

WITT EQUIVALENCE OF FUNCTION FIELDS OF CONICS


PAWE L G LADKI AND MURRAY MARSHALL


Abstract. Two fields are Witt equivalent if, roughly speaking, they have
the same quadratic form theory. Formally, that is to say that their Witt
rings of symmetric bilinear forms are isomorphic. This equivalence is well
understood only in a few rather specific classes of fields. Two such classes,
namely function fields over global fields and function fields of curves over local
fields, were investigated by the authors in their earlier works [5] and [6]. In the


present work, which can be viewed as a sequel to the earlier papers, we discuss
the previously obtained results in the specific case of function fields of conic
sections, and apply them to provide a few theorems of a somewhat quantitive
flavour shedding some light on the question of numbers of Witt non-equivalent
classes of such fields.


1. Introduction


One of the classical problems in bilinear algebra is to classify fields with respect
to Witt equivalence, that is equivalence defined by isomorphism of their Witt rings
of symmetric bilinear forms, which also includes fields of characteristic two. This
problem is, in fact, manageable only when restricted to some specific classes of fields,
which include trivial examples of quadratically closed fields, real closed fields, and
finite fields, the case of local fields ([13]), global fields ([16], [17], [18]), function fields
in one variable over algebraically closed fields of characteristic 6= 2, and function
fields in one variable over real closed fields ([7], [12]).


The authors of the present paper attempted to add two more classes of fields
to this list, and investigated function fields over global fields [5] and function fields
of curves over local fields [6], and managed to show that Witt equivalence of two
function fields over global fields induces in a canonical way a bijection v ↔ w
between Abhyankar valuations v ofK having residue field not finite of characteristic
2 and Abhyankar valuations w of L having residue field not finite of characteristic 2
([5, Theorem 7.5]). Subsequently, a variant of this theorem has been also established
in the local case ([6, Theorem 3.5]). Numerous corollaries providing some insight
into the question of how Witt equivalence in these cases is behaved have been also
drawn.


In the present paper we apply these results to take a closer look at the question of
the number of Witt non-equivalent classes of function fields of conics, and provide
some enumerative results in the case of conics defined over certain number fields.
Some of them generalize in a certain way to the case of conics defined over arbitrary
local fields. The main new results of the paper are found in Section 4. Throughout


2000 Mathematics Subject Classification. Primary 11E81, 12J20 Secondary 11E04, 11E12.
Key words and phrases. symmetric bilinear forms, quadratic forms, Witt equivalence of fields,


function fields, conic sections, valuations, Abhyankar valuations.
Murray Marshall passed away in May 2015. Our community lost a brilliant mathematician


and a wonderful man. We sorely miss him.


1







2 PAWE L G LADKI AND MURRAY MARSHALL


the entire exposition the authors use the language of hyperfields, which seem to
provide a natural and convenient language to study Witt equivalence. We recall
basic terminology and establish fundamental connections between hyperfields, val-
uations and quadratic forms in Section 2. All of this is a summary of Section 2
in [6], which, in turn, is a summary of Sections 2–6 in [5], and the reader more
interested in all the technicalities is kindly referred to consult author’s first paper
[5] in the sequel. In Section 3 the authors prove a few additional facts on function
fields of conics, and cite some old propositions that go back to Ernst Witt. The
authors would like to believe that their results can be thought of as extensions of
these beautiful, classical theorems by old masters.


2. Hyperfields, valuations and Witt equivalence


Hyperfields seem to provide a convenient and very natural way to describe Witt
equivalence. In what follows we shall review the basic concepts and definitions used
later in the paper. By a hyperfield we shall understand a system (H,+, ·,−, 0, 1),
where H is a set, + is a multivalued binary operation on H , i.e., a function from
H ×H to the set of all subsets of H , · is a binary operation on H , − : H → H is a
function, and 0, 1 are elements of H such that


(I) (H,+,−, 0) is a canonical hypergroup, i.e. for all a, b, c ∈ H ,
(1) c ∈ a+ b ⇒ a ∈ c+ (−b),
(2) a ∈ b+ 0 iff a = b,
(3) (a+ b) + c = a+ (b+ c),
(4) a+ b = b+ a;


(II) (H, ·, 1) is a commutative monoid, i.e. for all a, b, c ∈ H ,
(1) (ab)c = a(bc),
(2) ab = ba,
(3) a1 = a;


(III) a0 = 0 for all a ∈ H ;
(IV) a(b + c) ⊆ ab+ ac;
(V) 1 6= 0 and every non-zero element has a multiplicative inverse.


Hyperfields form a category with morphisms from H1 to H2, where H1, H2


are hyperfields, defined to be functions α : H1 → H2 which satisfy α(a + b) ⊆
α(a) + α(b), α(ab) = α(a)α(b), α(−a) = −α(a), α(0) = 0, α(1) = 1. For a
subgroup T of H∗, where H is a hyperfield, denote by H/mT the set of equivalence
classes with respect to the equivalence relation ∼ on H defined by


a ∼ b if and only if as = bt for some s, t ∈ T.


The operations on H/mT are the obvious ones induced by the corresponding oper-
ations on H . Denote by a the equivalence class of a. Multiplication is defined in a
natural way, and addition is set as follows:


a ∈ b+ c if and only if as ∈ bt+ cu for some s, t, u ∈ T.


(H/mT,+, ·,−, 0, 1) is then a hyperfield that we shall refer to as quotient hyperfield.
For a hyperfield H = (H,+, ·,−, 0, 1) the prime addition on H is defined by


a+′ b =

















a+ b, if one of a, b is zero ,


a+ b ∪ {a, b}, if a 6= 0, b 6= 0, b 6= −a,


H, if a 6= 0, b 6= 0, b = −a.
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For any hyperfield H := (H,+, ·,−, 0, 1), H ′ := (H,+′, ·,−, 0, 1) is also a hyperfield
[5, Proposition 2.1]. We shall callH ′ the prime of the hyperfield H . The motivation
for this definition comes from the following discussion: let K be a field and define
the quadratic hyperfield of K, denoted Q(K), to be the prime of the hyperfield
K/mK∗2. Now let W (K) be the Witt ring of non-degenerate symmetric bilinear
forms over K; see [13], [14] or [20] for the definition in case char(K) 6= 2 and [9],
[11] or [15] for the definition in the general case. Recall that a (non-degenerate
diagonal) binary form over K is an ordered pair 〈a, b〉, a, b ∈ K∗/K∗2, and its value
set , denoted by DK〈a, b〉, is the set of non-zero elements of a+b. Now, a hyperfield
isomorphism α between two quadratic hyperfields Q(K) and Q(L), where K,L are
fields, can be viewed as a group isomorphism α : K∗/K∗2 → L∗/L∗2 such that
α(−1) = −1 and


α(DK〈a, b〉) = DL〈α(a), α(b)〉 for all a, b ∈ K∗/K∗2.


Combining the results in [2], [8], and [14] one gets that two fields K and L are
Witt equivalent, denoted K ∼ L, iff Q(K) and Q(L) are isomorphic as hyperfields.
Moreover, a morphism ι : H1 → H2 between two hyperfields H1 and H2 induces
a morphism ι : H1/m∆ → H2 where ∆ := {x ∈ H∗


1 : ι(x) = 1}. The morphism
ι is said to be a quotient morphism if ι is an isomorphism, or, equivalently, if ι is
surjective, and


ι(c) ∈ ι(a) + ι(b) if and only if cs ∈ at+ bu for some s, t, u ∈ ∆.


A morphism ι : H1 → H2 is said to be a group extension if ι is injective, every
x ∈ H∗


2\ι(H∗
1 ) is rigid , meaning 1 + x ⊆ {1, x}, and


ι(1 + y) = 1 + ι(y), for all y ∈ H1, y 6= −1.


For a field K we adopt the standard notation from valuation theory: if v is
a valuation on K, Γv denotes the value group, Av the valuation ring, Mv the
maximal ideal, Uv the unit group, Kv the residue field, and π = πv : Av →
Kv the canonical homomorphism, i.e., π(a) = a + Mv. v is discrete rank one if
Γv = Z. Denote T = (1 + Mv)K


∗2. Consider the canonical group isomorphism
α : UvK


∗2/(1 +Mv)K
∗2 → K∗


v/K
∗2
v induced by


x ∈ Uv 7→ π(x) ∈ K∗
v .


and define ι : Q(Kv) → K/mT by ι(0) = 0 and ι(a) = α−1(a) for a ∈ K∗
v/K


∗2
v .


If v is non-trivial, then the map Q(K) → K/mT defined by x 7→ xT is a quotient
morphism and ι is a group extension. The cokernel of the group embedding α−1 :
K∗


v/K
∗2
v → K∗/T is equal to K∗/UvK


∗2 ∼= Γv/2Γv. We reflect this by calling
K/mT a group extension of Q(Kv) by the group Γv/2Γv. If v is non-trivial and


char(Kv) 6= 2, then K/mT can be naturally identified with Q(K̃v), where K̃v


denotes the henselization of (K, v). If v, v′ are valuations on K with v � v′,
i.e. such that v′ is a coarsening of v, meaning Av ⊆ Av′ , then Mv′ ⊆ Mv, and,
consequently, (1 + Mv′)K∗2 ⊆ (1 + Mv)K


∗2. If we denote by v the valuation on
Kv′ induced by v, that is


v(πv′(a)) = v(a), for a ∈ Uv′ ,


then the valuations v and v have the same residue field. If v and v′ are non-trivial
and v′ is a proper coarsening of v, meaning Av ( Av′ , then K/m(1 +Mv)K


∗2 is a
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group extension of the hyperfield Kv′/m(1 +Mv)K
∗2
v′ and the following diagram is


commutative:


Q(K) // K/m(1 +Mv′)K∗2 // K/m(1 +Mv)K
∗2


Q(Kv′)


OO


// Kv′/m(1 +Mv)K
∗2
v′


OO


Q(Kv)


OO


For a subgroup T of K∗ we say that x ∈ K∗ is T -rigid if T + Tx ⊆ T ∪ Tx, and
denoting by


B(T ) := {x ∈ K∗ : either x or − x is not T -rigid}
we will refer to the elements of B(T ) as to the T -basic elements. If x ∈ K∗ is
T -rigid and y = tx, for some t ∈ T , then y is T -rigid, so that B(T ) is a union of
cosets of T . If ±T = B(T ), and either −1 ∈ T or T is additively closed, we shall
say that the subgroup T is exceptional. If H ⊆ K∗ is a subgroup containing B(T ),


then there exists a subgroup Ĥ of K∗ such that H ⊆ Ĥ and (Ĥ : H) ≤ 2, and a


valuation v of K such that 1 +Mv ⊆ T and Uv ⊆ Ĥ . Moreover, Ĥ can be taken
to be simply H , unless T is exceptional [1, Theorem 2.16]. B(K∗2) is a subgroup
of K∗, and in the case when T = (1 +Mv)K


∗2, for some non-trivial valuation v of
K, B(T ) ⊆ UvK


∗2 and


B(T ) = {x ∈ K∗ : x = ι(y) for some y ∈ B(K∗2
v )},


where ι : Q(Kv) →֒ K/mT is the morphism described above. B(T ) is a group
and the group isomorphism ι : K∗


v/K
∗2
v → UvK


∗2/T induces a group isomorphism
B(K∗2


v )/K∗2
v → B(T )/T . T is exceptional if and only if K∗2


v is exceptional. We
will make frequent use of the following result:


Theorem 2.1 ([5, Theorem 5.3]). Suppose K, L are fields, α : Q(K) → Q(L)
is a hyperfield isomorphism and v is a valuation on K such that Γv is finitely
generated as an abelian group. Suppose either (i) the basic part of (1 +Mv)K


∗2 is
UvK


∗2 and (1 +Mv)K
∗2 is unexceptional, or (ii) the basic part of (1 +Mv)K


∗2 is
(1+Mv)K


∗2 and (1+Mv)K
∗2 has index 2 in UvK


∗2. Then there exists a valuation
w on L such that the image of (1+Mv)K


∗2/K∗2 under α is (1+Mw)L
∗2/L∗2 and


(L∗ : UwL
∗2) ≥ (K∗ : UvK


∗2). If (i) holds, then the image of UvK
∗2/K∗2 under α


is UwL
∗2/L∗2.


If K, L are fields, v and w are non-trivial, and α : Q(K) → Q(L) is a hyperfield
isomorphism such that the image of (1+Mv)K


∗2/K∗2 under α is (1+Mw)L
∗2/L∗2,


then α induces a hyperfield isomorphism K/m(1 + Mv)K
∗2 → L/m(1 + Mw)L


∗2


such that the diagram


(2.1) Q(K) //


��


Q(L)


��
K/m(1 +Mv)K


∗2 // L/m(1 +Mw)L
∗2
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commutes. If, in addition, the image of UvK
∗2/K∗2 under α is UwL


∗2/L∗2, then
α induces a hyperfield isomorphism Q(Kv) → Q(Lw) and a group isomorphism
Γv/2Γv → Γw/2Γw such that the diagrams


(2.2) K/m(1 +Mv)K
∗2 // L/m(1 +Mw)L


∗2


Q(Kv)


OO


// Q(Lw)


OO


and


(2.3) Q(K)∗ //


��


Q(L)∗


��
Γv/2Γv


// Γw/2Γw


both commute.
Recall that the nominal transcendence degree of K is defined to be


ntd(K) :=


{


trdeg(K : Q) if char(K) = 0


trdeg(K : Fp)− 1 if char(K) = p 6= 0
.


For an abelian group Γ, its rational rank of Γ, denoted rkQ(Γ), is defined to be the
dimension of the Q-vector space Γ⊗Z Q. If K is a function field over k and v is a
valuation on K, the Abhyankar inequality asserts that


trdeg(K : k) ≥ rkQ(Γv/Γv|k) + trdeg(Kv : kv|k),


where v|k denotes the restriction of v to k. The valuation v is Abhyankar (relative
to k) if


trdeg(K : k) = rkQ(Γv/Γv|k) + trdeg(Kv : kv|k).


In this case it is known that Γv/Γv|k is finitely generated and Kv is a function field
over kv|k.


3. function fields of conics


Let k be a field of characteristic 6= 2.


Proposition 3.1.
k[x,y]


(ax2+by2−1) is a principal ideal domain, for each a, b ∈ k∗.


Proof. This is well known, see [4]. �


Set ka,b := qf k[x,y]
(ax2+by2−1) , the quotient field of k[x,y]


(ax2+by2−1) . We assume always


that a, b ∈ k∗.


Proposition 3.2. The field of constants of ka,b over k is equal to k.


Proof. Clearly ka,b = k(x)(
√


1−ax2


b
). Suppose f = f0 + f1


√


1−ax2


b
, f0, f1 ∈ k(x), is


algebraic over k. Then f = f0 − f1


√


1−ax2


b
is also algebraic over k. Consequently,


f0 = (f + f)/2 and f2
0 − f2


1 (
1−ax2


b
) = ff are algebraic over k. It follows that


f2
1 (


1−ax2


b
) is algebraic over k, i.e., f1 = 0, and f0 ∈ k. �
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For a, b ∈ k∗, (a,b
k
) denotes the quaternion algebra over k, i.e., the 4-dimension


central simple algebra over k generated by i, j subject to i2 = a, j2 = b, ji =
−ij. We identify quaternion algebras over k which are isomorphic as k-algebras,
equivalently, are equal as elements of the Brauer group of k.


Proposition 3.3. The following are equivalent:
(1) (a,b


k
) = 1 (i.e., (a,b


k
) splits over k).


(2) 〈1,−a〉 ⊗ 〈1,−b〉 ∼ 0 over k.
(3) 1 ∈ Dk〈a, b〉.
(4) The conic ax2 + by2 = 1 has a rational point.
(5) ka,b is purely transcendental over k.


Proof. The equivalence of (1), (2), (3) and (4) is well-known from quadratic form
theory. If (p, q) is a rational point of ax2+by2 = 1 then ka,b = k(z) where z := y−q


x−p
.


Conversely, if ka,b = k(z) then, choosing f(z), g(z), h(z) ∈ k[z] so that x = f(z)
h(z) ,


y = g(z)
h(z) , and choosing r ∈ k so that h(r) 6= 0, one sees that ( f(r)


h(r) ,
g(r)
h(r) ) is a rational


point of ax2 + by2 = 1. Note: This argument fails if |k| < ∞, but the conclusion
continues to hold even in this case, since |k| < ∞ ⇒ the quadratic form 〈a, b〉 is
k-universal. �


From the definition of ka,b it is clear that 1 ∈ Dka,b
〈a, b〉, so (a,b


k
) splits over ka,b.


Of course, 1 also splits over ka,b (since it splits over k). Conversely one has the
following:


Proposition 3.4 (E. Witt). The only quaternion algebras defined over k which


split over ka,b are (a,b
k
) and 1.


Proof. See [19, Satz, Page 465] or [10, Lemma 4.4]. �


We write K ∼=k L to indicate that the field extensions K,L of k are k-isomorphic.


Proposition 3.5 (E. Witt). The following are equivalent:


(1) (a,b
k
) = ( c,d


k
).


(2) ka,b ∼=k kc,d.


Proof. Then implication (1) ⇒ (2) is [19, Satz, page 464]. The implication (2) ⇒
(1) is immediate from the Proposition 3.4. �


We will need to know which orderings of k extend to ka,b.


Lemma 3.6. An ordering < on k extends to an ordering on ka,b iff at least one of
a, b is positive at <.


Proof. One way is clear. If < extends to ka,b then, in ka,b, ax
2 + by2 = 1 > 0 so at


least one of a, b must be positive. Conversely, suppose at least one if a, b is positive.
Fix a real closure R of (k,<). Clearly ∃ x, y ∈ R satisfying ax2 + by2 = 1. Then


(a,b
k
) splits over k(x, y) and hence also over R, so ka,b →֒ Ra,b ≡ R(t). Any one of


the infinitely many orderings of R(t) extends the ordering <. �


4. application to function fields of conics


Let K be a function field in one variable (i.e. a function field K over k satisfying
trdeg(K : k) = 1) over a global field k. (We do not assume that k is the field
of constants of K over k.) We consider the set νK consisting of all non-trivial
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Abhyankar valuations of K over k such that Kv is not finite of characteristic 2.
Thus


νK = νK,0 ∪ νK,1 ∪ νK,2 ∪ νK,3 ∪ νK,4 (disjoint union)


where νK,0 is the set of valuations v of K such that Γv = Z and Kv is a number
field, νK,1 is the set of valuations v on K such that Γv = Z and Kv is a global field
of characteristic p 6= 0, 2, νK,2 is the set of valuations v on K such that Γv = Z and
Kv is a global field of characteristic 2, νK,3 is the set of valuations v on K such that
Γv = Z× Z, Kv is a finite field of characteristic 6= 2 and −1 /∈ K∗2


v and νK,4 is the
set of valuations v on K such that Γv = Z× Z, Kv is a finite field of characteristic
6= 2 and −1 ∈ K∗2


v .
Of course, some of the sets νK,i may be empty. Specifically, if char(K) /∈ {0, 2}


then νK,i = ∅ for i ∈ {0, 2} and if char(K) = 2 then νK,i = ∅ for i ∈ {0, 1, 3, 4}.
We will need the following two results from [5]:


Corollary 4.1 ([5, Corollary 8.1]). Suppose K, L are function fields in one vari-
able over global fields which are Witt equivalent via a hyperfield isomorphism α :
Q(K) → Q(L). Then for each i ∈ {0, 1, 2, 3, 4} there is a uniquely defined bijec-
tion between νK,i and νL,i such that, if v ↔ w under this bijection, then α maps
(1 + Mv)K


∗2/K∗2 onto (1 + Mw)L
∗2/L∗2 and UvK


∗2/K∗2 onto UwL
∗2/L∗2 for


i ∈ {0, 1, 2, 3} and such that α maps (1 +Mv)K
∗2/K∗2 onto (1 +Mw)L


∗2/L∗2 for
i = 4.


Corollary 4.2 ([5, Corollary 8.2]). Let K ∼ L be function fields in one variable
over global fields k, ℓ respectively, with fields of constants k and ℓ respectively. Then
k ∼ ℓ except possibly in the case where k, ℓ are both number fields. In the latter case
if there exists v ∈ νK,0 with Kv = k and w ∈ νL,0 with Lw = ℓ. Then k ∼ ℓ.


Remark 4.3. The last assertion of Corollary 4.2 applies, in particular, in the case
where K = k(x), L = ℓ(x), where k, ℓ are number fields.


Let k be a number field. Every ordering of k is archimedean, so that it corre-
sponds to a real embedding k →֒ R. Denote by r1 the number of real embeddings
of k and by r2 the number of conjugate pairs of complex embeddings of k. Then
[k : Q] = r1 + 2r2. Furthermore, let


Vk := {r ∈ k∗ : (r) = a
2 for some fractional ideal a of k}.


Vk is a subgroup of k∗ and k∗2 ⊆ Vk. We will need the following result, which is a
version of [5, Theorem 8.6]:


Theorem 4.4. Suppose K and L are function fields of genus zero curves over
number fields with fields of constants k and ℓ respectively, and α : Q(K) → Q(L)
is a hyperfield isomorphism. Then


(1) r ∈ k∗/k∗2 iff α(r) ∈ ℓ∗/ℓ∗2.
(2) α induces a bijection between orderings P of k which extend to K and or-


derings Q of ℓ which extend to L via P ↔ Q iff α maps P ∗/k∗2 to Q∗/ℓ∗2.
(3) α maps Vk/k


∗2 to Vℓ/ℓ
∗2.


(4) [k : Q] = [ℓ : Q].
(5) K is purely transcendental over k iff L is purely transcendental over ℓ. In


this case, the map r 7→ α(r) defines a hyperfield isomorphism between Q(k) and
Q(ℓ), and the 2-ranks of the ideal class groups of k and ℓ are equal.
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First part the proof follows the same line of reasoning as the proof of [5, Theorem
8.6], but we shall provide it here for the sake of the completeness of the exposition.
We will need two lemmas:


Lemma 4.5 ([5, Lemma 8.4]). The 2-rank of the group Vk/k
∗2 is r1 + r2 + t where


t is the 2-rank of the ideal class group of k.


Lemma 4.6 ([5, Lemma 8.5]). Suppose v is a discrete rank 1 valuation on k, and
a, b ∈ k∗. There exists an Abhyankar extension of v to ka,b such that v(ka,b


∗) =
v(k∗).


We now proceed to the proof of Theorem 4.4.


Proof. By our hypothesis, K = ka,b for some a, b ∈ k∗ and L = ℓc,d for some
c, d ∈ ℓ∗. If r ∈ k∗/k∗2, then r ∈ UvK


∗2/K∗2 for all v ∈ νK,0. This implies


α(r) ∈ UwL
∗2/L∗2 for all w ∈ νL,0. Since ℓ[x,y]


(cx2+dy2−1) is a principal ideal domain


with unit group ℓ∗ this implies, in turn, that α(r) ∈ ℓ∗/ℓ∗2. Thus α induces a group
isomorphism between k∗/k∗2 and ℓ∗/ℓ∗2. This proves (1). Suppose P is an ordering
of k which extends to an ordering P1 of K. Since α is a hyperfield isomorphism,
there exists a unique ordering Q1 of L such that α(P ∗


1 /K
∗2) = Q∗


1/L
∗2. Denote by


Q the restriction of Q1 to ℓ. Clearly α(P ∗/k∗2) = Q∗/ℓ∗2. This proves (2). Lemma
4.6 implies that


Vk/k
∗2 = {r ∈ k∗/k∗2 : r ∈ UvK


∗2/K∗2 ∀v ∈ νK,1 ∪ νK,2},


so (3) is clear. Observe that if v ↔ w, v ∈ νK,0, w ∈ νL,0, the diagram


(∗) K∗
v/K


∗2
v


// L∗
w/L


∗2
w


k∗/k∗2


OO


// ℓ∗/ℓ∗2


OO


is commutative. The vertical arrows are the maps induced by the field embeddings
k →֒ Kv, ℓ →֒ Lw. Since the top arrow in (∗) defines a hyperfield isomorphism
between Q(Kv) and Q(Lw) we know that [Kv : Q] = [Lw : Q]. Choose v, w with


[Kv : Q] = [Lw : Q] minimal. If (a,b
k
) splits over k then Kv = k and [Kv : Q] =


[k : Q]. If (a,b
k
) is non-split over k then (a,b


k
) splits over a quadratic extension, so


[Kv : k] = 2, i.e., [Kv : Q] = 2[k : Q]. Thus we see that either [k : Q] = [ℓ : Q],
2[k : Q] = [ℓ : Q], or [k : Q] = 2[ℓ : Q]. Suppose 2[k : Q] = [ℓ : Q], i.e., [Kv : Q] = 2,
and Lw = ℓ. Then the left vertical arrow in (∗) has a non-trivial kernel, but the right
vertical arrow in (∗) is an isomorphism, a contradiction. Thus 2[k : Q] = [ℓ : Q] is
impossible. A similar argument shows that [k : Q] = 2[ℓ : Q] is impossible. This


proves (4). If (a,b
k
) is non-split and ( c,d


ℓ
) is split, then [Kv : k] = 2 and Lw = ℓ


so 2[k : Q] = [ℓ : Q], contradicting what was proved in (4). This proves the first


statement of (5). If (a,b
k
) and ( c,d


ℓ
) are both split then k = Kv, ℓ = Lw. In this


case it follows from the commutativity of (∗) and what was already proved that the
map r 7→ α(r) defines a hyperfield isomorphism between Q(k) and Q(ℓ). Since it is
well-known that r1 and r2 are invariant under Witt equivalence, the last assertion
of (5) is immediate now, from (3) and Lemma 4.5. This completes the proof.


�
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Question 1: Is it true that every hyperfield isomorphism α : Q(ka,b) → Q(ℓc,d)
induces a hyperfield isomorphism between Q(k) and Q(ℓ)? I.e., is the hypothesis


that (a,b
k
) and ( c,d


ℓ
) are split really necessary?


Question 2: For a given number field k, are there infinitely manyWitt inequivalent
fields of the form ka,b, a, b ∈ k∗? All we are able to prove in this regard is the
following:


Theorem 4.7. Let k be a number field, r = the number of orderings of k, w = the
number of Witt inequivalent fields of the form ka,b, a, b ∈ k∗. Then


w ≥

















2 if − 1 ∈ Dk〈1, 1〉,
3 if − 1 /∈ Dk〈1, 1〉, k is not formally real,


r + 3 if k is formally real


.


Proof. For a prime p of k (finite or infinite), denote by k̂p the completion of k at p.


Case 1: −1 ∈ Dk〈1, 1〉. Fix a, b ∈ k∗ so that (a,b
k
) does not split over k. E.g., fix


some finite prime p of k and choose a, b ∈ k∗ so that a /∈ k̂∗2
p and b /∈ D


k̂p
〈1,−a〉.


Theorem 4.4 (5) implies that ka,b 6∼ k1,1.


Case 2: −1 /∈ Dk〈1, 1〉, k not formally real. By hypothesis, (−1,−1
k


) is not split


over k. By the Hasse norm theorem there exists a finite prime p such that (−1,−1
k


) is


not split over k̂p. By Hilbert reciprocity there exists a finite prime q 6= p such that


(−1,−1
k


) is not split over k̂q. Fix b ∈ k∗ so that b is sufficiently close to −1 at p and


b is sufficiently close to 1 at q. Then b is minus a square in k̂p and b is a square in


k̂q. If there exists a hyperfield isomorphism α : Q(k−1,−1) → Q(kb,−1) then, since


(−1,−1
k


) splits over k−1,−1 and α(−1) = −1, it follows that (−1,−1
k


) splits over kb,−1.


According to Proposition 3.4, this implies (−1,−1
k


) = 1 or (−1,−1
k


) = ( b,−1
k


), i.e.,


(−1,−1
k


) = 1 or (−b,−1
k


) = 1. Since (−1,−1
k


) does not split over k̂p and (−b,−1
k


) does


not split over k̂q this is a contradiction. Thus k−1,−1 6∼ kb,−1. Since (−1,−1
k


) 6= 1


and ( b,−1
k


) 6= 1 one also has that k−1,−1 6∼ k1,1 and kb,−1 6∼ k1,1.
Case 3: Suppose k is formally real. For each integer 0 ≤ i ≤ r choose ai ∈ k∗


so that ai > 0 for exactly i of the orderings of k. Without loss of generality,
a0 = −1, ar = 1. By Lemma 3.6 exactly i of the orderings of k extend to kai,−1, so
kai,−1 6∼ kaj ,−1 if i 6= j by Theorem 4.4 (2). This proves w ≥ r + 1. Fix 0 ≤ i ≤ r
so that r− i is odd (e.g., take i = r− 1). By Hilbert reciprocity there exists a finite


prime p of k such that (ai,−1
k


) does not split over k̂p. Pick ai ∈ k∗ sufficiently close


to 1 at p and sufficiently close to ai at each ordering of k. Then ai is a square in k̂p
and has the same sign as ai at each ordering. By Hilbert reciprocity there exists a


finite prime q 6= p so that (ai,−1
k


) does not split over k̂q. Pick br ∈ k∗ so that br
is close to ar(= 1) at each ordering of k and such that br is close to ai at p. Then


kbr,−1 6∼ kar ,−1, by Theorem 4.4 (5) (because (ar ,−1
k


) splits over k but ( br ,−1
k


) does


not split over k̂p). Also, all orderings of k extend to kbr ,−1, so kbr ,−1 6∼ kaj ,−1 for
0 ≤ j < r, by Theorem 4.4 (2). Finally, pick b0 ∈ k∗ so that b0 is close to a0(= −1)
at each ordering of k, b0 is close to ai at p and b0 is close to −ai at q. A similar
argument to that used in Case 2 shows that kb0,−1 6∼ k−1,−1. Theorem 4.4 (2)
shows that kb0,−1 6∼ kaj ,−1 for 0 < j ≤ r and kb0,−1 6∼ kbr ,−1. �
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Question 3: For a fixed integer n ≥ 1, are there infinitely many Witt inequivalent
fields ka,b, k a number field, [k : Q] = n, a, b ∈ k∗?


Following the argument of [5, Corollary 8.8] we are able to partially answer this
question in case n = 2: let d be a square free integer and denote by N the number of
prime integers that ramify in Q(


√
d). This is equal to the number of prime divisors


of the discriminant of Q(
√
d). Recall that the discriminant of Q(


√
d) is d if d ≡ 1


mod 4 and 4d otherwise. Then the 2-rank of the class group of Q(
√
d) is


{


N − 2 if d > 0 and d /∈ DQ〈1, 1〉,
N − 1 otherwise.


See [3, Corollary 18.3] for the proof. In particular, there are infinitely many possible


values for the 2-rank of the class number for fields of the sort Q(
√
d), d ∈ Q∗\Q∗2.


Combining this with Theorem 4.4 yields:


Corollary 4.8. There are infinitely many Witt inequivalent fields of the form k(x),
k a quadratic extension of Q.


Finally, we consider an application of Corollary 4.1 and Theorem 4.4 to fields of
the form Qa,b.


Proposition 4.9. Suppose α : Q(Qa,b) → Q(Qc,d) is a hyperfield isomorphism.
Then, for each prime integer p, α(p) = ±q for some prime integer q, and p = 2 ⇒
q = 2.


Proof. Let K = Qa,b, L = Qc,d. Theorem 4.4 shows that r 7→ α(r) defines a group
automorphism of Q∗/Q∗2. For r ∈ Q∗/Q∗2, define


SK(r) := {v ∈ νK,1 ∪ νK,2 : r /∈ UvK
∗2}.


Note that SK(±1) is the empty set. Let p be a prime. The set SK(±p) is non-
empty (by Lemma 4.6) and is minimal among all non-empty SK(r). It follows that
SL(α(p)) is non-empty and minimal among all non-empty SL(s), s ∈ Q∗/Q∗2, so
α(p) = ±q, for some prime q. Note also that if p = 2, then SK(p) is a subset of
νK,2. Then SL(±q) is a subset of νL,2, so q = 2. �


Function fields of conics defined over local fields have been investigated by the
authors in their earlier work [6]. There, the following versions of Corollaries 4.1
and 4.2 are established for local fields:


Theorem 4.10 ([6, Theorem 3.5]). Suppose K, L are function fields in one variable
over local fields of characteristic 6= 2 which are Witt equivalent via a hyperfield
isomorphism α : Q(K) → Q(L). Then for each i ∈ {0, 1, 2, 3} there is a uniquely
defined bijection between µK,i and µL,i such that, if v ↔ w under this bijection, then
α maps (1+Mv)K


∗2/K∗2 onto (1+Mw)L
∗2/L∗2 and UvK


∗2/K∗2 onto UwL
∗2/L∗2


for i ∈ {0, 1, 2} and such that α maps (1+Mv)K
∗2/K∗2 onto (1+Mw)L


∗2/L∗2 for
i = 3.


Theorem 4.11 ([6, Theorem 3.6]). Let K ∼ L be function fields in one variable
over local fields k and ℓ respectively, with fields of constants k and ℓ respectively.
Then k ∼ ℓ except possibly when k, ℓ are both dyadic local fields. In the latter case
if there exists v ∈ µK,0 with Kv = k and w ∈ µL,0 with Lw = ℓ then k ∼ ℓ.


In view of the abovementioned results, we are able to slightly extend the results
of Proposition 4.9 to the local case:
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Theorem 4.12. Suppose k, ℓ are local fields of characteristic 6= 2, a, b ∈ k∗, c, d ∈
ℓ∗. Then ka,b ∼ ℓc,d ⇒ k ∼ ℓ.


Proof. By Theorem 4.11 it suffices to deal with the case where k, ℓ are both dyadic.
Let α : Q(ka,b) → Q(ℓc,d) be some hyperfield isomorphism. Making use of the
bijection between µK,0 and µL,0 induced by α, and arguing as in the proof of
Theorem 4.4 we see that α induces an isomorphism between k∗/k∗2 and ℓ∗/ℓ∗2.


This implies [k : Q̂2] = [ℓ : Q̂2]. Thus k ∼ ℓ iff k, ℓ have the same level. The level


of a dyadic local field is 1, 2 or 4. If k has level 4 then [k : Q̂2] = [ℓ : Q̂2] is odd so
ℓ has level 4. If k has level 1 then ka,b and consequently also ℓc,d has level 1. Since
ℓ is algebraically closed in ℓc,d this implies ℓ has level 1. �


Theorem 4.13. Suppose k is a local field of characteristic 6= 2, a, b, c, d ∈ k∗.
Then ka,b ∼ kc,d ⇒ (a,b


k
) = ( c,d


k
) except possibly in the case when k is p-adic of


level 1, for some odd prime p.


Proof. If k = C there is only one quaternion algebra and the result is obvious.
Otherwise, there are two quaternion algebras, one split and one non-split. Suppose
K = ka,b, L = kc,d, (


a,b


k
) split, ( c,d


k
) non-split. Suppose k = R. Then K is formally


real and L is non-real (of level 2), so K 6∼ L. Suppose now that k is dyadic.
Suppose K ∼ L. Fix a hyperfield isomorphism α : Q(K) → Q(L). Fix v ∈ µK,0


with Kv = k and let w be the corresponding element of µL,0. Then k = Kv ∼ Lv


so [k : Q̂2] = [Kv : Q̂2] = [Lw : Q̂2]. Since k ⊆ Lw, this forces Lw = k, i.e., ( c,d
k
)


splits, a contradiction. Suppose now that k is p-adic, p 6= 2, and k has level 2.
Since k has level 2, we may assume c = π, where v0(π) = 1, and d = −1. Thus ∃
f, g ∈ L∗ such that π = f2 + g2. For each w ∈ µL,1, w(π) = v0(π) = 1 is odd, so
w(f2) = w(g2) < w(f2 + g2), i.e., −1 is a square in Lw, for all w ∈ µL,1. Suppose
K ∼ L. Fix a hyperfield isomorphism α : Q(K) → Q(L). Then the induced one-
to-one correspondence v ↔ w between µK,1 and µL,1 and the induced hyperfield
isomorphisms Q(Kv) → Q(Lw) imply −1 is a square in Kv for all v ∈ µK,1. Define


one particular such v as follows: Since (a,b
k
) splits, K = k(x). Extend v0 to K


by defining v(
∑n


i=0 aix
i) = min{v0(ai) : i ∈ {0, . . . , n}}. Clearly v ∈ µK,1 and


Kv = kv0(x). But then Kv and kv0 both have the same level, contradicting the fact
that Kv has level 1 and kv0 has level 2. �
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