LOCAL-GLOBAL PRINCIPLE FOR REDUCED NORMS OVER FUNCTION FIELDS OF p-ADIC CURVES

R. PARIMALA, R. PREETI, AND V. SURESH

Abstract

Let F be the function field of a p-adic curve. Let D be a central simple algebra over F of period n and $\lambda \in F^{*}$. We show that if n is coprime to p and $D \cdot(\lambda)=0$ in $H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$, then λ is a reduced norm. This leads to a Hasse principle for the $S L_{1}(D)$, namely an element $\lambda \in F^{*}$ is a reduced norm from D if and only if it is a reduced norm locally at all discrete valuations of F.

1. Introduction

Let K be a p-adic field and F a function field in one-variable over K. Let Ω_{F} be the set of all discrete valuations of F. Let G be a semi-simple simply connected linear algebraic group defined over F. It was conjectured in ([5]) that the Hasse principle holds for principal homogeneous spaces under G over F with respect to Ω_{F}; i.e. if X is a principal homogeneous space under G over F with $X\left(F_{\nu}\right) \neq \emptyset$ for all $\nu \in \Omega_{F}$, then $X(F) \neq \emptyset$. If G is $S L_{1}(D)$, where D is a central simple algebra over F of square free index, it follows from the injectivity of the Rost invariant ([19]) and a Hasse principle for $H^{3}\left(F, \mu_{n}\right)$ due to Kato ([16]), that this conjecture holds. This conjecture has been subsequently settled for classical groups of type B_{n}, C_{n} and D_{n} ([14], [23]). It is also settled for groups of type ${ }^{2} A_{n}$ with the assumption that $n+1$ is square free ([14], [23]).

The main aim of this paper is to prove that the conjecture holds for $S L_{1}(D)$ for any central simple algebra D over F with index coprime to p. In fact we prove the following (11.1)
Theorem 1.1. Let K be a p-adic field and F a function field in one-variable over K. Let D be a central simple algebra over F of index coprime to p and $\lambda \in F^{*}$. If $D \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$, then λ is a reduced norm from D.

This together with Kato's result on the Hasse principle for $H^{3}\left(F, \mu_{n}\right)$ gives the following (11.2)
Theorem 1.2. Let K be p-adic field and F the function field of a curve over K. Let Ω_{F} be the set of discrete valuations of F. Let D be a central simple algebra over F of index coprime to p and $\lambda \in F^{*}$. If λ is a reduced norm from $D \otimes F_{\nu}$ for all $\nu \in \Omega_{F}$, then λ is a reduced norm from D.

In fact we may restrict the set of discrete valuations to the set of divisorial discrete valuations of F; namely those discrete valuations of F centered on a regular proper model of F over the ring of integers in K.

Here are the main steps in the proof. We reduce to the case where D is a division algebra of period ℓ^{d} with ℓ a prime not equal to p. Given a central division algebra D over F of period $n=\ell^{d}$ with $\ell \neq p$ and $\lambda \in F^{*}$ with $D \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$, we construct a degree ℓ extension L of F and $\mu \in L^{*}$ such that $N_{L / F}(\mu)=\lambda$, $(D \otimes L) \cdot(\mu)=0$ and the index of $D \otimes L$ is strictly smaller than the index of D.

Then, by induction on the index of D, μ is a reduced norm from $D \otimes L$ and hence $N_{L / F}(\mu)=\lambda$ is a reduced norm from D.

Let \mathscr{X} be a regular proper 2-dimensional scheme over the ring of integers in K with function field F and X_{0} the reduced special fibre of \mathscr{X}. By the patching techniques of Harbater-Hartman-Krashen ([9], [10]), construction of such a pair (L, μ) is reduced to the construction of compatible pairs $\left(L_{x}, \mu_{x}\right)$ over F_{x} for all $x \in X_{0}$ (7.5), where for any $x \in X_{0}, F_{x}$ is the field of fractions of the completion of the regular local ring at x on \mathscr{X}. We use local and global class field theory to construct such local pairs $\left(L_{x}, \mu_{x}\right)$. Thus this method cannot be extended to the more general situation where F is a function field in one variable over a complete discretely valued field with arbitrary residue field.

Here is the brief description of the organization of the paper. In $\S 3$, we prove a few technical results concerning central simple algebras and reduced norms over global fields. These results are key to the later patching construction of the fields L_{x} and $\mu_{x} \in L_{x}$ with required properties.

In $\S 4$ we prove the following local variant of (1.1)
Theorem 1.3. Let F be a complete discrete valued field with residue field κ. Suppose that κ is a local field or a global field. Let D be a central simple algebra over F of period n. Suppose that n is coprime to char (κ). Let $\alpha \in H^{2}\left(F, \mu_{n}\right)$ be the class of D and $\lambda \in F^{*}$. If $\alpha \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$, then λ is a reduced norm from D.
Let A be a complete regular local ring of dimension 2 with residue field κ finite, field of fractions F and maximal ideal $m=(\pi, \delta)$. Let ℓ be a prime not equal to $\operatorname{char}(\kappa)$. Let D be a central simple algebra over F of index ℓ^{n} with $n \geq 1$ and α the class of D in $H^{2}\left(F, \mu_{\ell^{n}}\right)$. Suppose that D is unramified on A except possibly at π and δ. In $\S 5$, we analyze the structure of D. We prove that index of D is equal to the period of D. A similar analysis is done by Saltman ([25]) with the additional assumption that F contains all the primitive ℓ^{n}-roots of unity, where ℓ^{n} is the index of D. Let $\lambda \in F^{*}$. Suppose that $\lambda=u \pi^{r} \delta^{t}$ for some unit $u \in A$ and $r, s \in \mathbb{Z}$ and $\alpha \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{\ell^{n}}^{\otimes 2}\right)$. In $\S 6$, we construct possible pairs (L, μ) with L / F of degree $\ell, \mu \in L$ such that $N_{L / F}(\mu)=\lambda, \operatorname{ind}(D \otimes L)<\operatorname{ind}(D)$ and $\alpha \cdot(\mu)=0 \in H^{3}\left(L, \mu_{\ell^{n}}^{\otimes 2}\right)$.

Let K be a p-adic field and F a function field of a curve over K. Let ℓ be a prime not equal to p, D a central division algebra over F of index ℓ^{n} and α the class of D in $H^{2}\left(F, \mu_{\ell^{n}}\right)$. Let $\lambda \in F^{*}$ with $\alpha \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{\ell^{n}}^{\otimes 2}\right)$. Let \mathscr{X} be a normal proper model of F over the ring of integers in K and X_{0} its reduced special fibre. In $\S 7$, we reduce the construction of (L, μ) to the construction of local $\left(L_{x}, \mu_{x}\right)$ for all $x \in X_{0}$ with some compatible conditions along the "branches".
Further assume that \mathscr{X} is regular and $\operatorname{ram}_{\mathscr{X}}(\alpha) \cup \operatorname{supp}_{\mathscr{X}}(\lambda) \cup X_{0}$ is a union of regular curves with normal crossings. We group the components of X_{0} into 8 types depending on the valuation of λ, index of D and the ramification type of D along those components. We call some nodal points of X_{0} as special points depending on the type of components passing through the point. We also say that two components of X_{0} are type 2 connected if there is a sequence of type 2 curves connecting these two components. We prove that there is a regular proper model of F with no special points and no type 2 connection between certain types of component (8.6).
Starting with a model constructed in (8.6), in $\S 9$, we construct $\left(L_{P}, \mu_{P}\right)$ for all nodal points of X_{0} (9.8) with the required properties. In $\S 10$, using the class field results of $\S 3$, we construct $\left(L_{\eta}, \mu_{\eta}\right)$ for each of the components η of X_{0} which are compatible with $\left(L_{P}, \mu_{P}\right)$ when P is in the component η.

Finally in $\S 11$, we prove the main results by piecing together all the constructions of $\S 7, \S 9$ and $\S 10$.

2. Preliminaries

In this section we recall a few definitions and facts about Brauer groups, Galois cohomology groups, residue homomorphisms and unramified Galois cohomology groups. We refer the reader to ([4]) and ([8]).

Let K be a field and $n \geq 1$. Let ${ }_{n} \operatorname{Br}(K)$ be the n-torsion subgroup of the Brauer group $\operatorname{Br}(K)$. Assume that n is coprime to the characteristic of K. Let μ_{n} be the group of $n^{\text {th }}$ roots of unity. For $d \geq 1$ and $m \geq 0$, let $H^{d}\left(K, \mu_{n}^{\otimes m}\right)$ denote the $d^{\text {th }}$ Galois cohomology group of K with values in $\mu_{n}^{\otimes m}$. We have $H^{1}\left(K, \mu_{n}\right) \simeq K^{*} / K^{* n}$ and $H^{2}\left(K, \mu_{n}\right) \simeq{ }_{n} \operatorname{Br}(K)$. For $a \in K^{*}$, let $(a)_{n} \in H^{1}\left(K, \mu_{n}\right)$ denote the image of the class of a in $K^{*} / K^{* n}$. When there is no ambiguity of n, we drop n and denote $(a)_{n}$ by (a). If K is a product of finitely many fields K_{i}, we denote $\prod H^{d}\left(K_{i}, \mu_{n}^{\otimes m}\right)$ by $H^{d}\left(K, \mu_{n}^{\otimes m}\right)$.

Every element of $H^{1}(K, \mathbb{Z} / n \mathbb{Z})$ is represented by a pair (E, σ), where E / F is a cyclic extension of degree dividing n and σ a generator of $\operatorname{Gal}(E / F)$. Let $r \geq 1$. Then $(E, \sigma)^{r} \in H^{1}(K, \mathbb{Z} / n \mathbb{Z})$ is represented by the pair $\left(E^{\prime}, \sigma^{\prime}\right)$ where E^{\prime} is the fixed field of the subgroup of $\operatorname{Gal}(E / F)$ generated by $\sigma^{n / d}$, where $d=\operatorname{gcd}(n, r)$ and $\sigma^{\prime}=\sigma^{r}$. In particular if r is coprime to n, then $(E, \sigma)^{r}=\left(E, \sigma^{r}\right)$. Let $(E, \sigma) \in H^{1}(K, \mathbb{Z} / n \mathbb{Z})$ and $\lambda \in K^{*}$. Let $(E, \sigma, \lambda)=(E / F, \sigma, \lambda)$ denote the cyclic algebra over K

$$
(E, \sigma, \lambda)=E \oplus L y \oplus \cdots \oplus E y^{n-1}
$$

with $y^{n}=\lambda$ and $y a=\sigma(a) y$. The cyclic algebra (E, σ, λ) is a central simple algebra and its index is the order of λ in $K^{*} / N_{E / K}\left(E^{*}\right)$ ([1, Theorem 18, p. 98]). The pair (E, σ) represents an element in $H^{1}(K, \mathbb{Z} / n \mathbb{Z})$ and the element $(E, \sigma) \cdot(\lambda) \in H^{2}\left(K, \mu_{n}\right)$ is represented by the central simple algebra (E, σ, λ). In particular $(E, \sigma, \lambda) \otimes E$ is a matrix algebra and hence $\operatorname{ind}(E, \sigma, \lambda) \leq[E: F]$.

For $\lambda, \mu \in K^{*}$ we have ([1, p. 97])

$$
(E, \sigma, \lambda)+(E, \sigma, \mu)=(E, \sigma, \lambda \mu) \in H^{2}\left(K, \mu_{n}\right)
$$

In particular $\left(E, \sigma, \lambda^{-1}\right)=-(E, \sigma, \lambda)$.
Let (E, σ, λ) be a cyclic algebra over a field K and L / K be a field extension. Since E / K is separable, $E \otimes_{K} L$ is a product of field extensions $E_{i}, 1 \leq i \leq t$, of L with E_{i} and E_{j} isomorphic over L and E_{i} / L is cyclic with Galois group a subgroup of the Galois group of E / K. Then $(E, \sigma, \lambda) \otimes L$ is Brauer equivalent to $\left(E_{i}, \sigma_{i}, \lambda\right)$ for any i, with a suitable σ_{i}. In particular if L is a finite extension of K and $E L$ is the composite of E and L in an algebraic closure of K, then $E L / L$ is cyclic with Galois group isomorphic to a subgroup of the Galois group of E / K and $(E, \sigma, \lambda) \otimes L$ is Brauer equivalent to $\left(E L, \sigma^{\prime}, \lambda\right)$ for a suitable σ^{\prime}.

Lemma 2.1. Let E / F be a cyclic extension of degree n, σ a generator of $G a l(E / F)$ and $\lambda \in F^{*}$. Let m be a factor of n and $d=n / m$. Let M / F be the subextension of E / F with $[M: F]=m$. Then $(E / F, \sigma, \lambda) \otimes F(\sqrt[d]{\lambda})=(M(\sqrt[d]{\lambda}) / F(\sqrt[d]{\lambda}), \sigma \otimes 1, \sqrt[d]{\lambda})$.

Proof. We have $(E, \sigma)^{d}=(M, \sigma) \in H^{1}(F, \mathbb{Z} / n \mathbb{Z})$ and hence

$$
\begin{aligned}
(E, \sigma, \lambda) \otimes F(\sqrt[d]{\lambda}) & =(E(\sqrt[d]{\lambda}) / F(\sqrt[d]{\lambda}), \sigma \otimes 1, \lambda) \\
& =\left(E(\sqrt[d]{\lambda}) / F(\sqrt[d]{\lambda}), \sigma \otimes 1,(\sqrt[d]{\lambda})^{d}\right) \\
& =(E(\sqrt[d]{\lambda}) / F(\sqrt[d]{\lambda}), \sigma \otimes 1)^{d} \cdot(\sqrt[d]{\lambda}) \\
& =(M(\sqrt[d]{\lambda}) / F(\sqrt[d]{\lambda}), \sigma \otimes 1, \sqrt[d]{\lambda}) .
\end{aligned}
$$

Let K be a field with a discrete valuation ν, residue field κ and valuation ring R. Suppose that n is coprime to the characteristic of κ. For any $d \geq 1$, we have the residue map $\partial_{K}: H^{d}\left(K, \mu_{n}^{\otimes i}\right) \rightarrow H^{d-1}\left(\kappa, \mu_{n}^{\otimes i-1}\right)$. We also denote ∂_{K} by ∂. An element α in $H^{d}\left(K, \mu_{n}^{\otimes i}\right)$ is called unramified at ν or R if $\partial(\alpha)=0$. The subgroup of all unramified elements is denoted by $H_{n r}^{d}\left(K / R, \mu_{n}^{\otimes i}\right)$ or simply $H_{n r}^{d}\left(K, \mu_{n}^{\otimes i}\right)$. Suppose that K is complete with respect to ν. Then we have an isomorphism $H^{d}\left(\kappa, \mu_{n}^{\otimes i}\right) \xrightarrow{\sim}$ $H_{n r}^{d}\left(K, \mu_{n}^{\otimes i}\right)$ and the composition $H^{d}\left(\kappa, \mu_{n}^{\otimes i}\right) \xrightarrow{\sim} H_{n r}^{d}\left(K, \mu_{n}^{\otimes i}\right) \hookrightarrow H^{d}\left(K, \mu_{n}^{\otimes i}\right)$ is denoted by ι_{κ} or simply ι.

Let K be a complete discretely valued field with residue field κ, ν the discrete valuation on K and $\pi \in K^{*}$ a parameter. Suppose that n is coprime to the characteristic of κ. Let $\partial: H^{2}\left(K, \mu_{n}\right) \rightarrow H^{1}(\kappa, \mathbb{Z} / n \mathbb{Z})$ be the residue homomorphism. Let E / K be a cyclic unramified extension of degree n with residue field E_{0} and σ a generator of $\operatorname{Gal}(E / K)$ with $\sigma_{0} \in \operatorname{Gal}\left(E_{0} / \kappa\right)$ induced by σ. Then (E, σ, π) is a division algebra over K of degree n. For any $\lambda \in K^{*}$, we have

$$
\partial(E, \sigma, \lambda)=\left(E_{0}, \sigma_{0}\right)^{\nu(\lambda)} .
$$

For $\lambda, \mu \in K^{*}$, we have

$$
\partial((E, \sigma, \lambda) \cdot(\mu))=\left(E_{0}, \sigma_{0}\right) \cdot\left((-1)^{\nu(\lambda) \nu(\mu)} \theta\right)
$$

where θ is the image of $\frac{\lambda^{\nu}(\mu)}{\mu^{\nu(\lambda)}}$ in the residue field.
Suppose E_{0} is a cyclic extension of κ of degree n. Then there is a unique unramified cyclic extension E of K of degree n with residue field E_{0}. Let σ_{0} be a generator of $\operatorname{Gal}\left(E_{0} / \kappa\right)$ and $\sigma \in \operatorname{Gal}(E / K)$ be the lift of σ_{0}. Then σ is a generator of $\operatorname{Gal}(E / K)$. We call the pair (E, σ) the lift of $\left(E_{0}, \sigma_{0}\right)$.

Let X be an integral regular scheme with function field F. For every point x of X, let $\mathscr{O}_{X, x}$ be the regular local ring at x and $\kappa(x)$ the residue field at x. Let $\hat{\mathscr{O}}_{X, x}$ be the completion of $\mathscr{O}_{X, x}$ at its maximal ideal m_{x} and F_{x} the field of fractions of $\hat{\mathscr{O}}_{X, x}$. Then every codimension one point x of X gives a discrete valuation ν_{x} on F. Let $n \geq 1$ be an integer which is a unit on X. For any $d \geq 1$, the residue homomorphism $H^{d}\left(F, \mu_{n}^{\otimes j}\right) \rightarrow H^{d-1}\left(\kappa(x), \mu_{n}^{\otimes(j-1)}\right)$ at the discrete valuation ν_{x} is denoted by ∂_{x}. An element $\alpha \in H^{d}\left(F, \mu_{n}^{\otimes m}\right)$ is said to be ramified at x if $\partial_{x}(\alpha) \neq 0$ and unramified at x if $\partial_{x}(\alpha)=0$. If $X=\operatorname{Spec}(A)$ and x a point of X given by $(\pi), \pi \mathrm{s}$ prime element, we also denote F_{x} by F_{π} and $\kappa(x)$ by $\kappa(\pi)$.

Lemma 2.2. Let K be a complete discretely valued field and ℓ a prime not equal to the characteristic of the residue field of K. Suppose that K contains a primitive $\ell^{\text {th }}$ root of unity. Let L / K be a cyclic field extension or the split extension of degree ℓ. Let $\mu \in L$ and $\lambda=N_{L / K}(\mu) \in K$. Then there exists $\theta \in L$ with $N_{L / K}(\theta)=1$ such that $L=K(\mu \theta)$ and θ is sufficiently close to 1 .
Proof. Since $[L: K]$ is a prime, if $\mu \notin K$, then $L=K(\mu)$. In this case $\theta=1$ has the required properties. Suppose that $\mu \in K$. If $L=\prod K$, let $\theta_{0} \in K^{*} \backslash\{ \pm 1\}$
sufficiently close to 1 and $\theta=\left(\theta_{0}, \theta_{0}^{-1}, 1, \cdots, 1\right)$. Suppose L is a field. Let σ be a generator of $\operatorname{Gal}(L / K)$. Since L / K is cyclic, we have $L=K(\sqrt[\ell]{a})$ for some $a \in K^{*}$. For any sufficiently large $n, \theta=\left(1+\pi^{n} \sqrt[\ell]{a}\right)^{-1} \sigma\left(1+\pi^{n} \sqrt[\ell]{a}\right) \in L$ has the required properties.
Lemma 2.3. Let K be a field and E / K be a finite extension of degree coprime to char (K). Let L / K be a sub-extension of E / K and $e=[E: L]$. Suppose L / K is Galois and $E=L(\sqrt[e]{\pi})$ for some $\pi \in L^{*}$. Then E / K is Galois if and only if E contains a primitive $e^{\text {th }}$ root of unity and for every $\tau \in \operatorname{Gal}(L / K), \tau(\pi) \in E^{* e}$.
Proof. Suppose that E / K is Galois. Let $f(X)=X^{e}-\pi \in L[X]$. Since $[E: L]=e$ and $E=L(\sqrt[e]{\pi}), f(X)$ is irreducible in $L[X]$. Since $f(X)$ has one root in E and E / L is Galois, $f(X)$ has all the roots in E. Hence E contains a primitive $e^{\text {th }}$ root of unity. Let $\tau \in \operatorname{Gal}(L / K)$. Then τ can be extended to an automorphism $\tilde{\tau}$ of E. We have $\tau(\pi)=\tilde{\tau}(\pi)=(\tilde{\tau}(\sqrt[e]{\pi}))^{e} \in E^{* e}$.

Conversely, suppose that E contains a primitive $e^{\text {th }}$ root of unity and $\tau(\pi) \in E^{* e}$ for every $\tau \in \operatorname{Gal}(L / K)$. Let

$$
g(X)=\prod_{\tau \in \operatorname{Gal}(L / K)}\left(X^{e}-\tau(\pi)\right)
$$

Then $g(X) \in K[X]$ and $g(X)$ splits completely in E. Since e is coprime to char (K), the splitting field E_{0} of $g(X)$ over K is Galois. Since L / K is Galois and E is the composite of L and $E_{0}, E / K$ is Galois.
Lemma 2.4. Let F be a complete discretely valued field with residue field κ and $\pi \in F$ a parameter. Let e be a natural number coprime to the characteristic of κ. If L / F is a totally ramified extension of degree e, then $L=F(\sqrt[e]{v \pi})$ for some $v \in F$ which is a unit in the valuation ring of F. Further if e is a power of a prime ℓ and $\theta \in F^{*} \backslash F^{* \ell}$ is a norm form L, then $L=F(\sqrt[e]{\theta})$.
Proof. Since F is a complete discretely valued field, there is a unique extension of the valuation ν on F to a valuation ν_{L} on L. Since L / F is totally ramified extension of degree e and e is coprime to $\operatorname{char}(\kappa)$, the residue field of L is κ and $\nu_{L}(\pi)=e$. Let $\pi_{L} \in L$ with $\nu_{L}\left(\pi_{L}\right)=1$. Then $\pi=w \pi_{L}^{e}$ for some $w \in L$ with $\nu_{L}(w)=0$. Since the residue field of L is same as the residue field of F, there exists $w_{1} \in F$ with $\nu\left(w_{1}\right)=0$ and the image of w_{1} is same as the image of w in the residue field κ. Since L is complete and e is coprime to char (κ), by Hensel's Lemma, there exists $u \in L$ such that $w=w_{1} u^{e}$. Thus $\pi=w \pi_{L}^{e}=w_{1} u^{e} \pi_{L}^{e}=w_{1}\left(u \pi_{L}\right)^{e}$. In particular $w_{1}^{-1} \pi \in L^{* e}$ and hence $L=F(\sqrt[e]{v \pi})$ with $v=w_{1}^{-1}$.

Let $\theta \in F^{*} \backslash F^{* e}$. Suppose that θ is a norm from L. Let $\mu \in L$ with $N_{L / F}(\mu)=\theta$. Since $L=F(\sqrt[e]{v \pi})$ with $v \in F$ a unit in the valuation ring of F and $\pi \in F$ a parameter, $\sqrt[e]{v \pi} \in L$ is a parameter at the valuation of L. Write $\mu=w_{0}(\sqrt[e]{v \pi})^{s}$ for some $w_{0} \in L$ a unit at the valuation of L and $s \in \mathbb{Z}$. As above, we have $w_{0}=v_{1} u_{1}^{e}$ for some $v_{1} \in K$ and $u_{1} \in L$. Since $v_{1} \in F$, we have

$$
\theta=N_{L / F}(\mu)=N_{L / F}\left(w_{0}(\sqrt[e]{v \pi})^{s}\right)=N_{L / F}\left(v_{1} u_{1}^{e}(\sqrt[e]{v \pi})^{s}\right)=v_{1}^{e} N_{L / F}\left(u_{1}\right)^{e}(v \pi)^{s} .
$$

Since e is a power of a prime ℓ and $\theta \notin F^{* \ell}, s$ is coprime to ℓ and hence $L=$ $F(\sqrt[e]{\theta})$.
Lemma 2.5. Let k be a local field and ℓ a prime not equal to the characteristic of the residue field of k. Let L_{0} / k be a an extension of degree ℓ and $\theta_{0} \in k^{*}$. If $\theta_{0} \notin k^{* \ell}$ and θ_{0} is a norm from L_{0}, then $L_{0}=k\left(\sqrt[\ell]{\theta_{0}}\right)$.

Proof. Suppose that L_{0} / k is ramified. Since $\theta_{0} \notin k^{* \ell}$, by (2.4), $L_{0}=k\left(\sqrt[\ell]{\theta_{0}}\right)$.
Suppose that L_{0} / k is unramified. Let π be a parameter in k and write $\theta_{0}=u \pi^{r}$ with u a unit in the valuation ring of k. Since θ_{0} is a norm from L_{0}, ℓ divides r. Since θ_{0} not an $\ell^{\text {th }}$ power in k, u is not an $\ell^{\text {th }}$ power in k and $k\left(\sqrt[\ell]{\theta_{0}}\right)=k(\sqrt[\ell]{u})$ is an unramified extension of k of degree ℓ. Since k is a local field, there is only one unramified field extension of k of degree ℓ and hence $L_{0}=k(\sqrt[\ell]{u})=k\left(\sqrt[\ell]{\theta_{0}}\right)$.

Lemma 2.6. Suppose F is a complete discretely valued field with residue feld κ a local field. Let ℓ be prime not equal to char(κ). Let L / F be a degree ℓ field extension with θ a norm from L. If $\theta \notin F^{* \ell}$, then $L \simeq F(\sqrt[\ell]{\theta})$.

Proof. If L / F is a ramified extension, then by (2.4), $L \simeq F(\sqrt[\ell]{\theta})$. Suppose that L / F is an unramified extension. Let L_{0} be the residue field of L. Then L_{0} / κ is a field extension of degree ℓ and the image $\bar{\theta}$ of θ in κ is a norm from L_{0}. Since $\theta \notin F^{* \ell,}$ $\bar{\theta}$ is not an $\ell^{\text {th }}$ power in κ. Since κ is a local field, $L_{0} \simeq \kappa(\sqrt[\ell]{\bar{\theta}})$ (2.5) and hence $L \simeq F(\sqrt[\ell]{\theta})$.

Lemma 2.7. Let F be a complete discretely valued field with residue field k a global field. Let L / F be an unramified cyclic extension of degree coprime to char (k) and L_{0} the residue field of L. Let $\theta \in F$ be a unit in the valuation ring of F and $\bar{\theta}$ be the image of θ in k. Suppose that θ is a norm from L. If $\mu_{0} \in L_{0}$ with $N_{L_{0} / k}\left(\mu_{0}\right)=\bar{\theta}$, then there exists $\mu \in L$ such that $N_{L / F}(\mu)=\theta$ and the image of μ in L_{0} is μ_{0}.

Proof. Let σ be a generator of the Galois group of L / F and σ_{0} be the induced automorphism of L_{0} / k. Since $\theta \in F$ is a norm from L, there exists $\mu^{\prime} \in L$ with $N_{L / F}\left(\mu^{\prime}\right)=\theta$. Since θ is a unit at the discrete valuation of $F, \mu^{\prime} \in L$ is a unit at the discrete valuation of L. Let $\bar{\mu}^{\prime}$ be the image of μ^{\prime} in L_{0}. Then $N_{L_{0} / k}\left(\overline{\mu^{\prime}}\right)=\bar{\theta}$ and hence $\bar{\mu}^{\prime} \mu_{0}^{-1} \in L_{0}$ is a norm one element. Thus there exist $a \in L_{0}$ such that $\bar{\mu}^{\prime} \mu_{0}^{-1}=$ $a^{-1} \sigma_{0}(a)$. Let $b \in L$ be a lift of a and $\mu=\mu^{\prime} b \sigma(b)^{-1}$. Then $N_{L / F}(\mu)=N_{L / F}\left(\mu^{\prime}\right)=\theta$ and the image of μ in L_{0} is μ_{0}.

For $L=\prod_{1}^{\ell} F$, let σ be the automorphism of L given by $\sigma\left(a_{1}, \cdots, a_{\ell}\right)=\left(a_{2}, \cdots, a_{\ell}, a_{1}\right)$. Then any $\sigma^{i}, 1 \leq i \leq \ell-1$ is called a generator of $\operatorname{Gal}(L / F)$.

Lemma 2.8. Let F be a field and ℓ a prime not equal to the characteristic of F. Let L be a cyclic extension of F or the split extension of degree ℓ and σ a generator of the Galois group of L / F. Suppose that there exists an integer $t \geq 1$ such that F does not contain a primitive $\ell^{\text {th }}$ root of unity. Let $\mu \in L$ with $N_{L / F}(\mu)=1$ and $m \geq t$. If $\mu \in L^{* \ell^{2 m}}$, then there exists $b \in L^{*}$ such that $\mu=b^{-\ell^{m}} \sigma\left(b^{\ell^{m}}\right)$.

Proof. Suppose $L=\prod F$ and $\mu \in L^{* l^{s}}$ for some $s \geq 1$ with $N_{L / F}(\mu)=1$. Then $\mu=\left(\theta_{1}^{s}, \cdots, \theta_{\ell}^{s}\right) \in L$ with $\theta_{1}^{s} \cdots \theta_{\ell}^{s}=1$. Let $b=\left(1, \theta_{1}, \cdots, \theta_{\ell-1}\right) \in L^{*}$. Then $\mu=b^{-s} \sigma\left(b^{s}\right)$.

Suppose L / F is a cyclic field extension. Write $\mu=\mu_{0}^{\ell^{2 m}}$ for some $\mu_{0} \in L$. Let $\mu_{1}=\mu_{0}^{\ell^{m}}$. Then $\mu=\mu_{1}^{\ell^{m}}$. Let $\theta_{0}=N_{L / F}\left(\mu_{0}\right)$ and $\theta_{1}=N_{L / F}\left(\mu_{1}\right)$. Then $\theta_{1}=\theta_{0}^{\ell^{m}}$. Since $N_{L / F}(\mu)=1$, we have $\theta_{1}^{\ell m}=N_{L / F}\left(\mu_{1}^{\ell m}\right)=1$. If $\theta_{1} \neq 1$, then F contains a primitive $\ell^{m^{\text {th }}}$ root of unity. Since $m \geq t$ and F has no primitive $\ell^{\text {th }}$ root of unity, $\theta_{1}=1$. Hence $N_{L / F}\left(\mu_{1}\right)=1$ and by Hilbert $90, \mu_{1}=b^{-1} \sigma(b)$ for some $b \in L$. Thus $\mu=\mu_{1}^{\ell^{m}}=b^{-\ell^{m}} \sigma\left(b^{\ell^{m}}\right)$.

3. GLOBAL FIELDS

In this a section we prove a few technical results concerning Brauer group of global fields and reduced norms. We begin with the following.

Lemma 3.1. Let k be a global field, ℓ a prime not equal char(k), $n, d \geq 2$ and $r \geq 1$ be integers. Let E_{0} be a cyclic extension of k, σ_{0} a generator of the Galois group of E_{0} / k and $\theta_{0} \in k^{*}$. Let $\beta \in H^{2}\left(k, \mu_{\ell^{n}}\right)$ be such that $r \ell \beta=\left(E_{0}, \sigma_{0}, \theta_{0}\right) \in H^{2}\left(k, \mu_{\ell^{n}}\right)$. Let S be a finite set of places of k containing all the places of κ with $\beta \otimes k_{\nu} \neq 0$. Suppose for each $\nu \in S$, there is a field extension L_{ν} of k_{ν} of degree ℓ or L_{ν} is the split extension of k_{ν} of degree ℓ and $\mu_{\nu} \in L_{\nu}^{*}$ such that

1) $N_{L_{\nu} / k_{\nu}}\left(\mu_{\nu}\right)=\theta_{0}$
2) $r \beta \otimes L_{\nu}=\left(E_{0} \otimes L_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}\right)$
3) $\operatorname{ind}\left(\beta \otimes E_{0} \otimes L_{\nu}\right)<d$.

Then there exists a field extension L_{0} / k of degree ℓ and $\mu_{0} \in L_{0}$ such that

1) $N_{L_{0} / k}\left(\mu_{0}\right)=\theta_{0}$
2) $r \beta \otimes L_{0}=\left(E_{0} \otimes L_{0}, \sigma_{0} \otimes 1, \mu_{0}\right)$
3) $\operatorname{ind}\left(\beta \otimes E_{0} \otimes L_{0}\right)<d$
4) $L_{0} \otimes k_{\nu} \simeq L_{\nu}$ for all $\nu \in S$.
5) μ_{0} is close to μ_{ν} for all $\nu \in S$.

Proof. Let Ω_{k} be the set of all places of k and

$$
S^{\prime}=S \cup\left\{\nu \in \Omega_{k} \mid \theta_{0} \text { is not a unit at } \nu \text { or } E_{0} / k \text { is ramified at } \nu\right\}
$$

Let $\nu \in S^{\prime} \backslash S$. Then $\beta \otimes k_{\nu}=0$. Let L_{ν} be a field extension of k_{ν} of degree ℓ such that $\theta_{0} \in N\left(L_{\nu}^{*}\right)$. Let $\mu_{\nu} \in L_{\nu}$ with $N_{L_{\nu} / k_{\nu}}\left(\mu_{\nu}\right)=\theta_{0}$. Since $\beta \otimes k_{\nu}=0, \operatorname{ind}\left(\beta \otimes E_{0} \otimes L_{\nu}\right)=$ $1<d$. Since the corestriction map cor : $H^{2}\left(L_{\nu}, \mu_{\ell^{n}}\right) \rightarrow H^{2}\left(k_{\nu}, \mu_{\ell^{n}}\right)$ is injective (cf. [17, Theorem 10, p. 237]) and $\operatorname{cor}\left(E_{0} \otimes L_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}\right)=\left(E_{0} \otimes k_{\nu}, \sigma_{0} \otimes 1, \theta_{0}\right)=$ $r \ell \beta \otimes k_{\nu}=0,\left(E_{0} \otimes L_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}\right)=0=r \beta \otimes L_{\nu}$. Thus, if necessary, by enlarging S, we assume that S contains all those places ν of k with either θ_{0} is not a unit at ν or E_{0} / k is ramified at ν and that there is at least one $\nu \in S$ such that L_{ν} is a field extension of k_{ν} of degree ℓ.

Let $\nu \in S$. By (2.2), there exists $\theta_{\nu} \in L_{\nu}$ such that $N_{L_{\nu} / k_{\nu}}\left(\theta_{\nu}\right)=1, L_{\nu}=k_{\nu}\left(\theta_{\nu} \mu_{\nu}\right)$ and θ_{ν} is sufficiently close to 1 . In particular $\theta_{\nu} \in L_{\nu}^{\ell^{n}}$ and hence $r \beta \otimes L_{\nu}=\left(E_{0} \otimes\right.$ $\left.L_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}\right)=\left(E_{0} \otimes L_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu} \theta_{\nu}\right)$. Thus, replacing μ_{ν} by $\mu_{\nu} \theta_{\nu}$, we assume that $L_{\nu}=k_{\nu}\left(\mu_{\nu}\right)$. Let $f_{\nu}(X)=X^{\ell}+b_{\ell-1, \nu} X^{\ell-1}+\cdots+b_{1, \nu} X+(-1)^{\ell} \theta_{0} \in k_{\nu}[X]$ be the minimal polynomial of μ_{ν} over k_{ν}.

By Chebotarev density theorem ([7, Theorem 6.3.1]), there exists $\nu_{0} \in \Omega_{k} \backslash S$ such that $E_{0} \otimes k_{\nu_{0}}$ is the split extension of $k_{\nu_{0}}$. By the strong approximation theorem ([3, p. 67]), choose $b_{j} \in k, 0 \leq j \leq \ell-1$ such that each b_{j} is sufficiently close enough to $b_{j, \nu}$ for all $\nu \in S$ and each b_{j} is an integer at all $\nu \notin S \cup\left\{\nu_{0}\right\}$. Let $L_{0}=k[X] /\left(X^{\ell}+b_{\ell-1} X^{\ell-1}+\cdots+b_{1} X+(-1)^{\ell} \theta_{0}\right)$ and $\mu_{0} \in L_{0}$ be the image of X. We now show that L_{0} and μ_{0} have the required properties.

Since each b_{j} is sufficiently close enough to $b_{j, \nu}$ at each $\nu \in S$, it follows from Krasner's lemma that $L_{0} \otimes k_{\nu} \simeq L_{\nu}$ and the image of $\mu_{0} \otimes 1$ in L_{ν} is close to μ_{ν} for all $\nu \in S$ (cf. [26, Ch. II, $\S 2]$). Since L_{ν} is a field extension of k_{ν} of degree ℓ for at least one $\nu \in S, L_{0}$ is a field extension of degree ℓ over k. Since $X^{\ell}+b_{\ell-1} X^{\ell-1}+\cdots+(-1)^{\ell} \theta_{0}$ is the minimal polynomial of μ_{0}, we have $N\left(\mu_{0}\right)=\theta_{0}$.

To show that $\operatorname{ind}\left(\beta \otimes E_{0} \otimes L_{0}\right)<d$ and $r \beta=\left(E_{0}, \sigma_{0}, \mu_{0}\right) \in H^{2}\left(L_{0}, \mu_{\ell^{n}}\right)$, by Hasse-Brauer-Noether theorem (cf. [3, p. 187]), it is enough to show that for every place w of $L_{0}, \operatorname{ind}\left(\beta \otimes E_{0} \otimes L_{w}\right)<d$ and $r \beta \otimes L_{w}=\left(E_{0}, \sigma_{0}, \mu_{0}\right) \otimes L_{w} \in H^{2}\left(L_{w}, \mu_{\ell^{n}}\right)$.

Let w be a place of L_{0} and ν a place of k lying below w. Suppose that $\nu \in S$. Then $L_{0} \otimes k_{\nu} \simeq L_{\nu}$. Suppose $L_{\nu}=\prod k_{\nu}$ is the split extension. Then $L_{w} \simeq k_{\nu}$. By the assumption on L_{ν}, we have $\operatorname{ind}\left(\beta \otimes E_{0} \otimes k_{\nu}\right)<d$. Since μ_{ν} is close to μ_{0}, we have $r \beta \otimes L_{\nu}=\left(E_{0} \otimes L_{\nu}, \sigma_{0}, \mu_{\nu}\right)=\left(E_{0} \otimes L \otimes k_{\nu}, \sigma_{0}, \mu_{0}\right)$.

Suppose that L_{ν} is a field extension of k_{ν} of degree ℓ. Then $L_{w} \simeq L_{0} \otimes k_{\nu} \simeq L_{\nu}$ and by the assumption on L_{ν}, we have $r \beta \otimes L_{\nu}=\left(E_{0}, \sigma_{0}, \mu_{\nu}\right) \otimes L_{\nu}$ and $\operatorname{ind}\left(\beta \otimes E_{0} \otimes L_{\nu}\right)<d$. Since μ_{0} is close to μ_{ν}, we have $r \beta \otimes L_{\nu}=\left(E_{0} \otimes L_{\nu}, \sigma_{0}, \mu_{\nu}\right)=\left(E_{0} \otimes L \otimes k_{\nu}, \sigma_{0}, \mu_{0}\right)$.

Suppose that $\nu \notin S$ and $\nu \neq \nu_{0}$. Then θ_{0} is a unit at $\nu, E_{0} / k$ is unramified at ν and $\beta \otimes k_{\nu}=0$. Since each b_{j} is an integer at ν and μ_{0} is a root of the polynomial $X^{\ell}+b_{\ell-1} X^{\ell-1}+\cdots+b_{1} X+(-1)^{\ell} \theta_{0}, \mu_{0}$ is an integer at w. Since θ_{0} is a unit at ν, μ_{0} is a unit at w. In particular $\left(E_{0} \otimes L_{w}, \sigma_{0}, \mu_{0}\right)=0=r \beta \otimes L_{w}$. If $\nu=\nu_{0}$, then by the choice of $\nu_{0}, \beta \otimes k_{\nu}=0, E_{0} \otimes k_{\nu}$ is the split extension of k_{ν} and hence $\left(E_{0}, \sigma_{0}, \mu_{0}\right) \otimes L_{w}=0=r \beta \otimes L_{w}$.

Corollary 3.2. Let k be a global field, ℓ a prime not equal char $(k), n$ and $r \geq 1$ be integers. Let $\theta_{0} \in k^{*}, r \geq 1$ and $\beta \in H^{2}\left(k, \mu_{\ell^{n}}\right)$. Suppose that $r \ell \beta=0 \in H^{2}\left(k, \mu_{\ell^{n}}\right)$ and $\beta \neq 0$. Then there exists a field extension L_{0} / k of degree ℓ and $\mu_{0} \in L_{0}$ such that $N_{L_{0} / k}\left(\mu_{0}\right)=\theta_{0}, r \beta \otimes L_{0}=0$ and $\operatorname{ind}\left(\beta \otimes L_{0}\right)<\operatorname{ind}(\beta)$.

Proof. Let S be a finite set of places of k containing all the places of k with $\beta \neq 0$. Let $\nu \in S$. If $\theta_{0} \notin k_{\nu}^{* \ell}$, then, let $L_{\nu}=k_{\nu}\left(\sqrt[\ell]{\theta_{0}}\right)$ and $\mu_{v}=\sqrt[\ell]{\theta_{0}} \in L_{\nu}$. If $\theta_{0} \in k_{\nu}^{* \ell}$, then, let L_{ν} / k_{ν} be any field extension of degree ℓ and $\mu_{\nu}=\sqrt[\ell]{\theta_{0}} \in k_{\nu} \subset L_{\nu}$. In both the cases, we have $N_{L_{\nu} / k_{\nu}}\left(\mu_{v}\right)=\theta_{0}$. Since L_{ν} / k_{ν} is a degree ℓ field extension, ℓ divides $\operatorname{ind}(\beta)$ and k_{ν} is a local field, $\operatorname{ind}\left(\beta \otimes L_{\nu}\right)<\operatorname{ind}(\beta)([3, \mathrm{p} .131])$. Since $r \ell \beta=0$ and L_{ν} / k_{ν} is a field extension of degree $\ell, r \beta \otimes L_{\nu}=0$. Let $E_{0}=k$. Then, by (3.1), there exist a field extension L_{0} / k of degree ℓ and $\mu \in L_{0}$ with required properties.

Lemma 3.3. Let k be a global field and ℓ a prime not equal to char(k). Let E_{0} / k be a cyclic extension of degree a power of ℓ and σ_{0} a generator of $\operatorname{Gal}\left(E_{0} / k\right)$. Let $n \geq 1$, $\theta_{0} \in k^{*}$ and $\beta \in H^{2}\left(k, \mu_{\ell^{n}}\right)$ be such that $r \ell \beta=\left(E_{0}, \sigma_{0}, \theta_{0}\right)$ for some $r \geq 1$. Suppose that $r \beta \otimes E_{0} \neq 0$. If ν is a place of k such that $\sqrt[\ell]{\theta_{0}} \notin k_{\nu}$, then ind $\left(\beta \otimes E_{0} \otimes k_{\nu}\left(\sqrt[\ell]{\theta_{0}}\right)\right)<$ $\operatorname{ind}\left(\beta \otimes E_{0}\right)$.
Proof. Write $r \ell=m \ell^{d}$ with m coprime to ℓ. Then $d \geq 1$. Since $m \ell^{d} \beta=r \ell \beta=$ ($E_{0}, \sigma_{0}, \theta_{0}$), we have $m \ell^{d} \beta \otimes E_{0}=0$. Since m is coprime to ℓ and the period of β is a power of ℓ, it follows that $\ell^{d} \beta \otimes E_{0}=0$. Since $r \beta \otimes E_{0} \neq 0, \ell^{d-1} \beta \otimes E_{0} \neq 0$ and $\operatorname{per}\left(\beta \otimes E_{0}\right)=\ell^{d}$.

Let ν be a place of k. Suppose that $\sqrt[\ell]{\theta_{0}} \notin E_{0} \otimes k_{\nu}$. Then $\left[E_{0} \otimes k_{\nu}\left(\sqrt[\ell]{\theta_{0}}\right)\right.$: $\left.E_{0} \otimes k_{\nu}\right]=\ell$ and hence $\operatorname{ind}\left(\beta \otimes E_{0} \otimes k_{\nu}\left(\sqrt[\ell]{\theta_{0}}\right)\right)<\operatorname{ind}\left(\beta \otimes E_{0}\right)([3$, p. 131]). Suppose that $\sqrt[\ell]{\theta_{0}} \in E_{0} \otimes k_{\nu}$. Then $E_{0} \otimes k_{\nu}\left(\sqrt[\ell]{\theta_{0}}\right)=E_{0} \otimes k_{\nu}$. Write $E_{0} \otimes k_{\nu}=\prod E_{i}$ with each E_{i} a cyclic field extension of k_{ν}. Since E_{0} / k is a Galois extension, $E_{i} \simeq E_{j}$ for all i and j and $m \ell^{d} \beta \otimes k_{\nu}=\left(E_{0}, \sigma_{0}, \theta_{0}\right) \otimes k_{\nu}=\left(E_{i}, \sigma_{i}, \theta_{0}\right)$ for all i, for suitable generators σ_{i} of $\operatorname{Gal}\left(E_{i} / k_{\nu}\right)$. Since $\sqrt[\ell]{\theta_{0}} \in E_{0} \otimes k_{\nu}, \sqrt[\ell]{\theta_{0}} \in E_{i}$ for all i and hence $\theta_{0}^{\left[E_{i}: \kappa_{\nu}\right] / \ell} \in N_{E_{i} / k_{\nu}}\left(E_{i}^{*}\right)$. Since the period of $\left(E_{i}, \sigma_{i}, \theta_{0}\right)$ is equal to the order of the class of θ_{0} in the group $k_{\nu}^{*} / N_{E_{i} / k_{\nu}}\left(E_{i}^{*}\right)([1, \mathrm{p} .75]), \operatorname{per}\left(E_{i}, \sigma_{i}, \theta_{0}\right) \leq\left[E_{i}: k_{\nu}\right] / \ell<\left[E_{i}: k_{\nu}\right]$.

Suppose that $\operatorname{per}\left(\beta \otimes k_{\nu}\right) \leq\left[E_{i}: k_{\nu}\right]$. Since k_{ν} is a local field, $\operatorname{per}\left(\beta \otimes E_{i}\right)=1$. Thus $\operatorname{per}\left(\beta \otimes E_{0} \otimes k_{\nu}\right)=\operatorname{per}\left(\beta \otimes E_{i}\right)=1<\ell^{d}=\operatorname{per}\left(\beta \otimes E_{0}\right)$.

Suppose that $\operatorname{per}\left(\beta \otimes k_{\nu}\right)>\left[E_{i}: k_{\nu}\right]$. Since $m \ell^{d} \beta \otimes k_{\nu}=\left(E_{i}, \sigma_{i}, \theta_{0}\right)$ and m is coprime to ℓ, we have $\operatorname{per}\left(\beta \otimes k_{\nu}\right) \leq \ell^{d} \operatorname{per}\left(E_{i}, \sigma_{i}, \theta_{0}\right)$. Since k_{ν} is a local-field,
$\operatorname{per}\left(\beta \otimes E_{0} \otimes k_{\nu}\right)=\operatorname{per}\left(\beta \otimes E_{i}\right)=\frac{\operatorname{per}\left(\beta \otimes k_{\nu}\right)}{\left[E_{i}: k_{\nu}\right]} \leq \frac{\ell^{d} \operatorname{per}\left(E_{i}, \sigma_{i}, \theta_{0}\right)}{\left[E_{i}: k_{\nu}\right]}<\ell^{d}=\operatorname{per}\left(\beta \otimes E_{0}\right)$.
Since k_{ν} is a local field, period equals index and hence the lemma follows.
Proposition 3.4. Let k be a global field and ℓ a prime not equal to $\operatorname{char}(k)$. Let E_{0} / k be a cyclic extension of degree a power of ℓ and σ_{0} a generator of $\operatorname{Gal}\left(E_{0} / k\right)$. Let $\theta_{0} \in k^{*}$ and $\beta \in H^{2}\left(k, \mu_{\ell^{n}}\right)$ be such that $r \ell \beta=\left(E_{0}, \sigma_{0}, \theta_{0}\right)$ for some $r \geq 1$. Suppose that $r \beta \otimes E_{0} \neq 0$. Then there exist a field extension L_{0} / κ of degree ℓ and $\mu_{0} \in L_{0}$ such that

1) $N_{L_{0} / k}\left(\mu_{0}\right)=\theta_{0}$
2) $\operatorname{ind}\left(\beta \otimes E_{0} \otimes L_{0}\right)<\operatorname{ind}\left(\beta \otimes E_{0}\right)$
3) $r \beta \otimes L_{0}=\left(E_{0} \otimes L_{0}, \sigma_{0} \otimes 1, \mu_{0}\right)$.

Proof. Let S be the finite set of places of k consisting of all those places ν with $\beta \otimes k_{\nu} \neq 0$. Let $\nu \in S$. Suppose that $\theta_{0} \notin k_{\nu}^{\ell}$. Let $L_{\nu}=k_{\nu}\left(\sqrt[\ell]{\theta_{0}}\right)$ and $\mu_{\nu}=\sqrt[\ell]{\theta_{0}} \in L_{\nu}$. Then $N_{L_{\nu} / k_{\nu}}\left(\mu_{\nu}\right)=\theta_{0}$. By (3.3), ind $\left(\beta \otimes E_{0} \otimes k_{\nu}\right)<\operatorname{ind}\left(\beta \otimes E_{0}\right)$. In particular $\operatorname{ind}\left(\beta \otimes E_{0} \otimes L_{\nu}\right) \leq \operatorname{ind}\left(\beta \otimes E_{0} \otimes k_{\nu}\right)<\operatorname{ind}\left(\beta \otimes E_{0}\right)$. Since $\operatorname{cor}_{L_{\nu} / k_{\nu}}\left(r \beta \otimes L_{\nu}\right)=r \ell \beta=$ $\left(E_{0} \otimes k_{\nu}, \sigma_{0}, \theta_{0}\right)=\operatorname{cor}_{L_{\nu} / k_{\nu}}\left(E_{0} \otimes L_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}\right)$ and corestriction is injective (cf. [17, Theorem 10, p. 237]), we have $r \beta \otimes L_{\nu}=\left(E_{0} \otimes L_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}\right)$.
Suppose that $\theta_{0}=\mu_{\nu}^{\ell}$ for some $\mu_{\nu} \in k_{\nu}$. Since k_{ν} is local field containing a primitive $\ell^{\text {th }}$ root of unity and $E_{0} \otimes k_{\nu}$ is a cyclic extension, there exists a cyclic field extension L_{ν} / k_{ν} of degree ℓ which is not contained in $E_{0} \otimes k_{\nu}$. Then $N_{L_{\nu} / k_{\nu}}\left(\mu_{\nu}\right)=\mu_{\nu}^{\ell}=\theta_{0}$. Since L_{ν} is not a subfield of $E_{0} \otimes k_{\nu}, \operatorname{ind}\left(\beta \otimes E_{0} \otimes L_{\nu}\right)<\operatorname{ind}\left(\beta \otimes E_{0} \otimes k_{\nu}\right) \leq$ $\operatorname{ind}\left(\beta \otimes E_{0}\right)([3, \mathrm{p} .131])$. Since $\operatorname{cor}_{L_{\nu} / k_{\nu}}\left(r \beta \otimes L_{\nu}\right)=r \ell \beta \otimes k_{\nu}=\left(E_{0} \otimes k_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}^{\ell}\right)=$ $\operatorname{cor}_{L_{\nu} / k_{\nu}}\left(E_{0} \otimes L_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}\right)$, by (cf. [17, Theorem 10, p. 237]), we have $r \beta \otimes L_{\nu}=$ $\left(E_{0} \otimes L_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}\right)$.

By (3.1), we have the required L_{0} and μ_{0}.
Proposition 3.5. Let k be a global field and ℓ a prime not equal to char (k). Let E_{0} / k be a cyclic extension of degree a positive power of ℓ and σ_{0} a generator of $\operatorname{Gal}\left(E_{0} / k\right)$. Let $\theta_{0} \in k^{*}$ and $\beta \in H^{2}\left(k, \mu_{\ell^{n}}\right)$ be such that $r \ell \beta=\left(E_{0}, \sigma_{0}, \theta_{0}\right)$ for some $r \geq 1$. Suppose that $r \beta \otimes E_{0}=0$. Let L_{0} be the unique subfield of E_{0} of degree ℓ over k. Then there exists $\mu_{0} \in L_{0}$ such that

1) $N_{L_{0} / k}\left(\mu_{0}\right)=\theta_{0}$
2) $r \beta \otimes L_{0}=\left(E_{0} \otimes L_{0}, \sigma_{0} \otimes 1, \mu_{0}\right)$.

Proof. Since $r \beta \otimes E_{0}=0$ and E_{0} / k is a cyclic extension, we have $r \beta=\left(E_{0}, \sigma_{0}, \mu^{\prime}\right)$ for some $\mu^{\prime} \in k$. We have $\left(E_{0}, \sigma_{0}, \mu^{\prime \ell}\right)=\ell r \beta=\left(E_{0}, \sigma_{0}, \theta_{0}\right)$. Thus $\theta_{0}=N_{E_{0} / k}(y) \mu^{\prime \ell}$. Let $\mu_{0}=N_{E_{0} / L_{0}}(y) \mu^{\prime} \in L_{0}$. Since $L_{0} \subset E_{0}$, we have $r \beta \otimes L_{0}=\left(E_{0} / L_{0}, \sigma_{0}^{\ell}, \mu^{\prime}\right)=$ $\left(E_{0} / L_{0}, \sigma_{0}^{\ell}, N_{E_{0} / L_{0}}(y) \mu^{\prime}\right)=\left(E_{0} / L_{0}, \sigma_{0}^{\ell}, \mu_{0}\right)$ (cf. §2) and

$$
N_{L_{0} / k}\left(\mu_{0}\right)=N_{E_{0} / k}\left(N_{E_{0} / L_{0}}(y)\right) \mu^{\prime \ell}=\theta_{0} .
$$

Corollary 3.6. Let k be a global field and ℓ a prime not equal to $\operatorname{char}(k)$. Let E_{0} / k be a cyclic extension of degree a power of ℓ and σ_{0} a generator of $\operatorname{Gal}\left(E_{0} / k\right)$. Let
$\theta_{0} \in k^{*}$ and $\beta \in H^{2}\left(k, \mu_{\ell^{n}}\right)$ be such that $r \ell \beta=\left(E_{0}, \sigma_{0}, \theta_{0}\right)$ for some $r \geq 1$. Suppose that $r \beta \otimes E_{0}=0$. Let L_{0} be the unique subfield of E_{0} of degree ℓ over k. Let S be a finite set of places of k. Suppose for each $\nu \in S$ there exists $\mu_{\nu} \in L_{0} \otimes k_{\nu}$ such that

- $N_{L_{0} \otimes k_{\nu} / k_{\nu}}\left(\mu_{\nu}\right)=\theta_{0}$
- $r \beta \otimes L_{0} \otimes k_{\nu}=\left(E_{0} \otimes L_{0} \otimes k_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}\right)$.

Then there exists $\mu \in L_{0}$ such that

1) $N_{L_{0} / k}(\mu)=\theta_{0}$
2) $r \beta \otimes L_{0}=\left(E_{0} \otimes L_{0}, \sigma_{0} \otimes 1, \mu\right)$
3) μ is close to μ_{ν} for all $\nu \in S$.

Proof. By (3.5), there exists $\mu_{0} \in L_{0}$ such that

- $N_{L_{0} / k}\left(\mu_{0}\right)=\theta_{0}$
- $r \beta \otimes L_{0}=\left(E_{0} \otimes L_{0}, \sigma_{0} \otimes 1, \mu_{0}\right)$.

Let $\nu \in S$. Then we have

- $N_{L_{0} / k}\left(\mu_{0}\right)=\theta_{0}=N_{L_{0} \otimes k_{\nu} / k_{\nu}}\left(\mu_{\nu}\right)$
- $\left(E_{0} \otimes L_{0} \otimes k_{\nu}, \sigma_{0} \otimes 1, \mu_{0}\right)=\left(E_{0} \otimes L_{0} \otimes k_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}\right)$.

Let $b_{\nu}=\mu_{0} \mu_{\nu}^{-1} \in L_{0} \otimes k_{\nu}$. Then $N_{L_{0} \otimes k_{\nu} / k_{\nu}}\left(b_{\nu}\right)=1$ and $\left(E_{0} \otimes L_{0} \otimes k_{\nu}, \sigma_{0} \otimes 1, b_{\nu}\right)=1$. Thus, there exists $a_{\nu} \in E_{0} \otimes L_{0} \otimes k_{\nu}$ with $N_{E_{0} \otimes L_{0} \otimes k_{\nu} / L_{0} \otimes k_{\nu}}\left(a_{\nu}\right)=b_{\nu}$. We have $N_{E_{0} \otimes L_{0} \otimes k_{\nu} / k_{\nu}}\left(a_{\nu}\right)=N_{L_{0} \otimes k_{\nu} / \otimes k_{\nu}}\left(b_{\nu}\right)=1$. Since E_{0} / k is a cyclic extension with σ_{0} a generator of $\operatorname{Gal}\left(E_{0} / k\right)$, for each $\nu \in S$, there exists $c_{\nu} \in E_{0} \otimes L_{0} \otimes k_{\nu}$ such that $a_{\nu}=c_{\nu}^{-1}\left(\sigma_{0} \otimes 1\right)\left(c_{\nu}\right)$. By the weak approximation, there exists $c \in E_{0} \otimes L_{0}$ such that c is close to c_{ν} for all $\nu \in S$. Let $a=c^{-1}(\sigma \otimes 1)(c) \in E_{0} \otimes L_{0}$ and $\mu=\mu_{0} N_{E_{0} \otimes L_{0} / L_{0}}(c) \in L_{0}$. Then μ has all the required properties.

4. COMPLETE DISCRETELY VALUED FIELDS

Let F be a complete discretely valued field with residue field κ. Let D be a central simple algebra over F of period n coprime to char (κ). Let $\lambda \in F^{*}$ and $\alpha \in H^{2}\left(F, \mu_{n}\right)$ be the class of D. In this section we analyze the condition $\alpha \cdot(\lambda)=0$ and we use this analysis in the proof of our main result ($\S 10$). As a consequence, we also deduce that if κ is either a local field or a global field and $\alpha \cdot(\lambda)=0$ in $H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$, then λ is a reduced norm from D.

We use the following notation throughout this section:

- F a complete discretely valued field.
- κ the residue field of F.
- ν the discrete valuation on F.
- $\pi \in F^{*}$ a parameter at ν.
- $n \geq 2$ an integer coprime to $\operatorname{char}(\kappa)$
- D a central simple algebra over F of period n.
- $\alpha \in H^{2}\left(F, \mu_{n}\right)$ the class representing D.

Let E_{0} be the cyclic extension of κ and $\sigma_{0} \in \operatorname{Gal}\left(E_{0} / \kappa\right)$ be such that $\partial(\alpha)=\left(E_{0}, \sigma_{0}\right)$. Let (E, σ) be the lift of $\left(E_{0}, \sigma_{0}\right)$ (cf. §2). The pair (E, σ) or E is called the lift of the residue of α. The following is well known.

Lemma 4.1. Let $\alpha \in H^{2}\left(F, \mu_{n}\right),(E, \sigma)$ the lift of the residue of α. Then $\alpha=$ $\alpha^{\prime}+(E, \sigma, \pi)$ for some $\alpha^{\prime} \in H_{n r}^{2}\left(F, \mu_{n}\right)$. Further $\alpha^{\prime} \otimes E=\alpha \otimes E$ is independent of the choice of π.

Proof. Since $\partial(E, \sigma, \pi)=\partial(\alpha), \alpha^{\prime}=\alpha-(E, \sigma, \pi) \in H_{n r}^{2}\left(F, \mu_{n}\right)$ and $\alpha=\alpha^{\prime}+$ (E, σ, π).

Lemma 4.2. Let $n \geq 2$ be coprime to $\operatorname{char}(\kappa)$ and $\alpha \in H^{2}\left(F, \mu_{n}\right)$. If $\alpha=\alpha^{\prime}+$ (E, σ, π) as in (4.1), then $\operatorname{ind}(\alpha)=\operatorname{ind}\left(\alpha^{\prime} \otimes E\right)[E: F]=\operatorname{ind}(\alpha \otimes E)[E: F]$.

Proof. Cf. ([6, Proposition 1(3)] and [15, 5.15]).
Lemma 4.3. Let E be the lift of the residue of α. Suppose there exists a totally ramified extension M / F which splits α, then $\alpha \otimes E=0$.

Proof. Write $\alpha=\alpha^{\prime}+(E, \sigma, \pi)$ as in (4.1). Since $\alpha^{\prime} \otimes E=\alpha \otimes E$, we have $\alpha^{\prime} \otimes E \otimes M=$ 0 . Since $E \otimes M / E$ is totally ramified, the residue field of $E \otimes M$ is same as the residue field of E. Since $\alpha^{\prime} \otimes E \otimes M=0$ and $\alpha^{\prime} \otimes E$ is unramified, it follows from ([28, 7.9 and 8.4]) that $\alpha \otimes E=\alpha^{\prime} \otimes E=0$.

Lemma 4.4. Let $n \geq 2$ be coprime to $\operatorname{char}(\kappa)$. Let $\alpha \in H^{2}\left(F, \mu_{n}\right)$ and (E, σ) be the lift of the residue of α. If $\alpha \otimes E=0$, then $\alpha=(E, \sigma, u \pi)$ for some $u \in F^{*}$ which is a unit at the discrete valuation and $\operatorname{per}(\alpha)=\operatorname{ind}(\alpha)$.

Proof. We have $\alpha=\alpha^{\prime}+(E, \sigma, \pi)$ as in (4.1). Since $\alpha^{\prime} \otimes E=\alpha \otimes E=0$, we have $\alpha^{\prime}=(E, \sigma, u)$ for $u \in F^{*}$. Since E / F and α^{\prime} are unramified at the discrete valuation of F, u is a unit at the discrete valuation of F. We have $\alpha=(E, \sigma, u)+(E, \sigma, \pi)=$ $(E, \sigma, u \pi)$. Since E / F is an unramified extension and $u \pi$ is a parameter, $(E, \sigma, u \pi)$ is a division algebra and its period is $[E: F]$. In particular $\operatorname{ind}(\alpha)=\operatorname{per}(\alpha)$.

Theorem 4.5. Let F be a complete discretely valued field with residue field κ. Suppose that κ is a local field. Let ℓ be a prime not equal to the characteristic of κ, $n=\ell^{d}$ and $\alpha \in H^{2}\left(F, \mu_{n}\right)$. Then $\operatorname{per}(\alpha)=\operatorname{ind}(\alpha)$.

Proof. Write $\alpha=\alpha^{\prime}+(E, \sigma, \pi)$ as in (4.1). Then E is an unramified cyclic extension of F with $\partial(\alpha)=\left(E_{0}, \sigma_{0}\right)$ and α^{\prime} is unramified at the discrete valuation of F. Let $\bar{\alpha}^{\prime}$ be the image of α^{\prime} in $H^{2}\left(\kappa, \mu_{n}\right)$

Suppose that $\operatorname{per}(\partial(\alpha))=\operatorname{per}(\alpha)$. Then $\operatorname{per}(\partial(\alpha))=\left[E_{0}: \kappa\right]$. Since F is complete discretely valued field and E / F unramified extension, we have $\left[E_{0}: \kappa\right]=[E: F]$. Thus,

$$
\begin{aligned}
0 & =\operatorname{per}(\alpha) \alpha \\
& =\operatorname{per}(\alpha)\left(\alpha^{\prime}+(E, \sigma, \pi)\right) \\
& =\operatorname{per}(\alpha) \alpha^{\prime}+\operatorname{per}(\alpha)(E, \sigma, \pi) \\
& =\operatorname{per}(\alpha) \alpha^{\prime}+[E: F](E, \sigma, \pi) \\
& =\operatorname{per}(\alpha) \alpha^{\prime} .
\end{aligned}
$$

In particular, $\operatorname{per}\left(\alpha^{\prime}\right)$ divides $\operatorname{per}(\alpha)=\left[E_{0}, \kappa\right]=[E: F]$. Since κ is a local field, $\bar{\alpha}^{\prime} \otimes E_{0}$ is zero ($\left.[3, \mathrm{p} .131]\right)$ and hence $\alpha^{\prime} \otimes E$ is zero. By (4.4), we have $\alpha=(E, \sigma, \theta \pi)$ for some $\theta \in F$ which is a unit in the valuation ring. In particular, α is cyclic and $\operatorname{ind}(\alpha)=\operatorname{per}(\alpha)=[E: F]$.

Suppose that $\operatorname{per}(\partial(\alpha)) \neq \operatorname{per}(\alpha)$. Then $\operatorname{per}(\partial(\alpha))<\operatorname{per}(\alpha)$. Since $\operatorname{per}(\partial(\alpha))=$ $\operatorname{per}(E, \sigma, \pi)$, we have $\operatorname{per}(\alpha)=\operatorname{per}\left(\alpha^{\prime}\right)$. Since κ is a local field, $\operatorname{per}\left(\bar{\alpha}^{\prime}\right)=\operatorname{ind}\left(\bar{\alpha}^{\prime}\right)$. Let E_{0} be the residue field of E. Since $\operatorname{per}\left(\bar{\alpha}^{\prime}\right)=\operatorname{per}\left(\alpha^{\prime}\right)$ and $\operatorname{per}(\partial(\alpha))=\left[E_{0}: \kappa\right]$, we have $\left[E_{0}: \kappa\right]<\operatorname{per}\left(\bar{\alpha}^{\prime}\right)$. Since κ is a local field,

$$
\operatorname{ind}\left(\bar{\alpha}^{\prime} \otimes E_{0}\right)=\frac{\operatorname{per}\left(\bar{\alpha}^{\prime}\right)}{\left[E_{0}: \kappa\right]}
$$

Since E is a complete discrete valued field with residue field E_{0} and α^{\prime} is unramified at the discrete valuation of E, we have $\operatorname{ind}\left(\alpha^{\prime} \otimes E\right)=\operatorname{ind}\left(\bar{\alpha}^{\prime} \otimes E_{0}\right)$. Thus, we have

$$
\begin{aligned}
\operatorname{ind}(\alpha) & =\operatorname{ind}\left(\alpha^{\prime} \otimes E\right)[E: F] \quad(\operatorname{by}(4.2)) \\
& =\operatorname{ind}\left(\bar{\alpha}^{\prime} \otimes E_{0}\right)\left[E_{0}: \kappa\right] \\
& =\frac{\operatorname{per}\left(\bar{\alpha}^{\prime}\right)}{\left[E_{0}: k\right]}\left[E_{0}: \kappa\right] \\
& =\operatorname{per}\left(\bar{\alpha}^{\prime}\right)=\operatorname{per}(\alpha) .
\end{aligned}
$$

Proposition 4.6. Suppose that κ is a local field. Let $n \geq 2$ be coprime to char (κ). If L / F is a finite field extension, then the corestriction homomorphism $H^{3}\left(L, \mu_{n}^{\otimes 2}\right) \rightarrow$ $H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$ is bijective.

Proof. Let k^{\prime} be the residue field of L. Since k and k^{\prime} are local fields, $H^{3}\left(k, \mu_{n}^{\otimes 2}\right)=$ $H^{3}\left(k^{\prime}, \mu_{n}^{\otimes 2}\right)=0([27$, p. 86]). Since F and L are complete discrete valued fields, the residue homomorphisms $H^{3}\left(F, \mu_{n}^{\otimes 2}\right) \xrightarrow{\partial_{F}} H^{2}\left(k, \mu_{n}\right)$ and $H^{3}\left(L, \mu_{n}^{\otimes 2}\right) \xrightarrow{\partial_{\leftarrow}} H^{2}\left(k^{\prime}, \mu_{n}\right)$ are isomorphisms (cf. [28, 7.9]). The proposition follows from the commutative diagram

$$
\begin{array}{ccc}
H^{3}\left(L, \mu_{n}^{2}\right) & \xrightarrow{\partial_{L}} & H^{2}\left(k^{\prime}, \mu_{n}\right) \\
\downarrow & & \downarrow \\
H^{3}\left(F, \mu_{n}^{\otimes 22}\right) & \xrightarrow{\partial_{F}} & H^{2}\left(k, \mu_{n}\right),
\end{array}
$$

where the vertical arrows are the corestriction maps ([28, 8.6]).
Lemma 4.7. Let ℓ be a prime not equal to $\operatorname{char}(\kappa)$ and $n=\ell^{d}$ for some $d \geq 1$. Let $\alpha \in H^{2}\left(F, \mu_{n}\right)$ and $\lambda \in F^{*}$. Write $\lambda=\theta \pi^{r}$ for some $\theta, \pi \in F$ with $\nu(\theta)=0$ and $\nu(\pi)=1$. Let (E, σ) be the lift of the residue of α and $\alpha=\alpha^{\prime}+(E, \sigma, \pi)$ as in (4.1). Then

$$
\partial(\alpha \cdot(\lambda))=0 \Longleftrightarrow r \alpha^{\prime}=(E, \sigma, \theta) \Longleftrightarrow r \alpha=(E, \sigma, \lambda) .
$$

In particular, if $\partial(\alpha \cdot(\lambda))=0$ and $r=\nu(\lambda)$ is coprime to ℓ, then ind $(\alpha \otimes F(\sqrt[\ell]{\lambda}))<$ $\operatorname{ind}(\alpha)$ and $\alpha \cdot(\sqrt[\ell]{\lambda})=0 \in H^{3}\left(F(\sqrt[\ell]{\lambda}), \mu_{n}^{\otimes 2}\right)$.
Proof. Since $r \alpha=r \alpha^{\prime}+\left(E, \sigma, \pi^{r}\right)$ and $\lambda=\theta \pi^{r}, r \alpha=(E, \sigma, \lambda)$ if and only if $r \alpha^{\prime}=$ (E, σ, θ).

We have

$$
\partial(\alpha \cdot(\lambda))=\partial\left(\left(\alpha^{\prime}+(E, \sigma, \pi)\right) \cdot\left(\theta \pi^{r}\right)\right)=r \bar{\alpha}^{\prime}+\left(E_{0}, \sigma_{0}, \bar{\theta}^{-1}\right),
$$

where $\partial(\alpha)=\left(E_{0}, \sigma_{0}\right)$.
Thus $\partial(\alpha \cdot(\lambda))=0$ if and only if $r \bar{\alpha}^{\prime}+\left(E_{0}, \sigma_{0}, \bar{\theta}^{-1}\right)=0$ if and only if $r \bar{\alpha}^{\prime}=$ $\left(E_{0}, \sigma_{0}, \bar{\theta}\right)$ if and only if $r \alpha=(E, \sigma, \theta)$ (F being complete).

Lemma 4.8. Let $n \geq 2$ be coprime to char (κ) and ℓ a prime which divides n. Let $\alpha \in H^{2}\left(F, \mu_{n}\right), \lambda=\theta \pi^{\ell r} \in F^{*}$ with θ a unit in the valuation ring of F, π a parameter and $\alpha=\alpha^{\prime}+(E, \sigma, \pi)$ be as in (4.1). Suppose that $\alpha \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$ and there exist an extension L_{0} of κ of degree ℓ and $\mu_{0} \in L_{0}$ such that

- $N_{L_{0} / \kappa}\left(\mu_{0}\right)=\bar{\theta}$,
- $r \bar{\alpha}^{\prime} \otimes L_{0}=\left(E_{0} \otimes L_{0}, \sigma_{0} \otimes 1, \mu_{0}\right)$.

Then, there exist an unramified extension L of F of degree ℓ and $\mu \in L$ such that

- residue field of L is L_{0},
- μ a unit in the valuation ring of L,
- $\bar{\mu}=\mu_{0}$,
- $N_{L / F}(\mu)=\theta$,
- $\alpha \cdot\left(\mu \pi^{r}\right) \in H^{3}\left(L, \mu_{n}^{\otimes 2}\right)$ is unramified.

Proof. Since ℓ is a prime and $\left[L_{0}: \kappa\right]=\ell, L_{0}=\kappa\left(\mu_{0}^{\prime}\right)$ for any $\mu_{0}^{\prime} \in L_{0} \backslash \kappa$. Let $g(X)=X^{\ell}+b_{\ell-1} X^{\ell-1}+\cdot+b_{1} X+b_{0} \in \kappa[X]$ be the minimal polynomial of μ_{0}^{\prime} over κ. Let a_{i} be in the valuation ring of F mapping to b_{i} and $f(X)=X^{\ell}+a_{\ell-1} X^{\ell-1}+$ $\cdots+a_{1} X+a_{0} \in F[X]$. If $\mu_{0} \notin \kappa$, then we take $\mu_{0}^{\prime}=\mu_{0}$. Since $N_{L_{0} / \kappa}\left(\mu_{0}\right)=\bar{\theta}$, we have $b_{0}=(-1)^{\ell} \bar{\theta}$. In this case we take $a_{0}=(-1)^{\ell} \theta$. Since $g(X)$ is irreducible in $\kappa[X], f(X) \in F[X]$ is irreducible. Let $L=F[X] /(f)$. Then L / F is the unramified extension with residue field L_{0}. If $\mu_{0} \in \kappa$, then $\bar{\theta}=N_{L_{0} / \kappa}\left(\mu_{0}\right)=\mu_{0}^{\ell}$. Since F is a complete discretely valued field and ℓ is coprime to $\operatorname{char}(\kappa)$, there exists $\mu \in F$ which is a unit in the valuation ring of F which maps to μ_{0} and $\mu^{\ell}=\theta$. If $\mu_{0} \notin \kappa$, then let $\mu \in L$ be the image of X. Then the image of μ is μ_{0} and $N_{L / F}(\mu)=\theta$.

Since $L / F, E / F$ and α^{\prime} are unramified at the discrete valuation of F, we have $\partial_{L}\left(\alpha^{\prime} \cdot\left(\mu \pi^{r}\right)\right)=r \bar{\alpha}^{\prime} \otimes L_{0}$ and $\partial_{L}\left((E, \sigma, \pi) \cdot\left(\mu \pi^{r}\right)\right)=\partial_{L}\left(\left(E \otimes L, \sigma \otimes 1, \mu^{-1}\right) \cdot(\pi)\right)=$ $\left(E_{0} \otimes L_{0}, \sigma_{0} \otimes 1, \mu_{0}^{-1}\right)$. Since $\alpha=\alpha^{\prime}+(E, \sigma, \pi)$, we have

$$
\begin{aligned}
\partial_{L}\left(\alpha \cdot\left(\mu \pi^{r}\right)\right) & =\partial_{L}\left(\left(\alpha^{\prime} \otimes L\right) \cdot\left(\mu \pi^{r}\right)\right)+\partial_{L}\left((E, \sigma, \pi) \cdot\left(\mu \pi^{r}\right)\right) \\
& =r \bar{\alpha}^{\prime} \otimes L_{0}+\left(E_{0} \otimes L_{0}, \sigma_{0} \otimes 1, \mu_{0}^{-1}\right) \\
& =0
\end{aligned}
$$

Lemma 4.9. Suppose that κ is a local field. Let ℓ be prime not equal to $\operatorname{char}(k)$ and $n=\ell^{d}$. Let $\alpha \in H^{2}\left(F, \mu_{n}\right)$ and $\lambda \in F^{*}$. Suppose $\lambda \notin F^{* \ell}, \alpha \neq 0$ and $\alpha \cdot(\lambda)=0$. Then ind $(\alpha \otimes F(\sqrt[\ell]{\lambda}))<\operatorname{ind}(\alpha)$ and $\alpha \cdot(\sqrt[\ell]{\lambda})=0 \in H^{3}\left(F(\sqrt[\ell]{\lambda}), \mu_{n}^{\otimes 2}\right)$.
Proof. Suppose $\nu(\lambda)$ is coprime to ℓ. Then, by (4.7), we have $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\lambda}))<$ $\operatorname{ind}(\alpha)$ and $\alpha \cdot(\sqrt[\ell]{\lambda})=0 \in H^{3}\left(F(\sqrt[\ell]{\lambda}), \mu_{n}^{\otimes 2}\right)$.

Suppose that $\nu(\lambda)$ is divisible by ℓ. Write $\lambda=\theta \pi^{\ell d}$ with $\theta \in F$ a unit in the valuation ring of F.
Write $\alpha=\alpha^{\prime}+(E, \sigma, \pi)$ as in (4.1). Then $\operatorname{ind}(\alpha)=\operatorname{ind}\left(\alpha^{\prime} \otimes E\right)[E: F]$ and $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\theta})) \leq \operatorname{ind}\left(\alpha^{\prime} \otimes E(\sqrt[\ell]{\theta})\right)[E(\sqrt[\ell]{\theta}): F(\sqrt[\ell]{\theta})]$ (cf. 4.2). If $\sqrt[\ell]{\theta} \in E$, then $F(\sqrt[\ell]{\theta}) \subset E=E(\sqrt[\ell]{\theta})$. In particular $[E(\sqrt[\ell]{\theta}): F(\sqrt[\ell]{\theta})]=[E: F(\sqrt[\ell]{\theta})]<[E: F]$. Since ind $\left(\alpha^{\prime} \otimes E(\sqrt[\ell]{\theta})\right) \leq \operatorname{ind}\left(\alpha^{\prime} \otimes E\right)$, it follows that $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\theta}))<\operatorname{ind}(\alpha)$.

Suppose $\sqrt[\ell]{\theta} \notin E$. Since E is unramified extension of F and θ is a unit in the valuation ring of $E, E(\sqrt[\ell]{\theta})$ is an unramified extension of F with residue field $E_{0}(\sqrt[\ell]{\bar{\theta}})$, where E_{0} is the residue field of E and $\bar{\theta}$ is the image of θ in the residue field. Since F is a complete discretely valued field and θ is not an $\ell^{\text {th }}$ power in $E, \bar{\theta}$ is not an $\ell^{\text {th }}$ power in E_{0} and $\left[E_{0}(\sqrt[\ell]{\bar{\theta}}): E_{0}\right]=\ell$.

Suppose $\alpha^{\prime} \otimes E \neq 0$. Then $\bar{\alpha}^{\prime} \otimes E_{0} \neq 0$. Since E_{0} is a local field and $\operatorname{ind}\left(\bar{\alpha}^{\prime}\right)$ is a power of $\ell, \operatorname{ind}\left(\bar{\alpha}^{\prime} \otimes E_{0}(\sqrt[\ell]{\bar{\theta}})\right)<\operatorname{ind}\left(\bar{\alpha}^{\prime} \otimes E_{0}\right)\left([3\right.$, p. 131] $)$. Hence $\operatorname{ind}\left(\alpha^{\prime} \otimes E(\sqrt[\ell]{\theta})\right)<$ $\operatorname{ind}\left(\alpha^{\prime} \otimes E\right)$ and $\operatorname{ind}(\alpha \otimes F(\sqrt[l]{\theta}))<\operatorname{ind}(\alpha)$.

Suppose that $\alpha^{\prime} \otimes E=0$. Then, by (4.4), $\alpha=(E, \sigma, u \pi)$ for some unit u in the valuation ring of F. Since $\alpha \cdot(\lambda)=0,(E, \sigma, u \pi) \cdot(\lambda)=0$. Since E / F is unramified with residue field E_{0}, u, θ are units in the valuation ring of F and π a parameter, by taking the residue of $\alpha \cdot(\lambda)=0$, we see that $\left(E_{0}, \sigma_{0}, \bar{\theta}^{-1} \bar{u}^{\ell d}\right)=0 \in H^{2}\left(\kappa, \mu_{n}\right)$ (cf. 4.7). In particular, $\bar{\theta} \bar{u}^{-\ell d}$ is a norm from E_{0}. Since $\left[E_{0}: k\right]$ is a power of ℓ and E_{0} / κ is cyclic, there exists a sub extension L of E_{0} such that $[L: \kappa]=\ell$. Then
$\bar{\theta} \bar{u}^{-\ell d}$ is a norm from L and hence $\bar{\theta}$ is a norm from L. Since $\bar{\theta}$ is not in $\kappa^{* \ell}$, by (2.5), $L=\kappa(\sqrt[\ell]{\bar{\theta}})$. In particular $\sqrt[\ell]{\bar{\theta}} \in E_{0}$ and hence $\sqrt[\ell]{\theta} \in E$. Thus ind $(\alpha \otimes F(\sqrt[\ell]{\theta}))=$ $\operatorname{ind}((E, \sigma, u \pi) \otimes F(\sqrt[\ell]{\theta}))<\operatorname{ind}(E, \sigma, u \pi)=\operatorname{ind}(\alpha)$.
Lemma 4.10. Suppose κ is a local field. Let ℓ be a prime not equal to char (κ) and $n=\ell^{d}$. Let $\alpha \in H^{2}\left(F, \mu_{n}\right)$ and $\lambda \in F^{*}$. Suppose that κ contains a primitive $\ell^{\text {th }}$ root of unity. If $\alpha \neq 0$ and $\alpha \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$, then there exist a cyclic field extension L / F of degree ℓ and $\mu \in L^{*}$ such that $N_{L / F}(\mu)=\lambda$, ind $(\alpha \otimes L)<\operatorname{ind}(\alpha)$ and $\alpha \cdot(\mu)=0 \in H^{3}\left(L, \mu_{n}^{\otimes 2}\right)$. Further, if $\lambda \in F^{* \ell}$, then L / F is unramified and $\mu \in F$.
Proof. Suppose λ is not an $\ell^{\text {th }}$ power in F. Let $L=F(\sqrt[\ell]{\lambda})$ and $\mu=\sqrt[\ell]{\lambda}$. Then, by (4.9), $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$ and $\alpha \cdot(\mu)=0 \in H^{3}\left(L, \mu_{n}^{\otimes 2}\right)$.

Suppose $\lambda=\mu^{\ell}$ for some $\mu \in F^{*}$. Write $\alpha=\alpha^{\prime}+(E, \sigma, \pi)$ as in (4.1).
Suppose that $\alpha^{\prime} \otimes E=0$. Then, by (4.4), $\alpha=(E, \sigma, u \pi)$ for some $u \in F^{*}$ which is a unit in the valuation ring of F. Let L be the unique subfield of E with L / F of degree ℓ. Then $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$. Since $\operatorname{cor}_{L / F}(\alpha \cdot(\mu))=\alpha \cdot\left(\mu^{\ell}\right)=\alpha \cdot(\lambda)=0$, by (4.6), $\alpha \cdot(\mu)=0$ in $H^{3}\left(L, \mu_{n}\right)$. We also have $\lambda=\mu^{\ell}=N_{L / F}(\mu)$.

Suppose that $\alpha^{\prime} \otimes E \neq 0$. Let E_{0} be the residue field of E. Then E_{0} / κ is a cyclic field extension of κ of degree equal to the degree of E / F. Since κ is a local field and contains a primitive $\ell^{\text {th }}$ root of unity, there are at least three distinct cyclic field extensions of κ of degree ℓ. Since E_{0} / κ is a cyclic extension, there is at most one sub extension of E_{0} of degree ℓ over κ. Thus there exists a cyclic field extension L_{0} / κ of degree ℓ such that $E_{0} \otimes L_{0}$ is a field. Let L / F be the unramified extension with residue field L_{0}. Then $E \otimes L$ is a field. Let $\bar{\alpha}^{\prime}$ be the image of α^{\prime} in $H^{2}\left(\kappa, \mu_{n}\right)$. Since E is a complete discretely valued field, $\bar{\alpha}^{\prime} \otimes E_{0} \neq 0$. Since $E_{0} \otimes L_{0} / E_{0}$ is a field extension of degree ℓ and κ is a local field, $\operatorname{ind}\left(\bar{\alpha}^{\prime} \otimes E_{0} \otimes L_{0}\right)<\operatorname{ind}\left(\bar{\alpha}^{\prime} \otimes E_{0}\right)$ ([3, p. 131]). Since E is a complete discretely valued field, $\operatorname{ind}\left(\alpha^{\prime} \otimes E \otimes L\right)<$ $\operatorname{ind}\left(\alpha^{\prime} \otimes E\right)$. Since L / F is unramified, $\partial(\alpha \otimes L)=\partial(\alpha) \otimes L_{0}$ (cf. [4, Proposition 3.3.1]) and hence the decomposition $\alpha \otimes L=\alpha^{\prime} \otimes L+(E \otimes L, \sigma \otimes 1, \pi)$ is as in (4.1). Thus, by (4.2) $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$. As above, we also have $\lambda=N_{L / F}(\mu)$ and $\alpha \cdot(\mu)=0 \in H^{3}\left(L, \mu_{n}^{\otimes 2}\right)$.
Lemma 4.11. Suppose κ is a global field. Let ℓ be a prime not equal to char (κ) and $n=\ell^{d}$. Let $\alpha \in H^{2}\left(F, \mu_{n}\right)$ and $\lambda \in F^{*}$. If $\alpha \neq 0$ and $\alpha \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$, then there exist a field extension L / F of degree ℓ and $\mu \in L^{*}$ such that $N_{L / F}(\mu)=\lambda$, $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$ and $\alpha \cdot(\mu)=0 \in H^{3}\left(L, \mu_{n}^{\otimes 2}\right)$.

Proof. Suppose that $\nu(\lambda)$ is coprime to ℓ. Then, by (4.7), $L=F(\sqrt[\ell]{\lambda})$ and $\mu=\sqrt[\ell]{\lambda}$ has the required properties.

Suppose that $\nu(\lambda)$ is divisible by ℓ. Let π be a parameter in F. Then $\lambda=\theta \pi^{r \ell}$ with $\nu(\theta)=0$. Write $\alpha=\alpha^{\prime}+(E, \sigma, \pi)$ as in (4.1). Let $\bar{\alpha}^{\prime}$ be the image of α^{\prime} in $H^{2}\left(\kappa, \mu_{n}\right)$ and θ_{0} the image of θ in κ. Since $\alpha \cdot(\lambda)=0$, by (4.7), we have $r \ell \bar{\alpha}^{\prime}=\left(E_{0}, \sigma_{0}, \theta_{0}\right)$, where E_{0} is the residue field of E and σ_{0} induced by σ.

Suppose that $r \bar{\alpha}^{\prime} \otimes E_{0} \neq 0$. Then, by (3.4), there exist a extension L_{0} / κ of degree ℓ and $\mu_{0} \in L_{0}$ such that $N_{L_{0} / \kappa}\left(\mu_{0}\right)=\theta_{0}, \operatorname{ind}\left(\bar{\alpha}^{\prime} \otimes E_{0} \otimes L_{0}\right)<\operatorname{ind}\left(\bar{\alpha}^{\prime} \otimes E_{0}\right)$ and $r \bar{\alpha}^{\prime} \otimes L_{0}=\left(E_{0} \otimes L_{0}, \sigma_{0}, \mu_{0}\right)$.

Suppose that $r \bar{\alpha}^{\prime} \otimes E_{0}=0$. Suppose that $E_{0} \neq \kappa$. Let L_{0} be the unique subfield field of E_{0} of degree ℓ over κ. Then, by (3.5), there exists $\mu_{0} \in L_{0}$ such that $N_{L_{0} / \kappa}\left(\mu_{0}\right)=\theta_{0}$ and $r \bar{\alpha}^{\prime} \otimes L_{0}=\left(E_{0}, \sigma_{0}, \mu_{0}\right)$.

Suppose that $E_{0}=\kappa$. Then, by (3.2), there exist a field extension L_{0} / κ of degree ℓ and $\mu_{0} \in L_{0}$ such that $N_{L_{0} / k}\left(\mu_{0}\right)=\theta_{0}$ and $\operatorname{ind}\left(\bar{\alpha}^{\prime} \otimes L_{0}\right)<\operatorname{ind}\left(\bar{\alpha}^{\prime}\right)$.

By (4.8), we have the required L and μ.
Theorem 4.12. Let F be a complete discrete valued field with residue field κ. Suppose that κ is a local field or a global field. Let D be a central simple algebra over F of period n. Suppose that n is coprime to char (κ). Let $\alpha \in H^{2}\left(F, \mu_{n}\right)$ be the class of D and $\lambda \in F^{*}$. If $\alpha \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$, then λ is a reduced norm from D.
Proof. Write $n=\ell_{1}^{d_{1}} \cdots \ell_{r}^{d_{r}}, \ell_{i}$ distinct primes, $d_{i}>0, D=D_{1} \otimes \cdots \otimes D_{r}$ with each D_{i} a central simple algebra over F of period power of ℓ_{i} ([1, Ch. V, Theorem 18]). Let α_{i} be the corresponding cohomology class of D_{i}. Since ℓ_{i} 's are distinct primes, $\alpha \cdot(\lambda)=0$ if and only if $\alpha_{i} \cdot(\lambda)=0$ and λ is a reduced norm from D if and only if λ is a reduced norm from each D_{i}. Thus without loss of generality we assume that $\operatorname{per}(D)=\ell^{d}$ for some prime ℓ.
We prove the theorem by the induction on the index of D. Suppose that $\operatorname{deg}(D)=$ 1. Then every element of F^{*} is a reduced norm from D. We assume that $\operatorname{deg}(D)=$ $n=\ell^{d} \geq 2$.

Let $\lambda \in F^{*}$ with $\alpha \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$. Let ρ be a primitive $\ell^{\text {th }}$ root of unity. Since $[F(\rho): F]$ is coprime to n, λ is a reduced norm from F is and only if λ is a reduced from $D \otimes F(\rho)$. Thus, replacing F by $F(\rho)$, we assume that $\rho \in F$.

Since κ is either a local field or a global field, by (4.10, 4.11), there exist an extension L / F of degree ℓ and $\mu \in L^{*}$ such that $N_{L / F}(\mu)=\lambda, \alpha \cdot(\mu)=0$ and $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$. Thus, by induction, μ is a reduced norm from $D \otimes L$. Since $N_{L / F}(\mu)=\lambda, \lambda$ is a reduced norm from D.

The following technical lemma is used in $\S 6$.
Lemma 4.13. Let κ be a finite field and K a function field of a curve over κ. Let $u, v, w \in \kappa^{*}$ and $\theta \in K^{*}$. Let ℓ a prime not equal to $\operatorname{char}(\kappa)$ and $\theta=w u \lambda$. If κ contains a primitive $\ell^{\text {th }}$ root of unity and $w \notin \kappa^{* \ell}$, then for $r \geq 1$, the element $(v, \sqrt[\ell^{r}]{\theta})_{\ell}$ is $H^{2}(K(\sqrt[\ell^{e}]{\theta})$ is trivial over $K(\sqrt[\ell^{\tau}]{\theta}, \sqrt[\ell]{v+u \lambda})$.
Proof. Let $L=K(\sqrt[\ell^{r}]{\theta}, \sqrt[\ell]{v+u \lambda})$ and $\beta=(v, \sqrt[\ell^{r}]{\theta})_{\ell}$. Since L is a global field, to show that $\beta \otimes L$ is trivial, it is enough to show that $\beta \otimes L_{\nu}$ is trivial for every discrete valuation ν of L. Let ν be a discrete valuation of L. Since $v \in \kappa^{*}, v$ is a unit at ν. If θ is a unit at ν, then $\beta \otimes L$ is unramified at ν and hence $\beta \otimes L_{\nu}$ is trivial. Suppose that θ is not a unit at ν. Since u and v are units at ν, λ is not a unit. Suppose that $\nu(\lambda)>0$. Then $v \in L_{\nu}^{* \ell}$ and hence $\beta \otimes L_{\nu}$ is trivial. Suppose that $\nu(\lambda)<0$. Then $\sqrt[\ell]{u \lambda} \in L_{\nu}$. Since $r \geq 1, \theta=u w \lambda$ and $\sqrt[\ell r]{\theta} \in L_{\nu}$, we have $\sqrt[\ell]{\theta}=\sqrt[\ell]{w u \lambda} \in L_{\nu}$. Hence $\sqrt[\ell]{w} \in L_{\nu}$. Since $w \in \kappa^{*} \backslash \kappa^{* \ell}, v \in \kappa^{*}$ and κ is a finite field, $\sqrt[\ell]{v} \in \kappa(\sqrt[l]{w})$. Since $\kappa(\sqrt[8]{w}) \subset L_{\nu}, \beta \otimes L_{\nu}$ is trivial.
We end this section with the following well known facts.
Lemma 4.14. Let F be a complete discrete valued field with the residue field κ. Let $\alpha \in \operatorname{Br}(F)$ and L / F an unramified extension with residue field L_{0}. Suppose that $\operatorname{per}(\alpha)$ is coprime to char (κ). Let $\partial(\alpha)=\left(E_{0}, \sigma_{0}\right)$. If $\partial(\alpha \otimes L)$ is trivial, then E_{0} is isomorphic to a subfield of L_{0}.
Proof. Let L_{0} be the residue field of L. Since L / F is unramified, $\left(E_{0}, \sigma_{0}\right) \otimes L_{0}=$ $\partial(\alpha) \otimes L_{0}=\partial(\alpha \otimes L)$ (cf. [4, Proposition 3.3.1]). Since $\alpha \otimes L=0, \partial(\alpha \otimes L)=0$ and hence E_{0} is isomorphic to a subfield of L_{0}.

Corollary 4.15. Let L / F be a cyclic extension of degree n, τ a generator of $G a l(L / F)$ and $\theta \in F^{*}$. If $\nu(\theta)$ is coprime to n and $\operatorname{ind}(L / F, \tau, \theta)=[L: F]$, then $[L: F]=$ $\operatorname{per}(\partial(L / F, \tau, \theta))$.
Proof. Let $\beta=(L / F, \tau, \theta)$ and $m=\operatorname{per}(\partial(\beta))$. Since $n=[L: F]=\operatorname{ind}(\beta)$, m divides n. Since $\nu(\theta)$ is coprime to $n, F(\sqrt[m]{\theta}) / F$ is a totally ramified extension of degree m with residue field equal to the residue field κ of F. Since $\partial(\beta \otimes F(\sqrt[m]{\theta}))=m \partial(\beta)$, $\beta \otimes F(\sqrt[m]{\theta})$ is unramified. Since $F(\sqrt[n]{\theta}) / F(\sqrt[m]{\theta})$ is totally ramified and $\beta \otimes F(\sqrt[n]{\theta})$ is trivial, $\beta \otimes F(\sqrt[m]{\theta})$ is trivial (cf. 4.3). Hence $n=m$.

5. Brauer group - Complete two dimensional regular local rings

Through out this section A denotes a complete regular local ring of dimension 2 with residue field κ and F its field of fractions. Let ℓ be a prime not equal to the characteristic of κ and $n=\ell^{d}$ for some $d \geq 1$. Let $m=(\pi, \delta)$ be the maximal ideal of A. For any prime $p \in A$, let F_{p} be the completion of the field of fractions of the completion of the local ring $A_{(p)}$ at p and $\kappa(p)$ the residue field at p.
Lemma 5.1. Let E_{π} be a Galois extension of F_{π} of degree coprime to char (κ). Then there exists a Galois extension E of F of degree $\left[E_{\pi}: F_{\pi}\right]$ which is unramified on A except possibly at δ and $\operatorname{Gal}(E / F) \simeq \operatorname{Gal}\left(E_{\pi} / F_{\pi}\right)$.
Proof. Since A is complete and $m=(\pi, \delta), \kappa(\pi)$ is a complete discretely valued field with residue field κ and the image $\bar{\delta}$ of δ as a parameter. Let E_{0} be the residue field of E_{π}. Then $E_{0} / \kappa(\pi)$ is a Galois extension with $\operatorname{Gal}\left(E_{0} / \kappa(\pi)\right) \simeq \operatorname{Gal}\left(E_{\pi} / F_{\pi}\right)$. Let L_{0} be the maximal unramified extension of $\kappa(\pi)$ contained in E_{0}. Then L_{0} is also a complete discretely valued field with $\bar{\delta}$ as a parameter. Since E_{0} / L_{0} is a totally ramified extension of degree coprime to $\operatorname{char}(\kappa)$, we have $E_{0}=L_{0}(\sqrt[e]{v \bar{\delta}})$ for some $v \in L_{0}$ which is a unit at the discrete valuation of L_{0} (cf. 2.4).

Since $E_{0} / \kappa(\pi)$ is a Galois extension, E_{0} / L_{0} and $L_{0} / \kappa(\pi)$ are Galois extensions. Let κ_{0} be the residue field of E_{0}. Then the residue field of L_{0} is also κ_{0}. Since κ_{0} is a Galois extension of κ and A is complete, there exists a Galois extension L of F which is unramified on A with residue field κ_{0}. Let B be the integral closure of A in L. Then B is a regular local ring with residue field κ_{0} (cf. [21, Lemma 3.1]). Let $u \in B$ be a lift of v.
Let $E=L(\sqrt[e]{u \delta})$. Since L / F is unramified on $A, E / F$ is unramified on A except possibly at δ. In particular E / F is unramified at π with residue field E_{0}. By the construction $[E: F]=\left[E_{0}: \kappa(\pi)\right]$. Hence $E \otimes F_{\pi} \simeq E_{\pi}$.

Since L / F is a Galois extension which is unramified at π, we have $\operatorname{Gal}(L / F) \simeq$ $\operatorname{Gal}\left(L_{0} / \kappa(\pi)\right)$. Let $\tau \in \operatorname{Gal}(L / F)$ and $\bar{\tau} \in \operatorname{Gal}\left(L_{0} / \kappa(\pi)\right)$ be the image of τ. Since $E_{0} / \kappa(\pi)$ is Galois and $E_{0}=L_{0}(\sqrt[e]{v \bar{\delta}})$, by (2.3), E_{0} contains a primitive $e^{\text {th }}$ root of unity ρ and $\bar{\tau}(v \bar{\delta})) \in E_{0}^{e}$. In particular $\rho \in \kappa_{0}$. Since B is complete with residue field $\kappa_{0}, \rho \in B$ and hence $\rho \in L \subseteq E$. Since $\bar{\tau}(v \bar{\delta})=\bar{\tau}(v) \bar{\delta}$ and $v \bar{\delta}, \bar{\tau}(v \bar{\delta}) \in E_{0}^{e}$, $\bar{\tau}(v) / v \in E_{0}^{e}$. Since $\bar{\tau}(v)$ and v are units at the discrete valuation of L_{0} and E_{0} / L_{0} is totally ramified, $\bar{\tau}(v) / v \in L_{0}^{e}$. Since B is complete and the image of $\tau(u) / u$ in L_{0} is $\bar{\tau}(v) / v, \tau(u) / u \in L^{e}$. Since $E=L(\sqrt{u \delta}), \tau(u \delta) \in E^{e}$. Thus, by (2.3), E / F is Galois. Since $E \otimes F_{\pi} \simeq E_{\pi}, \operatorname{Gal}(E / F) \simeq \operatorname{Gal}\left(E_{\pi} / F_{\pi}\right)$.

Since A is complete and (π, δ) is the maximal ideal of $A, A /(\pi)$ is a complete discrete valuation ring with $\bar{\delta}$ is a parameter and $A /(\delta)$ is a complete discrete valuation ring with $\bar{\pi}$. The following follows from ([16, Proposition 1.7]).

Lemma 5.2. ([16, Proposition 1.7]) Let $m \geq 1$ and $\alpha \in H^{m}\left(F, \mu_{n}^{\otimes(m-1)}\right)$. Suppose that α is unramified on A except possibly at π and δ. Then

$$
\partial_{\bar{\delta}}\left(\partial_{\pi}(\alpha)\right)=-\partial_{\bar{\pi}}\left(\partial_{\delta}(\alpha)\right) .
$$

Let $H_{n r}^{m}\left(F, \mu_{n}^{\otimes(m-1)}\right)$ be the intersections of the kernels of the residue homomorphisms $\partial_{\theta}: H^{m}\left(F, \mu_{n}^{\otimes(m-1)}\right) \rightarrow H^{m-1}\left(\kappa(\theta), \mu_{n}^{\otimes(m-2)}\right)$ for all primes $\theta \in A$. The following lemma follows from the purity theorem of Gabber.
Lemma 5.3. For $m \geq 1, H_{n r}^{m}\left(F, \mu_{n}^{\otimes(m-1)}\right) \simeq H^{m}\left(\kappa, \mu_{n}^{\otimes(m-1)}\right)$.
Proof. By the purity theorem of Gabber (cf. [24, CH. XVI]), we have $H_{n r}^{m}\left(F, \mu_{n}^{\otimes(m-1)}\right) \simeq$ $H_{e t}^{m}\left(A, \mu_{n}^{\otimes(m-1)}\right)$. Since A is complete, we have $H_{e t}^{m}\left(A, \mu_{n}^{\otimes(m-1)}\right) \simeq H^{m}\left(\kappa, \mu_{n}^{\otimes(m-1)}\right)$ (cf. [20, Corollary 2.7, p.224]).
Lemma 5.4. Let $m \geq 1$ and $\alpha \in H^{m}\left(F, \mu_{n}^{\otimes(m-1)}\right)$. Suppose that α is unramified except possibly at π. Then there exist $\alpha_{0} \in H^{m}\left(F, \mu_{n}^{\otimes(m-1)}\right)$ and $\beta \in H^{m-1}\left(F, \mu_{n}^{\otimes(m-2)}\right)$ which are unramified on A such that

$$
\alpha=\alpha_{0}+\beta \cdot(\pi)
$$

Proof. Let $\beta_{0}=\partial_{\pi}(\alpha)$. By (5.2), $\beta_{0} \in H^{m-1}\left(\kappa(\pi), \mu_{n}^{\otimes(m-2)}\right)$ is unramified on $A /(\pi)$. Since $A /(\pi)$ is a complete discrete valuation ring with residue field κ, we have $H_{n r}^{m-1}\left(\kappa(\pi), \mu_{n}^{\otimes(m-2)}\right) \simeq H^{m-1}\left(\kappa, \mu_{n}^{\otimes(m-2)}\right)$. Since A is a complete regular local ring of dimension 2, $H_{n r}^{m-1}\left(F, \mu_{n}^{\otimes(m-2)}\right) \simeq H^{m-1}\left(\kappa, \mu_{n}^{\otimes(m-2)}\right)$ (5.3). Thus, there exists $\beta \in H_{n r}^{m-1}\left(F, \mu^{\otimes(m-1)}\right)$ which is a lift of β_{0}. Then $\alpha_{0}=\alpha-\beta \cdot(\pi)$ is unramified on A. Hence $\alpha=\alpha_{0}+\beta \cdot(\pi)$.
Corollary 5.5. Let $m \geq 1$ and $\alpha \in H^{m}\left(F, \mu_{n}^{\otimes(m-1)}\right)$ is unramified on A except possibly at π and δ. If $\alpha \otimes F_{\delta}=0$, then $\alpha=0$. In particular if $\alpha_{1}, \alpha_{2} \in H^{m}\left(F, \mu_{n}^{\otimes(m-1)}\right)$ unramified on A except possibly at π and δ and $\alpha_{1} \otimes F_{\delta}=\alpha_{2} \otimes F_{\delta}$, then $\alpha_{1}=\alpha_{2}$.
Proof. Since $\alpha \otimes F_{\delta}=0, \alpha$ is unramified at δ. Thus α is unramified on A except possibly at π. By (5.4), we have $\alpha=\alpha_{0}+\beta \cdot(\pi)$ for some $\alpha_{0} \in H^{m}\left(F, \mu_{n}^{\otimes(m-1)}\right)$ and $\beta \in H^{m-1}\left(F, \mu_{n}^{\otimes(m-2)}\right)$ which are unramified on A. Since $\alpha \otimes F_{\delta}=0$, we have $(\beta \cdot(\pi)) \otimes F_{\delta}=-\alpha_{0} \otimes F_{\delta}$. Since $\beta \cdot(\pi)$ and α_{0} are unramified at δ, we have $\bar{\beta} \cdot(\bar{\pi})=-\bar{\alpha}_{0}$, where - denotes the image over $\kappa(\delta)$. Since $\kappa(\delta)$ is a complete discrete valued field with $\bar{\pi}$ as a parameter, by taking the residues, we see that the image of β is 0 in $H^{m-1}\left(\kappa, \mu_{n}^{\otimes(m-2)}\right)$. Since A is a complete regular local ring, $\beta=0$ (5.3). Hence $\alpha=\alpha_{0}$ is unramified on A. Since $\alpha \otimes F_{\delta}=0, \bar{\alpha}=0 \in H^{m}\left(\kappa(\delta), \mu_{n}^{\otimes(m-1)}\right)$. In particular the image of α in $H^{m}\left(\kappa, \mu_{n}^{\otimes(m-1)}\right)$ is zero. Since A is a complete regular local ring, $\alpha=0$ (5.3).
Corollary 5.6. Let $m \geq 1$ and $\alpha \in H^{m}\left(F, \mu_{n}^{m-1}\right)$. If α is unramified on A except possibly at π and δ, then $\operatorname{per}(\alpha)=\operatorname{per}\left(\alpha \otimes F_{\pi}\right)=\operatorname{per}\left(\alpha \otimes F_{\delta}\right)$.

Proof. Suppose $t=\operatorname{per}\left(\alpha \otimes F_{\delta}\right)$. Then $t \alpha \otimes F_{\delta}=0$ and hence, by (5.5), t $\alpha=0$. Since $\operatorname{per}\left(\alpha \otimes F_{\delta}\right) \leq \operatorname{per}(\alpha)$, it follows that $\operatorname{per}(\alpha)=\operatorname{per}\left(\alpha \otimes F_{\delta}\right)$. Similarly, $\operatorname{per}(\alpha)=$ $\operatorname{per}\left(\alpha \otimes F_{\pi}\right)$.
Corollary 5.7. Suppose that κ is a finite field. Let $\alpha \in H^{2}\left(F, \mu_{n}\right)$. If α is unramified except at π and δ, then there exist a cyclic extension E / F and $\sigma \in \operatorname{Gal}(E / F)$ a
generator, $u \in A$ a unit, and $0 \leq i, j<n$ such that $\alpha=\left(E, \sigma, u \pi^{i} \delta^{j}\right)$ with E / F is unramified on A except at δ and $i=1$ or E / F is unramified on A except at π and $j=1$.

Proof. Since n is a power of the prime ℓ and $n \alpha=0, \operatorname{per}\left(\partial_{\pi}(\alpha)\right)$ and $\operatorname{per}\left(\partial_{\delta}(\alpha)\right)$ are powers of ℓ. Let d^{\prime} be the maximum of $\operatorname{per}\left(\partial_{\pi}(\alpha)\right)$ and $\operatorname{per}\left(\partial_{\delta}(\alpha)\right)$. Then $\partial_{\pi}\left(d^{\prime} \alpha\right)=$ $d^{\prime} \partial_{\pi}(\alpha)=0$ and $\partial_{\delta}\left(d^{\prime} \alpha\right)=d^{\prime} \partial_{\delta}(\alpha)=0$. In particular $d^{\prime} \alpha$ is unramified on A. Since κ is a finite field, $d^{\prime} \alpha=0$. Hence $\operatorname{per}(\alpha)$ divides d^{\prime} and $d^{\prime}=\operatorname{per}(\alpha)$. Thus $\operatorname{per}(\alpha)=$ $\operatorname{per}\left(\partial_{\pi}(\alpha)\right)$ or $\operatorname{per}\left(\partial_{\delta}(\alpha)\right)$.

Suppose that $\operatorname{per}(\alpha)=\operatorname{per}\left(\partial_{\pi}(\alpha)\right)$. Since $\partial_{\pi}\left(\alpha \otimes F_{\pi}\right)=\partial_{\pi}(\alpha)$, we have $\operatorname{per}\left(\partial_{\pi}(\alpha)\right) \leq$ $\operatorname{per}\left(\alpha \otimes F_{\pi}\right) \leq \operatorname{per}(\alpha)$. Thus $\operatorname{per}\left(\alpha \otimes F_{\pi}\right)=\operatorname{per}\left(\partial_{\pi}\left(\alpha \otimes F_{\pi}\right)\right)$. Thus, by (4.4), we have $\alpha \otimes F_{\pi}=\left(E_{\pi} / F_{\pi}, \sigma, \theta \pi\right)$ for some cyclic unramified extension E_{π} / F_{π} and $\theta \in F_{\pi}$ a unit in the valuation ring of F_{π}.

By (5.1), there exists a Galois extension E / F which is unramified on A except possibly at (δ) such that $E \otimes F_{\pi} \simeq E_{\pi}$. Since E_{π} / F_{π} is cyclic, E / F is cyclic. Since $\theta \in F_{\pi}$ is a unit in the valuation ring of F_{π} and the residue field of F_{π} is a complete discrete valued field with $\bar{\delta}$ as parameter, we can write $\theta=u \delta^{j} \theta_{1}^{n}$ for some unit $u \in A, \theta_{1} \in F_{\pi}$ and $0 \leq j \leq n-1$. Then $\alpha \otimes F_{\pi} \simeq\left(E, \sigma, u \delta^{j} \pi\right) \otimes F_{\pi}$. Thus, by (5.5), we have $\alpha=\left(E, \sigma, u \delta^{i} \pi\right)$.

If $\operatorname{per}(\alpha)=\operatorname{per}\left(\partial_{\delta}(\alpha)\right)$, then, as above, we get $\alpha=\left(E, \sigma, u \pi^{j} \delta\right)$ for some cyclic extension E / F which is unramified on A except possibly at π.

The following is proved in ([29, 2.4]) under the assumption that F contains a primitive $n^{\text {th }}$ root of unity.

Proposition 5.8. Suppose that κ is a finite field. Let $\alpha \in H^{2}\left(F, \mu_{n}\right)$. If α is unramified on A except possibly at (π) and (δ). Then $\operatorname{ind}(\alpha)=\operatorname{ind}\left(\alpha \otimes F_{\pi}\right)=$ $\operatorname{ind}\left(\alpha \otimes F_{\delta}\right)$.

Proof. Suppose that α is unramified on A except possibly at (π) and (δ). Then, by (5.7), we assume without loss of generality that $\alpha=\left(E / F, \sigma, \pi \delta^{j}\right)$ with E / F unramified on A except possibly at δ. Then $\operatorname{ind}(\alpha) \leq[E: F]$. Since E / F is unramified on A expect possibly at δ, we have $[E: F]=\left[E_{\pi}: F_{\pi}\right]$ and $\operatorname{ind}\left(\alpha \otimes F_{\pi}\right)=$ $\left[E_{\pi}: F_{\pi}\right]$. Thus $[E: F]=\left[E_{\pi}: F_{\pi}\right]=\operatorname{ind}\left(\alpha \otimes F_{\pi}\right) \leq \operatorname{ind}(\alpha) \leq[E: F]$ and hence $[E: F]=\operatorname{ind}\left(\alpha \otimes F_{\pi}\right)=\operatorname{ind}(\alpha)$.

Corollary 5.9. Suppose that κ is a finite field. Let $\alpha \in H^{2}\left(F, \mu_{n}\right)$. If α is unramified on A except possibly at (π) and (δ). Then ind $(\alpha)=\operatorname{per}(\alpha)$.

Proof. By (5.6), $\operatorname{per}(\alpha)=\operatorname{per}\left(\alpha \otimes F_{\pi}\right)$ and by (4.5), $\operatorname{ind}\left(\alpha \otimes F_{\pi}\right)=\operatorname{per}\left(\alpha \otimes F_{\pi}\right)$. Thus $\operatorname{per}(\alpha)=\operatorname{ind}\left(\alpha \otimes F_{\pi}\right)$. By (5.8), we have ind $(\alpha)=\operatorname{per}(\alpha)$.

The following follows from ([11] and [13]).
Proposition 5.10. Let $\alpha \in H^{2}\left(F, \mu_{n}\right)$. Let $\phi: \mathscr{X} \rightarrow \operatorname{Spec}(A)$ be a sequence of blow-ups and $V=\phi^{-1}(m)$. Then $\operatorname{ind}(\alpha)=$ l.c. $m\left\{\operatorname{ind}\left(\alpha \otimes F_{x}\right) \mid x \in V\right\}$.

Proof. Follows from similar arguments as in the proof of ([11, Theorem 9.11]) and using ([13, Theorem 4.2.1]).

We end this section with the following well known result

Lemma 5.11. Let E / F be a cyclic extension of degree ℓ^{d} for some $d \geq 1$. If E / F is unramified on A except possibly at δ, then there exist a subextension $E_{n r}$ of E / F and $w \in E_{n r}$ which is a unit in the integral closure of A in $E_{n r}$ such that $E_{n r} / F$ is unramified on A and $E=E_{n r}(\sqrt[e \ell]{w \delta})$. Further if κ is a finite field, κ contains a primitive $\ell^{\text {th }}$ root of unity and $0<e<d$, then $N_{E_{n r} / F}(w) \in A$ is not an $\ell^{\text {th }}$ power in A.

Proof. Let $E(\pi)$ be the residue field of E at π. Since E / F is unramified at A except possibly at δ, by (5.6), $[E(\pi): \kappa(\pi)]=[E: F]$. Since E / F is cyclic, $E(\pi) / \kappa(\pi)$ is cyclic. As in the proof of (5.1), there exist a cyclic extension E_{0} / F unramified on A and a unit w in the integral closure of A in E_{0} such that the residue field of $E_{0}(\sqrt[\ell^{e}]{w \delta})$ at π is $E(\pi)$. By (5.5), we have $E \simeq E_{0}(\sqrt[\ell^{e}]{w \delta})$. Let $E_{n r}=E_{0}$. Then $E_{n r}$ has the required properties.

Suppose that κ is a finite field and contains a primitive $\ell^{\text {th }}$ root of unity. Let B be the integral closure of A in $E_{n r}$. Then B is a complete regular local ring with residue field κ^{\prime} a finite extension of κ.

Let $w_{0}=N_{E_{n r} / F}(w) \in A^{*}$ and $\bar{w}_{0} \in \kappa^{*}$. Suppose that $w_{0} \in A^{* \ell}$. Then $\bar{w}_{0} \in \kappa^{* \ell}$. Since κ contains a primitive $\ell^{\text {th }}$ root of unity, we have $\left|\kappa^{\prime *} / \kappa^{\prime * \ell}\right|=\left|\kappa^{*} / \kappa^{* \ell}\right|=\ell$. Since norm map is surjective from κ^{\prime} to κ, the norm map induces an isomorphism from $\kappa^{* *} / \kappa^{* * \ell} \rightarrow \kappa^{*} / \kappa^{* \ell}$. Thus the image of w in κ^{\prime} is an $\ell^{\text {th }}$ power. Since B is a complete regular local ring, $w \in B^{* \ell}$. Suppose $0<e<f$. Then $\sqrt[\ell]{\delta} \in E$. Since $E_{n r} / F$ is nontrivial unramified extension and $F(\sqrt[8]{\delta}) / F$ is a nontrivial totally ramified extension of F, we have two distinct degree ℓ subextensions of E / F, which is a contradiction to the fact that E / F is cyclic. Hence $w_{0} \notin A^{* \ell}$.

6. Reduced norms - Complete two dimensional Regular local rings

Throughout this section we fix the following notation:

- A a complete two dimensional regular local ring
- F the field of fractions of A
- $m=(\pi, \delta)$ the maximal ideal of A
- $\kappa=A / m$ a finite field
- ℓ a prime not equal to $\operatorname{char}(\kappa)$
- $n=\ell^{d}$
- $\alpha \in H^{2}\left(F, \mu_{n}\right)$ is unramified on A except possibly at (π) and (δ)
- $\lambda=w \pi^{s} \delta^{t}, w \in A$ a unit and $s, t \in \mathbb{Z}$ with $1 \leq s, t<n$.

The aim of this section is to prove that if $\alpha \neq 0$ and $\alpha \cdot(\lambda)=0$, then there exist an extension L / F of degree ℓ and $\mu \in L$ such that $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$ and $N_{L / F}(\mu)=\lambda$. We assume that

- F contains a primitive $\ell^{\text {th }}$ root of unity.

We begin with the following
Lemma 6.1. If $\alpha \cdot(\lambda)=0$, then $s \alpha=(E, \sigma, \lambda)$ for some cyclic extension E of F which is unramified on A except possibly at δ. In particular, if s is coprime to ℓ, then $\alpha=\left(E^{\prime}, \sigma^{\prime}, \lambda\right)$ for some cyclic extension E^{\prime} of F which is unramified on A except possibly at δ.
Proof. By (4.7), there exists an unramified cyclic extension E_{π} of F_{π} such that $s \alpha \otimes$ $F_{\pi}=\left(E_{\pi}, \sigma, \lambda\right)$. Let $E(\pi)$ be the residue field of E_{π}. Then $E(\pi)$ is a cyclic extension of $\kappa(\pi)$. By (5.1), there exists a cyclic extension E of F which is unramified on
A except possibly at δ with $E \otimes F_{\pi} \simeq E_{\pi}$. Since E / F is unramified on A except possibly at δ and $\lambda=w \pi^{s} \delta^{t}$ with w a unit in $A,(E, \sigma, \lambda)$ is unramified on A except possibly at (π) and (δ). Since α is unramified on A except possibly at (π) and (δ), so $-(E, \sigma, \lambda)$ is unramified on A except possibly at (π) and (δ). Since $s \alpha \otimes F_{\pi}=\left(E_{\pi}, \sigma, \lambda\right)=(E, \sigma, \lambda) \otimes F_{\pi}$, by (5.5), s $\alpha=(E, \sigma, \lambda)$.

Lemma 6.2. Suppose that $\alpha \cdot(\lambda)=0$ and $\lambda \notin F^{* \ell}$. If $\alpha \neq 0$, then $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\lambda}))<$ $\operatorname{ind}(\alpha)$ and $\alpha \cdot(\sqrt[\ell]{\lambda})=0 \in H^{3}\left(F(\sqrt[\ell]{\lambda}), \mu_{n}^{\otimes 2}\right)$.

Proof. Suppose that s is coprime to ℓ. Then, by (6.1), $\alpha=\left(E^{\prime}, \sigma^{\prime}, \lambda\right)$ for some cyclic extension E^{\prime} of F which is unramified on A except possibly at δ. Since $\nu_{\pi}(\lambda)=s$ is coprime to ℓ and E^{\prime} / F is unramified at π, it follows that $\operatorname{ind}(\alpha)=\left[E^{\prime}: F\right]$. In particular, $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\lambda})) \leq\left[E^{\prime}: F\right] / \ell<\operatorname{ind}(\alpha)$. Similarly, if t is coprime to ℓ, then $\operatorname{ind}(\alpha \otimes F(\sqrt[\ell]{\lambda}))<\operatorname{ind}(\alpha)$. Further $\alpha \cdot(\sqrt[\ell]{\lambda})=\left(E^{\prime}, \sigma^{\prime}, \lambda\right) \cdot(\sqrt[\ell]{\lambda})=0$.

Suppose that s and t are divisible by ℓ. Since $\lambda=w \pi^{s} \delta^{t}$, we have $F(\sqrt[\ell]{\lambda})=F(\sqrt[\ell]{w})$. Let $L=F(\sqrt[\ell]{\lambda})=F(\sqrt[\ell]{w})$ and B be the integral closure of A in L. Since w is a unit in A, by ([21, Lemma 3.1]), B is a complete regular local ring with maximal ideal generated by π and δ. Since w is not an $\ell^{\text {th }}$ power in F and A is a complete regular local ring, the image of w in A / m is not an $\ell^{\text {th }}$ power. Since $A /(\pi)$ is also a complete regular local ring with residue field A / m, the image of w in $A /(\pi)$ is not an $\ell^{\text {th }}$ power. Since F_{π} is a complete discrete valued field with residue field the field of fractions of $A /(\pi), w$ is not an $\ell^{\text {th }}$ power in F_{π}. Since $\alpha \cdot(\lambda)=0$ and the residue field of F_{π} is a local field, by (4.9), $\operatorname{ind}\left(\alpha \otimes L_{\pi}\right)<\operatorname{ind}(\alpha)$. Hence, by (5.8), $\operatorname{ind}(\alpha \otimes L)<$ $\operatorname{ind}(\alpha)$.

Since $L_{\pi}=L \otimes F_{\pi}$ and $L_{\delta}=L \otimes F_{\delta}$ are field extension of degree ℓ over F_{π} and F_{δ} respectively and $\operatorname{cores}(\alpha \cdot(\sqrt[e]{\lambda}))=\alpha \cdot(\lambda)=0$, by (4.6), $(\alpha \cdot(\sqrt[e]{\lambda})) \otimes L_{\pi}=0$ and $(\alpha \cdot(\sqrt[\ell]{\lambda})) \otimes L_{\delta}=0$. Hence, by (5.5), $\alpha \cdot(\sqrt[\ell]{\lambda})=0$.

Lemma 6.3. Suppose $\alpha=\left(E / F, \sigma, u \pi \delta^{\ell m}\right)$ for some $m \geq 0$, u a unit in $A, E / F a$ cyclic extension of degree ℓ^{d} which is unramified on A except possibly at δ and σ a generator of $G a l(E / F)$. Let ℓ^{e} be the ramification index of E / F at δ and $f=d-e$. Let $i \geq 0$ be such that $\ell^{f}+\ell^{d i}>\ell m$. Let $v \in A$ be a unit which is not in $F^{* \ell}$ and $L=F\left(\sqrt[\ell]{v \delta^{\ell^{f}+\ell^{d i}-\ell m}+u \pi}\right)$. If $f>0$, then $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$

Proof. Let B be the integral closure of A in L and $r=\ell^{f}+\ell^{d i}-\ell m$. Since $\ell^{f}+\ell^{d i}>$ $\ell m, L=F\left(\sqrt[\ell]{v \delta^{r}+u \pi}\right)$ and $v \delta^{r}+u \pi$ is a regular prime in A. Thus B is a complete regular local ring (cf. [21, Lemma 3.2]) and π, δ remain primes in B. Note that π and δ may not generate the maximal ideal of B. Let L_{π} and L_{δ} be the completions of L at the discrete valuations given by π and δ respectively. Since $v \notin F^{* \ell}, F(\sqrt[\ell]{v})$ is the unique degree ℓ extension of F_{π} which is unramified on A. Since $f>0$, there is a subextension E of degree ℓ over F which is unramified on A and hence $F(\sqrt[\ell]{v}) \subset E$.

Since E / F is unramified on A except possibly at δ, by (5.8), $[E: F]=\left[E_{\pi}: F_{\pi}\right]$ and hence $\operatorname{ind}(\alpha)=\operatorname{per}(\alpha)=[E: F]$.

Since r is divisible by $\ell, L_{\pi} \simeq F_{\pi}(\sqrt[\ell]{v})$ and hence $L_{\pi} \subset E_{\pi}$. Thus $\operatorname{ind}\left(\alpha \otimes L_{\pi}\right)<$ $\operatorname{ind}(\alpha)$. Since $r>0, L_{\delta} \simeq F_{\delta}(\sqrt[\ell]{u \pi})$. Since $\alpha=\left(E / F, \sigma, u \pi \delta^{\ell m}\right)$, $\operatorname{ind}\left(\alpha \otimes L_{\delta}\right)<$ $\left[E \otimes L_{\delta}: L_{\delta}\right] \leq[E: F]$. In particular by (4.5), $\operatorname{per}\left(\alpha \otimes F_{\pi}\right)<\operatorname{ind}(\alpha)$ and $\operatorname{per}\left(\alpha \otimes F_{\delta}\right)<$ $\operatorname{ind}(\alpha)$. Since $\alpha \otimes L$ is unramified on B except possibly at π and δ and $H^{2}\left(B, \mu_{\ell}\right)=0$, $\operatorname{per}(\alpha \otimes L)<\operatorname{ind}(\alpha)$. If $d=1$, then $\operatorname{per}(\alpha \otimes L)<\operatorname{ind}(\alpha)=\ell$ and hence $\operatorname{per}(\alpha \otimes L)=$ $\operatorname{ind}(\alpha \otimes L)=1<\operatorname{ind}(\alpha)$. Suppose that $d \geq 2$.

Let $\phi: \mathscr{X} \rightarrow \operatorname{Spec}(B)$ be a sequence of blow-ups such that the ramification locus of $\alpha \otimes L$ is a union of regular curves with normal crossings. Let $V=\phi^{-1}(P)$. To show that $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$, by (5.10), it is enough to show that for every point x of $V, \operatorname{ind}\left(\alpha \otimes L_{x}\right)<\operatorname{ind}(\alpha)$.

Let $x \in V$ be a closed point. Then, by (5.9), $\operatorname{ind}\left(\alpha \otimes L_{x}\right)=\operatorname{per}\left(\alpha \otimes L_{x}\right)$. Since $\operatorname{per}\left(\alpha \otimes L_{x}\right)<\operatorname{ind}(\alpha), \operatorname{ind}\left(\alpha \otimes L_{x}\right)<\operatorname{ind}(\alpha)$.

Let $x \in V$ be a codimension zero point. Then $\phi(x)$ is the closed point of $\operatorname{Spec}(B)$. Let $\tilde{\nu}$ be the discrete valuation of L given by x. Then $\kappa(\tilde{\nu}) \simeq \kappa^{\prime}(t)$ for some finite extension κ^{\prime} over κ and a variable t over κ. Let ν be the restriction of $\tilde{\nu}$ to F.

Suppose that $\nu\left(\delta^{r}\right)<\nu(\pi)$. Then $L \otimes F_{\nu}=F_{\nu}\left(\sqrt[\ell]{v \delta^{r}}\right)$. Since ℓ divides $r, L \otimes F_{\nu}=$ $F_{\nu}(\sqrt[\ell]{v})$. Since $F(\sqrt[\ell]{v}) \subset E, \operatorname{ind}\left(\alpha \otimes L \otimes F_{\nu}\right)<\operatorname{ind}(\alpha)$. Suppose that $\nu\left(\delta^{r}\right)>\nu(\pi)$. Then $L \otimes F_{\nu}=F_{\nu}(\sqrt[\ell]{u \pi})$ and as above $\operatorname{ind}\left(\alpha \otimes L \otimes F_{\nu}\right)<\operatorname{ind}(\alpha)$. Suppose that $\nu\left(\delta^{r}\right)=\nu(\pi)$. Let $\lambda=\pi / \delta^{r}$. Then λ is a unit at ν and $L_{\tilde{\nu}}=F_{\nu}(\sqrt[l]{v+u \lambda})$. We have $u \pi \delta^{\ell m}=u \lambda \delta^{r+\ell m}=u \lambda \delta^{\ell f+\ell^{d i}}$ and

$$
\alpha \otimes F_{\nu}=\left(E \otimes F_{\nu} / F_{\nu}, \sigma \otimes 1, u \pi \delta^{\ell m}\right)=\left(E \otimes F_{\nu} / F_{\nu}, \sigma \otimes 1, u \lambda \delta^{\ell f}+\ell^{d i}\right) .
$$

Since $[E: F]=\ell^{d}, \alpha \otimes F_{\nu}=\left(E \otimes F_{\nu} / F_{\nu}, \sigma \otimes 1, u \lambda \delta^{\ell f}\right)$. Suppose that $f=d$. Then E / F is unramified and hence every element of A^{*} is a norm from E. Thus $\left(E \otimes F_{\nu} / F_{\nu}, \sigma \otimes 1, w_{0} u \lambda\right)$ with $w_{0} \in A^{*} \backslash A^{* \ell}$. Suppose that $f<d$. Then $e=d-f>0$ and hence by (5.11), we have $E=E_{n r}(\sqrt[(e \ell]{w \delta})$, for some unit w in the integral closure of A in $E_{n r}$, with $N(\sqrt[\ell^{d}]{w \delta})=w_{1} \delta^{\ell f}$ with $w_{1} \in A^{*} \backslash A^{* \ell}$. Thus

$$
\alpha \otimes F_{\nu}=\left(E \otimes F_{\nu} / F_{\nu}, \sigma \otimes 1, u \lambda \delta^{\ell^{f}}\right)=\left(E \otimes F_{\nu} / F_{\nu}, \sigma \otimes 1, w_{0} u \lambda\right) .
$$

with $w_{0}=w_{1}^{-1}$.
If $E \otimes F_{\nu}$ is not a field, then $\operatorname{ind}\left(\alpha \otimes F_{\nu}\right)<[E: F]$. Suppose $E \otimes F_{\nu}$ is a field. Let $\theta=w_{0} u \lambda$. Since $\alpha \otimes F_{\nu}=\left(E \otimes F_{\nu} / F_{\nu}, \sigma \otimes 1, \theta\right)$, ind $\left(\alpha \otimes L \otimes F_{\nu}\right) \leq$ $\operatorname{ind}\left(\alpha \otimes L \otimes F_{\nu}(\sqrt[\ell^{d-1}]{\theta})\right) \cdot\left[L \otimes F_{\nu}(\sqrt[\ell^{d-1}]{\theta}): L \otimes F_{\nu}\right]$. Since $\left[L \otimes F_{\nu}(\sqrt[\ell^{d-1}]{\theta}): L \otimes F_{\nu}\right] \leq$ $\ell^{d-1}<[E: F]$, it is enough to show that $\alpha \otimes L \otimes F_{\nu}(\sqrt[\ell^{d-1}]{\theta})$ is trivial.

Since $F(\sqrt[\ell]{v}) / F$ is the unique subextension of E / F degree ℓ and $[E: F]=\ell^{d}$, we have $\alpha \otimes F_{\nu}(\sqrt[\ell^{d-1}]{\theta})=\left(F_{\nu}(\sqrt[\ell^{d-1}]{\theta}, \sqrt[\ell]{v}) / F(\sqrt[\ell^{d-1}]{\theta}), \sigma, \sqrt[\ell^{d-1}]{\theta}\right)($ cf. 2.1). Let $M=$ $F_{\nu}(\sqrt[\ell^{d-1}]{\theta})$. Since κ contains a primitive $\ell^{\text {th }}$ root of unity, we have $\alpha \otimes M=(v, \sqrt[\ell^{d-1}]{\theta})_{\ell}$. Then M is a complete discrete valuation field. Since λ is a unit at ν, θ is a unit at ν. Hence the residue field of M is $\kappa(\nu)(\sqrt[\ell^{d-1}]{\bar{\theta}})$. Since θ and v are units at ν, $\alpha \otimes M=(v, \sqrt[\ell^{d-1}]{\theta})$ is unramified at the discrete valuation of M. Hence it is enough to show that the specialization β of $\alpha \otimes M$ is trivial over $\kappa(\nu)(\sqrt[\ell^{d-1}]{\bar{\theta}}) \otimes L_{0}$, where L_{0} is the residue field of $L \otimes F_{\nu}$ at ν.
Suppose that $L_{\tilde{\nu}} / F_{\nu}$ is ramified. Since $L_{\tilde{\nu}}=F_{\nu}(\sqrt[\ell]{u+v \lambda}), v+u \lambda$ is not a unit at ν. Thus $v=-u \lambda$ modulo $F_{\nu}^{* \ell^{d}}$ and $\theta=w_{0} u \lambda=-w_{0} v$ modulo $F_{\nu}^{* \ell^{d}}$. In particular $\sqrt[\ell^{d-1}]{\theta}=\sqrt[\ell^{d-1}]{-w_{0} v}$ modulo $M^{* \ell}$. Since $\bar{v}, \overline{w_{0}} \in \kappa$ and κ a finite field, $\beta=(\sqrt[\ell]{\bar{v}}, \sqrt[\ell^{d-1}]{\theta})=\left(\sqrt[\ell]{\bar{v}}, \ell^{d-1}-\bar{w}_{0} \bar{v}\right)$ is trivial.

Suppose that $L_{\tilde{\nu}} / F_{\nu}$ is unramified. Then $L_{0}=\kappa(\pi)(\sqrt[\ell]{\bar{v}+\overline{u \lambda}})$. Since $\kappa(\pi)$ is a global field and $d-1 \geq 1$, by (4.13), $\beta \otimes L_{0}(\sqrt[\ell^{d-1}]{\bar{\theta}})=0$.
Lemma 6.4. Suppose L_{π} / F_{π} and L_{δ} / F_{δ} are unramified cyclic field extensions of degree ℓ and $\mu_{\pi} \in L_{\pi}, \mu_{\delta} \in L_{\delta}$ such that

- ind $\left(\alpha \otimes L_{\pi}\right)<d_{0}$ for some d_{0},
- $\lambda=N_{L_{\pi} / F_{\pi}}\left(\mu_{\pi}\right)$ and $\lambda=N_{L_{\delta} / F_{\delta}}\left(\mu_{\delta}\right)$,
- $\alpha \cdot\left(\mu_{\pi}\right)=0 \in H^{3}\left(L_{\pi}, \mu_{n}^{\otimes 2}\right), \alpha \cdot\left(\mu_{\delta}\right)=0 \in H^{3}\left(L_{\delta}, \mu_{n}^{\otimes 2}\right)$,
- if $\lambda \in F_{P}^{* \ell}$ and $\alpha=(E / F, \sigma, v \pi)$ for some cyclic extension E / F which is unramified on A except possibly at δ, then $L_{\delta} / F_{\delta}=F_{\delta}(\sqrt[\ell]{v \pi})$.
Then there exists a cyclic extension L / F of degree ℓ and $\mu \in L$ such that
- ind $(\alpha \otimes L)<d_{0}$,
- $\lambda=N_{L / F}(\mu)$,
- $\alpha \cdot(\mu)=0 \in H^{3}\left(L, \mu_{n}^{\otimes 2}\right)$,
- $L \otimes F_{\pi} \simeq L_{\pi}$ and $L \otimes F_{\delta} \simeq L_{\delta}$.

Proof. Since $\alpha \cdot\left(\mu_{\pi}\right)=0 \in H^{3}\left(L_{\pi}, \mu_{n}^{\otimes 2}\right)$ and $\lambda=N_{L_{\pi} / F_{\pi}}\left(\mu_{\pi}\right)$, by taking the corestriction, we see that $\alpha \cdot(\lambda)=0 \in H^{3}\left(F_{\pi}, \mu_{n}^{\otimes 2}\right)$. Since $\alpha \cdot(\lambda)$ is unramified on A except possibly at π and δ, by (5.5), $\alpha \cdot(\lambda)=0$.

Suppose that $\lambda \notin F^{* \ell}$. Then, by (2.6) and (6.2), L=F($\left.\sqrt[\ell]{\lambda}\right)$ and $\mu=\sqrt[\ell]{\lambda}$ have the required properties.

Suppose that $\lambda \in F^{* \ell}$. Let $L(\pi)$ and $L(\delta)$ be the residue fields of L_{π} and L_{δ} respectively. Since L_{π} / F_{π} and L_{δ} / F_{δ} are unramified cyclic extensions of degree ℓ, $L(\pi) / \kappa(\pi)$ and $L(\delta) / \kappa(\delta)$ are cyclic extensions of degree ℓ. Since F contains a primitive $\ell^{\text {th }}$ root of unity, we have $L(\pi)=\kappa(\pi)[X] /\left(X^{\ell}-a\right)$ and $L(\delta)=\kappa(\delta)[X] /\left(X^{\ell}-b\right)$ for some $a \in \kappa(\pi)$ and $b \in \kappa(\delta)$. Since $\kappa(\pi)$ is a complete discretely valued field with $\bar{\delta}$ a parameter, without loss of generality we assume that $a=\overline{u_{1}} \bar{\delta}^{\epsilon}$ for some unit
 or 1 .

By (5.7), we assume that $\alpha=\left(E / F, \sigma, u \pi \delta^{j}\right)$ for some cyclic extension E / F which is unramified on A except possibly at δ, u a unit in A and $j \geq 0$. Then ind $(\alpha)=$ $[E: F]$. Let E_{0} be the residue field of E at π. Then $[E: F]=\left[E_{0}: \kappa(\pi)\right]$. Since $\partial_{\pi}(\alpha)=\left(E_{0} / \kappa(\pi), \bar{\sigma}\right), \operatorname{per}\left(\partial_{\pi}(\alpha)\right)=[E: F]=\operatorname{ind}(\alpha)$. Since L_{π} / F_{π} is an unramified cyclic extension of degree ℓ and $\operatorname{ind}\left(\alpha \otimes L_{\pi}\right)<\operatorname{ind}(\alpha)$, the residue field $L(\pi)$ of L_{π} is the unique degree ℓ subextension of $E_{0} / \kappa(\pi)$.

Suppose that $\epsilon=\epsilon^{\prime}=0$. Since L_{π} and L_{δ} are fields, u_{1} and u_{2} are not $\ell^{\text {th }}$ powers. Let L / F be the unique cyclic field extension of degree ℓ which is unramified on A. Then $L \otimes F_{\pi} \simeq L_{\pi}$ and $L \otimes F_{\delta} \simeq L_{\delta}$. Let B be the integral closure of A in L. Then B is a regular local ring with maximal ideal (π, δ) and hence by (5.8) ind $(\alpha \otimes L)<$ ind (α).

Suppose $\epsilon=1$. Then $L_{\pi}=F_{\pi}\left(\sqrt[\ell]{u_{1} \delta}\right)$ and $L(\pi)=\kappa(\pi)\left(\sqrt[\ell]{\overline{u_{1}} \bar{\delta}}\right)$. Since $E_{0} / \kappa(\pi)$ is a cyclic extension containing a totally ramified extension, $E_{0} / \kappa(\pi)$ is a totally ramified cyclic extension. Thus $\kappa(\pi)$ contains a primitive $\ell^{d^{\text {th }}}$ root of unity and $E_{0}=\kappa(\pi)\left(\sqrt[\ell^{d}]{\overline{u_{1}} \bar{\delta}}\right)$. In particular F contains a primitive $\ell^{d^{\mathrm{th}}}$ root of unity and $\alpha=\left(u_{1} \delta, u \pi \delta^{j}\right)=\left(u_{1} \delta, u^{\prime} \pi\right)$. Since L_{δ} / F_{δ} is an unramified extension of degree ℓ with $\operatorname{ind}\left(\alpha \otimes L_{\delta}\right)<\operatorname{ind}(\alpha)$, as above, we have $L_{\delta}=F_{\delta}\left(\sqrt{u^{\prime} \pi}\right)$ and hence $\alpha=\left(u_{1} \delta, u_{2} \pi\right)$. Let $L=F\left(\sqrt[\ell]{u_{1} \delta+u_{2} \pi}\right)$. Then $L \otimes F_{\pi} \simeq L_{\pi}$ and $L \otimes F_{\delta} \simeq L_{\delta}$. Since for any $a, b \in F^{*},(a, b)=\left(a+b,-a^{-1} b\right)$, we have $\alpha=\left(u_{1} \pi+u_{2} \delta,-u_{1}^{-1} \pi^{-1} u_{2} \delta\right)$. In particular $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$.

Suppose that $\epsilon=0$ and $\epsilon^{\prime}=1$. Suppose j is coprime to ℓ. Then, by (4.15), $\operatorname{ind}(\alpha)=\operatorname{per}\left(\partial_{\delta}(\alpha)\right)$ and as in the proof of (5.7), we have $\alpha=\left(E^{\prime} / F, \sigma^{\prime}, v \delta \pi^{j^{\prime}}\right)$ for some cyclic extension E^{\prime} / F which is unramified on A except possibly at π. Thus, we have the required extension as in the case $\epsilon=1$.

Suppose j is divisible by ℓ. Since $\epsilon=0, L_{\pi}=F_{\pi}\left(\sqrt[\ell]{u_{1}}\right)$. Since the residue field $L_{\pi}(\pi)$ of L_{π} is contained in the residue field E_{0} of E at $\pi, F\left(\sqrt[2]{u_{1}}\right) \subset E$ and hence E / F is not totally ramified at δ. Since E / F is unramified on A except possibly at δ, by (5.11), $E=E_{n r}(\sqrt[\ell \ell]{w \delta})$ for some unit w in the integral closure of A in $E_{n r}$. Suppose $e=0$. Then $E=E_{n r} / F$ is unramified on A. Since κ is a finite field and A is complete, every unit in A is a norm from E / F. Thus multiplying $u \pi \delta^{j}$ by a norm from E / F we assume that $\alpha=\left(E / F, \sigma, u_{2} \pi \delta^{j}\right)$. Suppose that $e>0$. Then, by $(5.11), N_{E / F}(w \delta)=w_{1} \delta^{\ell^{f}}$ with $w_{1} \in A^{*} \backslash A^{* \ell}$. Since $A^{*} / A^{* \ell}$ is a cyclic group of order ℓ, we have $\alpha=\left(E / F, \sigma, u_{2} \pi \delta^{j+j^{\prime} \ell f}\right)$ for some j^{\prime}. Since j is divisible by ℓ and $f \geq 1, j+j^{\prime} \ell^{f}$ is divisible by ℓ. Hence, we assume that $\alpha=\left(E / F, \sigma, u_{2} \pi \delta^{\ell m}\right)$ for some m. Thus, by (6.3), there exists $i \geq 0$ such that $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$ for $L=F\left(\sqrt[\ell]{u_{1} \delta^{f f+d i}+u_{2} \pi \delta^{\ell m}}\right)$.

By the choice, we have L / F is the unique unramified extension or $L=F\left(\sqrt[\ell]{u_{1} \delta+u_{2} \pi}\right)$ or $L=F\left(\sqrt[\ell]{u_{1} \delta^{\ell f+d i}+u_{2} \pi \delta^{\ell m}}\right)$ with $\ell^{f+d i}>\ell m$. Let B be the integral closure of A in L. Then B is a complete regular local ring with π and δ remain prime in B. Since $\lambda=w \pi^{s} \delta^{t}$ and $\lambda \in F_{P}^{* \ell}$, we have $\lambda=w_{0}^{\ell} \pi^{\ell s_{1}} \delta^{\ell t_{1}}$ for some unit $w_{0} \in A$. Let $\mu=w_{0} \pi^{s_{1}} \delta^{t_{1}} \in F$. Then $N_{L / F}(\mu)=\mu^{\ell}=\lambda$. Since $\alpha \cdot(\lambda)=0$, by (4.6), $\alpha \cdot(\mu)=0$ in $H^{3}\left(L_{\pi}, \mu_{n}^{\otimes 2}\right)$ and $H^{3}\left(L_{\delta}, \mu_{n}^{\otimes 2}\right)$. Hence $\alpha \cdot(\mu)$ is unramified at all height one prime ideals of B. Since B is a complete regular local ring with residue field κ finite, $\alpha \cdot(\mu)=0$ (5.3).
Lemma 6.5. Suppose that $\nu_{\pi}(\lambda)$ is divisible by ℓ, α is unramified on A except possibly at π and δ, and $\alpha \cdot(\lambda)=0$. Let L_{π} be a cyclic unramified or split extension of F_{π} of degree $\ell, \mu_{\pi} \in L_{\pi}$ and $d_{0} \geq 2$ such that

- $N_{L_{\pi} / F_{\pi}}\left(\mu_{\pi}\right)=\lambda$,
- $\operatorname{ind}\left(\alpha \otimes L_{\pi}\right)<d_{0}$,
- $\alpha \cdot\left(\mu_{\pi}\right)=0$ in $H^{3}\left(L_{\pi}, \mu_{n}\right)$.

Then there exists an extension L over F of degree ℓ and $\mu \in L$ such that

- $N_{L / F}(\mu)=\lambda$,
- $\operatorname{ind}(\alpha \otimes L)<d_{0}$,
- $\alpha \cdot(\mu)=0 \in H^{3}\left(L, \mu_{n}^{\otimes 2}\right)$ and
- there is an isomorphism $\phi: L_{\pi} \rightarrow L \otimes F_{\pi}$ with

$$
\phi\left(\mu_{\pi}\right)\left(\mu_{P} \otimes 1\right)^{-1} \in\left(L_{P} \otimes F_{\pi}\right)^{\ell^{m}}
$$

for all $m \geq 1$.
Proof. Since $\nu_{\pi}(\lambda)$ is divisible by $\ell, \lambda=w \pi^{r \ell} \delta^{s}$ for some $w \in A$ a unit.
Suppose that $L_{\pi}=\prod F_{\pi}$ is a split extension. Let $L=\Pi F$ be the split extension of degree ℓ. Since $\mu_{\pi} \in L_{\pi}$, we have $\mu_{\pi}=\left(\mu_{1}, \cdots, \mu_{\ell}\right)$ with $\mu_{i} \in F_{\pi}$. Write $\mu_{i}=\theta_{i} \pi^{r_{i}}$ with $\theta_{i} \in F_{\pi}$ a unit at its discrete valuation. Since $N_{L_{\pi} / F_{\pi}}\left(\mu_{\pi}\right)=\lambda=w \pi^{r \ell}$, $\theta_{1} \cdots \theta_{\ell}=w$ and $\pi^{r_{1}+\cdots+r_{\ell}}=\pi^{r \ell}$. For $2 \leq i \leq \ell$, let $\bar{\theta}_{i}$ be the image of θ_{i} in the residue field $\kappa(\pi)$ of F_{π}. Since $\kappa(\pi)$ is the field of fractions of $A /(\delta)$ and $A /(\delta)$ is a complete discrete valuation ring with $\bar{\delta}$ as a parameter, we have $\bar{\theta}_{i}=\bar{u}_{i} \bar{\delta}^{s_{i}}$ for some unit $u_{i} \in A$. For $2 \leq i \leq \ell$, let $\tilde{\theta}_{i}=u_{i} \delta^{s_{i}} \in F$, $\tilde{\theta}_{1}=w \tilde{\theta}_{2}^{-1} \cdots \tilde{\theta}_{\ell}^{-1}$ and $\mu=\left(\tilde{\theta}_{1} \pi^{r_{1}}, \cdots, \tilde{\theta}_{\ell} \pi^{r_{\ell}}\right) \in L=\prod F$. Then $N_{L / F}(\mu)=\lambda$. Since $\tilde{\theta}_{i} \pi^{r_{i}} \mu_{i}^{-1}$ is a unit at π with image 1 in $\kappa(\pi), \tilde{\theta}_{i} \pi^{r_{i}} \mu_{i}^{-1} \in F_{\pi}^{\ell^{m}}$ for any $m \geq 1$. In particular $\alpha \cdot\left(\tilde{\theta}_{i} \pi^{r_{i}}\right)=\alpha \cdot\left(\mu_{i}\right)=0 \in H^{3}\left(F_{\pi}, \mu_{n}^{\otimes 2}\right)$. Since α is unramified on A except possibly at π and δ and $\tilde{\theta}_{i}=u_{i} \delta^{t_{i}}$ with $u_{i} \in A$ a unit, $\alpha \cdot\left(\tilde{\theta}_{i} \pi^{r_{i}}\right)$ is unramified on A except possibly at π and δ. Thus, by (5.5), $\alpha \cdot\left(\tilde{\theta}_{i} \pi^{r_{i}}\right)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$. Since $\operatorname{ind}\left(\alpha \otimes L_{\pi}\right)<d_{0}$
and L_{π} is the split extension, $\operatorname{ind}\left(\alpha \otimes F_{\pi}\right)<d_{0}$. Since α is unramified on A except possibly at π and δ, by (5.8), $\operatorname{ind}(\alpha)<d_{0}$. Thus L and $\mu=\left(\tilde{\theta}_{1} \pi^{r_{1}}, \cdots, \tilde{\theta}_{\ell} \pi^{r_{\ell}}\right) \in L$ have the required properties.

Suppose that L_{π} is a field extension of F_{π}. By (5.1), there exists a cyclic extension L of F of degree ℓ which is unramified on A except possibly at δ with $L \otimes F_{\pi} \simeq L_{\pi}$. Let B be the integral closure of A in L. By the construction of L, either L / F is unramified A or $L=F(\sqrt[\ell]{u \delta})$ for some unit $u \in A$. Replacing δ by $u \delta$, we assume that L / F is unramified on A or $L=F(\sqrt[\ell]{\delta})$. In particular, B is a regular local ring with maximal ideal generated by $\left(\pi, \delta^{\prime}\right)$ for $\delta^{\prime}=\delta$ or $\delta^{\prime}=\sqrt[\ell]{\delta}$ (cf. [21, Lemma 3.2]). Since α is unramified on A except possibly at π and $\delta, \alpha \otimes L$ is unramified on B except possibly at π and δ^{\prime}. Since $\operatorname{ind}\left(\alpha \otimes L_{\pi}\right)<d_{0}$, by (5.8), $\operatorname{ind}(\alpha \otimes L)=$ $\operatorname{ind}\left(\alpha \otimes L_{\pi}\right)<d_{0}$.

Since L_{π} / F_{π} is unramified and $N_{L_{\pi} / F_{\pi}}\left(\mu_{\pi}\right)=\lambda=w \pi^{r \ell} \delta^{s}$, we have $\mu_{\pi}=\theta_{\pi} \pi^{r}$ for some $\theta_{\pi} \in L_{\pi}$ which is a unit at its discrete valuation. Let $\bar{\theta}_{\pi}$ be the image of θ_{π} in $L(\pi)$. Since $L(\pi)$ is the field of fractions of the complete discrete valuation ring $B /(\pi)$ and $\overline{\delta^{\prime}}$ is a parameter in $B /(\pi)$, we have $\bar{\theta}_{\pi}=\bar{v} \bar{\delta}^{t}$ for some unit $v \in B$. Since $N_{L(\pi) / \kappa(\pi)}\left(\bar{\theta}_{\pi}\right)=\bar{w} \bar{\delta}^{s}$, it follows that $N_{L(\pi) / \kappa(\pi)}(\bar{v})=\bar{w}$. Since w is a unit in A, there exists a unit $\tilde{v} \in B$ with $N_{L / F}(\tilde{v})=w$ and $\tilde{v}=\bar{v}$. Let $\mu=\tilde{v} \pi^{r} \delta^{\prime t} \in L$. Then $\mu \mu_{\pi}^{-1} \in$ L_{π} is a unit in the valuation ring at π with the image 1 in the residue field $L(\pi)$ and hence $\mu \mu_{\pi}^{-1} \in L_{\pi}^{\ell^{m}}$ for all $m \geq 1$. In particular $\alpha \cdot(\mu)=\alpha \cdot\left(\mu_{\pi}\right)=0 \in H^{3}\left(L_{\pi}, \mu_{n}^{\otimes 2}\right)$. Since $\operatorname{ind}\left(\alpha \otimes L_{\pi}\right)<d_{0}$, by (5.8), ind $(\alpha \otimes L)<d_{0}$. Since $\alpha \cdot(\mu)=0$ in $H^{3}\left(L_{\pi}, \mu_{n}^{\otimes 2}\right)$, α is unramified on A except possibly at π and the support of μ on A is at most π, by (5.5), $\alpha \cdot(\mu)=0$ in $H^{3}\left(L, \mu_{n}^{\otimes 2}\right)$.

Lemma 6.6. Suppose that $\alpha \cdot(\lambda)=0$ and $\nu_{\delta}(\lambda)=$ sl. Suppose that $\alpha=\left(E / F, \sigma, \pi \delta^{m}\right)$ for some cyclic extension E / F which is unramified on A except possibly at δ. Let E_{δ} be the lift of the residue of α at δ. If $s \alpha \otimes E_{\delta}=0$, then there exists an integer $r_{1} \geq 0$ such that $w_{1} \delta^{m r_{1}-s}$ is a norm from the extension E / F for some unit $w_{1} \in A$.

Proof. Write $\alpha \otimes F_{\delta}=\alpha^{\prime}+\left(E_{\delta} / F_{\delta}, \sigma_{\delta}, \delta\right)$ as in (4.1). Since $\alpha \otimes E_{\delta}=\alpha^{\prime} \otimes E_{\delta}$, $s \alpha^{\prime} \otimes E_{\delta}=0$. Hence $s \alpha^{\prime}=\left(E_{\delta}, \sigma, \theta\right)$ for some $\theta \in F_{\delta}$. Since α^{\prime} and E_{δ} / F_{δ} are unramified at δ, we assume that $\theta \in F_{\delta}$ is a unit at δ. Since the residue field $\kappa(\delta)$ of F_{δ} is a complete discrete valued field with the image of π as a parameter, without loss of generality we assume that $\theta=w_{0} \pi^{r_{1}}$ for unit $w_{0} \in A$ and $r_{1} \geq 0$. Let $\lambda_{1}=w_{0} \pi^{r_{1}} \delta^{s}$. Since $s \alpha^{\prime}=\left(E_{\delta}, \sigma_{\delta}, \theta\right)$, by (4.7), $\alpha \cdot\left(\lambda_{1}\right)=0 \in H^{3}\left(F_{\delta}, \mu_{n}^{\otimes 2}\right)$. Since α is unramified on A except possibly at π, δ and $\lambda_{1}=w_{0} \pi^{r_{1}} \delta^{s}$ with $w_{0} \in A$ a unit, $\alpha \cdot\left(\lambda_{1}\right)$ is unramified in A except possibly at π and δ. Hence, by (5.5), $\alpha \cdot\left(\lambda_{1}\right)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$. We have
$0=\partial_{\pi}\left(\alpha \cdot\left(\lambda_{1}\right)\right)=\partial_{\pi}\left(\left(E / F, \sigma, u \pi \delta^{m}\right) \cdot\left(w_{0} \pi^{r_{1}} \delta^{s}\right)\right)=\left(E(\pi) / \kappa(\pi), \bar{\sigma},(-1)^{r_{1}} \bar{u}^{r_{1}} \bar{w}_{1}^{-1} \bar{\delta}^{m r_{1}-s}\right)$.
Since $\left(E / F, \sigma,(-1)^{r_{1}} u^{r_{1}} w_{0}^{-1} \delta^{m r_{1}-s}\right)$ is unramified on A except possibly at π and δ, by (5.5), $\left(E / F, \sigma,(-1)^{r_{1}} u^{r_{1}} w_{0}^{-1} \delta^{m r_{1}-s}\right)=0$. In particular $(-1)^{r_{1}} u^{r_{1}} w_{0}^{-1} \delta^{m r_{1}-s}$ is a norm from the extension E / F.

Lemma 6.7. Suppose that $\alpha \cdot(\lambda)=0$ and $\lambda=w \pi^{r} \delta^{s \ell}$ for some unit $w \in A$ and r coprime to ℓ. Let E_{δ} be the lift of the residue of α at δ. If $s \alpha \otimes E_{\delta}=0$, then there exists $\theta \in A$ such that

- $\alpha \cdot(\theta)=0$,
- $\nu_{\pi}(\theta)=0$,
- $\nu_{\delta}(\theta)=s$.

Proof. Since r is coprime to ℓ, by (6.1), $\alpha=(E / F, \sigma, \lambda)$ for some cyclic extension E / F which is unramified on A except possible at δ. Let $t=[E: F]$. Since t is a power of ℓ and r is coprime to ℓ, there exists an integer $r^{\prime} \geq 1$ such that $r r^{\prime} \equiv 1$ modulo t. We have

$$
\alpha=\alpha^{r r^{\prime}}=\left(E / F, \sigma, w \pi^{r} \delta^{s \ell}\right)^{r r^{\prime}}=(E / F, \sigma)^{r} \cdot\left(w \pi^{r} \delta^{s \ell}\right)^{r^{\prime}}=(E / F, \sigma)^{r} \cdot\left(w^{r^{\prime}} \pi \delta^{r^{\prime} s \ell}\right) .
$$

Since r is coprime to ℓ, we also have $(E / F, \sigma)^{r}=\left(E / F, \sigma^{r^{\prime}}\right)$ (cf. §2) and hence $\alpha=\left(E / F, \sigma^{r}, \pi \delta^{r^{\prime} s \ell}\right)$. Thus, by (6.6), there exist a unit $w_{1} \in A$ and $r_{1} \geq 0$ such that $w_{1} \delta^{r^{\prime} s t r_{1}-s}$ is a norm from E / F. Since $r^{\prime} \ell r_{1}-1$ is coprime to $\ell, r^{\prime} \ell r_{1}-1$ is coprime to t and hence there exists an integer $r_{1} \geq 0$ such that $\left(r^{\prime} \ell r_{1}-1\right) r_{2} \equiv 1$ modulo t. In particular $w_{1}^{r_{2}} \delta^{s} \equiv\left(w_{1} \delta^{r^{s} s r_{1}-s}\right)^{r_{2}}$ modulo $F^{* t}$ and hence $w_{1}^{r_{2}} \delta^{s}$ is a norm from E / F. Thus $\theta=w_{1}^{r_{2}} \delta^{s}$ has the required properites.

Lemma 6.8. Let E_{π} and E_{δ} be the lift of the residues of α at π and δ respectively. Suppose that $\alpha \cdot(\lambda)=0$ and $\lambda=w \pi^{r l} \delta^{s \ell}$ for some unit $w \in A$. If $\alpha \cdot(\lambda)=0$, $r \alpha \otimes E_{\pi}=0$ and $s \alpha \otimes E_{\delta}=0$, then there exists $\theta \in A$ such that

- $\alpha \cdot(\theta)=0$,
- $\nu_{\pi}(\theta)=r$,
- $\nu_{\delta}(\theta)=s$.

Proof. By (5.7), we assume that $\alpha=\left(E / F, \sigma, u \pi \delta^{m}\right)$ for some extension E / F which is unramified on A except possible at δ and $m \geq 0$. Without loss of generality, we assume that $0 \leq m<[E: F]$. By (6.6), there exists an integer $r_{1} \geq 0$ such that $w_{1} \delta^{m r_{1}-s}$ is a norm from E / F. Let $t=[E-F]$ and $\theta=(-u \pi+$ $\left.\delta^{t-m}\right)^{r_{1}-r} w_{1}^{-1}(-u)^{r} \pi^{r} \delta^{s}$. Since $t-m>o$, we have $\nu_{\pi}(\theta)=r$ and $\nu_{\delta}(\theta)=s$.

Now we show that $\alpha \cdot(\theta)=0$. Since $t-m>0$, we have $\left(-u \pi+\delta^{t-m}\right)^{r_{1}-r}=$ $(-u \pi)^{r_{1}-r}$ modulo δ and hence $\theta \equiv(-u)^{r_{1}-r} \pi^{r_{1}-r} w_{1}^{-1}(-u)^{r} \pi^{r} \delta^{s}=w_{1}^{-1}(-u)^{r_{1}} \pi^{r_{1}} \delta^{s}$ modulo $F_{\delta}^{* t}$. Since $w_{1} \delta^{m r_{1}-s}$ is a norm from E / F, we have

$$
\begin{aligned}
(\alpha \cdot(\theta)) \otimes F_{\delta} & =\left(E / F, \sigma, u \pi \delta^{m}\right) \cdot\left(w_{1}^{-1}(-u)^{r_{1}} \pi^{r_{1}} \delta^{s}\right) \otimes F_{\delta} \\
& =\left(E / F, \sigma, u \pi \delta^{m}\right) \cdot\left(w_{1}^{-1}(-u)^{r_{1}} \pi^{r_{1}} \delta^{s} w_{1} \delta^{m r_{1}-s}\right) \otimes F_{\delta} \\
& =\left(E / F, \sigma, u \pi \delta^{m}\right) \cdot\left((-u)^{r_{1}} \pi^{r_{1}} \delta^{m r_{1}}\right) \otimes F_{\delta} \\
& =\left(E / F, \sigma, u \pi \delta^{m}\right) \cdot\left(\left(-u \pi \delta^{m}\right)^{r_{1}}\right) \otimes F_{\delta}=0 .
\end{aligned}
$$

Thus $\alpha \cdot(\theta)$ is unramified at δ.
We have $\left(-u \pi+\delta^{t-m}\right)^{r_{1}-r} \equiv \delta^{t\left(r_{1}-r\right)+m\left(r-r_{1}\right)}$ modulo π and hence

$$
\theta \equiv \delta^{t\left(r_{1}-r\right)+m\left(r-r_{1}\right)} w_{1}^{-1}(-u)^{r} \pi^{r} \delta^{s} \equiv\left(-u \pi \delta^{m}\right)^{r}\left(w_{1} \delta^{m r_{1}-s}\right)^{-1} \text { modulo } F_{\pi}^{* t} .
$$

Since $w_{1} \delta^{m r_{1}-s}$ is a norm from E / F and $t=[E: F]$, we have

$$
\begin{aligned}
(\alpha \cdot(\theta)) \otimes F_{\pi} & =\left(E / F, \sigma, u \pi \delta^{m}\right) \cdot\left(\left(-u \pi \delta^{m}\right)^{r}\left(w_{1} \delta^{m r_{1}-s}\right)^{-1}\right) \otimes F_{\pi} \\
& =\left(E / F, \sigma, u \pi \delta^{m}\right) \cdot\left(\left(-u \pi \delta^{m}\right)^{r}\right) \otimes F_{\pi}=0 .
\end{aligned}
$$

In particular $\alpha \cdot(\theta)$ is unramified at δ.
Let γ be a prime in A with $(\gamma) \neq(\pi)$ and $(\gamma) \neq(\delta)$. Since α is unramified on A except possibly at π and δ, if γ does not divide θ, then $\alpha \cdot(\theta)$ is unramified at γ. Suppose γ divides θ. Then $\gamma=-u \pi+\delta^{t-m}$. Thus $u \pi \delta^{m} \equiv \delta^{t}$ modulo γ. Since $\partial_{\gamma}(\alpha \cdot(\theta))=\left(E(\theta), \bar{\sigma}, \overline{u \pi} \bar{\delta}^{m}\right)$, where $E(\theta)$ is the residue field of E at θ and $^{-}$denotes the image modulo γ, we have $\partial_{\gamma}(\alpha \cdot(\theta))=\left(E(\theta), \bar{\sigma}, \overline{u \pi} \bar{\delta}^{m}\right)=\left(E(\theta), \bar{\sigma}, \bar{\delta}^{t}\right)=0$.

Hence $\alpha \cdot(\theta)$ is unramified on A. Since $\alpha \cdot(\theta) \otimes F_{\pi}=0$, by (5.5), we have $\alpha \cdot(\theta)=0$.

7. Patching

We fix the following data:

- R a complete discrete valuation ring,
- K the field of fractions of R,
- κ the residue field of R,
- ℓ a prime not equal to $\operatorname{char}(\kappa)$ and $n=\ell^{d}$ for some $d \geq 1$.
- X a smooth projective geometrically integral variety over K,
- F the function field of X,
- $\alpha \in H^{2}\left(F, \mu_{n}\right), \alpha \neq 0$,
- $\lambda \in F^{*}$ with $\alpha \cdot(\lambda)=0$,
- \mathscr{X} a normal proper model of X over R and X_{0} the reduced special fibre of \mathscr{X}.
- \mathscr{P}_{0} a finite set of closed points of X_{0} containing all the points of intersection of irreducible components of X_{0}.

For $x \in \mathscr{X}$, let \hat{A}_{x} be the completion of the regular local ring at x on \mathscr{X}, F_{x} the field of fractions of \hat{A}_{x} and $\kappa(x)$ the residue field at x. Let $\eta \in X_{0}$ be a codimension zero point and $P \in X_{0}$ be a closed point such that P is in the closure of η. For abuse of the notation we denote the closure of η by η and say that P is a point of η. A pair (P, η) of a closed point P and a codimension zero point of X_{0} is called a branch if P is in η. Let (P, η) be a branch. Let $F_{P, \eta}$ be the completion of F_{P} at the discrete valuation on F_{P} associated to η. Then F_{x} and F_{P} are subfields of $F_{P, x}$. Since $\kappa(\eta)$ is the function field of the curve η, any closed point of η gives a discrete valuation on $\kappa(\eta)$. The residue field $\kappa(\eta)_{P}$ of $F_{P, \eta}$ is the completion of $\kappa(\eta)$ at the discrete valuation on $\kappa(\eta)$ given by P. Let η be a codimension zero point of X_{0} and $U \subset \eta$ be a non-empty open subset. Let A_{U} be the ring of all those functions in F which are regular at every closed point of U. Let t be parameter in R. Then $t \in R_{U_{\eta}}$. Let \hat{A}_{U} be the (t)-adic completion of A_{U} and F_{U} be the field of fractions of \hat{A}_{U}. Then $F \subseteq F_{U} \subseteq F_{\eta}$.

We begin with the following result, which follows from ([11, Theorem 9.11]) (cf. proof of [22, Theorem 2.4]).

Proposition 7.1. For each irreducible component X_{η} of X_{0}, let U_{η} be a non-empty proper open subset of X_{η} and $\mathscr{P}=X_{0} \backslash \cup_{\eta} U_{\eta}$, where η runs over the codimension zero points of X_{0}. Suppose that $\mathscr{P}_{0} \subseteq \mathscr{P}$. Let L be a finite extension of F. Suppose that there exists $N \geq 1$ such that for each codimension zero point η of X_{0}, ind $(\alpha \otimes$ $\left.L \otimes F_{U_{\eta}}\right) \leq N$ and for every closed point $P \in \mathscr{P}, \operatorname{ind}\left(\alpha \otimes L \otimes F_{P}\right) \leq N$. Then $i n d(\alpha \otimes L) \leq N$.

Proof. Let \mathscr{Y} be the integral closure of \mathscr{X} in L and $\phi: \mathscr{Y} \rightarrow \mathscr{X}$ be the induced map. Let \mathscr{P}^{\prime} be a finite set if closed points of \mathscr{Y} containing points of the intersection of distinct irreducible curves on the special fibre Y_{0} of \mathscr{Y} and inverse image of \mathscr{P} under ϕ. Let U be an irreducible component of $Y_{0} \backslash \mathscr{P}_{0}^{\prime}$. Then $\phi(U) \subset U_{\eta}$ for some U_{η} and there is a homomorphism of algebras from $L \otimes F_{U_{\eta}}$ to L_{U}. (Note that $L \otimes F_{U_{\eta}}$ may be a product of fields). Since ind $\left(\alpha \otimes L \otimes F_{U_{\eta}}\right) \leq d$, we have ind $\left(\alpha \otimes L_{U}\right) \leq N$. Let $Q \in \mathscr{P}^{\prime}$. Suppose $\phi(Q)=P \in \mathscr{P}$. Then there is a homomorphism of algebras from $L \otimes F_{P}$ to L_{Q}. (Once again note that $L \otimes F_{P}$ may be a product of fields). Since $\operatorname{ind}\left(\alpha \otimes L \otimes F_{P}\right) \leq N, \operatorname{ind}\left(\alpha \otimes L_{Q}\right) \leq N$. Suppose that $\phi(Q) \in U_{\eta}$ for some U_{η}. Then there is a homomorphism of algebras from $L \otimes F_{U_{\eta}}$ to L_{Q}. Thus ind $\left(\alpha \otimes L_{Q}\right) \leq N$. Therefore, by ([11, Theorem 9.11]), $\operatorname{ind}(\alpha \otimes L) \leq N$.

Lemma 7.2. Let η be a codimension zero point of X_{0}. Suppose there exists a field extension or split extension L_{η} / F_{η} of degree ℓ and $\mu_{\eta} \in L_{\eta}$ such that

1) $N_{L_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\lambda$
2) $\operatorname{ind}\left(\alpha \otimes L_{\eta}\right)<\operatorname{ind}(\alpha)$
3) $\alpha \cdot\left(\mu_{\eta}\right)=0 \in H^{3}\left(L_{\eta}, \mu_{n}^{\otimes 2}\right)$.

Then there exists a non-empty open subset U_{η} of η, a split or field extension $L_{U_{\eta}} / F_{U_{\eta}}$ of degree ℓ and $\mu_{U_{\eta}} \in L_{U_{\eta}}$ such that

1) $N_{L_{U_{\eta}} / F_{U_{\eta}}}\left(\mu_{U_{\eta}}\right)=\lambda$
2) $\operatorname{ind}\left(\alpha \otimes L_{\eta}\right)<\operatorname{ind}(\alpha)$
3) $\alpha \cdot\left(\mu_{U_{\eta}}\right)=0 \in H^{3}\left(L_{U_{\eta}}, \mu_{n}^{\otimes 2}\right)$
4) there is an isomorphism $\phi_{U_{\eta}}: L_{U_{\eta}} \otimes F_{\eta} \rightarrow L_{\eta}$ with $\phi_{U_{\eta}}\left(\mu_{U_{\eta}} \otimes 1\right) \mu_{\eta}^{-1} \equiv 1$ modulo the radical of the integral closure of \hat{R}_{η} in L_{η}.
Further if L_{η} / F_{η} is cyclic, then $L_{U_{\eta}} / F_{U_{\eta}}$ is cyclic.
Proof. Suppose $L_{\eta}=\prod F_{\eta}$ is the split extension of degree ℓ. Write $\mu_{\eta}=\left(\mu_{1}, \cdots, \mu_{\ell}\right)$ with $\mu_{i} \in F_{\eta}$. Then $\lambda=N_{L_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\mu_{1} \cdots \mu_{\ell}$. Since $\operatorname{ind}\left(\alpha \otimes L_{\eta}\right)=\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)<$ $\operatorname{ind}(\alpha)$, by ([11, Proposition 5.8], [18, Proposition 1.17]), there exists a non-empty open subset U_{η} of η such that $\operatorname{ind}(\alpha) \otimes F_{U_{\eta}}<\operatorname{ind}(\alpha)$. Since F_{η} is the completion of F at the discrete valuation given by η, there exist $\theta_{i} \in F^{*}, 1 \leq i \leq \ell$, such that $\theta_{i} \mu_{i}^{-1} \equiv 1$ modulo the maximal ideal of \hat{R}_{η}. Let $L_{U_{\eta}}=\prod F_{U_{\eta}}$ and $\mu_{U_{\eta}}=\left(\lambda\left(\theta_{2} \cdots \theta_{\ell}\right)^{-1}, \theta_{2}, \cdots, \theta_{\ell}\right) \in L_{U_{\eta}}$. Then $N_{L_{U_{\eta} / F_{U_{\eta}}}}\left(\mu_{U_{\eta}}\right)=\lambda$. Since $\alpha \cdot\left(\theta_{i}\right) \in$ $H^{3}\left(F_{U_{\eta}}, \mu_{n}^{\otimes 2}\right)$ and $\alpha \cdot\left(\theta_{i}\right)=0 \in H^{3}\left(F_{\eta}, \mu_{n}^{\otimes 2}\right)$, by ($[12$, Proposition 3.2.2]), there exists a non-empty open subset $V_{\eta} \subseteq U_{\eta}$ such that $\alpha \cdot\left(\theta_{i}\right)=0 \in H^{3}\left(F_{V_{n}}, \mu_{n}^{\otimes 2}\right)$. By replacing U_{η} by V_{η}, we have the required $L_{U_{\eta}}$ and $\mu_{U_{\eta}} \in L_{U_{\eta}}$.
Suppose that L_{η} / F_{η} is a field extension of degree ℓ. Let F_{η}^{h} be the henselization of F at the discrete valuation η. Then there exists a field extension $L_{\eta}^{h} / F_{\eta}^{h}$ of degree ℓ with an isomorphism $\phi_{\eta}^{h}: L_{\eta}^{h} \otimes_{F_{\eta}^{h}} F_{\eta} \rightarrow L_{\eta}$. We identify L^{h} with a subfield of L_{η} through ϕ^{h}. Further if L_{η} / F_{η} is cyclic extension, then L^{h} / F^{h} is also a cyclic extension. Let $\tilde{\pi}_{\eta} \in L^{h}$ be a parameter. Then $\tilde{\pi}_{\eta}$ is also a parameter in L_{η}. Write $\mu_{\eta}=u_{\eta} \tilde{\pi}_{\eta}^{r}$ for some $u_{\eta} \in L_{\eta}$ a unit at η. Since $N_{L_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\lambda$, we have $\lambda=$ $N_{L_{\eta} / F_{\eta}}\left(u_{\eta}\right) N_{L_{\eta} / F_{\eta}}\left(\tilde{\pi}_{\eta}\right)$. Since $u_{\eta} \in L_{\eta}$ is a unit at $\eta, N_{L_{\eta} / F_{\eta}}\left(u_{\eta}\right) \in F_{\eta}$ is a unit at η. By ([2, Theorem 1.10]), there exists $u^{h} \in L_{\eta}^{h}$ such that $N_{L_{\eta}^{h} / F_{\eta}^{h}}\left(u_{\eta}^{h}\right)=N_{L_{\eta} / F_{\eta}}\left(u_{\eta}\right)$. Let $\mu_{\eta}^{h}=u_{\eta}^{h} \tilde{\pi}_{\eta} \in L_{\eta}^{h}$. Since F_{η}^{h} is the filtered direct limit of the fields F_{V}, where V ranges over the non-empty open subset of η ([12, Lemma 2.2.1]), there exists a non-empty open subset U_{η} of η, a field extension $L_{U_{\eta}} / F_{U_{\eta}}$ of degree ℓ and $\mu_{U_{\eta}} \in L_{U_{\eta}}$ such that $N_{L_{U_{\eta}} / F_{U_{\eta}}}\left(\mu_{U_{\eta}}\right)=\lambda$ and there is an isomorphism $\phi_{U_{\eta}}^{h}: L_{U_{\eta}} \otimes F_{\eta} \simeq L_{\eta}^{h}$ with $\phi_{U_{\eta}}^{h}\left(\mu_{U_{\eta}}\right)=\mu_{\eta}^{h}$. By shrinking U_{η}, we assume that $\alpha \cdot\left(\mu_{U_{\eta}}\right)=0 \in H^{3}\left(L_{U_{\eta}}, \mu_{n}^{\otimes 2}\right)([12$, Proposition 3.2.2]).
Lemma 7.3. Suppose that for each codimension zero point η of X_{0} there exist a field (not necessarily cyclic) or split extension L_{η} / F_{η} of degree $\ell, \mu_{\eta} \in F_{\eta}$ and for every closed point P of X_{0} there exist a cyclic or split extension L_{P} / F_{P} of degree ℓ and $\mu_{P} \in L_{P}$ such that for every point x of X_{0}
5) $N_{L_{x} / F_{x}}\left(\mu_{x}\right)=\lambda$
6) $\alpha \cdot\left(\mu_{x}\right)=0 \in H^{3}\left(L_{x}, \mu_{x}^{\otimes 2}\right)$
7) $\operatorname{ind}\left(\alpha \otimes L_{x}\right)<\operatorname{ind}(\alpha)$
8) for any branch (P, η) there is an isomorphism $\phi_{P, \eta}: L_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ such that for a generator σ of $\operatorname{Gal}\left(L_{P} \otimes F_{P, \eta} / F_{P, \eta}\right)$ there exists $\theta_{P, \eta} \in L_{P} \otimes F_{P, \eta}$ such that
$\phi_{P, \eta}\left(\mu_{\eta}\right) \mu_{P}^{-1}=\theta_{P, \eta}^{-\ell^{d}} \sigma\left(\theta_{P, \eta}\right)^{\ell^{d}}$.
Then there exist

- a field extension L / F of degree ℓ
- a non-empty open subset U_{η} of η for every codimension zero point η of X_{0} with $\theta_{U_{\eta}} \in L \otimes F_{U_{\eta}}$
- for every $P \in \mathscr{P}=X_{0} \backslash \cup U_{\eta}, \theta_{P} \in L \otimes F_{P}$
such that

1) $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$
2) $N_{L \otimes F_{U_{\eta}} / F_{U_{\eta}}}\left(\theta_{U_{\eta}}\right)=\lambda$ and $\alpha \cdot\left(\theta_{U_{\eta}}\right)=0 \in H^{3}\left(L \otimes F_{U_{\eta}}, \mu_{n}^{\otimes 2}\right)$ for all codimension zero points η of X_{0}
3) $N_{L \otimes F_{P} / F_{P}}\left(\theta_{P}\right)=\lambda$ and $\alpha \cdot\left(\theta_{P}\right)=0 \in H^{3}\left(L \otimes F_{P}, \mu_{n}^{\otimes 2}\right)$ for all $P \in \mathscr{P}$
4) for any branch (P, η), $L \otimes F_{P, \eta} / F_{P, \eta}$ is cyclic or split and for a generator σ of $\operatorname{Gal}\left(L \otimes F_{P, \eta} / F_{P, \eta}\right)$ there exists $\gamma_{P, \eta} \in L \otimes F_{P}$ such that $\theta_{U_{\eta}} \theta_{P}^{-1}=\gamma_{P, \eta}^{-\ell^{d}} \sigma\left(\gamma_{P, \eta}\right)^{\ell^{d}}$.
Further if for each $x \in X_{0}, L_{x} / F_{x}$ is cyclic or split, then L / F is cyclic.
Proof. Let η be a codimension zero point of X_{0}. By the assumption, there exist a cyclic or split extension L_{η} / F_{η} and $\mu_{\eta} \in L_{\eta}$ such that $N_{L_{x} / F_{x}}\left(\mu_{x}\right)=\lambda, \alpha \cdot\left(\mu_{x}\right)=$ $0 \in H^{3}\left(L_{x}, \mu_{x}^{\otimes 2}\right)$ and $\operatorname{ind}\left(\alpha \otimes L_{\eta}\right)<\operatorname{ind}(\alpha)$. By (7.2), there exist a non-empty open set U_{η} of η, a cyclic or split extension $L_{U_{\eta}} / F_{U_{\eta}}$ of degree ℓ and $\mu_{U_{\eta}} \in L_{U_{\eta}}$ such that $N_{L_{U_{\eta}} / F_{U_{\eta}}}\left(\mu_{\eta}\right)=\lambda, \alpha \cdot\left(\mu_{x}\right)=0 \in H^{3}\left(L_{x}, \mu_{x}^{\otimes 2}\right), \operatorname{ind}\left(\alpha \otimes L_{U_{\eta}}\right)<\operatorname{ind}(\alpha)$, $\phi_{\eta}: L_{U_{\eta}} \otimes F_{\eta} \rightarrow L_{\eta}$ an isomorphism and $\phi_{\eta}\left(\mu_{U_{\eta}}\right)=\mu_{\eta}$. By shrinking U_{η}, if necessary, we assume that $\mathscr{P}_{0} \cap U_{\eta}=\emptyset$.
Let $\mathscr{P}=X_{0} \backslash \cup_{\eta} U_{\eta}$ and $P \in \mathscr{P}$. Then, by the assumption we have a cyclic or split extension L_{P} / F_{P} of degree ℓ and for every branch (P, η) there is an isomorphism $\phi_{P, \eta}: L_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$. Thus $\phi_{P, U_{\eta}}=\phi_{P, \eta}\left(\phi_{\eta} \otimes 1\right): L_{U_{\eta}} \otimes F_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ is an isomorphism. Thus, by ([9, Theorem 7.1]), there exists an extension L / F of degree ℓ with isomorphisms $\phi_{U_{\eta}}: L \otimes F_{U_{\eta}} \rightarrow L_{U_{\eta}}$ for all codimension zero points η of X_{0} and $\phi_{P}: L \otimes F_{P} \rightarrow L_{P}$ for all $P \in \mathscr{P}$ such that the following commutative diagram

$$
\begin{array}{ccc}
L \otimes F_{U_{\eta}} \otimes F_{P, \eta} & \xrightarrow{\phi_{U_{\eta}} \otimes 1} & L_{U_{\eta}} \otimes F_{\eta} \otimes F_{P, \eta} \\
\downarrow & \downarrow \phi_{P, U_{\eta}} \\
L \otimes F_{P} \otimes F_{P, \eta} & \xrightarrow{\phi_{P} \otimes 1} & L_{P} \otimes F_{P, \eta}
\end{array}
$$

where the vertical arrow on the left side is the natural map. Further if each L_{x} / F_{x} is cyclic for all $x \in X_{0}$, then L / F is cyclic ($[9$, Theorem 7.1]).

Since ind $\left(\alpha \otimes L \otimes F_{U_{\eta}}\right)<\operatorname{ind}(\alpha)$ for all codimension zero points of X_{0} and $\operatorname{ind}(\alpha \otimes$ $\left.L \otimes F_{P}\right)<\operatorname{ind}(\alpha)$ for all $P \in \mathscr{P}$, by (7.1), $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$. In particular L is a field.

For every codimension zero point η of X_{0}, let $\theta_{U_{\eta}}=\left(\phi_{U_{\eta}}\right)^{-1}\left(\mu_{U_{\eta}}\right) \in L \otimes F_{U_{\eta}}$ and for every $P \in \mathscr{P}$, let $\theta_{P}=\left(\phi_{P}\right)^{-1}\left(\mu_{P}\right) \in L \otimes F_{P}$. Since $\phi_{U_{\eta}}$ and ϕ_{P} are isomorphisms, we have the required properties.

Proposition 7.4. Suppose that for each point x of X_{0} there exist a cyclic or split extension L_{x} / F_{x} of degree ℓ and $\mu_{x} \in L_{x}$ such that

1) $N_{L_{x} / F_{x}}\left(\mu_{x}\right)=\lambda$
2) $\alpha \cdot\left(\mu_{x}\right)=0 \in H^{3}\left(L_{x}, \mu_{x}^{\otimes 2}\right)$
3) $\operatorname{ind}\left(\alpha \otimes L_{x}\right)<\operatorname{ind}(\alpha)$
4) for any branch (P, η) there is an isomorphism $\phi_{P, \eta}: L_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ such that for generator σ of $\operatorname{Gal}\left(L_{P} \otimes F_{P, \eta} / F_{P, \eta}\right)$ there exists $\theta_{P, \eta} \in L_{P} \otimes F_{P, \eta}$ such that
$\phi_{P, \eta}\left(\mu_{\eta}\right) \mu_{P}^{-1}=\theta_{P, \eta}^{-\ell^{d}} \sigma\left(\theta_{P, \eta}\right)^{\ell^{d}}$.
Then there exist a cyclic extension L of degree ℓ and $\mu \in L^{*}$ such that

- $N_{L / F}(\mu)=\lambda$ and
- $\alpha \cdot(\mu)=0 \in H^{3}\left(L, \mu_{n}^{\otimes 2}\right)$
- $\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$.

Proof. Let $L / F, U_{\eta}, \mathscr{P}, \theta_{U_{\eta}}$ and θ_{P} be as in (7.3). Since each L_{x} / F_{x} is cyclic or split, L / F is cyclic. Let σ be a generator of $\operatorname{Gal}(L / F)$. Let (P, η) be a branch. By (7.3), there exists $\gamma_{(P, \eta)} \in L \otimes F_{P, \eta}$ such that $\mu_{U_{\eta}} \mu_{P}^{-1}=\gamma_{P, \eta}^{-\ell^{d}} \sigma\left(\gamma_{P, \eta}^{\ell^{d}}\right)$. Applying ([10, Theorem 3.6]) for the rational group $G L_{1}$, there exist $\gamma_{U_{\eta}} \in L \otimes F_{U_{\eta}}$ and $\gamma_{P} \in L \otimes F_{P}$ for every codimension zero point η of X_{0} and $P \in \mathscr{P}$ such that for every branch $(P, \eta), \gamma_{P, \eta}=\gamma_{U_{\eta}} \gamma_{P}$.

Let $\mu_{U_{\eta}}^{\prime}=\mu_{U_{\eta}} \gamma_{U_{\eta}}^{\ell^{d}} \sigma\left(\gamma_{U_{\eta}}^{-\ell^{d}}\right) \in L \otimes F_{U_{\eta}}$ and $\mu_{P}^{\prime}=\mu_{P} \gamma_{P}^{-\ell^{d}} \sigma\left(\gamma_{P}^{\ell^{d}}\right) \in L \otimes F_{P}$. If (P, η) is a branch, then we have

$$
\begin{aligned}
\mu_{U_{\eta}}^{\prime} & =\mu_{U_{\eta}} \gamma_{U_{\eta}}^{\ell^{d}} \sigma\left(\gamma_{U_{\eta}}^{-\ell^{d}}\right) \\
& =\mu_{P} \theta_{P, \eta}^{-\ell^{d}} \sigma\left(\theta_{P, \eta}^{\ell^{d}}\right) \gamma_{U_{\eta}}^{\ell^{d}} \sigma\left(\gamma_{U_{\eta}}^{-\ell^{d}}\right) \\
& =\mu_{P} \gamma_{P}^{-\ell^{d}} \sigma\left(\gamma_{P}^{\ell^{d}}\right) \\
& =\mu_{P}^{\prime} \in L \otimes F_{P, \eta}
\end{aligned}
$$

Hence, by ([9, Proposition 6.3]), there exists $\mu \in L$ such that $\mu=\mu_{U_{\eta}}^{\prime}$ and $\mu=\mu_{P}^{\prime}$ for every codimension zero point η of X_{0} and $P \in \mathscr{P}$. Clearly $N_{L / F}(\mu)=\lambda$ over F. Let $P \in \mathscr{P}$. Since $\alpha \cdot\left(\mu_{P}\right)=0$ and $\alpha \cdot\left(\gamma_{P}^{\ell^{d}}\right)=0, \alpha \cdot(\mu)=0 \in H^{3}\left(L \otimes F_{P}, \mu_{n}^{\otimes 2}\right)$. Similarly $\alpha \cdot(\mu)=0 \in H^{3}\left(L \otimes F_{U_{\eta}}, \mu_{n}^{\otimes 2}\right)$ for every codimension zero point η of X_{0}. Hence, by $\left([12\right.$, Theorem 3.1.5] $), \alpha \cdot(\mu)=0$ in $H^{3}\left(L, \mu_{n}^{\otimes 2}\right)$.
Proposition 7.5. Suppose that for each codimension zero point η of X_{0} there exist a field (not necessarily cyclic) or split extension L_{η} / F_{η} of degree $\ell, \mu_{\eta} \in F_{\eta}$ and for every closed point P of X_{0} there exist a cyclic or split extension L_{P} / F_{P} of degree ℓ and $\mu_{P} \in L_{P}$ such that for every point x of X_{0}

1) $N_{L_{x} / F_{x}}\left(\mu_{x}\right)=\lambda$
2) $\alpha \cdot\left(\mu_{x}\right)=0 \in H^{3}\left(L_{x}, \mu_{x}^{\otimes 2}\right)$
3) $\operatorname{ind}\left(\alpha \otimes L_{x}\right)<\operatorname{ind}(\alpha)$
4) for any branch (P, η) there is an isomorphism $\phi_{P, \eta}: L_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ such that for a generator σ of $G a l\left(L_{P} \otimes F_{P, \eta} / F_{P, \eta}\right)$ there exists $\theta_{P, \eta} \in L_{P} \otimes F_{P, \eta}$ such that $\phi_{P, \eta}\left(\mu_{\eta}\right) \mu_{P}^{-1}=\theta_{P, \eta}^{-\ell^{d}} \sigma\left(\theta_{P, \eta}\right)^{\ell^{d}}$.
Then there exist a field extension N / F of degree coprime to ℓ, a field extension L / F of degree ℓ and $\mu \in(L \otimes N)^{*}$ such that

- $N_{L \otimes N / N}(\mu)=\lambda$ and
- $\alpha \cdot(\mu)=0 \in H^{3}\left(L \otimes N, \mu_{n}^{\otimes 2}\right)$
- ind $(\alpha \otimes L)<\operatorname{ind}(\alpha)$.

Proof. Let $L / F, U_{\eta}, \mathscr{P}, \theta_{U_{\eta}}, \theta_{P}$ and $\gamma_{P, \eta}$ be as in (7.3). Since L / F is a degree ℓ extension, there exists a field extension N / F of degree coprime to ℓ such that $L \otimes N / N$ is a cyclic extension.

Let \mathscr{Y} be the integral closure of \mathscr{X} in N and Y_{0} the reduced special fibre of \mathscr{Y}. Let $\phi: Y_{0} \rightarrow X_{0}$ be the induced morphism. Let $y \in Y_{0}$ and $x=\phi(y) \in X_{0}$. Then the inclusion $F \subset N$, induces an inclusion $F_{x} \subset N_{y}$. Let $L_{y}^{\prime}=L \otimes_{F} F_{x} \otimes_{F_{x}} N_{y}$. Since $L \otimes N / N$ is a cyclic extension of degree $\ell, L_{y}^{\prime} / N_{y}$ is either cyclic or split extension of degree ℓ.

Let $\eta^{\prime} \in Y_{0}$ be a codimension zero point. Then $\eta=\phi\left(\eta^{\prime}\right) \in X_{0}$ is a codimension zero point. Then $F_{\eta} \subset F L_{\eta^{\prime}}, L \otimes F_{U_{\eta}} \subset L \otimes F_{\eta}$ and $\theta_{U_{\eta}} \in L \otimes F_{\eta}$. Let $\mu_{\eta^{\prime}}=\theta_{U_{\eta}} \otimes 1 \in$ $L \otimes F_{\eta} \otimes_{F_{\eta}} N_{\eta^{\prime}}=L_{\eta^{\prime}}^{\prime}$.

Let $Q \in Y_{0}$ be a closed point and $P=\phi(Q) \in X_{0}$. Then P is a closed point of X_{0} and $F_{P} \subset N_{Q}$. Suppose that $P \in U_{\eta}$ for some codimension zero point η of X_{0}. Then $F_{U_{\eta}} \subset F_{P}, L \otimes F_{U_{\eta}} \subset L \otimes F_{P}$ and $\theta_{U_{\eta}} \in L \otimes F_{P}$. Let $\mu_{Q}=\theta_{U_{\eta}} \otimes 1 \in$ $L \otimes F_{P} \otimes_{F_{P}} N_{Q}=L_{Q}^{\prime}$. Suppose that P is not in U_{η} for any codimension zero point η of X_{0}. Let $\mu_{Q}=\theta_{P} \otimes 1 \in L \otimes F_{P} \otimes_{F_{P}} N_{Q}$.

Let $y \in Y_{0}$ and $x=\phi(x) \in X_{0}$. Since $N_{L_{x} / F_{x}}\left(\mu_{x}\right)=\lambda, \alpha \cdot\left(\mu_{x}\right)=0 \in H^{3}\left(L_{x}, \mu_{n}^{\otimes 2}\right)$ and $\operatorname{ind}\left(\alpha \otimes F_{x}\right)<\operatorname{ind}(\alpha)$, it follows that $N_{L_{y}^{\prime} / N_{y}}\left(\mu_{y}\right)=\lambda, \alpha \cdot\left(\mu_{y}\right)=0 \in H^{3}\left(L_{y}^{\prime}, \mu_{n}^{\otimes 2}\right)$ and $\operatorname{ind}\left(\alpha \otimes L_{y}^{\prime}\right)<\operatorname{ind}(\alpha)$.

Let $\left(Q, \eta^{\prime}\right)$ be a branch in Y_{0} and $P=\phi(Q), \eta=\phi\left(\eta^{\prime}\right)$. Then (P, η) is a branch in X_{0}. The isomorphism $\phi_{P, \eta}: L_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ induces an isomorphism $\phi_{Q, \eta^{\prime}}^{\prime}: L_{\eta^{\prime}}^{\prime} \otimes N_{Q, \eta^{\prime}} \rightarrow L_{Q}^{\prime} \otimes N_{Q, \eta^{\prime}}$. By the choice of $\mu_{\eta^{\prime}}$ and μ_{Q} it follows that for any generator σ of $\operatorname{Gal}\left(L_{Q}^{\prime} \otimes N_{Q, \eta^{\prime}} / N_{Q, \eta^{\prime}}\right)$ there exists $\theta_{Q, \eta^{\prime}}$ such that $\phi_{Q, \eta^{\prime}}^{\prime}\left(\mu_{\eta^{\prime}}\right) \mu_{Q}^{-1}=$ $\theta_{Q, \eta^{\prime}}^{-\ell^{d}} \sigma\left(\theta_{Q, \eta^{\prime}}\right)^{\ell^{d}}$. Thus, by (7.4), there exists a cyclic extension L^{\prime} / N and $\mu^{\prime} \in L^{\prime}$ such that $N_{L^{\prime} / N}\left(\mu^{\prime}\right)=\lambda, \operatorname{ind}\left(\alpha \otimes L^{\prime}\right)<\operatorname{ind}(\alpha \otimes N)$ and $\alpha \cdot\left(\mu^{\prime}\right)=0 \in H^{3}\left(L^{\prime}, \mu_{n}^{\otimes 2}\right)$. By the construction we have $L^{\prime}=L \otimes N$.

8. Types of points, special points and type 2 connections

Let $F, \alpha \in H^{2}\left(F, \mu_{n}\right), \lambda \in F^{*}$ with $\alpha \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right), \mathscr{X}$ and X_{0} be as in (§7). Further assume that

- \mathscr{X} is regular such that $\operatorname{ram}_{\mathscr{X}}(\alpha) \cup \operatorname{supp}_{\mathscr{X}}(\lambda) \cup X_{0}$ is a union of regular curves with normal crossings.
- the intersection of any two distinct irreducible curves in X_{0} is at most one closed point.
We fix the following notation.
- \mathscr{P} is the set of points of intersection of distinct irreducible curves in X_{0}.
- $\mathscr{O}_{\mathscr{X}, \mathscr{P}}$ is the semi-local ring at the points of \mathscr{P} on \mathscr{X}.
- if a codimension zero point η of X_{0} contains a closed point $P \in \mathscr{P}$, then $\pi_{\eta} \in \mathscr{O}_{\mathscr{X}, \mathscr{P}}$ is a prime defining η on $\mathscr{O} \mathscr{X}, \mathscr{P}$.

Let η be a codimension zero point of X_{0}. For the rest of this paper, let $\left(E_{\eta}, \sigma_{\eta}\right)$ denote the lift of the residue of α at η. Since $\alpha \in H^{2}\left(F, \mu_{n}\right)$ with n a power of ℓ, [$E_{\eta}: F_{\eta}$] is a power of ℓ. If α is unramified at η, then $E_{\eta}=F_{\eta}$ and let $M_{\eta}=F_{\eta}$. If α is ramified at η, then $E_{\eta} \neq F_{\eta}$ and there is a unique subextension of E_{η} of degree ℓ and we denote it by M_{η}.

Remark 8.1. Let η be a codimension zero point of X_{0}. Suppose α is ramified at η. Since $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)=\operatorname{ind}\left(\alpha \otimes E_{\eta}\right)\left[E_{\eta}: F_{\eta}\right]$ (cf. 4.2) and $M_{\eta} \subset E_{\eta}$, it follows that $\operatorname{ind}\left(\alpha \otimes M_{\eta}\right)<\operatorname{ind}(\alpha)$.

We divide the codimension zero points η of X_{0} as follows:
Type 1: $\nu_{\eta}(\lambda)$ is coprime to ℓ and $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)=\operatorname{ind}(\alpha)$
Type 2: $\nu_{\eta}(\lambda)$ is coprime to ℓ and $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)<\operatorname{ind}(\alpha)$
Type 3: $\nu_{\eta}(\lambda)=r \ell, r \alpha \otimes E_{\eta} \neq 0$ and $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)=\operatorname{ind}(\alpha)$
Type 4: $\nu_{\eta}(\lambda)=r \ell, r \alpha \otimes E_{\eta} \neq 0$ and $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)<\operatorname{ind}(\alpha)$
Type 5: $\nu_{\eta}(\lambda)=r \ell, r \alpha \otimes E_{\eta}=0$ and $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)=\operatorname{ind}(\alpha)$

Type 6: $\nu_{\eta}(\lambda)=r \ell, r \alpha \otimes E_{\eta}=0$ and $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)<\operatorname{ind}(\alpha)$.
Let P be a closed point of \mathscr{X}. Suppose P is the point of intersection of two distinct codimension zero points η_{1} and η_{2} of X_{0}. We say that the point P is a

1) special point of type \mathbf{I} if η_{1} is of type 1 and η_{2} is of type 2 ,
2) special point of type II if η_{1} is of type 1 and η_{2} is of type 4 ,
3) special point of type III if η_{1} is of type 3 or 5 and η_{2} is of type 4 ,
4) special point of type IV if η_{1} is of type 1,3 or 5 and η_{2} is of type 5 with $M_{\eta_{2}} \otimes F_{P, \eta_{2}}$ not a field.

Lemma 8.2. Suppose that η_{1} and η_{2} are two distinct codimension zero points of X_{0} and P a point of intersection of η_{1} and η_{2}. Suppose that α is ramified at η_{1}. Let $\left(E_{\eta_{1}}, \sigma_{1}\right)$ be the lift of residue of α at η_{1}. If $E_{\eta_{1}} \otimes F_{P, \eta_{1}}$ is not a field, then $\operatorname{ind}\left(\alpha \otimes F_{P}\right)<\operatorname{ind}(\alpha)$.
Proof. Suppose that $E_{\eta_{1}} \otimes F_{P, \eta_{1}}$ is not a field. Since $E_{\eta_{1}} / F_{\eta_{1}}$ is a cyclic extension, $E_{\eta_{1}} \otimes F_{P, \eta_{1}} \simeq \prod E_{\eta_{1}, P}$ with $\left[E_{\eta_{1}, P}: F_{P, \eta_{1}}\right]<\left[E_{\eta_{1}}: F_{\eta_{1}}\right]$. We have $\left(E_{\eta_{1}}, \sigma_{1}, \pi_{\eta_{1}}\right) \otimes$ $F_{P, \eta_{1}}=\left(E_{\eta_{1}, P}, \sigma_{1}, \pi_{\eta_{1}}\right)(c f . \S 2)$.
Write $\alpha \otimes F_{\eta_{1}}=\alpha_{1}+\left(E_{\eta_{1}}, \sigma_{1}, \pi_{\eta_{1}}\right)$ as in (4.1). Then $\alpha \otimes F_{P, \eta_{1}}=\alpha_{1} \otimes F_{P, \eta_{1}}+$ $\left(E_{\eta_{1}, P}, \sigma_{1}, \pi_{\eta_{1}}\right)$. By (4.2), we have ind $\left(\alpha \otimes F_{\eta_{1}}\right)=\operatorname{ind}\left(\alpha_{1} \otimes E_{\eta_{1}}\right)\left[E_{\eta_{1}}: F_{\eta_{1}}\right]$. We have

$$
\begin{aligned}
\operatorname{ind}\left(\alpha \otimes F_{P, \eta_{1}}\right) & \leq \operatorname{ind}\left(\alpha_{1} \otimes E_{\eta_{1}, P}\right)\left[E_{\eta_{1}, P}: F_{P, \eta_{1}}\right] \\
& \leq \operatorname{ind}\left(\alpha_{1} \otimes E_{\eta_{1}}\right)\left[E_{\eta_{1}, P}: F_{P, \eta_{1}}\right] \\
& <\operatorname{ind}\left(\alpha_{1} \otimes E_{\eta_{1}}\right)\left[E_{\eta_{1}}: F_{\eta_{1}}\right] \\
& =\operatorname{ind}\left(\alpha \otimes F_{\eta_{1}}\right) .
\end{aligned}
$$

Thus, by (5.8), $\operatorname{ind}\left(\alpha \otimes F_{P}\right)<\operatorname{ind}(\alpha)$.
Lemma 8.3. Let $\eta \in X_{0}$ be a point of codimension zero and P a closed point on η. Let $\mathscr{X}_{P} \rightarrow \mathscr{X}$ be the blow-up at P and γ the exceptional curve in \mathscr{X}_{P}. If $E_{\eta} \otimes F_{P, \eta}$ is not a field or η is of type 2, 4 or 6 , then γ is of type 2, 4 or 6 .

Proof. If $E_{\eta} \otimes F_{P, \eta}$ is not a field, then by (8.2), $\operatorname{ind}\left(\alpha \otimes F_{P}\right)<\operatorname{ind}(\alpha)$. If η is of type 2,4 or 6 , then $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)<\operatorname{ind}(\alpha)$ and hence by (5.8), $\operatorname{ind}\left(\alpha \otimes F_{P}\right)<\operatorname{ind}(\alpha)$. Since $F_{P} \subset F_{\gamma}$, we have $\operatorname{ind}\left(\alpha \otimes F_{\gamma}\right) \leq \operatorname{ind}\left(\alpha \otimes F_{P}\right)<\operatorname{ind}(\alpha)$. Hence γ is of type 2, 4 or 6.

Lemma 8.4. Let η_{1} and η_{2} be two distinct codimension zero points of X_{0} intersecting at a closed point P. Suppose that η_{1} is of type 1 or 2 and η_{2} is of type 2. Then there exists a sequence of blow-ups $\psi: \mathscr{X}^{\prime} \rightarrow \mathscr{X}$ such that if $\tilde{\eta}_{i}$ are the strict transforms of η_{i}, then

1) $\psi: \mathscr{X}^{\prime} \backslash \psi^{-1}(P) \rightarrow \mathscr{X} \backslash\{P\}$ is an isomorphism
2) $\psi^{-1}(P)$ is the union of irreducible regular curves $\gamma_{1}, \cdots, \gamma_{m}$
3) $\tilde{\eta}_{1} \cap \gamma_{1}=\left\{P_{0}\right\}, \gamma_{i} \cap \gamma_{i+1}=\left\{P_{i}\right\}, \gamma_{m} \cap \tilde{\eta}_{2}=\left\{P_{m}\right\}, \tilde{\eta} \cap \gamma_{i}=\emptyset$ for all $i>1$,
$\tilde{\eta}_{2} \cap \gamma_{i}=\emptyset$ for all $i<m, \tilde{\eta}_{1} \cap \tilde{\eta}_{2}=\emptyset, \gamma_{i} \cap \gamma_{j}=\emptyset$ for all $j \neq i+1$,
4) γ_{1} and γ_{m} are of type 6 and $\gamma_{i}, 1<i<m$ are of type 2, 4 or 6 ,
5) $\psi^{-1}(P)$ has no special points.

Proof. Let $\mathscr{X}_{P} \rightarrow \mathscr{X}$ be the blow-up of \mathscr{X} at P and γ the exceptional curve in \mathscr{X}_{P}. Let $\tilde{\eta}_{i}$ be the strict transform of η_{i}. Then $\tilde{\eta}_{1}$ intersects γ only at one point P_{0} and $\tilde{\eta}_{2}$ intersects γ at only one point P_{1}. Since η_{2} is of type 2 , by (8.3), γ is of type 2,4 or 6 and hence P_{1} is not a special point.

Let $s_{1}=\nu_{\eta_{1}}(\lambda), s_{2}=\nu_{\eta_{2}}(\lambda)$. Then $\nu_{\gamma}(\lambda)=s_{1}+s_{2}$. Suppose $s_{1}+s_{2}=\ell^{d+1} r_{0}$ for some integer r_{0}, where $\ell^{d}=\operatorname{ind}(\alpha)$. Since $\ell^{d} \alpha=0, \ell^{d} r_{0} \alpha=0$. Thus, γ is of type 6 . Hence P_{0} is not a special point and \mathscr{X}_{P} has all the required properties.

Suppose $s_{1}+s_{2}=\ell^{t} r_{0}$ with $t \leq d$ and r_{0} coprime to ℓ. Then, blow-up the points P_{0} and P_{1} and let γ_{1} and γ_{2} be the exceptional curves in this blow-up. Then we have $\eta_{\gamma_{1}}(\lambda)=2 s_{1}+s_{2}$ and $\eta_{\gamma_{2}}(\lambda)=s_{1}+2 s_{2}$. If $2 s_{1}+s_{2}$ is not of the form $\ell^{d+1} r_{1}$ for some $r_{1} \geq 1$, then blow-up, the point of intersection of the strict transform of η_{1} and γ_{1}. If $s_{1}+2 s_{2}$ is not of the form $\ell^{d+1} r_{2}$ for some $r_{2} \geq 1$, then blow-up, the point of intersection of the strict transform of η_{2} and γ_{2}. Since s_{1} and s_{2} are coprime to ℓ, there exist i and j such that $i s_{1}+s_{2}=\ell^{d+1} r$ and $s_{1}+j s_{2}=\ell^{d+1} r^{\prime}$ for some $r, r^{\prime} \geq 1$. Thus, we get the required finite sequence of blow-ups.

Proposition 8.5. There exists a regular proper model of F with no special points.
Proof. Let $P \in \mathscr{P}$. Then there exist two codimension zero points η_{1} and η_{2} of X_{0} intersecting at P.

Suppose that P is a special point of type I. Let $\psi: \mathscr{X}^{\prime} \rightarrow \mathscr{X}$ be a sequence of blow-ups as in (8.4). Then there are no special points in $\psi^{-1}(P)$. Since there are only finitely many special points in \mathscr{X}, replacing \mathscr{X} by a finite sequence of blow ups at all special points of type I, we assume that \mathscr{X} has no special points of type I.

Suppose P is a special point of type II. Without loss of generality we assume that, η_{1} is of type 1 and η_{2} is of type 4 . Let $\mathscr{X}_{P} \rightarrow \mathscr{X}$ be the blow-up of \mathscr{X} at P and γ the exceptional curve in \mathscr{X}_{P}. Since η_{2} is of type 4 , by (8.3), γ is of type 2,4 or 6 . Since η_{1} is of type 1 and η_{2} is of type $4, \nu_{\eta_{1}}(\lambda)$ is coprime to ℓ and $\nu_{\eta_{2}}(\lambda)$ is divisible by ℓ. Since $\nu_{\gamma}(\lambda)=\nu_{\eta_{1}}(\lambda)+\nu_{\eta_{2}}(\lambda), \nu_{\gamma}(\lambda)$ is coprime to ℓ and hence γ is of type 2 . Let $\tilde{\eta}_{i}$ be the strict transform of η_{i} in \mathscr{X}_{P}. Then $\tilde{\eta}_{i}$ and γ intersect at only one point Q_{i}. Since γ is of type $2, Q_{1}$ is a special point of type I and Q_{2} is not a special point. Thus, as above, by replacing \mathscr{X} by a sequence of blow-ups of \mathscr{X}, we assume that \mathscr{X} has no special points of type I or II.

Suppose P is a special point of type III. Without loss of generality assume that η_{1} is of type 3 or 5 and η_{2} of type 4 . Let $\mathscr{X}_{P} \rightarrow \mathscr{X}$ be the blow-up of \mathscr{X} at $P, \gamma, \tilde{\eta}_{i}$, and Q_{i} be as above. Since η_{2} is of type 4 , by (8.3), γ is of type 2,4 or 6 . Since $\nu_{\eta_{1}}(\lambda)$ and $\nu_{\eta_{2}}(\lambda)$ are divisible by $\ell, \nu_{\gamma}(\lambda)=\nu_{\eta_{1}}(\lambda)+\nu_{\eta_{2}}(\lambda)$ is divisible by ℓ. Thus γ is of type 4 or 6 . Hence Q_{2} is not a special point. By (5.7), $\alpha \otimes F_{P}=\left(E_{P}, \sigma, u \pi_{\eta_{1}}^{d_{1}} \pi_{\eta_{2}}^{d_{2}}\right)$ for some cyclic extension E_{P} / F_{P} and $u \in \hat{A}_{P}$ a unit and at least one of d_{i} is coprime to ℓ (in fact equal to 1). In particular, $\alpha \otimes F_{P}$ is split by the extension $F_{P}\left(\sqrt[m]{u \pi_{\eta_{1}}^{d_{1}} \pi_{\eta_{2}}^{d_{2}}}\right)$, where m is the degree of E_{P} / F_{P} which is a power of ℓ. Suppose $d_{1}+d_{2}$ is coprime to ℓ. Since $\nu_{\gamma}\left(\pi_{\eta_{1}}^{d_{1}} \pi_{\eta_{2}}^{d_{2}}\right)=d_{1}+d_{2}, F_{P}\left(\sqrt[m]{u \pi_{\eta_{1}}^{d_{1}} \pi_{\eta_{2}}^{d_{2}}}\right)$ is totally ramified at γ. Thus, by (4.3), γ is of type 6. Hence Q_{1} is not a special point. Suppose that $d_{1}+d_{2}$ is divisible by ℓ. Let π_{γ} be a prime defining γ at Q_{1}. Then, we have $u \pi_{\eta_{1}}^{d_{1}} \pi_{\eta_{2}}^{d_{2}}=w_{1} \pi_{\eta_{1}}^{d_{1}} \pi_{\gamma}^{d_{1}+d_{2}}$ for some unit w_{1} at Q_{1}. Since one of d_{i} is coprime to ℓ and $d_{1}+d_{2}$ is divisible by ℓ, d_{i} are not divisible by ℓ. In particular $2 d_{1}+d_{2}$ is coprime to ℓ. Let $\mathscr{X}_{Q_{1}}$ be the blow-up of \mathscr{X}_{P} at Q_{1} and γ^{\prime} be the generic point of the exceptional curve in $\mathscr{X}_{Q_{1}}$. Then $\nu_{\gamma^{\prime}}\left(u \pi_{\eta_{1}}^{d_{1}} d_{\eta_{2}}^{d_{2}}\right)=\nu_{\gamma^{\prime}}\left(w_{1} \pi_{\eta_{1}}^{d_{1}} \pi_{\gamma}^{d_{1}+d_{2}}\right)=2 d_{1}+d_{2}$. Since $2 d_{1}+d_{2}$ is coprime to ℓ, once again by (4.3), γ^{\prime} is of type 6 . In particular no point on the exceptional curve in $\mathscr{X}_{Q_{1}}$ is a special point. Thus, replacing \mathscr{X} by a sequence of blow-ups, we assume that \mathscr{X} has no special points of type I, II or III.

Suppose P is a special point of type IV. Without loss of generality assume that, η_{1} is of type 1,3 or 5 and η_{2} is of type 5 , with $M_{\eta_{2}} \otimes F_{P, \eta_{2}}$ not a field. Let $\mathscr{X}_{P} \rightarrow \mathscr{X}$ be the blow-up of \mathscr{X} at P and $\gamma, \tilde{\eta}_{i}, Q_{i}$ be as above. Since $M_{\eta_{2}} \otimes F_{P, \eta_{2}}$ is not a field, by (8.3), γ is of type 2,4 or 6 . If γ is of type 6 , then Q_{1} and Q_{2} are not special points. Suppose γ is of type 2 or 4 . Then Q_{1} and Q_{2} are special points of type I, II or III. Thus, as above, by replacing \mathscr{X} by a sequence of blow-ups of \mathscr{X}, we assume that \mathscr{X} has no special points.

Let η and η^{\prime} be two codimension zero points of X_{0} (may not be distinct). We say that there is a type 2 connection from η to η^{\prime} if one of the following holds

- one of η or η^{\prime} is of type 2
- there exist distinct codimension zero points $\eta_{1}, \cdots, \eta_{n}$ of X_{0} of type 2 such that η intersects η_{1}, η^{\prime} intersects η_{n}, η_{i} intersects η_{i+1} for all $1 \leq i \leq n-1, \eta$ does not intersect η_{i} for $i>1, \eta^{\prime}$ does not intersect η_{i} for $i<n$ and η_{i} does not intersect η_{j} for $j \neq i+1$.

Proposition 8.6. There exists a regular proper model \mathscr{X} of F such that

1) \mathscr{X} has no special points
2) if η_{1} and η_{2} are two (not necessarily distinct) codimension zero points of X_{0} with η_{1} of type 3 or 5 and η_{2} of type 3, 4 or 5, then there is no type 2 connection between η_{1} and η_{2}.
Proof. Let \mathscr{X} be a regular proper model with no special points (8.5). Let $m(\mathscr{X})$ be the number of type 2 connections between a point of type 3 or 5 and a point of type 3,4 or 5 . We prove the proposition by induction on $m(\mathscr{X})$. Suppose $m(\mathscr{X}) \geq 1$. We show that there is a sequence of blow-ups \mathscr{X}^{\prime} of \mathscr{X} with no special points and $m\left(\mathscr{X}^{\prime}\right)<m(\mathscr{X})$.

Let η be a codimension zero point of X_{0} of type 3 or 5 and η^{\prime} a codimension zero point of X_{0} of types 3,4 or 5 . Suppose η and η^{\prime} have a type 2 connection. Then there exist $\eta_{1}, \cdots, \eta_{n}$ codimension zero points of X_{0} of type 2 with η intersecting η_{1}, η^{\prime} intersecting η_{n} and η_{i} intersecting η_{i+1} for $i=1, \cdots, n-1$.

Suppose $n=1$. Let Q be the point of the intersection of η and η_{1}. Let $\mathscr{X}_{Q} \rightarrow \mathscr{X}$ be the blow-up of \mathscr{X} at Q and γ the exceptional curve in \mathscr{X}_{Q}. Since η_{1} is of type 2 , by (8.3), γ is of type 2,4 or 6 . Since η is of type 3 or 5 and η_{1} is of type $2, \ell$ divides $\nu_{\eta}(\lambda)$ and ℓ does not divide $\nu_{\eta_{1}}(\lambda)$. Since $\nu_{\gamma}(\lambda)=\nu_{\eta}(\lambda)+\nu_{\eta_{1}}(\lambda), \nu_{\gamma}(\lambda)$ is not divisible by ℓ and hence γ is of type 2. Let $\tilde{\eta}$ and $\tilde{\eta}_{1}$ be the strict transform of η and η_{1} in \mathscr{X}_{Q}. Since γ is a point of type 2 , the points of intersection of $\tilde{\eta}$ and $\tilde{\eta}_{1}$ with γ are not special points. Hence \mathscr{X}_{Q} has no special points. By replacing \mathscr{X} by \mathscr{X}_{Q} we assume that $n \geq 2$ and \mathscr{X} has no special points.

Let P be the point of intersection of η_{1} and η_{2}. Let \mathscr{X}^{\prime} be as in (8.4). Then \mathscr{X}^{\prime} has no special points and all the exceptional curves in \mathscr{X}^{\prime} are of type 2,4 or 6 and the exceptional curves which intersect the strict transforms of η_{1} and η_{2} are of type 6. In particular the number of type 2 connections between the strict transforms of η and η^{\prime} is one less than the number of type 2 connections between η and η^{\prime}. Since all the exceptional curves in \mathscr{X}^{\prime} are of type 2 , 4 or $6, m\left(\mathscr{X}^{\prime}\right)=m(\mathscr{X})-1$. Thus, by induction, we have a regular proper model with required properties.
Lemma 8.7. Let \mathscr{X} be as in (8.6) and X_{0} the special fibre of \mathscr{X}. Let η be a codimension zero point of X_{0} of type 2 and η^{\prime} a codimension zero point of X_{0} of type 3 or 5. Suppose there is a type 2 connection from η to η^{\prime}. If there is a type 2 connection from η to a type 3 or 5 point $\eta^{\prime \prime}$, then $\eta^{\prime}=\eta^{\prime \prime}$. Further, if $\eta_{1}, \cdots, \eta_{n}$ are
codimension zero points of X_{0} of type 2 giving a type 2 connection from η to η^{\prime} and $\gamma_{1}, \cdots, \gamma_{m}$ codimension zero points of X_{0} of type 2 giving another type 2 connection from η to η^{\prime}, then $n=m$ and $\eta_{i}=\gamma_{i}$ for all i.
Proof. Suppose $\eta^{\prime \prime}$ is a codimension zero point of X_{0} of type 3 or 5 with type 2 connection to η. Since η is of type 2 and there is a type 2 connection from η^{\prime} to $\eta^{\prime \prime}$. Since no two points of type 3 or 5 have a type 2 connection (cf. 8.6), $\eta^{\prime}=\eta^{\prime \prime}$. Suppose $\gamma_{1}, \cdots, \gamma_{m}$ is of type 2 connection from η to η^{\prime}. If η_{i} is not equal to γ_{i}, then we will have type 2 connection from η^{\prime} to η^{\prime} and hence a contradiction to the choice of \mathscr{X} (cf. 8.6). Thus $n=m$ and $\eta_{i}=\gamma_{i}$ for all i.
Let η be a codimension zero point of X_{0} of type 2 and η^{\prime} be a codimension zero point of X_{0} of type 3 or 5 . Suppose there is a type 2 connection $\eta_{1}, \cdots, \eta_{n}$ from η to η^{\prime}. Then, by (8.7), η^{\prime} and η_{n} are uniquely defined by η. We call this point of intersection of η_{n} with η^{\prime} as the point of type 2 intersection of η and η^{\prime}. Once again note that such a closed point is uniquely defined by η.

9. Choice of L_{P} and μ_{P} at closed points

Let $F, \alpha \in H^{2}\left(F, \mu_{n}\right), \lambda \in F^{*}$ with $\alpha \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right), \mathscr{X}$ and X_{0} be as in ($\S 7$ and $\S 8$). Throughout this section we assume that \mathscr{X} has no special points and if η_{1} and η_{2} are two (not necessarily distinct) codimension zero points of X_{0} with η_{1} is of type 3 or 5 and η_{2} is of type 3,4 or 5 , then there is no type 2 connection between η_{1} and η_{2}.

Let η be a codimension zero point of X_{0} of type 5 . Then we call η of type 5a if α is unramified at η and of type $5 \mathbf{b}$ if α is ramified at η. Suppose η is of type 5 b. Then α is ramified and hence M_{η} is the unique subextension of E_{η} of degree ℓ, where $\left(E_{\eta}, \sigma_{\eta}\right)$ is the lift of the residue of α.

For the rest of the paper we assume that κ is a finite field.
Lemma 9.1. Let η be a codimension zero point of X_{0} of type 5b. Then ind $\left(\alpha \otimes M_{\eta}\right)<$ $\operatorname{ind}(\alpha)$ and there exists $\mu_{\eta} \in M_{\eta}$ such that $N_{M_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\lambda$ and $\alpha \cdot\left(\mu_{\eta}\right)=0 \in$ $H^{3}\left(M_{\eta}, \mu_{n}^{\otimes 2}\right)$.
Proof. Since η is of type $5 \mathrm{~b}, \alpha$ is ramified at $\eta, \nu_{\eta}(\lambda)=r \ell$ and $r \alpha \otimes E_{\eta}=0$. By (8.1), $\operatorname{ind}\left(\alpha \otimes M_{\eta}\right)<\operatorname{ind}(\alpha)$. Write $\alpha \otimes F_{\eta}=\alpha^{\prime}+\left(E_{\eta}, \sigma, \pi_{\eta}\right)$ as in (4.1) and $\lambda=\theta_{\eta} \pi_{\eta}^{r \ell}$ where θ_{η} is a unit at η and π_{η} is a parameter at η. Let β_{0} be the image of α^{\prime} in $H^{2}\left(\kappa(\eta), \mu_{n}\right)$. Since $\alpha^{\prime} \otimes E_{\eta}=\alpha \otimes E_{\eta}$ and $r \alpha \otimes E_{\eta}=0, r \beta_{0} \otimes E(\eta)=0$. Let θ_{0} be the image of θ_{η} in $\kappa(\eta)$. Then, by (3.5), there exists $\mu_{0} \in M_{\eta}(\eta)$, such that $N_{M_{\eta}(\eta) / \kappa(\eta)}\left(\mu_{0}\right)=\theta_{0}$ and $r \beta_{0} \otimes M_{\eta}(\eta)=\left(E_{\eta}(\eta), \sigma, \mu_{0}\right)$. Thus, by (4.8), there exists $\mu_{\eta} \in M_{\eta}$ with the required properties.

Lemma 9.2. Let $P \in \mathscr{P}, \eta_{1}$ and η_{2} be codimension zero points of X_{0} containing P. Suppose that η_{1} and η_{2} are of type 5. Then there exist a cyclic field extension L_{P} / F_{P} of degree ℓ and $\mu_{P} \in L_{P}$ such that

1) $N_{L_{P} / F_{P}}\left(\mu_{P}\right)=\lambda$,
2) $\operatorname{ind}\left(\alpha \otimes L_{P}\right)<\operatorname{ind}(\alpha)$,
3) $\alpha \cdot\left(\mu_{P}\right)=0 \in H^{3}\left(L_{P}, \mu_{n}^{\otimes 2}\right)$,
4) if η_{i} is of type $5 a$, then $L_{P} \otimes F_{P, \eta_{i}} / F_{P, \eta_{i}}$ is an unramified field extension,
5) if η_{i} is of type 5b, then $L_{P} \otimes F_{P, \eta_{i}} \simeq M_{\eta_{i}} \otimes F_{P, \eta_{i}}$.

Proof. Since \mathscr{X} has no special points, P is not a special point of type IV. Since η_{1} and η_{2} are of type 5 intersecting at $P, M_{\eta_{1}} \otimes F_{P, \eta_{1}}$ and $M_{\eta_{2}} \otimes F_{P, \eta_{2}}$ are fields. Suppose
η_{i} is of type 5a. If $\alpha \otimes F_{P, \eta_{i}}=0$, then let $L_{P, \eta_{i}} / F_{P, \eta_{i}}$ be any cyclic unramified field extension with λ a norm and $\mu_{\eta_{i}} \in L_{P, \eta_{i}}$ with $N_{L_{P, \eta_{i}} / F_{P, \eta_{i}}}\left(\mu_{\eta_{i}}\right)=\lambda$. If $\alpha \otimes F_{P, \eta_{i}} \neq 0$, then let $L_{P, \eta_{i}} / F_{P, \eta_{i}}$ be a cyclic unramified field extension of degree ℓ and $\mu_{\eta_{i}}$ be as in (4.10). Suppose η_{i} is of type 5b. Let $L_{P, \eta_{i}}=M_{\eta_{i}} \otimes F_{P, \eta_{i}}$ and $\mu_{\eta_{i}} \in M_{\eta_{i}}$ be as in (9.1). Then, by choice $L_{P, \eta_{i}} / F_{P, \eta_{i}}$ are unramified field extensions. By applying (6.4) to $L_{P, \eta_{i}}$ and $\mu_{\eta_{i}}$, there exist a cyclic field extension L_{P} / F_{P} and $\mu_{P} \in L_{P}$ with required properties.
Lemma 9.3. Let η be a codimension zero point of X_{0} of type 3 and P a closed point on the closure of η. Then, there exists a cyclic field extension $L_{P, \eta} / F_{P, \eta}$ of degree ℓ such that if $\alpha \otimes E_{\eta} \otimes F_{P, \eta} \neq 0$, then ind $\left(\alpha \otimes E_{\eta} \otimes L_{P, \eta}\right)<\operatorname{ind}\left(\alpha \otimes E_{\eta} \otimes F_{P, \eta}\right)$.

Proof. Since E_{η} / F_{η} is a cyclic unramified field extension of degree a power of ℓ, $E_{\eta} \otimes F_{P, \eta} \simeq \prod E_{P, \eta}$ for some cyclic field extension $E_{P, \eta} / F_{P, \eta}$ of degree a power of ℓ. Let $E(\eta)_{P}$ be the residue field of $E_{P, \eta}$. Then $E(\eta)_{P} / \kappa(\eta)_{P}$ is a cyclic extension of degree a power of ℓ. Note that either $E(\eta)_{P}=\kappa(\eta)_{P}$ or $E(\eta)_{P} / \kappa(\eta)_{P}$ is a cyclic extension of degree a positive power of ℓ. If $E(\eta)_{P}=\kappa(\eta)_{P}$, then let $L(\eta)_{P} / \kappa(\eta)_{P}$ be any cyclic extension of degree ℓ. Suppose $E(\eta)_{P} \neq \kappa(\eta)_{P}$. Since $E(\eta)_{P} / \kappa(\eta)_{P}$ is a cyclic extension of degree a positive power of ℓ, there is only one subextension of $E(\eta)_{P}$ which is cyclic over $\kappa(\eta)_{P}$ of degree ℓ. Since $\kappa(\eta)_{P}$ is a local field containing primitive $\ell^{\text {th }}$ root of unity, there are at least 2 non-isomorphic cyclic field extensions of $\kappa(\eta)_{P}$ of degree ℓ. Thus there exists a cyclic field extension $L(\eta)_{P} / \kappa(\eta)_{P}$ of degree ℓ which is not isomorphic to a subfield of $E(\eta)_{P}$. Let $L_{P, \eta} / F_{P, \eta}$ be the unramified extension of degree ℓ with residue field $L(\eta)_{P}$.

Suppose $\alpha \otimes E_{\eta} \otimes F_{P, \eta} \neq 0$. Then $\alpha \otimes E_{P, \eta} \neq 0$. Since $E_{P, \eta}$ and $L_{P, \eta}$ are cyclic field extensions of $F_{P, \eta}$ and $L_{P, \eta}$ is not isomorphic to a subfield of $E_{P, \eta}, E_{P, \eta} \otimes L_{P, \eta}$ is a field and $\left[E_{P, \eta} \otimes L_{P, \eta}: E_{P, \eta}\right]=\left[L_{P, \eta}: F_{P, \eta}\right]=\ell$. In particular $E(\eta)_{P} \otimes L(\eta)_{P}$ is a field and $\left[E(\eta)_{P} \otimes L(\eta)_{P}: E(\eta)_{P}\right]=\ell$. Write $\alpha \otimes F_{\eta}=\alpha^{\prime}+\left(E_{\eta}, \sigma_{\eta}, \pi_{\eta}\right)$ as in (4.1). Since $\alpha \otimes E_{\eta}=\alpha^{\prime} \otimes E_{\eta}, \alpha \otimes E_{\eta}$ is unramified at η. Let β_{P} be the image of $\alpha \otimes E_{\eta} \otimes F_{P, \eta}$ in $H^{2}\left(E(\eta)_{P}, \mu_{n}\right)$. Since $\alpha \otimes E_{P, \eta} \neq 0$ and $E_{P, \eta}$ is a completely discretely valued field with residue field $E(\eta)_{P}, \beta_{P} \neq 0$. Since $E(\eta)_{P}$ is a local field, $\operatorname{ind}\left(\beta_{P} \otimes E(\eta)_{P} \otimes L(\eta)_{P}\right)<\operatorname{ind}\left(\beta_{P}\right)$ and hence ind $\left(\alpha \otimes E_{\eta} \otimes L_{P, \eta}\right)=\operatorname{ind}\left(\alpha \otimes E_{P, \eta} \otimes\right.$ $\left.L_{P, \eta}\right)<\operatorname{ind}\left(\alpha \otimes E_{P, \eta}\right)=\operatorname{ind}\left(\alpha \otimes E_{\eta} \otimes F_{P, \eta}\right)$.
Lemma 9.4. Let $P \in \mathscr{P}, \eta_{1}$ and η_{2} be codimension zero points of X_{0} containing P. Suppose that η_{1} is of type 2 and η_{2} is of type 5 or 6 . Then there exist $\mu_{i} \in F_{P}$, $1 \leq i \leq \ell$, such that

1) $\mu_{1} \cdots \mu_{\ell}=\lambda$,
2) $\nu_{\eta_{1}}\left(\mu_{1}\right)=\nu_{\eta_{1}}(\lambda), \nu_{\eta_{1}}\left(\mu_{i}\right)=0$ for $i \geq 2$,
3) $\nu_{\eta_{2}}\left(\mu_{i}\right)=\nu_{\eta_{2}}(\lambda) / \ell$ for all $i \geq 1$,
4) $\alpha \cdot\left(\mu_{i}\right)=0 \in H^{3}\left(F_{P}, \mu_{n}^{\otimes 2}\right)$.

Proof. Since η_{1} is of type 2 and η_{2} is of type 5 or 6 , we have $\lambda=w \pi_{\eta_{1}}^{r_{1}} \pi_{\eta_{2}}^{r_{2} \ell}$ with r_{1} coprime to ℓ and $r_{2} \alpha \otimes E_{\eta_{2}}=0$. Hence, by (6.7), there exists $\theta \in F_{P}$ such that $\alpha \cdot(\theta)=0, \nu_{\eta_{1}}(\theta)=0$ and $\nu_{\eta_{2}}(\theta)=r_{2}$. For $i \geq 2$, let $\mu_{i}=\theta$ and $\mu_{1}=\lambda \theta^{1-\ell}$. Then μ_{i} have the required properties.
Lemma 9.5. Let $P \in \mathscr{P}, \eta_{1}$ and η_{2} be codimension zero points of X_{0} containing P. Suppose that η_{1} and η_{2} are of type 5 or 6 . Then there exist $\mu_{i} \in F_{P}, 1 \leq i \leq \ell$, such that

1) $\mu_{1} \cdots \mu_{\ell}=\lambda$,
2) $\nu_{\eta_{j}}\left(\mu_{i}\right)=\nu_{\eta_{j}}(\lambda) / \ell$ for all $i \geq 0$ and $j=1,2$,
3) $\alpha \cdot\left(\mu_{i}\right)=0 \in H^{3}\left(F_{P}, \mu_{n}^{\otimes 2}\right)$.

Proof. Since η_{1} and η_{2} are of type 5 or 6 , by (6.8), there exists $\theta \in F_{P}$ such that $\alpha \cdot(\theta)=0$ and $\nu_{\eta_{i}}(\theta)=\nu_{\eta_{i}}(\lambda) / \ell$ for $i=1,2$. For $i \geq 2$, let $\mu_{i}=\theta \in F_{P}$ and $\mu_{1}=\lambda \theta^{1-\ell} \in F_{P}$. Then μ_{i} have the required properties.
Lemma 9.6. Let $P \in \mathscr{P}, \eta_{1}$ be a codimension zero point of X_{0} of type 3 and η_{2} a codimension zero point of X_{0} of type 5. Suppose η_{1} and η_{2} intersect at P. Then there exist a cyclic field extension L_{P} / F_{P} of degree ℓ and $\mu_{P} \in L_{P}$ such that

1) $N_{L_{P} / F_{P}}\left(\mu_{P}\right)=\lambda$
2) $\operatorname{ind}\left(\alpha \otimes L_{P}\right)<\operatorname{ind}(\alpha)$
3) $\alpha \cdot\left(\mu_{P}\right)=0 \in H^{3}\left(L_{P}, \mu_{n}^{\otimes 2}\right)$
4) $L_{P} \otimes F_{P, \eta_{i}} / F_{P, \eta_{i}}$ is an unramified field extension
5) if $\lambda \in F_{P}^{* \ell}$ and $\alpha \otimes E_{\eta_{1}} \otimes F_{P, \eta_{1}} \neq 0$, then $\operatorname{ind}\left(\alpha \otimes\left(E_{\eta_{1}} \otimes F_{P, \eta_{1}}\right) \otimes\left(L_{P} \otimes F_{P, \eta_{1}}\right)\right)<$ ind $\left(\alpha \otimes E_{\eta_{1}} \otimes F_{P, \eta_{1}}\right)$
6) if η_{2} is of type 5b, then $L_{P} \otimes F_{P, \eta_{2}} \simeq M_{\eta_{2}} \otimes F_{P, \eta_{2}}$.

Proof. Suppose $\lambda \notin F_{P}^{* \ell}$. Let $L_{P}=F_{P}(\sqrt[\ell]{\lambda})$ and $\mu_{P}=\sqrt[\ell]{\lambda}$. Then $N_{L_{P} / F_{P}}\left(\mu_{P}\right)=\lambda$ and by (6.2) 2) and 3) are satisfied. Since η_{i} is of type 3 or $5, \nu_{\eta_{i}}(\lambda)$ is divisible by ℓ and hence 4) is satisfied. Since $\lambda \notin F_{P}^{* \ell}$, the case 5) does not arise. Suppose that η_{2} is of type 5 b . Since \mathscr{X} has no special points, $M_{\eta_{2}} \otimes F_{P, \eta_{2}}$ is a field. Since λ is a norm from $M_{\eta_{2}}$ (9.1), by (2.6), we have $L_{P} \otimes F_{P, \eta_{2}} \simeq M_{\eta_{2}} \otimes F_{P, \eta_{2}}$.

Suppose that $\lambda \in F_{P}^{* \ell}$. Let $L_{P, \eta_{1}}$ be as in (9.3) and $\mu_{P, \eta_{1}}=\sqrt[\ell]{\lambda}$. Write $\alpha \otimes F_{\eta_{1}}=$ $\alpha_{1} \otimes\left(E_{\eta_{1}}, \sigma_{1}, \pi_{\eta_{1}}\right)$ as in (4.1). Then by (4.2), we have $\operatorname{ind}\left(\alpha \otimes F_{\eta_{1}}\right)=\operatorname{ind}(\alpha \otimes$ $\left.E_{\eta_{1}}\right)\left[E_{\eta_{1}}: F_{\eta_{1}}\right]$. Since η_{1} is of type $3, \operatorname{ind}(\alpha)=\operatorname{ind}\left(\alpha \otimes F_{\eta_{1}}\right)$ and $r_{1} \alpha \otimes E_{\eta_{1}} \neq 0$, where $\nu_{\eta_{1}}(\lambda)=r_{1} \ell$. In particular $\alpha \otimes E_{\eta_{1}} \neq 0$. By the choice of $L_{P, \eta_{1}}$ as in (9.3), we have either $\alpha \otimes E_{\eta_{1}} \otimes F_{P, \eta_{1}}=0$ or $\operatorname{ind}\left(\alpha \otimes E_{\eta_{1}} \otimes L_{P, \eta_{1}}\right)<\operatorname{ind}\left(\alpha \otimes E_{\eta_{1}} \otimes F_{P, \eta_{1}}\right)$. Thus ind $\left(\alpha \otimes E_{\eta_{1}} \otimes F_{P, \eta_{1}}\right)<\operatorname{ind}\left(\alpha \otimes E_{\eta_{1}}\right)$. We have ind $\left(\alpha \otimes L_{P, \eta_{1}}\right) \leq \operatorname{ind}\left(\alpha \otimes E_{\eta_{1}} \otimes\right.$ $\left.L_{P, \eta_{1}}\right)\left[E_{\eta_{1}} \otimes L_{P, \eta_{1}}: L_{P, \eta_{1}}\right]<\operatorname{ind}\left(\alpha \otimes E_{\eta_{1}}\right)\left[E_{\eta_{1}}: F_{\eta_{1}}\right]=\operatorname{ind}(\alpha)$. Since $L_{P, \eta_{1}}$ is a field and $\operatorname{cores}_{L_{P, \eta_{1}} / F_{P, \eta_{1}}}\left(\alpha \cdot\left(\mu_{P, \eta_{1}}\right)\right)=\alpha \cdot(\lambda)=0$, by $(4.6), \alpha \cdot\left(\mu_{P, \eta_{1}}\right)=0 \in H^{3}\left(L_{P, \eta_{1}}, \mu_{n}^{\otimes 2}\right)$. Since \mathscr{X} has no special points, $M_{\eta_{2}} \otimes F_{P, \eta_{2}}$ is a field. Let $L_{P, \eta_{2}}=M_{\eta_{2}} \otimes F_{P, \eta_{2}}$ and $\mu_{P, \eta_{2}}=\sqrt[\ell]{\lambda}$. Then $N_{L_{P, \eta_{2}} / F_{P, \eta_{2}}}\left(\mu_{P, \eta_{2}}\right)=\lambda$ and by (9.1), ind $\left(\alpha \otimes L_{P, \eta_{2}}\right)<\operatorname{ind}(\alpha)$ and $\alpha \cdot\left(\mu_{P, \eta_{2}}\right)=0$. Then, by (6.4), there exist L_{P} and μ_{P} with required properties.
Lemma 9.7. Let $P \in \mathscr{P}, \eta_{1}$ and η_{2} be codimension zero points of X_{0} of type 3, 4 or 6. Suppose η_{1} and η_{2} intersect at P. Then there exist a cyclic field extension L_{P} / F_{P} of degree ℓ and $\mu_{P} \in L_{P}$ such that

1) $N_{L_{P} / F_{P}}\left(\mu_{P}\right)=\lambda$
2) $\operatorname{ind}\left(\alpha \otimes L_{P}\right)<\operatorname{ind}(\alpha)$
3) $\alpha \cdot\left(\mu_{P}\right)=0 \in H^{3}\left(L_{P}, \mu_{n}^{\otimes 2}\right)$
4) $L_{P} \otimes F_{P, \eta_{i}} / F_{P, \eta_{i}}$ is an unramified field extension,
5) if η_{i} is of type 3, $\lambda \in F_{P}^{* \ell}$ and $\alpha \otimes E_{\eta_{i}} \otimes F_{P, \eta_{i}} \neq 0$, then $\operatorname{ind}\left(\alpha \otimes\left(E_{\eta_{i}} \otimes F_{P, \eta_{i}}\right) \otimes\right.$ $\left.\left(L_{P} \otimes F_{P, \eta_{i}}\right)\right)<\operatorname{ind}\left(\alpha \otimes E_{\eta_{i}} \otimes F_{P, \eta_{i}}\right)$.

Proof. Suppose $\lambda \notin F_{P}^{* \ell}$. Let $L_{P}=F_{P}(\sqrt[\ell]{\lambda})$ and $\mu_{P}=\sqrt[\ell]{\lambda}$. Then $N_{L_{P} / F_{P}}\left(\mu_{P}\right)=\lambda$ and by $(6.2), 2)$ and 3) are satisfied. Since η_{i} are of type 3,4 or $6, \nu_{\eta_{i}}(\lambda)$ is divisible by ℓ and hence 4) is satisfied. Since $\left.\lambda \notin F_{P}^{* \ell}, 5\right)$ does not arise.

Suppose that $\lambda \in F_{P}^{* \ell}$. If η_{i} is of type 3, then let $L_{P, \eta_{1}}$ be as in (9.3) and $\mu_{P, \eta_{1}}=\sqrt[\ell]{\lambda}$. Then, as in (9.6), $N_{L_{P} / F_{P}}\left(\mu_{P}\right)=\lambda, \operatorname{ind}\left(\alpha \otimes L_{P, \eta_{i}}\right)<\operatorname{ind}(\alpha)$ and $\alpha \cdot\left(\mu_{P}\right)=0 \in$ $H^{3}\left(L_{P}, \mu_{n}^{\otimes 2}\right)$. Suppose that η_{i} is of type 4 or 6 . Let $L_{P, \eta_{i}} / F_{P, \eta_{i}}$ be a cyclic unramified field extension of degree ℓ and $\mu_{P, \eta_{i}}$ be as in (4.10).

Then, by (6.4), there exist L_{P} and μ_{P} with required properties.
Proposition 9.8. Let $P \in \mathscr{P}$. Then there exist a cyclic field extension or split extension L_{P} / F_{P} of degree ℓ and $\mu_{P} \in L_{P}$ such that

1) $N_{L_{P} / F_{P}}\left(\mu_{P}\right)=\lambda$
2) $\operatorname{ind}\left(\alpha \otimes L_{P}\right)<\operatorname{ind}(\alpha)$
3) $\alpha \cdot\left(\mu_{P}\right)=0 \in H^{3}\left(L_{P}, \mu_{n}^{\otimes 2}\right)$

Further, suppose η is a codimension zero point of X_{0} containing P.
4) If η is of type 1 , then $L_{P}=F_{P}(\sqrt[\ell]{\lambda})$ and $\mu_{P}=\sqrt[\ell]{\lambda}$.
5) Suppose η is of type 2 with a type 2 connection to a type 5 point η^{\prime}. Let Q be the type 2 intersection of η and η^{\prime}. If $M_{\eta^{\prime}} \otimes F_{Q, \eta^{\prime}}$ is not a field, then $L_{P}=\prod F_{P}$ and $\mu_{P}=\left(\theta_{1}, \cdots, \theta_{\ell}\right)$ with $\theta_{i} \in F_{P}, \nu_{\eta}\left(\theta_{1}\right)=\nu_{\eta}(\lambda)$ and $\nu_{\eta}\left(\theta_{i}\right)=0$ for $i \geq 2$.
6) Suppose η is of type 2 with a type 2 connection to a type 5 point η^{\prime}. Let Q be the type 2 intersection of η and η^{\prime}. If $M_{\eta^{\prime}} \otimes F_{Q, \eta^{\prime}}$ is a field, then $L_{P}=F_{P}(\sqrt[\ell]{\lambda})$ and $\mu_{P}=\sqrt[\ell]{\lambda}$.
7) Suppose η is of type 2 and there is no type 2 connection from η to any type 5 point. Then $L_{P}=F_{P}(\sqrt[\ell]{\lambda})$ and $\mu_{P}=\sqrt[\ell]{\lambda}$.
8) If η is of type 3, then $L_{P} \otimes F_{P, \eta} / F_{P, \eta}$ is an unramified field extension and further if $\lambda \in F_{P}^{* \ell}$ and $\alpha \otimes E_{\eta} \otimes F_{P, \eta} \neq 0$, then ind $\left(\alpha \otimes\left(E_{\eta} \otimes F_{P, \eta}\right) \otimes\left(L_{P} \otimes F_{P, \eta}\right)\right)<$ $i n d\left(\alpha \otimes E_{\eta} \otimes F_{P, \eta}\right)$.
9) If η is of type 4 , then $L_{P} \otimes F_{P, \eta} / F_{P, \eta}$ is an unramified field extension.
10) If η is of type $5 a$, then $L_{P} \otimes F_{P, \eta} / F_{P, \eta}$ is an unramified field extension.
11) If η is of type 5b, then $L_{P} \otimes F_{P, \eta} \simeq M_{\eta} \otimes F_{P, \eta}$ and if $L_{P}=\prod F_{P}$, then $\mu_{P}=\left(\theta_{1}, \cdots, \theta_{\ell}\right)$ with $\nu_{\eta}\left(\theta_{i}\right)=\nu_{\eta}(\lambda) / \ell$.
12) If η is of type 6 , then either $L_{P} \otimes F_{P, \eta} / F_{P, \eta}$ is an unramified field extension or $L_{P}=\prod F_{P}$, with $\mu_{P}=\left(\theta_{1}, \cdots, \theta_{\ell}\right)$ and $\nu_{\eta}\left(\theta_{i}\right)=\nu_{\eta}(\lambda) / \ell$.

Proof. Let η_{1} and η_{2} be two codimension zero points intersecting at P. By the choice of \mathscr{X}, X_{0} is a union of regular curves with normal crossings and hence there are no other codimension zero points of X_{0} passing through P.

Case I. Suppose that either η_{1} or η_{2}, say η_{1}, is of type 1 . Then $\nu_{\eta_{1}}(\lambda)$ is coprime to ℓ and hence $\lambda \notin F_{P}^{* \ell}$. Let $L_{P}=F_{P}(\sqrt[\ell]{\lambda})$ and $\mu_{P}=\sqrt[\ell]{\lambda}$. Then, by (6.2), L_{P} and μ_{P} satisfy 1), 2) and 3). By choice 4) is satisfied. Since \mathscr{X} has no special points, η_{2} is not of type 2 or 4 . Thus 5), 6), 7) and 9) do not arise. Suppose η_{2} is of type 3,5 or 6. Then $\nu_{\eta_{2}}(\lambda)$ is divisible by ℓ and hence $L_{P} \otimes F_{P, \eta_{2}} / F_{P, \eta_{2}}$ is an unramified field extension. Thus 8), 10) and 12) are satisfied. Suppose η_{2} is of type 5 b. Since \mathscr{X} has no special points and η_{1} is of type $1, M_{\eta_{2}} \otimes F_{P, \eta_{2}}$ is a field. Since λ is a norm from the extension $M_{\eta_{2}} / F_{\eta_{2}}$ (9.1) and $\lambda \notin F_{P, \eta_{2}}^{* \ell}$, by (2.6), $M_{\eta_{2}} \otimes F_{P, \eta_{2}} \simeq F_{P, \eta_{2}}(\sqrt[\ell]{\lambda})$ and hence 11) is satisfied.

Case II. Suppose neither η_{1} nor η_{2} is of type 1. Suppose either η_{1} or η_{2} is of type 2 , say η_{1} is of type 2 . Then $\nu_{\eta_{1}}(\lambda)$ is coprime to ℓ and hence $\lambda \notin F_{P}^{* \ell}$.

Suppose that η_{1} has type 2 connection to a codimension zero point η^{\prime} of X_{0} of type 5 . Let Q be the closed point on η^{\prime} which is the type 2 intersection point of η_{1} and η^{\prime}. By the choice of \mathscr{X}, η_{2} is of type 2,5 or 6 . Note that if η_{2} is also of type 2 , then Q is also the point of type 2 intersection of η_{2} and η^{\prime}. Thus if both η_{1} and η_{2} are of type $2, \eta^{\prime}$ and Q do not depend on whether we start with η_{1} or η_{2}.

Suppose that $M_{\eta^{\prime}} \otimes F_{Q, \eta^{\prime}}$ is not a field. Let $L_{P}=\prod F_{P}$. Suppose η_{2} is of type 2 . Then, let $\mu_{P}=(\lambda, 1, \cdots, 1) \in L_{P}=\prod F_{P}$. Suppose η_{2} is of type 5 . Then by the assumption on $\mathscr{X}, \eta_{2}=\eta^{\prime}, Q=P$. Thus $M_{\eta_{2}} \otimes F_{P, \eta_{2}}=M_{\eta^{\prime}} \otimes F_{Q, \eta^{\prime}}$ is not a field and hence η_{2} is of type 5 b . Let $\mu_{i} \in F_{P}$ be as in (9.4) and $\mu_{P}=\left(\mu_{1}, \cdots, \mu_{\ell}\right)$. Suppose η_{2} is of type 6. Let $\mu_{i} \in F_{P}$ be as in (9.4) and $\mu_{P}=\left(\mu_{1}, \cdots, \mu_{\ell}\right) \in L_{P}$. Then, L_{P} and μ_{P} satisfy 1) and 3). Since η_{1} is of type $2, \operatorname{ind}\left(\alpha \otimes F_{\eta_{1}}\right)<\operatorname{ind}(\alpha)$ and hence, by (5.8), $\operatorname{ind}\left(\alpha \otimes F_{P}\right)<\operatorname{ind}(\alpha)$ and 2) is satisfied. Since neither η_{1} nor η_{2} is of type 1, the case 4) does not arise. By choice L_{P} satisfies 5). Since there is only one type 5 point with a type 2 connection to η_{1} or η_{2}, the case 6) does not arise. Clearly the case 7) does not arise. Since η_{2} is not of type 3,4 or 5 a, the cases 8), 9) and 10) do not arise. By choice of L_{P} and $\left.\mu_{P}, 11\right)$ and 12) are satisfied.
Suppose $M_{\eta^{\prime}} \otimes F_{Q, \eta^{\prime}}$ is a field. Let $L_{P}=F_{P}(\sqrt[\ell]{\lambda})$ and $\mu_{P}=\sqrt[\ell]{\lambda}$. Since $\lambda \notin F_{P}^{* \ell}$, by (6.2), L_{P} and μ_{P} satisfy 1), 2) and 3). As above the cases 4), 5), 7) and 8) do not arise. By choice 6) is satisfied. Suppose η_{2} is of type 5. Then $\eta_{2}=\eta^{\prime}, Q=P$ and $\nu_{\eta_{2}}(\lambda)$ is divisible by ℓ and hence 9) is satisfied. Suppose η_{2} is of type 5 b. Since $M_{\eta_{2}} \otimes F_{P, \eta_{2}}$ is a field, as in case I, $M_{\eta_{2}} \otimes F_{P, \eta_{2}} \simeq L_{P} \otimes F_{P, \eta_{2}}$ and hence 10) is satisfied. Since $\lambda \notin F_{P}^{* \ell}$ and if η_{2} is of type $6, \nu_{\eta_{2}}(\lambda)$ is divisible by $\ell, L_{P} \otimes F_{P, \eta_{2}} / F_{P, \eta_{2}}$ is an unramified field extension and hence 11) is satisfied.

Suppose that neither η_{1} nor η_{2} have a type 2 connection to a point of type 5 . In particular η_{2} is not of type 5. Then, let $L_{P}=F_{P}(\sqrt[\ell]{\lambda})$ and $\mu_{P}=\sqrt[\ell]{\lambda}$. Then, by (6.2), L_{P} and μ_{P} satisfy 1), 2) and 3). Since neither η_{1} nor η_{2} is of type 1 , the case 4) does not arise. Since neither η_{1} nor η_{2} has type 2 connection to a point of type 5 , 5) and 6) do not arise. By the choice of L_{P} and $\mu_{P}, 7$) is satisfied. If η_{2} is of type 4 or $6, \nu_{\eta_{2}}(\lambda)$ is divisible by $\left.\left.\ell, 8\right), 9\right)$ and 12) are satisfied. Since neither η_{1} nor η_{2} is of type 5,10) and 11) do not arise.

Case III. Suppose neither of η_{i} is of type 1 or 2 . Suppose that one of the η_{i}, say η_{1}, is of type 3 . Since \mathscr{X} has no special points, η_{2} is not of type 4 and hence η_{2} is of type 3,5 or 6 . If η_{2} is of type 5 , let L_{P} and μ_{P} be as in (9.6). If η_{2} is of type 3 or 6 , let L_{P} and μ_{P} be as in (9.7). Then, 1), 2), 3), 8), 9), 10), 11) and 12) are satisfied and other cases do not arise.

Case IV. Suppose neither of η_{i} is of type 1,2 or 3 . Suppose that one of the η_{i}, say η_{1}, is of type 4 . Since \mathscr{X} has no special points, η_{2} is not of type 5 . Hence η_{2} is of type 4 or 6 . Let L_{P} and μ_{P} be as in (9.7). Then L_{P} and μ_{P} have the required properties.

Case V. Suppose neither of η_{i} is of type $1,2,3$ or 4 . Suppose that one of the η_{i} is of type 5 , say η_{1} is of type 5 . Then η_{2} is of type 5 or 6 . Suppose that η_{2} is of type 5. Since \mathscr{X} has no special points, $M_{\eta_{i}} \otimes F_{P, \eta_{i}}$ are fields for $i=1,2$. Let L_{P} and μ_{P} be as in (9.2). Then L_{P} and μ_{P} have the required properties. Suppose that η_{2} is of type 6. Suppose $M_{\eta_{1}} \otimes F_{P, \eta_{1}}$ is a field. Let $L_{P, \eta_{1}}=M_{\eta_{1}} \otimes F_{P, \eta_{1}}$ and $\mu_{\eta_{1}} \in M_{\eta_{1}}$ with $N_{M_{\eta_{1}} / F_{\eta_{1}}}\left(\mu_{\eta_{1}}\right)=\lambda$ (cf., 9.1). Let L_{P} and μ_{P} be as in (6.5) with $L_{P} \otimes F_{P, \eta_{1}} \simeq L_{P, \eta_{1}}$.

Then L_{P} and μ_{P} have the required properties. Suppose that $M_{\eta_{1}} \otimes F_{P, \eta_{1}}$ is not a field. Let $L_{P}=\prod F_{P}$ and $\mu_{i} \in F_{P}$ be as in (9.5) and $\mu_{P}=\left(\mu_{1}, \cdots, \mu_{\ell}\right) \in L_{P}$. Then L_{P} and μ_{P} have the required properties.

Case VI. Suppose neither of η_{i} is of type $1,2,3,4$ or 5 . Then, η_{1} and $t_{P} \eta_{2}$ are of type 6. Let L_{P} and μ_{P} be as in (9.7). Then L_{P} and μ_{P} have the required properties.
10. Choice of L_{η} and μ_{η} At Codimension zero points.

Let $F, n=\ell^{d}, \alpha \in H^{2}\left(F, \mu_{n}\right), \lambda \in F^{*}$ with $\alpha \neq 0, \alpha \cdot(\lambda)=0 \in H^{3}\left(F, \mu_{n}^{\otimes 2}\right), \mathscr{X}$, X_{0} and \mathscr{P} be as in ($\S 7, \S 8$ and $\left.\S 9\right)$. Assume that \mathscr{X} has no special points and there is no type 2 connection between a codimension zero point of X_{0} of type 3 or 5 and a codimension zero point of X_{0} of type 3,4 or 5 . Further we assume that for every closed point P of X_{0}, the residue field $\kappa(P)$ at P is a finite field. Let P be a closed point P of X_{0}. Then there exists $t_{P} \geq d$ such that there is no primitive $\ell^{t_{P}^{\text {th }}}$ root of unity in $\kappa(P)$.

For a codimension zero point η of X_{0}, let $\mathscr{P}_{\eta}=\eta \cap \mathscr{P}$.
Proposition 10.1. Let η be a codimension zero point of X_{0} of type 1. For each $P \in \mathscr{P}_{\eta}$, let $\left(L_{P}, \mu_{P}\right)$ be chosen as in (9.8) and $L_{\eta}=F_{\eta}(\sqrt[\ell]{\lambda})$ and $\mu_{\eta}=\sqrt[\ell]{\lambda} \in L_{\eta}$. Then

1) $N_{L_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\lambda$
2) $\alpha \cdot\left(\mu_{\eta}\right)=0 \in H^{3}\left(L_{\eta}, \mu_{n}^{\otimes 2}\right)$
3) $\operatorname{ind}\left(\alpha \otimes L_{\eta}\right)<\operatorname{ind}(\alpha)$
4) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism $\phi_{P, \eta}: L_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ and

$$
\phi_{P, \eta}\left(\mu_{\eta} \otimes 1\right)\left(\mu_{P} \otimes 1\right)^{-1}=1 .
$$

Proof. By choice, we have $N_{L_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\lambda$. Since η is of type $1, \nu_{\eta}(\lambda)$ is coprime to ℓ and hence by (4.7), L_{η} and μ_{η} satisfies 2) and 3). Let $P \in \mathscr{P}_{\eta}$. Since η is of type 1, by the choice of L_{P} and μ_{P} (cf. 9.8(4)), we have $L_{P}=F_{P}(\sqrt[\ell]{\lambda})$ and $\mu_{P}=\sqrt[\ell]{\lambda}$. Hence L_{η} and μ_{η} satisfy 4).
Lemma 10.2. Let η be a codimension zero point of X_{0}. For each $P \in \mathscr{P}_{\eta}$, let $\theta_{P} \in F_{P}$ with $\alpha \cdot\left(\theta_{P}\right)=0 \in H^{3}\left(F_{P, \eta}, \mu_{n}^{\otimes 2}\right)$. Suppose $\nu_{\eta}\left(\theta_{P}\right)=0$ for all $P \in \mathscr{P}_{\eta}$. Then there exists $\theta_{\eta} \in F_{\eta}$ such that

1) $\alpha \cdot\left(\theta_{\eta}\right)=0 \in H^{3}\left(F_{\eta}, \mu_{n}^{\otimes 2}\right)$
2) for $P \in \mathscr{P}_{\eta}, \theta_{P}^{-1} \theta_{\eta} \in F_{P, \eta}^{\ell^{2 t} t_{P}}$.

Proof. Let $\pi_{\eta} \in F_{\eta}$ be a parameter. Write $\alpha \otimes F_{\eta}=\alpha^{\prime}+\left(E_{\eta}, \sigma_{\eta}, \pi_{\eta}\right)$ as in (4.1). Let $E(\eta)$ be the residue field of E_{η}. Since $\alpha \cdot\left(\theta_{P}\right)=0 \in H^{3}\left(F_{P, \eta}, \mu_{n}^{\otimes 2}\right)$ and $\nu_{\eta}\left(\theta_{P}\right)=0$, by (4.7), we have $\left(E(\eta) \otimes \kappa(\eta)_{P}, \sigma_{0}, \bar{\theta}_{P}\right)=0 \in H^{2}\left(\kappa(\eta)_{P}, \mu_{n}\right)$, where $\bar{\theta}_{P}$ is the image of $\theta_{P} \in \kappa(\eta)_{P}$. Hence $\bar{\theta}_{P}$ is a norm from $E(\eta) \otimes \kappa(\eta)_{P}$ for all $P \in \mathscr{P}_{\eta}$. For $P \in \mathscr{P}_{\eta}$, let $\tilde{\theta}_{P} \in E(\eta) \otimes \kappa(\eta)_{P}$ with $N_{E(\eta) \otimes \kappa(\eta)_{P} / \kappa(\eta)_{P}}\left(\tilde{\theta}_{P}\right)_{\tilde{\theta}_{P}}=\bar{\theta}_{P}$. By weak approximation, there exists $\tilde{\theta} \in \kappa(\eta)$ which is sufficiently close to $\tilde{\theta}_{P}$ for all $P \in \mathscr{P}_{\eta}$. Let $\theta_{0}=N_{E(\eta) / \kappa(\eta)}(\tilde{\theta}) \in \kappa(\eta)$. Then θ_{0} is sufficiently close to $\bar{\theta}_{P}$ for all $P \in \mathscr{P}_{\eta}$. In particular, $\theta_{0}^{-1} \bar{\theta}_{P} \in \kappa(\eta)_{P}^{\ell^{2 t} P}$. Let $\theta_{\eta} \in F_{\eta}$ have image θ_{0} in $\kappa(\eta)$. Then $\left(E_{\eta}, \sigma_{\eta}, \theta_{\eta}\right)=0$ and hence, by $(4.7), \alpha \cdot\left(\theta_{\eta}\right)=0$. Since $\theta_{0}^{-1} \bar{\theta}_{P} \in \kappa(\eta)_{P}^{2^{2 t} P}$ and $F_{P, \eta}$ is a complete discretely valuated field with residue field $\kappa(\eta)_{P}$, it follows that $\theta_{\eta}^{-1} \theta_{P} \in F_{P, \eta}^{\ell 2 t_{P}}$.

Proposition 10.3. Let η be a codimension zero point of X_{0} of type 2. Suppose there is a type 2 connection between η and a codimension zero point η^{\prime} of X_{0} of type 5. Let Q be the point of type 2 intersection of η and η^{\prime}. Suppose that $M_{\eta^{\prime}} \otimes F_{Q, \eta^{\prime}}$ is not a field. For each $P \in \mathscr{P}_{\eta}$, let $\mu_{P}=\left(\theta_{1}^{P}, \cdots, \theta_{\ell}^{P}\right) \in L_{P}=\prod F_{P}$ be as in (9.8). Let $L_{\eta}=\prod F_{\eta}$. Then there exists $\mu_{\eta}=\left(\theta_{1}^{\eta}, \cdots, \theta_{\ell}^{\eta}\right) \in L_{\eta}$ such that

1) $N_{L_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\lambda$
2) $\alpha \cdot\left(\mu_{\eta}\right)=0 \in H^{3}\left(L_{\eta}, \mu_{n}^{\otimes 2}\right)$
3) $\operatorname{ind}\left(\alpha \otimes L_{\eta}\right)<\operatorname{ind}(\alpha)$,
4) $\mu_{P}^{-1} \mu_{\eta} \in\left(L_{\eta} \otimes F_{P, \eta}\right)^{\ell^{2 t_{P}}}$ for all $P \in \mathscr{P}_{\eta}$.

Proof. Let $i \geq 2$. By choice (cf. 9.8(5)), we have $\nu_{\eta}\left(\theta_{i}^{P}\right)=0$ and $\alpha \cdot\left(\theta_{i}^{P}\right)=0 \in$ $H^{3}\left(F_{P}, \mu_{n}^{\otimes 2}\right)$ for all $P \in \mathscr{P}_{\eta}$. By (10.2), there exists $\theta_{i}^{\eta} \in F_{\eta}$ such that $\alpha \cdot\left(\theta_{i}^{\eta}\right)=$ $0 \in H^{3}\left(F_{\eta}, \mu_{n}^{\otimes 2}\right)$ and $\left(\theta_{i}^{P}\right)^{-1} \theta_{i}^{\eta} \in F_{P, \eta}^{\ell^{2 t} P}$ for all $P \in \mathscr{P}_{\eta}$. Let $\theta_{1}^{\eta}=\lambda\left(\theta_{2}^{\eta} \cdots \theta_{\ell}^{\eta}\right)^{-1}$. Then $\theta_{1}^{\eta} \cdots \theta_{\ell}^{\eta}=\lambda$ and $\left(\theta_{1}^{P}\right)^{-1} \theta_{1}^{\eta} \in F_{P, \eta}^{2 t_{P}}$. Since $\alpha \cdot(\lambda)=0$ and $\alpha \cdot\left(\theta_{i}^{\eta}\right)=0 \in$ $H^{3}\left(F_{\eta}, \mu_{n}^{\otimes 2}\right)$ for $i \geq 2$, we have $\alpha \cdot\left(\theta_{1}\right)=0 \in H^{3}\left(F_{\eta}, \mu_{n}^{\otimes 2}\right)$. Hence $L_{\eta}=\prod F_{\eta}$ and $\mu_{\eta}=\left(\theta_{1}^{\eta}, \cdots, \theta_{\ell}^{\eta}\right) \in L_{\eta}$. Since η is of type $2, \operatorname{ind}\left(\alpha \otimes F_{\eta}\right)<\operatorname{ind}(\alpha)$ and hence L_{η}, μ_{η} have the required properties.

Proposition 10.4. Let η be a codimension zero point of X_{0} of type 2. For each $P \in \mathscr{P}_{\eta}$, let $\left(L_{P}, \mu_{P}\right)$ be chosen as in (9.8). Suppose one of the following holds.

- There is a type 2 connection between η and codimension zero point η^{\prime} of X_{0} of type

5 with Q the point of type 2 intersection of η and η^{\prime} and $M_{\eta^{\prime}} \otimes F_{Q, \eta^{\prime}}$ is a field.

- There is no type 2 connection between η and any codimension zero point of X_{0} of type 5.
Let $L_{\eta}=F_{\eta}(\sqrt[\ell]{\lambda})$ and $\mu_{\eta}=\sqrt[\ell]{\lambda}$. Then

1) $N_{L_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\lambda$
2) $\alpha \cdot\left(\mu_{\eta}\right)=0 \in H^{3}\left(L_{\eta}, \mu_{n}^{\otimes 2}\right)$
3) $\operatorname{ind}\left(\alpha \otimes L_{\eta}\right)<\operatorname{ind}(\alpha)$
4) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism $\phi_{P, \eta}: L_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ and

$$
\phi_{P, \eta}\left(\mu_{\eta} \otimes 1\right)\left(\mu_{P} \otimes 1\right)^{-1}=1
$$

Proof. Since $\nu_{\eta}(\lambda)$ is coprime to ℓ, by (4.7), $\alpha \cdot\left(\mu_{\eta}\right)=0 \in H^{3}\left(L_{\eta}, \mu_{n}^{\otimes 2}\right)$ and $\operatorname{ind}(\alpha \otimes$ $\left.L_{\eta}\right)<\operatorname{ind}(\alpha)$. Clearly $N_{L_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\lambda$. By the choice of $\left(L_{P}, \mu_{P}\right)$ (cf. 9.8), for $P \in \mathscr{P}_{\eta}$, we have $L_{P}=F_{P}(\sqrt[\ell]{\lambda})$ and $\mu_{P}=\sqrt[\ell]{\lambda}$. Thus L_{η} and μ_{η} have the required properties.

Lemma 10.5. Let η be a codimension zero point of X_{0} of type 3, 4 or 5a. Let $P \in \eta$. Suppose there exists $L_{P, \eta} / F_{P, \eta}$ a degree ℓ unramified field extension and $\mu_{P, \eta} \in L_{P, \eta}$ such that

1) $N_{L_{P, \eta} / F_{P, \eta}}\left(\mu_{P, \eta}\right)=\lambda$,
2) $\operatorname{ind}\left(\alpha \otimes L_{P, \eta}\right)<\operatorname{ind}(\alpha)$,
3) $\alpha \cdot\left(\mu_{P, \eta}\right)=0 \in H^{3}\left(L_{P, \eta}, \mu_{n}^{\otimes 2}\right)$,
4) If η is of type 3, $\lambda \in F_{P}^{* *}$ and $\alpha \otimes E_{\eta} \otimes F_{P, \eta} \neq 0$, then ind $\left(\alpha \otimes\left(E_{\eta} \otimes F_{P, \eta}\right) \otimes\left(L_{P, \eta}\right)\right)<$ $i n d\left(\alpha \otimes E_{\eta} \otimes F_{P, \eta}\right)$.
Then ind $\left(\alpha \otimes\left(E_{\eta} \otimes F_{P, \eta}\right) \otimes\left(L_{P, \eta}\right)\right)<\operatorname{ind}(\alpha) /\left[E_{\eta}: F_{\eta}\right]$.
Proof. Write $\alpha \otimes F_{\eta}=\alpha^{\prime}+\left(E_{\eta}, \sigma_{\eta}, \pi_{\eta}\right)$ as in (4.1). Then, by (4.2), $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)=$ $\operatorname{ind}\left(\alpha^{\prime} \otimes E_{\eta}\right)\left[E_{\eta}: F_{\eta}\right]=\operatorname{ind}\left(\alpha \otimes E_{\eta}\right)\left[E_{\eta}: F_{\eta}\right]$. Let $t=\left[E_{\eta}: F_{\eta}\right]$ and β be the image of α^{\prime} in $H^{2}\left(\kappa(\eta), \mu_{n}\right)$.

Suppose η is of type 4. Then $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)<\operatorname{ind}(\alpha)$ and hence $\operatorname{ind}\left(\alpha \otimes E_{\eta}\right)=$ $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right) / t<\operatorname{ind}(\alpha) / t$. We have $\operatorname{ind}\left(\alpha \otimes\left(E_{\eta} \otimes F_{P, \eta}\right) \otimes\left(L_{P, \eta}\right)\right) \leq \operatorname{ind}\left(\alpha \otimes E_{\eta}\right)<$ $\operatorname{ind}(\alpha) / t$.

Suppose that η is of type 5 a. Then α is unramified at η and hence $E_{\eta}=F_{\eta}$ and $t=1$. The lemma is clear if $\alpha \otimes F_{P, \eta}=0$. Suppose $\alpha \otimes F_{P, \eta} \neq 0$. Then $\beta \neq 0$. Since $L_{P, \eta}$ is a an unramified field extension, the residue field $L_{P}(\eta)$ of $L_{P, \eta}$ is a field extension of $\kappa(\eta)_{P}$ of degree ℓ. Since $\kappa(\eta)_{P}$ is a local field and ind (β) is divisible by $\ell, \operatorname{ind}\left(\beta \otimes L_{P}(\eta)\right)<\operatorname{ind}(\beta)\left([3\right.$, p. 131] $)$. In particular $\operatorname{ind}\left(\alpha \otimes L_{P, \eta}\right)<\operatorname{ind}(\alpha)$.

Suppose that η is of type 3. Then $r \alpha \otimes E_{\eta} \neq 0$ and hence $\alpha^{\prime} \otimes E_{\eta}=\alpha \otimes E_{\eta} \neq 0$. In particular $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)>t$ and $\beta \otimes E(\eta) \neq 0$. If $\alpha \otimes E_{\eta} \otimes F_{P, \eta}=0$, then $\operatorname{ind}\left(\alpha \otimes\left(E_{\eta} \otimes F_{P, \eta}\right) \otimes\left(L_{P, \eta}\right)\right)=1<\operatorname{ind}(\alpha) / t$. Suppose that $\alpha \otimes E_{\eta} \otimes F_{P, \eta} \neq 0$. Suppose $\lambda \in F_{P}^{*}$. Then, by the choice of $L_{P, \eta}, \operatorname{ind}\left(\alpha \otimes\left(E_{\eta} \otimes F_{P, \eta}\right) \otimes\left(L_{P, \eta}\right)\right)<$ $\operatorname{ind}\left(\alpha \otimes E_{\eta} \otimes F_{P, \eta}\right) \leq \operatorname{ind}\left(\alpha \otimes E_{\eta}\right)=\operatorname{ind}(\alpha) / t$. Suppose $\lambda \notin F_{P}^{* \ell}$. Then $\lambda \notin F_{P, \eta}^{* \ell}$. Since $L_{P, \eta}$ is a field extension of degree ℓ and λ is a norm from $L_{P, \eta}$, by (2.6), $L_{P, \eta} \simeq F_{P, \eta}(\sqrt[\ell]{\lambda})$. Since η is of type $3, \nu_{\eta}(\lambda)=r \ell$ and $\lambda=\theta_{\eta} \pi_{\eta}^{r \ell}$ with $\theta_{\eta} \in F_{\eta}$ a unit at η. Let $\bar{\theta}_{\eta}$ be the image of θ_{η} in $\kappa(\eta)$. Then $\bar{\theta}_{\eta} \notin \kappa(\eta)_{P}^{\ell}$ and $L_{P}(\eta)=\kappa(\eta)_{P}\left(\sqrt[\ell]{\bar{\theta}_{\eta}}\right)$. Since $\alpha \cdot(\lambda)=0$, by (4.7), $r \ell \alpha^{\prime}=\left(E_{\eta}, \sigma_{\eta}, \theta_{\eta}\right)$ and hence $r \ell \beta=\left(E(\eta), \sigma_{0}, \bar{\theta}_{\eta}\right)$. Thus, by (3.3), $\operatorname{ind}\left(\beta \otimes E(\eta)_{P} \otimes L_{P}(\eta)\right)<\operatorname{ind}(\beta \otimes E(\eta))$. Thus

$$
\begin{aligned}
\operatorname{ind}\left(\alpha \otimes\left(E_{\eta} \otimes F_{P, \eta}\right) \otimes\left(L_{P, \eta}\right)\right) & =\operatorname{ind}\left(\alpha^{\prime} \otimes\left(E_{\eta} \otimes F_{P, \eta}\right) \otimes\left(L_{P, \eta}\right)\right) \\
& =\operatorname{ind}\left(\beta \otimes E(\eta)_{P} \otimes L_{P}(\eta)\right) \\
& <\operatorname{ind}(\beta \otimes E(\eta))=\operatorname{ind}\left(\alpha^{\prime} \otimes E_{\eta}\right) \\
& =\operatorname{ind}\left(\alpha \otimes E_{\eta}\right)=\operatorname{ind}(\alpha) / t .
\end{aligned}
$$

Proposition 10.6. Let η be a codimension zero point of X_{0} of type 3, 4 or $5 a$. For each $P \in \mathscr{P}_{\eta}$, let $\left(L_{P}, \mu_{P}\right)$ be chosen as in (9.8). Then there exist a field extension L_{η} / F_{η} of degree ℓ and $\mu_{\eta} \in L_{\eta}$ such that

1) $N_{L_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\lambda$
2) $\alpha \cdot\left(\mu_{\eta}\right)=0 \in H^{3}\left(L_{\eta}, \mu_{n}^{\otimes 2}\right)$
3) $\operatorname{ind}\left(\alpha \otimes L_{\eta}\right)<\operatorname{ind}(\alpha)$
4) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism $\phi_{P, \eta}: L_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ and

$$
\phi_{P, \eta}\left(\mu_{\eta} \otimes 1\right)\left(\mu_{P} \otimes 1\right)^{-1} \in\left(L_{P} \otimes F_{P, \eta}\right)^{\ell^{2 t} P} .
$$

Proof. Write $\alpha \otimes F_{\eta}=\alpha^{\prime}+\left(E_{\eta}, \sigma_{\eta}, \pi_{\eta}\right)$ as in (4.1). By (4.7), rla' $=\left(E_{\eta}, \sigma_{\eta}, \theta_{\eta}\right)$. Let β be the image of α^{\prime} in $H^{2}\left(\kappa(\eta), \mu_{n}\right)$ and $E(\eta)$ the residue field of E_{η}. Then $r \ell \beta=\left(E(\eta), \sigma_{0}, \theta_{0}\right) \in H^{2}\left(\kappa(\eta), \mu_{n}\right)$, where σ_{0} is the automorphism of $E(\eta)$ induced by σ_{η} and θ_{0} is the image of θ_{η} in $\kappa(\eta)$.

Let S be a finite set of places of $\kappa(\eta)$ containing the places given by closed points of \mathscr{P}_{η} and places ν of $\kappa(\eta)$ with $\beta \otimes \kappa(\eta)_{\nu} \neq 0$. For each $\nu \in S$, we now give a cyclic field extension $L_{\nu} / \kappa(\eta)_{\nu}$ of degree ℓ and $\mu_{\nu} \in L_{\nu}$ satisfying the conditions of (3.1) with $E_{0}=E(\eta)$ and $d=\operatorname{ind}(\alpha) / t$.

Let $\nu \in S$. Then ν is given by a closed point P of η. If $P \in \mathscr{P}$, let $L_{P, \eta}=L_{P} \otimes F_{P, \eta}$ and $\mu_{P, \eta}=\mu_{P} \otimes 1 \in L_{P, \eta}$. Suppose $P \notin \mathscr{P}$. Suppose that $\lambda \notin F_{P}^{* \ell}$. Then $\lambda \notin F_{P, \eta}^{* \ell}$. Let $L_{P, \eta}=F_{P, \eta}(\sqrt[\ell]{\lambda})$ and $\mu_{P, \eta}=\sqrt[\ell]{\lambda}$. Suppose that $\lambda \in F_{P}^{* \ell}$. If η is of type 3 , then let $L_{P, \eta} / F_{P, \eta}$ be a cyclic unramified field extension of degree ℓ as in (9.3) and $\mu_{P, \eta}=\sqrt[\ell]{\lambda}$. If η is of type 4 or 5 a , then let $L_{P, \eta} / F_{P, \eta}$ be a cyclic unramified field extension of degree ℓ as in (4.10) and $\mu_{P, \eta}=\sqrt[\ell]{\lambda}$.

Since $L_{P, \eta} / F_{P, \eta}$ is an unramified field extension of degree ℓ, the residue field $L_{P}(\eta)$ is a degree ℓ field extension of $\kappa(\eta)_{P}$. Let $L_{\nu}=L_{P}(\eta)$. We have $\nu_{\eta}(\lambda)=r \ell$ for some integer r and $\lambda=\theta_{\eta} \pi_{\eta}^{r \ell}$ for some parameter π_{η} at η and $\theta_{\eta} \in F_{\eta}$ a unit at η. Further π_{η} is a parameter in $L_{P, \eta}$. Since $N_{L_{P, \eta} / F_{P, \eta}}\left(\mu_{P, \eta}\right)=\lambda, \mu_{P, \eta}=\theta_{P, \eta} \pi_{\eta}^{r}$ for some $\theta_{P, \eta} \in L_{P} \otimes F_{P, \eta}$ which is a unit at η. Let μ_{ν} be the image of $\theta_{P, \eta}$ in $L_{\nu}=L_{P}(\eta)$. Then $N_{L_{\nu} / \kappa(\eta)_{\nu}}\left(\mu_{\nu}\right)=\theta_{0}$. Since the corestriction map $H^{2}\left(L_{\nu}, \mu_{n}\right) \rightarrow H^{2}\left(\kappa(\eta)_{\nu}, \mu_{n}\right)$ is injective, $r \beta \otimes L_{\nu}=\left(E_{0} \otimes L_{\nu}, \sigma_{0} \otimes 1, \mu_{\nu}\right)$. Let $t=\left[E_{\eta}: F_{\eta}\right]$. By (10.5), we have $\operatorname{ind}\left(\alpha \otimes\left(E_{\eta} \otimes F_{P, \eta}\right) \otimes L_{P, \eta}\right)<\operatorname{ind}(\alpha) / t$. Since $\alpha \otimes E_{\eta}=\alpha^{\prime} \otimes E_{\eta}$, we have $\operatorname{ind}\left(\alpha^{\prime} \otimes\left(E_{\eta} \otimes F_{P, \eta}\right) \otimes L_{P, \eta}\right)<\operatorname{ind}(\alpha) / \ell^{d}$. Since ind $\left(\beta \otimes E_{0} \otimes L_{\mu}\right)=\operatorname{ind}\left(\alpha^{\prime} \otimes\left(E_{\eta} \otimes\right.\right.$ $\left.\left.F_{P, \eta}\right) \otimes\left(L_{P} \otimes F_{P, \eta}\right)\right), \operatorname{ind}\left(\beta \otimes E_{0} \otimes L_{\nu}\right)<\operatorname{ind}(\alpha) / t$.

Since $\kappa(\eta)$ is a global-field, by (3.1), there exist a field extension $L_{0} / \kappa(\eta)$ of degree ℓ and $\mu_{0} \in L_{0}$ such that

1) $N_{L_{0} / k}\left(\mu_{0}\right)=\theta_{0}$
2) $r \beta \otimes L_{0}=\left(E(\eta) \otimes L_{0}, \sigma_{0} \otimes 1, \mu_{0}\right)$
3) $\operatorname{ind}\left(\beta \otimes E(\eta) \otimes L_{0}\right)<\operatorname{ind}(\alpha) / t$
4) $L_{0} \otimes \kappa(\eta)_{P} \simeq L_{P}(\eta)$ for all $P \in \mathscr{P}_{\eta}$
5) μ_{0} is close to $\bar{\theta}_{P}$ for all $P \in \mathscr{P}_{\eta}$.

Then, by (4.8), there exist a field extension L_{η} / F_{η} of degree ℓ and $\mu \in L_{\eta}$ such that

- residue field of L_{η} is L_{0},
- μ a unit in the valuation ring of L_{η},
- $\bar{\mu}=\mu_{0}$,
- $N_{L_{\eta} / F_{\eta}}(\mu)=\theta_{\eta}$,
- $\alpha \cdot\left(\mu \pi_{\eta}^{r}\right) \in H^{3}\left(L_{\eta}, \mu_{n}^{\otimes 2}\right)$ is unramified.

Since L_{η} is a complete discretely valued field with residue field L_{0} a global field, $H_{n r}^{3}\left(L_{\eta}, \mu_{n}^{\otimes 2}\right)=0\left([27\right.$, p. 85] $)$ and hence $\alpha \cdot\left(\mu \pi_{\eta}^{r}\right)=0$. Since L_{η} / F_{η} is unramified and $\alpha \otimes L_{\eta}=\alpha^{\prime} \otimes L_{\eta}+\left(E_{\eta} \otimes L_{\eta}, \sigma_{\eta}, \pi_{\eta}\right), \operatorname{ind}\left(\alpha \otimes L_{\eta}\right) \leq \operatorname{ind}\left(\alpha^{\prime} \otimes E_{\eta} \otimes L_{\eta}\right)\left[E_{\eta} \otimes L_{\eta}: L_{\eta}\right]=$ $\operatorname{ind}\left(\beta \otimes E(\eta) \otimes L_{0}\right) t<\operatorname{ind}(\alpha)$. Thus L_{η} and $\mu_{\eta}=\mu \pi_{\eta}^{r} \in L_{\eta}$ have the required properties.

Proposition 10.7. Let η be a codimension zero point of X_{0} of type 5b. Let $\left(E_{\eta}, \sigma_{\eta}\right)$ be the residue of α at η and M_{η} be the unique subfield of E_{η} with M_{η} / F_{η} a cyclic extension of degree ℓ. For each $P \in \mathscr{P}_{\eta}$, let L_{P} and μ_{P} be as in (9.8). Then there exists $\mu_{\eta} \in M_{\eta}$ such that

1) $N_{M_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\lambda$
2) $\alpha \cdot\left(\mu_{\eta}\right)=0 \in H^{3}\left(M_{\eta}, \mu_{n}^{\otimes 2}\right)$
3) $\operatorname{ind}\left(\alpha \otimes M_{\eta}\right)<\operatorname{ind}(\alpha)$
4) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism $\phi_{P, \eta}: M_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ and

$$
\phi_{P, \eta}\left(\mu_{\eta} \otimes 1\right)\left(\mu_{P} \otimes 1\right)^{-1} \in\left(L_{P} \otimes F_{P, \eta}\right)^{\ell^{2 t} P} .
$$

Proof. Let $E(\eta)$ and $M(\eta)$ be the residue fields of E_{η} and M_{η} at η. Since η is of type 5b, $M(\eta)$ is the unique subfield of $E(\eta)$ with $M(\eta) / \kappa(\eta)$ a cyclic field extension of degree ℓ. Let π_{η} be a parameter at η. Since η is of type $5, \nu_{\eta}(\lambda)=r \ell$ and $\lambda=\theta_{\eta} \pi_{\eta}^{r \ell}$ for some $\theta_{\eta} \in F$ a unit at η. Let $\bar{\theta}_{\eta}$ be the image of θ_{η} in $\kappa(\eta)$. Let $P \in \mathscr{P}_{\eta}$. Suppose $M_{\eta} \otimes F_{P, \eta}$ is a field. Since $N_{M_{\eta} \otimes F_{P, \eta} / F_{P, \eta}}\left(\mu_{P}\right)=\lambda=\theta_{\eta} \pi_{\eta}^{r \ell}$, we have $\mu_{P}=\mu_{P}^{\prime} \pi_{\eta}^{r}$ with $\mu_{P}^{\prime} \in M_{\eta} \otimes F_{P, \eta}$ a unit at η and $N_{M_{\eta} \otimes F_{P, \eta} / F_{P, \eta}}\left(\mu_{P}^{\prime}\right)=\theta_{\eta}$. Suppose $M_{\eta} \otimes F_{P, \eta}$ is not a field. Then, by the choice of μ_{P} (cf. 9.8(10)), we have $\mu_{P}=\mu_{P}^{\prime} \pi_{\eta}^{r}$, where $\underline{\mu_{P}^{\prime}}=\left(\theta_{1}^{\prime}, \cdots, \theta_{\ell}^{\prime}\right) \in M_{\eta} \otimes F_{P, \eta^{\prime}}=\prod F_{P, \eta}$ with each $\theta_{i}^{\prime} \in F_{P, \eta}$ is a unit at η. Let $\overline{\mu^{\prime}}{ }_{P}$ be the image of μ_{P}^{\prime} in the residue field $M(\eta) \otimes \kappa(\eta)_{P}$ of $M_{\eta} \otimes F_{P, \eta}$ at η. Write $\alpha \otimes F_{\eta}=\alpha^{\prime}+\left(E_{\eta}, \sigma_{\eta}, \pi_{\eta}\right)$ as in (4.1). Let β be the image of α^{\prime} in $H^{2}\left(\kappa(\eta), \mu_{n}\right)$. Since
$\alpha \cdot(\lambda)=0$, by (4.7), $r \ell \beta=\left(E(\eta), \sigma_{\eta}, \bar{\theta}_{\eta}\right)$. Since $\alpha \cdot\left(\mu_{P}\right)=0$ in $H^{3}\left(M_{\eta} \otimes F_{P, \eta}, \mu_{n}^{\otimes 22}\right)$, once again by (4.7), $r \beta \otimes \kappa(\eta)_{P}=\left(E(\eta) \otimes M(\eta) \otimes \kappa(\eta)_{P}, \sigma_{\eta}, \overline{\mu^{\prime}}{ }_{P}\right)$. Since $\kappa(\eta)$ is a global field, by (3.6), there exists $\mu_{\eta}^{\prime} \in M(\eta)$ such that

1) $N_{M(\eta) / \kappa(\eta)}\left(\mu_{\eta}^{\prime}\right)=\bar{\theta}_{\eta}$
2) $r \beta \otimes M(\eta)=\left(E(\eta) \otimes M(\eta), \sigma_{\eta}, \mu_{\eta}^{\prime}\right)$
3) $\overline{\mu^{\prime}}{ }_{P}$ is close to μ_{η}^{\prime} for all $P \in \mathscr{P}_{\eta}$.

Since M_{η} is complete, there exists $\tilde{\mu_{\eta}} \in M_{\eta}$ such that $N_{M_{\eta} / F_{\eta}}\left(\tilde{\mu_{\eta}^{\prime}}\right)=\theta_{\eta}$ and the image of $\tilde{\mu_{\eta}^{\prime}}$ in $M(\eta)$ is μ_{η}^{\prime}. Let $\mu_{\eta}=\tilde{\mu_{\eta}^{\prime}} \pi_{\eta}^{r}$. Since M_{η} / F_{η} is of degree $\ell, \operatorname{ind}\left(\alpha \otimes M_{\eta}\right)<$ $\operatorname{ind}\left(\alpha \otimes F_{\eta}\right)(c f .8 .1)$. Thus μ_{η} has the required properties.
Proposition 10.8. Let η be a codimension zero point of X_{0} of type 6. For each $P \in \mathscr{P}_{\eta}$, let L_{P} and μ_{P} be as in (9.8). Then there exist a field extension L_{η} / F_{η} of degree ℓ and $\mu_{\eta} \in L_{\eta}$ such that

1) $N_{L_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\lambda$
2) $\alpha \cdot\left(\mu_{\eta}\right)=0 \in H^{3}\left(L_{\eta}, \mu_{n}^{\otimes 2}\right)$
3) $\operatorname{ind}\left(\alpha \otimes L_{\eta}\right)<\operatorname{ind}(\alpha)$
4) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism $\phi_{P, \eta}: M_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ and

$$
\phi_{P, \eta}\left(\mu_{\eta} \otimes 1\right)\left(\mu_{P} \otimes 1\right)^{-1} \in\left(L_{P} \otimes F_{P, \eta}\right)^{\ell^{2 t_{P}}} .
$$

Proof. Let $P \in \mathscr{P}_{\eta}$. Suppose $L_{P} \otimes F_{P, \eta}$ is a field. Let $L_{P}(\eta), \bar{\theta}_{P} \in L_{P}(\eta), \theta_{0} \in$ $\kappa(\eta)$ and β be as in the proof of (10.6). Then, as in the proof of (10.6), we have $N_{L_{P}(\eta) / \kappa(\eta)_{P}}\left(\bar{\theta}_{P}\right)=\theta_{0}$ and $\operatorname{ind}\left(\beta \otimes E_{0} \otimes L_{P}(\eta)\right)<\operatorname{ind}(\alpha) /\left[E_{\eta}: F_{\eta}\right]$. As in the proof of (10.7), we have $r \beta \otimes L_{P}(\eta)=\left(E_{0} \otimes L_{P}(\eta), \sigma_{0} \otimes 1, \bar{\theta}_{P}\right)$.

If L_{P} / F_{P} is not a field, by choice (cf. 9.8(11)), we have $\mu_{P}=\left(\theta_{1} \pi_{\eta}^{r}, \cdots, \theta_{\ell} \pi_{\eta}^{r}\right)$. Since $\alpha \cdot\left(\mu_{P}\right)=0$ in $H^{3}\left(L_{P}, \mu_{n}^{\otimes}\right)=\prod H^{3}\left(F_{P}, \mu_{n}^{\otimes 2}\right)$, we have $\alpha \cdot\left(\theta_{i} \pi_{\eta}^{r}\right)=0 \in$ $H^{3}\left(F_{P}, \mu_{n}^{\otimes 2}\right)$. Thus, by (4.7), we have $r \beta \otimes \kappa(\eta)_{P}=\left(E_{0}, \sigma_{0} \otimes 1, \bar{\theta}_{i}\right)$ for all i. Since $L_{P}(\eta)=\prod \kappa(\eta)_{P}$ and $\bar{\theta}_{P}=\left(\bar{\theta}_{1}, \cdots, \bar{\theta}_{\ell}\right)$, we have $r \beta \otimes L_{P}(\eta)=\left(E_{0} \otimes L_{P}(\eta), \sigma_{0} \otimes\right.$ $1, \bar{\theta}_{P}$).

As in the proof of (10.6), we construct L_{η} and μ_{η} with the required properties.
Lemma 10.9. Let η be a codimension one point of X_{0} and P a closed point on η. Suppose there exist $\theta_{\eta} \in F_{\eta}$ such that $\alpha \cdot\left(\theta_{\eta}\right)=0 \in H^{3}\left(F_{\eta}, \mu_{n}^{\otimes 2}\right)$. Then there exists $\theta_{P} \in F_{P}$ such that $\alpha \cdot\left(\theta_{P}\right)=0 \in H^{3}\left(F_{P}, \mu_{n}^{\otimes 2}\right), \nu_{\eta}\left(\theta_{P}\right)=\nu_{\eta}\left(\theta_{\eta}\right)$ and $\theta_{P}^{-1} \theta_{\eta} \in F_{P, \eta}^{* 2^{2 t} P}$.
Proof. Let π be a prime representing η at P. Since η is regular on \mathscr{X}, there exists a prime δ at P such that the maximal ideal at P is generated by π and δ. Since $F_{P, \eta}$ is a complete discrete valued field with π as a parameter, $\theta_{\eta}=w \pi^{s}$ for some $w \in F_{\eta}$ unit at η. Since the residue field $\kappa(\eta)_{P}$ of $F_{P, \eta}$ is a complete discrete valued field with $\bar{\delta}$ as a parameter, we have $\bar{w}=\bar{u} \bar{\delta}^{r}$ for some $u \in F_{P}$ unit at P. Let $\theta_{P}=u \delta^{r} \pi^{s}$. Then clearly $\nu_{\eta}\left(\theta_{\eta}\right)=\nu_{\eta}\left(\theta_{P}\right)$ and $\theta_{P}^{-1} \theta_{\eta} \in F_{P, \eta}^{\ell^{2 t} P}$. Since $\alpha \cdot\left(\theta_{P}\right)$ is unramified at P except possibly at π and δ and $\alpha \cdot\left(\theta_{P}\right)=\alpha \cdot\left(\mu_{P}\right)=0 \in H^{3}\left(F_{P, \eta}, \mu_{n}^{\otimes 2}\right)$, by (5.5), $\alpha \cdot\left(\theta_{P}\right)=0 \in H^{3}\left(F_{P}, \mu_{n}^{\otimes 2}\right)$.

11. The main theorem

Theorem 11.1. Let K be a local field with residue field κ and F the function field of a curve over K. Let D be a central simple algebra over F of exponent n, α its class in $H^{2}\left(F, \mu_{n}\right)$, and $\lambda \in F^{*}$. If $\alpha \cdot(\lambda)=0$ and n is coprime to char (κ), then λ is a reduced norm from D^{*}.

Proof. As in the proof of (4.12), we assume that $n=\ell^{d}$ for prime ℓ with $\ell \neq \operatorname{char}(\kappa)$ and F contains a primitive $\ell^{\text {th }}$ root of unity. We prove the theorem by induction on $\operatorname{ind}(D)$.

Suppose that $\operatorname{ind}(D)=1$. Then D is a matrix algebra and hence every element of F is a reduced norm. Assume that $\operatorname{ind}(D)>1$.

Without loss of generality we assume that K is algebraically closed in F. Let X be a smooth projective geometrically integral curve over K with $K(X)=F$. Let R be the ring of integers in K and κ its residue field. Let \mathscr{X} be a regular proper model of F over R such that the union of $\operatorname{ram}_{\mathscr{X}}(\alpha), \operatorname{supp}_{\mathscr{X}}(\lambda)$ and the special fibre X_{0} of \mathscr{X} is a union of regular curves with normal crossings. By (8.6), we assume that \mathscr{X} has no special points, and there is no type 2 connection between a codimension zero point of X_{0} of type 3 , or 5 and codimension zero point of X_{0} of type 3,4 or 5 .

Let \mathscr{P} be the set of nodal points of X_{0}. For each $P \in \mathscr{P}$, let L_{P} and μ_{P} be as in (9.8). Let η be a codimension zero point of X_{0} and $\mathscr{P}_{\eta}=\mathscr{P} \cap \eta$. Let L_{η} and μ_{η} be as in 10.1, 10.3, 10.4, 10.6, 10.7 or 10.8 depending on the type of η. Then L_{η} / F_{η} is an extension of degree ℓ and $\mu_{\eta} \in L_{\eta}$ such that

1) $N_{L_{\eta} / F_{\eta}}\left(\mu_{\eta}\right)=\lambda$
2) $\alpha \cdot\left(\mu_{\eta}\right)=0 \in H^{3}\left(L_{\eta}, \mu_{n}^{\otimes 2}\right)$
3) $\operatorname{ind}\left(\alpha \otimes L_{\eta}\right)<\operatorname{ind}(\alpha)$
4) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism $\phi_{P, \eta}: L_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ and

$$
\phi_{P, \eta}\left(\mu_{\eta} \otimes 1\right)\left(\mu_{P} \otimes 1\right)^{-1} \in\left(L_{P} \otimes F_{P, \eta}\right)^{\ell^{2 t} P} .
$$

Let $P \in \mathscr{X}$ be a closed point with $P \notin \mathscr{P}$. Then there is a unique codimension zero point η of X_{0} with $P \in \eta$. We give a choice of a cyclic or split extension L_{P} / F_{P} of degree ℓ and $\mu_{P} \in L_{P}^{*}$ such that

1) $N_{L_{P} / F_{P}}\left(\mu_{P}\right)=\lambda$,
2) $\operatorname{ind}\left(\alpha \otimes L_{P}\right)<\operatorname{ind}(\alpha)$,
3) $\alpha \cdot\left(\mu_{P}\right)=0 \in H^{3}\left(L_{P}, \mu_{n}^{\otimes 2}\right)$,
4) there is an isomorphism $\phi_{P, \eta}: L_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ and

$$
\phi_{P, \eta}\left(\mu_{\eta} \otimes 1\right)\left(\mu_{P} \otimes 1\right)^{-1} \in\left(L_{P} \otimes F_{P, \eta}\right)^{\ell^{2 t_{P}}} .
$$

Suppose that η is of type 1 . Then, by the choice of L_{η} and $\mu_{\eta}(10.1), L_{P}=F_{P}(\sqrt[e]{\lambda})$ and $\mu_{P}=\sqrt[\ell]{\lambda}$ have the required properties.

Suppose that η is of type 2. Suppose that there is a type 2 connection to a codimension zero point η^{\prime} of X_{0} of type 5 . Let Q be the point of type 2 intersection η and η^{\prime}. Suppose that $M_{\eta^{\prime}} \otimes F_{Q, \eta^{\prime}}$ not a field. Then, by choice (cf. 10.3), we have $L_{\eta}=\prod F_{\eta}$ and $\mu_{\eta}=\left(\theta_{1}, \cdots, \theta_{\ell}\right)$. Since $\alpha \cdot\left(\mu_{\eta}\right)=0$, we have $\alpha \cdot\left(\theta_{i}\right)=0$. For each i, $2 \leq i \leq \ell$, by (10.9), there exists $\theta_{i}^{P} \in F_{P}$ such that $\alpha \cdot\left(\theta_{i}^{P}\right)=0 \in H^{3}\left(F_{P}, \mu_{n}^{\otimes 2}\right)$ and $\theta_{i}^{-1} \theta_{i}^{P} \in F_{P, \eta}^{* t^{2 t} P}$. Let $\theta_{1}^{P}=\lambda\left(\theta_{2}^{P} \cdots \theta_{\ell}^{P}\right)^{-1}$. Then $L_{P}=\prod F_{P}$ and $\mu_{P}=\left(\theta_{1}^{P}, \cdots, \theta_{\ell}^{P}\right)$ have the required properties. Suppose that $M_{\eta^{\prime}} \otimes F_{Q, \eta^{\prime}}$ is a field or there is no type 2 connection from η to any point of type 5 . Then, by the choice (10.4), we have $L_{\eta}=F_{\eta}(\sqrt[\ell]{\lambda})$ and $\mu_{\eta}=\sqrt[\ell]{\lambda}$. Hence $L_{P}=F_{P}(\sqrt[\ell]{\lambda})$ and $\mu_{P}=\sqrt[\ell]{\lambda} \in L_{P}$ have the required properties.

Suppose that η is not of type 1 or 2 . Then, by choice L_{η} / F_{η} is an unramified field extension of degree ℓ or the split extension of degree ℓ. Let \hat{A}_{P} be the completion of the local ring at P and π a prime in \hat{A}_{P} defining η at P. Since $P \notin \mathscr{P}$ and $\operatorname{ram}_{\mathscr{X}}(\alpha)$ is union of regular curves with normal crossings, there exists a prime $\delta \in \hat{A}_{P}$ such that α is unramified on \hat{A}_{P} except possibly at π and δ. Further, $\lambda=w \pi^{r} \delta^{s}$ for some
unit $u \in \hat{A}_{P}$. Since η is not of type 1 or $2, \nu_{\eta}(\lambda)=r$ is divisible by ℓ. Thus, by (6.5), there exist a cyclic extension L_{P} / F_{P} and $\mu_{P} \in L_{P}$ such that

1) $L_{P} \otimes F_{P, \eta} \simeq L_{\eta} \otimes F_{P, \eta}$,
2) $\operatorname{ind}\left(\alpha \otimes L_{P}\right)<\operatorname{ind}(\alpha)$,
3) $\alpha \cdot\left(\mu_{P}\right)=0 \in H^{3}\left(L_{P}, \mu_{n}^{\otimes 2}\right)$,
4) there is an isomorphism $\phi_{P, \eta}: L_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ and

$$
\phi_{P, \eta}\left(\mu_{\eta} \otimes 1\right)\left(\mu_{P} \otimes 1\right)^{-1} \in\left(L_{P} \otimes F_{P, \eta}\right)^{\ell^{2 t} P} .
$$

Thus for every $x \in X_{0}$, we have chosen an extension L_{x} / F_{x} of degree ℓ and $\mu_{x} \in L_{x}$ such that

1) $N_{L_{x} / F_{x}}\left(\mu_{x}\right)=\lambda$
2) $\alpha \cdot\left(\mu_{x}\right)=0 \in H^{3}\left(L_{x}, \mu_{x}^{\otimes 2}\right)$
3) $\operatorname{ind}\left(\alpha \otimes L_{x}\right)<\operatorname{ind}(\alpha)$
4) for any branch (P, η), there is an isomorphism $\phi_{P, \eta}: L_{\eta} \otimes F_{P, \eta} \rightarrow L_{P} \otimes F_{P, \eta}$ and $\phi_{P, \eta}\left(\mu_{\eta} \otimes 1\right)\left(\mu_{P} \otimes 1\right)^{-1} \in\left(L_{P} \otimes F_{P, \eta}\right)^{\ell^{2 t_{P}}}$. Further if P is a closed point of X_{0}, then L_{P} / F_{P} is cyclic or the split extension.

Let (P, η) be a branch. Since $\kappa(P)$ has no $\ell^{2 t_{P}^{\text {th }}}$ primitive root of unity and $\kappa(\eta)_{P}$ is a complete discretely valued field with residue field $\kappa(P), \kappa(\eta)_{P}$ has no $\ell^{2 t_{P}^{\text {th }}}$ primitive root of unity. Since $F_{P, \eta}$ is a complete discretely valued field with residue field $\kappa(\eta)_{P}$, $F_{P, \eta}$ has no $\ell^{2 t_{P}^{\text {th }}}$ primitive root of unity. Since $\phi_{P, \eta}\left(\mu_{\eta} \otimes 1\right)\left(\mu_{P} \otimes 1\right)^{-1} \in\left(L_{P} \otimes F_{P, \eta}\right)^{\ell^{2 t} t_{P}}$ and $t_{P} \geq d$, by (2.8), for a generator σ of $\operatorname{Gal}\left(L_{P} \otimes F_{P, \eta} / F_{P, \eta}\right)$, there exists $\theta_{P, \eta} \in$ $L_{P} \otimes F_{P, \eta}$ such that $\phi_{P, \eta}\left(\mu_{\eta} \otimes 1\right)\left(\mu_{P} \otimes 1\right)^{-1}=\theta_{P, \eta}^{-\ell^{d}} \sigma\left(\theta_{P, \eta}\right)^{\ell^{d}}$.

By (7.5), there exist extensions L / F of degree $\ell, N / F$ of degree coprime to ℓ, and $\mu \in L \otimes N$ such that

- $N_{L \otimes N / F}(\mu)=\lambda$ and
- $\alpha \cdot(\mu)=0 \in H^{3}\left(L \otimes N, \mu_{n}^{\otimes 2}\right)$
$-\operatorname{ind}(\alpha \otimes L)<\operatorname{ind}(\alpha)$.
Since $L \otimes N$ is also a function field of a curve over a p-adic field, by induction hypotheses, μ is a reduced norm from $D \otimes L \otimes N$ and hence $\lambda=N_{L \otimes N / N}(\mu)$ is a reduced norm from D. Since $N_{N / F}(\lambda)=\lambda^{[N: F]}, \lambda^{[N: F]}$ is a norm from D. Since $[N: F]$ is coprime to ℓ, λ is a reduced norm from D.
Corollary 11.2. Let K be a local field with residue field κ and F the function field of a curve over K. Let Ω be the set of divisorial discrete valuations of F. Let D be a central simple algebra over F of index coprime to $\operatorname{char}(\kappa)$ and $\lambda \in F$. If λ is a reduced norm from $D \otimes F_{\nu}$ for all $\nu \in \Omega$, then λ is a reduced norm from D.
Proof. Since λ is a reduced norm from F_{ν} for all $\nu \in \Omega_{F}, \alpha \cdot(\lambda)=0$ in $H^{3}\left(F_{\nu}, \mu_{n}^{\otimes 2}\right)$ for all $\nu \in \Omega$. Thus, by ([16, Proposition 5.2]), $\alpha \cdot(\lambda)=0$ in $H^{3}\left(F, \mu_{n}^{\otimes 2}\right)$ and by (11.1), λ is a reduced norm from D.

Acknowledgments: We thank Nivedita for the wonderful conversations during the preparation of the paper. The first author is partially supported by National Science Foundation grants DMS-1401319 and DMS-1463882 and the third author is partially supported by National Science Foundation grants DMS-1301785 and DMS-1463882.

References

[1] A. Albert, Structure of Algebras, Amer. Math. Soc. Colloq. Publ., Vol. 24, Amer. Math. Soc., Providence, RI, 1961, revised printing.
[2] M. Artin, Algebraic approximation of structures over complete local rings. Publ. Math. IHES, 36 (1969), 23-58.
[3] J.W.S Cassels and A. Fröhlich, Algebraic Number Theory, Thomson Book Company Inc, Washington, D.C, 1967.
[4] J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, in K-Theory and Algebraic Geometry : Connections with Quadratic Forms and Division Algebras, AMS Summer Research Institute, Santa Barbara 1992, ed. W. Jacob and A. Rosenberg, Proceedings of Symposia in Pure Mathematics 58, Part I (1995) 1-64.
[5] J.-L. Colliot-Thélène, R. Parimala, V. Suresh, Patching and local global principles for homogeneous spaces over function fields of p-adic curves, Commentari Math. Helv. 87 (2012), 10111033.
[6] B. Fein and M. Schacher, $\mathbb{Q}(t)$ and $\mathbb{Q}((t))$-Admissibility of Groups of Odd Order, Proceedings of the AMS, 123 (1995), 1639-1645.
[7] M. Fried and M. Jarden, Field Arithmetic, A Series of Modern Surveys in Mathematics, Volume 11, Springer.
[8] P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol.101, Cambridge University Press, Cambridge, 2006.
[9] D. Harbater and J. Hartmann, Patching over fields, Israel J. Math. 176 (2010), 61-107.
[10] D. Harbater, J. Hartmann and D. Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), 231-263.
[11] D. Harbater, J. Hartmann and D. Krashen, Local-global principles for torsors over arithmetic curves, American Journal of Mathematics, 137 (2015), 1559-1612
[12] D. Harbater, J. Hartmann and D. Krashen, Local-global principles for Galois cohomology, Commentarii Mathematici Helvetici, 89, (2014), 215-253.
[13] D. Harbater, J. Hartmann and D. Krashen, Refinements to patching and applications to field invariants,
[14] Y. Hu, Hasse Principle for Simply Connected Groups over Function Fields of Surfaces, J. Ramanujan Math. Soc. 29 (2014), no. 2, 155-199.
[15] B. Jacob and A. Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126-179.
[16] K. Kato, A Hasse principle for two-dimensional global fields, J. reine angew. Math. 366 (1986), 142-181.
[17] F. Lorenz, Algebra Volume II: Fields with Structure, Algebras and Advanced Topics, Universitytext, Springer (2008).
[18] M.-A. Knus, A.S. Merkurjev, M. Rost and J.-P. Tignol, The Book of Involutions, A.M.S, Providence RI, 1998.
[19] A.S. Merkurjev and A.A. Suslin, The norm residue homomorphism of degree 3, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 339-356; translation in Math. USSR-Izv. 36 (1991), 349-367.
[20] J.S.Milne, Étale Cohomology, Princeton University Press, Princeton, New Jersey (1980).
[21] R. Parimala and V. Suresh, Period-index and u-invariant questions for function fields over complete discretely valued fields, Invent. math. 197 (2014), 215-235.
[22] R. Parimala and V. Suresh, On the u-invariant of function fields of curves over complete discretely valued fields, Adv. Math. 280 (2015), 729-742.
[23] R. Preeti, Classification theorems for Hermitian forms, the Rost kernel and Hasse principle over fields with $c d_{2}(k) \leq 3$, J. Algebra 385 (2013), 294-313.
[24] J. Riou, Classes de Chern, morphismes de Gysin, pureté absolue In: Travaux de Gabber sur l'uniformisation locale et la cohomologie étale des schemas quasi-excellents. Sém. à l'École polytechnique 2006-2008, dirigé par L. Illusie, Y. Laszlo et F. Orgogozo. Astérisque 363-364, 2014, pp. 301-349.
[25] D. J. Saltman, Division algebras over p-adic curves, J. Ramanujan Math. Soc. 12 (1997), 25-47.
[26] J-P. Serre, Local fields, Springer-Verlag, New York, 1979.
[27] J-P. Serre, Galois Cohomology, Springer-Verlag, New York, 1997.
[28] J-P. Serre, Cohomological invariants, Witt invariants and trace forms, in Cohomological Invariants in Galois Cohomology, Skip Garibaldi, Alexander Merkurjev, Jean-Pierre Serre, University Lecture Series 28, Amer. Math. Soc. 2003.
[29] B. Surendranath Reddy and V. Suresh, Admissibility of groups over function fields of p-adic curves, Adv. in Math. 237 (2013) 316-330.

Department of Mathematics \& Computer Science, Emory University, 400 Dowman Drive NE, Atlanta, GA 30322, USA

E-mail address: parimala@mathcs.emory.edu
Department of Mathematics, Indian Institute of Technology (Bombay), Powai, Mumbai-400076, India

E-mail address: preeti@math.iitb.ac.in
Department of Mathematics \& Computer Science, Emory University, 400 Dowman Drive NE, Atlanta, GA 30322, USA

E-mail address: suresh@mathcs.emory.edu

