} = \mu_P \otimes 1 \in L_{P,\eta}$. Suppose $P \notin \mathscr{P}$. Suppose that $\lambda \notin F_P^{*\ell}$. Then $\lambda \notin F_{P,\eta}^{*\ell}$. Let $L_{P,\eta} = F_{P,\eta}(\sqrt[\ell]{\lambda})$ and $\mu_{P,\eta} = \sqrt[\ell]{\lambda}$. Suppose that $\lambda \in F_P^{*\ell}$. If η is of type 3, then let $L_{P,\eta}/F_{P,\eta}$ be a cyclic unramified field extension of degree ℓ as in (9.3) and $\mu_{P,\eta} = \sqrt[\ell]{\lambda}$. If η is of type 4 or 5a, then let $L_{P,\eta}/F_{P,\eta}$ be a cyclic unramified field extension of degree ℓ as in (4.10) and $\mu_{P,\eta} = \sqrt[\ell]{\lambda}$. Since $L_{P,\eta}/F_{P,\eta}$ is an unramified field extension of degree ℓ , the residue field $L_P(\eta)$ is a degree ℓ field extension of $\kappa(\eta)_P$. Let $L_{\nu} = L_P(\eta)$. We have $\nu_{\eta}(\lambda) = r\ell$ for some integer r and $\lambda = \theta_{\eta} \pi_{\eta}^{r\ell}$ for some parameter π_{η} at η and $\theta_{\eta} \in F_{\eta}$ a unit at η . Further π_{η} is a parameter in $L_{P,\eta}$. Since $N_{L_{P,\eta}/F_{P,\eta}}(\mu_{P,\eta}) = \lambda$, $\mu_{P,\eta} = \theta_{P,\eta}\pi_{\eta}^{r}$ for some $\theta_{P,\eta} \in L_P \otimes F_{P,\eta}$ which is a unit at η . Let μ_{ν} be the image of $\theta_{P,\eta}$ in $L_{\nu} = L_P(\eta)$. Then $N_{L_{\nu}/\kappa(\eta)_{\nu}}(\mu_{\nu}) = \theta_0$. Since the corestriction map $H^2(L_{\nu},\mu_n) \to H^2(\kappa(\eta)_{\nu},\mu_n)$ is injective, $r\beta \otimes L_{\nu} = (E_0 \otimes L_{\nu}, \sigma_0 \otimes 1, \mu_{\nu})$. Let $t = [E_{\eta} : F_{\eta}]$. By (10.5), we have $\operatorname{ind}(\alpha \otimes (E_{\eta} \otimes F_{P,\eta}) \otimes L_{P,\eta}) < \operatorname{ind}(\alpha)/t$. Since $\operatorname{ind}(\beta \otimes E_0 \otimes L_{\mu}) = \operatorname{ind}(\alpha' \otimes (E_{\eta} \otimes F_{P,\eta}))$, $\operatorname{ind}(\beta \otimes E_0 \otimes L_{\nu}) < \operatorname{ind}(\alpha)/t$.

Since $\kappa(\eta)$ is a global-field, by (3.1), there exist a field extension $L_0/\kappa(\eta)$ of degree ℓ and $\mu_0 \in L_0$ such that

- 1) $N_{L_0/k}(\mu_0) = \theta_0$
- 2) $r\beta \otimes L_0 = (E(\eta) \otimes L_0, \sigma_0 \otimes 1, \mu_0)$
- 3) $\operatorname{ind}(\beta \otimes E(\eta) \otimes L_0) < \operatorname{ind}(\alpha)/t$
- 4) $L_0 \otimes \kappa(\eta)_P \simeq L_P(\eta)$ for all $P \in \mathscr{P}_\eta$
- 5) μ_0 is close to $\overline{\theta}_P$ for all $P \in \mathscr{P}_\eta$.

Then, by (4.8), there exist a field extension L_{η}/F_{η} of degree ℓ and $\mu \in L_{\eta}$ such that • residue field of L_{η} is L_{0} ,

- μ a unit in the valuation ring of L_{η} ,
- $\overline{\mu} = \mu_0$,
- $N_{L_{\eta}/F_{\eta}}(\mu) = \theta_{\eta},$

• $\alpha \cdot (\mu \pi_{\eta}^{r}) \in H^{3}(L_{\eta}, \mu_{n}^{\otimes 2})$ is unramified.

Since L_{η} is a complete discretely valued field with residue field L_0 a global field, $H^3_{nr}(L_{\eta}, \mu_n^{\otimes 2}) = 0$ ([27, p. 85]) and hence $\alpha \cdot (\mu \pi_{\eta}^r) = 0$. Since L_{η}/F_{η} is unramified and $\alpha \otimes L_{\eta} = \alpha' \otimes L_{\eta} + (E_{\eta} \otimes L_{\eta}, \sigma_{\eta}, \pi_{\eta})$, $\operatorname{ind}(\alpha \otimes L_{\eta}) \leq \operatorname{ind}(\alpha' \otimes E_{\eta} \otimes L_{\eta})[E_{\eta} \otimes L_{\eta} : L_{\eta}] =$ $\operatorname{ind}(\beta \otimes E(\eta) \otimes L_0)t < \operatorname{ind}(\alpha)$. Thus L_{η} and $\mu_{\eta} = \mu \pi_{\eta}^r \in L_{\eta}$ have the required properties.

Proposition 10.7. Let η be a codimension zero point of X_0 of type 5b. Let (E_η, σ_η) be the residue of α at η and M_η be the unique subfield of E_η with M_η/F_η a cyclic extension of degree ℓ . For each $P \in \mathscr{P}_\eta$, let L_P and μ_P be as in (9.8). Then there exists $\mu_\eta \in M_\eta$ such that

- 1) $N_{M_{\eta}/F_{\eta}}(\mu_{\eta}) = \lambda$ 2) $\alpha \cdot (\mu_{\eta}) = 0 \in H^{3}(M_{\eta}, \mu_{n}^{\otimes 2})$
- 3) $ind(\alpha \otimes M_{\eta}) < ind(\alpha)$

4) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism $\phi_{P,\eta} : M_{\eta} \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$ and

$$\phi_{P,\eta}(\mu_\eta \otimes 1)(\mu_P \otimes 1)^{-1} \in (L_P \otimes F_{P,\eta})^{\ell^{2t_P}}$$

Proof. Let $E(\eta)$ and $M(\eta)$ be the residue fields of E_{η} and M_{η} at η . Since η is of type 5b, $M(\eta)$ is the unique subfield of $E(\eta)$ with $M(\eta)/\kappa(\eta)$ a cyclic field extension of degree ℓ . Let π_{η} be a parameter at η . Since η is of type 5, $\nu_{\eta}(\lambda) = r\ell$ and $\lambda = \theta_{\eta}\pi_{\eta}^{r\ell}$ for some $\theta_{\eta} \in F$ a unit at η . Let $\overline{\theta}_{\eta}$ be the image of θ_{η} in $\kappa(\eta)$. Let $P \in \mathscr{P}_{\eta}$. Suppose $M_{\eta} \otimes F_{P,\eta}$ is a field. Since $N_{M_{\eta} \otimes F_{P,\eta}/F_{P,\eta}}(\mu_{P}) = \lambda = \theta_{\eta}\pi_{\eta}^{r\ell}$, we have $\mu_{P} = \mu'_{P}\pi_{\eta}^{r}$ with $\mu'_{P} \in M_{\eta} \otimes F_{P,\eta}$ a unit at η and $N_{M_{\eta} \otimes F_{P,\eta}/F_{P,\eta}}(\mu'_{P}) = \theta_{\eta}$. Suppose $M_{\eta} \otimes F_{P,\eta}$ is not a field. Then, by the choice of μ_{P} (cf. 9.8(10)), we have $\mu_{P} = \mu'_{P}\pi_{\eta}^{r}$, where $\mu'_{P} = (\theta'_{1}, \dots, \theta'_{\ell}) \in M_{\eta} \otimes F_{P,\eta'} = \prod F_{P,\eta}$ with each $\theta'_{i} \in F_{P,\eta}$ is a unit at η . Let μ'_{P} be the image of μ'_{P} in the residue field $M(\eta) \otimes \kappa(\eta)_{P}$ of $M_{\eta} \otimes F_{P,\eta}$ at η . Write $\alpha \otimes F_{\eta} = \alpha' + (E_{\eta}, \sigma_{\eta}, \pi_{\eta})$ as in (4.1). Let β be the image of α' in $H^{2}(\kappa(\eta), \mu_{n})$. Since $\alpha \cdot (\lambda) = 0$, by (4.7), $r\ell\beta = (E(\eta), \sigma_{\eta}, \overline{\theta}_{\eta})$. Since $\alpha \cdot (\mu_P) = 0$ in $H^3(M_\eta \otimes F_{P,\eta}, \mu_n^{\otimes 2})$, once again by (4.7), $r\beta \otimes \kappa(\eta)_P = (E(\eta) \otimes M(\eta) \otimes \kappa(\eta)_P, \sigma_{\eta}, \overline{\mu'}_P)$. Since $\kappa(\eta)$ is a global field, by (3.6), there exists $\mu'_{\eta} \in M(\eta)$ such that

1) $N_{M(\eta)/\kappa(\eta)}(\mu'_{\eta}) = \theta_{\eta}$

2) $r\beta \otimes M(\eta) = (E(\eta) \otimes M(\eta), \sigma_{\eta}, \mu'_{\eta})$

3) $\overline{\mu'}_P$ is close to μ'_η for all $P \in \mathscr{P}_\eta$.

Since M_{η} is complete, there exists $\tilde{\mu_{\eta}} \in M_{\eta}$ such that $N_{M_{\eta}/F_{\eta}}(\tilde{\mu'_{\eta}}) = \theta_{\eta}$ and the image of $\tilde{\mu'_{\eta}}$ in $M(\eta)$ is μ'_{η} . Let $\mu_{\eta} = \tilde{\mu'_{\eta}}\pi^r_{\eta}$. Since M_{η}/F_{η} is of degree ℓ , $\operatorname{ind}(\alpha \otimes M_{\eta}) < \operatorname{ind}(\alpha \otimes F_{\eta})$ (cf. 8.1). Thus μ_{η} has the required properties.

Proposition 10.8. Let η be a codimension zero point of X_0 of type 6. For each $P \in \mathscr{P}_{\eta}$, let L_P and μ_P be as in (9.8). Then there exist a field extension L_{η}/F_{η} of degree ℓ and $\mu_{\eta} \in L_{\eta}$ such that

1) $N_{L_{\eta}/F_{\eta}}(\mu_{\eta}) = \lambda$

2) $\alpha \cdot (\mu_{\eta}) = 0 \in H^3(L_{\eta}, \mu_n^{\otimes 2})$

- 3) $ind(\alpha \otimes L_{\eta}) < ind(\alpha)$
- 4) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism $\phi_{P,\eta} : M_{\eta} \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$ and

$$\phi_{P,\eta}(\mu_\eta \otimes 1)(\mu_P \otimes 1)^{-1} \in (L_P \otimes F_{P,\eta})^{\ell^{2t_P}}.$$

Proof. Let $P \in \mathscr{P}_{\eta}$. Suppose $L_P \otimes F_{P,\eta}$ is a field. Let $L_P(\eta)$, $\overline{\theta}_P \in L_P(\eta)$, $\theta_0 \in \kappa(\eta)$ and β be as in the proof of (10.6). Then, as in the proof of (10.6), we have $N_{L_P(\eta)/\kappa(\eta)_P}(\overline{\theta}_P) = \theta_0$ and $\operatorname{ind}(\beta \otimes E_0 \otimes L_P(\eta)) < \operatorname{ind}(\alpha)/[E_\eta : F_\eta]$. As in the proof of (10.7), we have $r\beta \otimes L_P(\eta) = (E_0 \otimes L_P(\eta), \sigma_0 \otimes 1, \overline{\theta}_P)$.

If L_P/F_P is not a field, by choice (cf. 9.8(11)), we have $\mu_P = (\theta_1 \pi_\eta^r, \dots, \theta_\ell \pi_\eta^r)$. Since $\alpha \cdot (\mu_P) = 0$ in $H^3(L_P, \mu_n^{\otimes}) = \prod H^3(F_P, \mu_n^{\otimes 2})$, we have $\alpha \cdot (\theta_i \pi_\eta^r) = 0 \in H^3(F_P, \mu_n^{\otimes 2})$. Thus, by (4.7), we have $r\beta \otimes \kappa(\eta)_P = (E_0, \sigma_0 \otimes 1, \overline{\theta}_i)$ for all *i*. Since $L_P(\eta) = \prod \kappa(\eta)_P$ and $\overline{\theta}_P = (\overline{\theta}_1, \dots, \overline{\theta}_\ell)$, we have $r\beta \otimes L_P(\eta) = (E_0 \otimes L_P(\eta), \sigma_0 \otimes 1, \overline{\theta}_P)$.

As in the proof of (10.6), we construct L_{η} and μ_{η} with the required properties. \Box

Lemma 10.9. Let η be a codimension one point of X_0 and P a closed point on η . Suppose there exist $\theta_\eta \in F_\eta$ such that $\alpha \cdot (\theta_\eta) = 0 \in H^3(F_\eta, \mu_n^{\otimes 2})$. Then there exists $\theta_P \in F_P$ such that $\alpha \cdot (\theta_P) = 0 \in H^3(F_P, \mu_n^{\otimes 2})$, $\nu_\eta(\theta_P) = \nu_\eta(\theta_\eta)$ and $\theta_P^{-1}\theta_\eta \in F_{P,\eta}^{*\ell^{2t_P}}$.

Proof. Let π be a prime representing η at P. Since η is regular on \mathscr{X} , there exists a prime δ at P such that the maximal ideal at P is generated by π and δ . Since $F_{P,\eta}$ is a complete discrete valued field with π as a parameter, $\theta_{\eta} = w\pi^s$ for some $w \in F_{\eta}$ unit at η . Since the residue field $\kappa(\eta)_P$ of $F_{P,\eta}$ is a complete discrete valued field with $\overline{\delta}$ as a parameter, we have $\overline{w} = \overline{u}\overline{\delta}^r$ for some $u \in F_P$ unit at P. Let $\theta_P = u\delta^r\pi^s$. Then clearly $\nu_{\eta}(\theta_{\eta}) = \nu_{\eta}(\theta_P)$ and $\theta_P^{-1}\theta_{\eta} \in F_{P,\eta}^{\ell^{2t_P}}$. Since $\alpha \cdot (\theta_P)$ is unramified at P except possibly at π and δ and $\alpha \cdot (\theta_P) = \alpha \cdot (\mu_P) = 0 \in H^3(F_{P,\eta}, \mu_n^{\otimes 2})$, by (5.5), $\alpha \cdot (\theta_P) = 0 \in H^3(F_P, \mu_n^{\otimes 2})$.

11. The main theorem

Theorem 11.1. Let K be a local field with residue field κ and F the function field of a curve over K. Let D be a central simple algebra over F of exponent n, α its class in $H^2(F, \mu_n)$, and $\lambda \in F^*$. If $\alpha \cdot (\lambda) = 0$ and n is coprime to char(κ), then λ is a reduced norm from D^* . *Proof.* As in the proof of (4.12), we assume that $n = \ell^d$ for prime ℓ with $\ell \neq \operatorname{char}(\kappa)$ and F contains a primitive ℓ^{th} root of unity. We prove the theorem by induction on $\operatorname{ind}(D)$.

Suppose that ind(D) = 1. Then D is a matrix algebra and hence every element of F is a reduced norm. Assume that ind(D) > 1.

Without loss of generality we assume that K is algebraically closed in F. Let X be a smooth projective geometrically integral curve over K with K(X) = F. Let R be the ring of integers in K and κ its residue field. Let \mathscr{X} be a regular proper model of F over R such that the union of $\operatorname{ram}_{\mathscr{X}}(\alpha)$, $\operatorname{supp}_{\mathscr{X}}(\lambda)$ and the special fibre X_0 of \mathscr{X} is a union of regular curves with normal crossings. By (8.6), we assume that \mathscr{X} has no special points, and there is no type 2 connection between a codimension zero point of X_0 of type 3, or 5 and codimension zero point of X_0 of type 3, 4 or 5.

Let \mathscr{P} be the set of nodal points of X_0 . For each $P \in \mathscr{P}$, let L_P and μ_P be as in (9.8). Let η be a codimension zero point of X_0 and $\mathscr{P}_{\eta} = \mathscr{P} \cap \eta$. Let L_{η} and μ_{η} be as in 10.1, 10.3, 10.4, 10.6, 10.7 or 10.8 depending on the type of η . Then L_{η}/F_{η} is an extension of degree ℓ and $\mu_{\eta} \in L_{\eta}$ such that

1)
$$N_{L_{\eta}/F_{\eta}}(\mu_{\eta}) = \lambda$$

2) $\alpha \cdot (\mu_{\eta}) = 0 \in H^3(L_{\eta}, \mu_n^{\otimes 2})$

3) $\operatorname{ind}(\alpha \otimes L_{\eta}) < \operatorname{ind}(\alpha)$

4) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism $\phi_{P,\eta} : L_{\eta} \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$ and

$$\phi_{P,\eta}(\mu_\eta \otimes 1)(\mu_P \otimes 1)^{-1} \in (L_P \otimes F_{P,\eta})^{\ell^{2t_P}}$$

Let $P \in \mathscr{X}$ be a closed point with $P \notin \mathscr{P}$. Then there is a unique codimension zero point η of X_0 with $P \in \eta$. We give a choice of a cyclic or split extension L_P/F_P of degree ℓ and $\mu_P \in L_P^*$ such that

- 1) $N_{L_P/F_P}(\mu_P) = \lambda$,
- 2) $\operatorname{ind}(\alpha \otimes L_P) < \operatorname{ind}(\alpha)$,
- 3) $\alpha \cdot (\mu_P) = 0 \in H^3(L_P, \mu_n^{\otimes 2}),$
- 4) there is an isomorphism $\phi_{P,\eta}: L_\eta \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$ and

$$\phi_{P,\eta}(\mu_\eta \otimes 1)(\mu_P \otimes 1)^{-1} \in (L_P \otimes F_{P,\eta})^{\ell^{2t_P}}.$$

Suppose that η is of type 1. Then, by the choice of L_{η} and μ_{η} (10.1), $L_P = F_P(\sqrt[\ell]{\lambda})$ and $\mu_P = \sqrt[\ell]{\lambda}$ have the required properties.

Suppose that η is of type 2. Suppose that there is a type 2 connection to a codimension zero point η' of X_0 of type 5. Let Q be the point of type 2 intersection η and η' . Suppose that $M_{\eta'} \otimes F_{Q,\eta'}$ not a field. Then, by choice (cf. 10.3), we have $L_{\eta} = \prod F_{\eta}$ and $\mu_{\eta} = (\theta_1, \dots, \theta_{\ell})$. Since $\alpha \cdot (\mu_{\eta}) = 0$, we have $\alpha \cdot (\theta_i) = 0$. For each i, $2 \leq i \leq \ell$, by (10.9), there exists $\theta_i^P \in F_P$ such that $\alpha \cdot (\theta_i^P) = 0 \in H^3(F_P, \mu_n^{\otimes 2})$ and $\theta_i^{-1}\theta_i^P \in F_{P,\eta}^{*\ell^{2t_P}}$. Let $\theta_1^P = \lambda(\theta_2^P \cdots \theta_{\ell}^P)^{-1}$. Then $L_P = \prod F_P$ and $\mu_P = (\theta_1^P, \dots, \theta_{\ell}^P)$ have the required properties. Suppose that $M_{\eta'} \otimes F_{Q,\eta'}$ is a field or there is no type 2 connection from η to any point of type 5. Then, by the choice (10.4), we have $L_{\eta} = F_{\eta}(\sqrt[\ell]{\lambda})$ and $\mu_{\eta} = \sqrt[\ell]{\lambda}$. Hence $L_P = F_P(\sqrt[\ell]{\lambda})$ and $\mu_P = \sqrt[\ell]{\lambda} \in L_P$ have the required properties.

Suppose that η is not of type 1 or 2. Then, by choice L_{η}/F_{η} is an unramified field extension of degree ℓ or the split extension of degree ℓ . Let \hat{A}_P be the completion of the local ring at P and π a prime in \hat{A}_P defining η at P. Since $P \notin \mathscr{P}$ and $\operatorname{ram}_{\mathscr{X}}(\alpha)$ is union of regular curves with normal crossings, there exists a prime $\delta \in \hat{A}_P$ such that α is unramified on \hat{A}_P except possibly at π and δ . Further, $\lambda = w \pi^r \delta^s$ for some unit $u \in A_P$. Since η is not of type 1 or 2, $\nu_{\eta}(\lambda) = r$ is divisible by ℓ . Thus, by (6.5), there exist a cyclic extension L_P/F_P and $\mu_P \in L_P$ such that

1) $L_P \otimes F_{P,\eta} \simeq L_\eta \otimes F_{P,\eta}$, 2) $\operatorname{ind}(\alpha \otimes L_P) < \operatorname{ind}(\alpha)$, 3) $\alpha \cdot (\mu_P) = 0 \in H^3(L_P, \mu_n^{\otimes 2})$, 4) there is an isomorphism $\phi_{P,\eta} : L_\eta \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$ and $L_P \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$

$$\phi_{P,\eta}(\mu_\eta \otimes 1)(\mu_P \otimes 1)^{-1} \in (L_P \otimes F_{P,\eta})^{\ell^{2 \circ P}}.$$

Thus for every $x \in X_0$, we have chosen an extension L_x/F_x of degree ℓ and $\mu_x \in L_x$ such that

- 1) $N_{L_x/F_x}(\mu_x) = \lambda$ 2) $\alpha \cdot (\mu_x) = 0 \in H^3(L_x, \mu_x^{\otimes 2})$ 2) ind($x \otimes L$) $\in ind(x)$
- 3) $\operatorname{ind}(\alpha \otimes L_x) < \operatorname{ind}(\alpha)$

4) for any branch (P, η) , there is an isomorphism $\phi_{P,\eta} : L_\eta \otimes F_{P,\eta} \to L_P \otimes F_{P,\eta}$ and $\phi_{P,\eta}(\mu_\eta \otimes 1)(\mu_P \otimes 1)^{-1} \in (L_P \otimes F_{P,\eta})^{\ell^{2t_P}}$. Further if P is a closed point of X_0 , then L_P/F_P is cyclic or the split extension.

Let (P, η) be a branch. Since $\kappa(P)$ has no $\ell^{2t_P^{\text{th}}}$ primitive root of unity and $\kappa(\eta)_P$ is a complete discretely valued field with residue field $\kappa(P)$, $\kappa(\eta)_P$ has no $\ell^{2t_P^{\text{th}}}$ primitive root of unity. Since $F_{P,\eta}$ is a complete discretely valued field with residue field $\kappa(\eta)_P$, $F_{P,\eta}$ has no $\ell^{2t_P^{\text{th}}}$ primitive root of unity. Since $\phi_{P,\eta}(\mu_\eta \otimes 1)(\mu_P \otimes 1)^{-1} \in (L_P \otimes F_{P,\eta})^{\ell^{2t_P}}$ and $t_P \geq d$, by (2.8), for a generator σ of $\operatorname{Gal}(L_P \otimes F_{P,\eta}/F_{P,\eta})$, there exists $\theta_{P,\eta} \in L_P \otimes F_{P,\eta}$ such that $\phi_{P,\eta}(\mu_\eta \otimes 1)(\mu_P \otimes 1)^{-1} = \theta_{P,\eta}^{-\ell^d} \sigma(\theta_{P,\eta})^{\ell^d}$.

By (7.5), there exist extensions L/F of degree ℓ , N/F of degree coprime to ℓ , and $\mu \in L \otimes N$ such that

- $N_{L\otimes N/F}(\mu) = \lambda$ and
- $\bullet \ \alpha \cdot (\mu) = 0 \in H^3(L \otimes N, \mu_n^{\otimes 2})$
- $\operatorname{ind}(\alpha \otimes L) < \operatorname{ind}(\alpha)$.

Since $L \otimes N$ is also a function field of a curve over a *p*-adic field, by induction hypotheses, μ is a reduced norm from $D \otimes L \otimes N$ and hence $\lambda = N_{L \otimes N/N}(\mu)$ is a reduced norm from *D*. Since $N_{N/F}(\lambda) = \lambda^{[N:F]}$, $\lambda^{[N:F]}$ is a norm from *D*. Since [N:F] is coprime to ℓ , λ is a reduced norm from *D*.

Corollary 11.2. Let K be a local field with residue field κ and F the function field of a curve over K. Let Ω be the set of divisorial discrete valuations of F. Let D be a central simple algebra over F of index coprime to $char(\kappa)$ and $\lambda \in F$. If λ is a reduced norm from $D \otimes F_{\nu}$ for all $\nu \in \Omega$, then λ is a reduced norm from D.

Proof. Since λ is a reduced norm from F_{ν} for all $\nu \in \Omega_F$, $\alpha \cdot (\lambda) = 0$ in $H^3(F_{\nu}, \mu_n^{\otimes 2})$ for all $\nu \in \Omega$. Thus, by ([16, Proposition 5.2]), $\alpha \cdot (\lambda) = 0$ in $H^3(F, \mu_n^{\otimes 2})$ and by (11.1), λ is a reduced norm from D.

Acknowledgments: We thank Nivedita for the wonderful conversations during the preparation of the paper. The first author is partially supported by National Science Foundation grants DMS-1401319 and DMS-1463882 and the third author is partially supported by National Science Foundation grants DMS-1301785 and DMS-1463882.

References

 A. Albert, Structure of Algebras, Amer. Math. Soc. Colloq. Publ., Vol. 24, Amer. Math. Soc., Providence, RI, 1961, revised printing.

- [2] M. Artin, Algebraic approximation of structures over complete local rings. Publ. Math. IHES, 36 (1969), 23–58.
- [3] J.W.S Cassels and A. Fröhlich, Algebraic Number Theory, Thomson Book Company Inc, Washington, D.C, 1967.
- [4] J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, in K-Theory and Algebraic Geometry : Connections with Quadratic Forms and Division Algebras, AMS Summer Research Institute, Santa Barbara 1992, ed. W. Jacob and A. Rosenberg, Proceedings of Symposia in Pure Mathematics 58, Part I (1995) 1-64.
- [5] J.-L. Colliot-Thélène, R. Parimala, V. Suresh, Patching and local global principles for homogeneous spaces over function fields of p-adic curves, Commentari Math. Helv. 87 (2012), 1011– 1033.
- B. Fein and M. Schacher, Q(t) and Q((t))-Admissibility of Groups of Odd Order, Proceedings of the AMS, 123 (1995), 1639–1645.
- [7] M. Fried and M. Jarden, *Field Arithmetic*, A Series of Modern Surveys in Mathematics, Volume 11, Springer.
- [8] P. Gille and T. Szamuely, *Central simple algebras and Galois cohomology*, Cambridge Studies in Advanced Mathematics, vol.101, Cambridge University Press, Cambridge, 2006.
- [9] D. Harbater and J. Hartmann, *Patching over fields*, Israel J. Math. **176** (2010), 61–107.
- [10] D. Harbater, J. Hartmann and D. Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), 231–263.
- [11] D. Harbater, J. Hartmann and D. Krashen, Local-global principles for torsors over arithmetic curves, American Journal of Mathematics, 137 (2015), 1559–1612
- [12] D. Harbater, J. Hartmann and D. Krashen, Local-global principles for Galois cohomology, Commentarii Mathematici Helvetici, 89, (2014), 215–253.
- [13] D. Harbater, J. Hartmann and D. Krashen, *Refinements to patching and applications to field invariants*,
- [14] Y. Hu, Hasse Principle for Simply Connected Groups over Function Fields of Surfaces, J. Ramanujan Math. Soc. 29 (2014), no. 2, 155–199.
- [15] B. Jacob and A. Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126–179.
- [16] K. Kato, A Hasse principle for two-dimensional global fields, J. reine angew. Math. 366 (1986), 142-181.
- [17] F. Lorenz, Algebra Volume II: Fields with Structure, Algebras and Advanced Topics, Universitytext, Springer (2008).
- [18] M.-A. Knus, A.S. Merkurjev, M. Rost and J.-P. Tignol, *The Book of Involutions*, A.M.S, Providence RI, 1998.
- [19] A.S. Merkurjev and A.A. Suslin, The norm residue homomorphism of degree 3, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 339-356; translation in Math. USSR-Izv. 36 (1991), 349-367.
- [20] J.S.Milne, *Étale Cohomology*, Princeton University Press, Princeton, New Jersey (1980).
- [21] R. Parimala and V. Suresh, Period-index and u-invariant questions for function fields over complete discretely valued fields, Invent. math. 197 (2014), 215–235.
- [22] R. Parimala and V. Suresh, On the u-invariant of function fields of curves over complete discretely valued fields, Adv. Math. 280 (2015), 729–742.
- [23] R. Preeti, Classification theorems for Hermitian forms, the Rost kernel and Hasse principle over fields with $cd_2(k) \leq 3$, J. Algebra **385** (2013), 294–313.
- [24] J. Riou, Classes de Chern, morphismes de Gysin, pureté absolue In: Travaux de Gabber sur l'uniformisation locale et la cohomologie étale des schemas quasi-excellents. Sém. à l'École polytechnique 2006–2008, dirigé par L. Illusie, Y. Laszlo et F. Orgogozo. Astérisque 363-364, 2014, pp. 301–349.
- [25] D. J. Saltman, Division algebras over p-adic curves, J. Ramanujan Math. Soc. 12 (1997), 25–47.
- [26] J-P. Serre, Local fields, Springer-Verlag, New York, 1979.
- [27] J-P. Serre, Galois Cohomology, Springer-Verlag, New York, 1997.
- [28] J-P. Serre, Cohomological invariants, Witt invariants and trace forms, in *Cohomological Invariants in Galois Cohomology*, Skip Garibaldi, Alexander Merkurjev, Jean-Pierre Serre, University Lecture Series 28, Amer. Math. Soc. 2003.

[29] B. Surendranath Reddy and V. Suresh, Admissibility of groups over function fields of p-adic curves, Adv. in Math. 237 (2013) 316-330.

Department of Mathematics & Computer Science, Emory University, 400 Dowman Drive NE, Atlanta, GA 30322, USA

E-mail address: parimala@mathcs.emory.edu

Department of Mathematics, Indian Institute of Technology (Bombay), Powai, Mumbai-400076, India

E-mail address: preeti@math.iitb.ac.in

Department of Mathematics & Computer Science, Emory University, 400 Dowman Drive NE, Atlanta, GA 30322, USA

E-mail address: suresh@mathcs.emory.edu