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Abstract. The quadratic value theorem provides a dichotomy principle for
the representation of an irreducible polynomial p in the ringA = F [X1, · · · ,Xn]
where F is a field, by an anisotropic quadratic form q defined over F : either
a scalar multiple of p is multiplicatively generated by the values of q over A,
or q is anisotropic over the residue field of A at p. We examine the validity of
this principle in wider contexts.
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1. Introduction

By the classical theorem in arithmetic on the sums of two squares, the positive
integers which can be written as a sum of two squares are precisely those whose
prime factors of the form 4k + 3 appear an even number of times in their prime
factorization. A counterpart of this result for polynomial ring F [X ] where F is a
field of characteristic different from 2 is also known. It turns out that a polynomial
g ∈ F [X ] is a sum of squares of two polynomials, if the leading coefficient of g
is a sum of squares of two elements of F and for every irreducible factor p of g
for which −1 is not a square in the field F [X ]/(p(X)), the exponent of p in the
prime factorization of g is even (see [4, Thm 1, 2]). A multivariable version of the
previous result is known as “quadratic value theorem” (see [2, 18.3]). This theorem
states that if q is an arbitrary anisotropic quadratic form over a field F of arbitrary
characteristic and g ∈ F [T ] = F [t1, · · · , tn] is a nonzero polynomial then a scalar
multiple of g lies in the group generated by the nonzero values represented by q over
the field F (T ) = F (t1, · · · , tn) if and only if q is isotropic over the residue field at p
for each irreducible divisor p occurring to an odd power in the factorization of g. In
the case where the set of all nonzero values represented by q form a group (e.g., if q is
a Pfister form), this theorem indicates that a scalar multiple of a nonzero polynomial
g ∈ F [T ] is represented by q if and only if q is isotropic for each irreducible divisor p
occurring to an odd power in the factorization of g. Note that the quadratic value
theorem, together with Cassels-Pfister theorem (which guarantees a polynomial
solution f1, · · · , fn ∈ F [X ] of a1f1(X)2 + · · ·+ anfn(X)2 = g(X), a1, · · · , an ∈ F ,
if there exists a rational function solution f1, · · · , fn ∈ F (X)), imply the above
polynomial version of the two squares theorem.

Two main important steps in the proof of these types of theorems are, first,
to determine the conditions under which a prime or irreducible element p can be
represented by a certain quadratic form, secondly, to determine the conditions
under which p divides a nonzero value represented by that form. A look at the
above theorems reveals that there always exists a dichotomy between the primes
which can be represented by the corresponding form (or a scalar multiple of them
lies in the group generated by the nonzero values represented by that form) and
those primes p for which the corresponding form is anisotropic over the residue
field at that prime. For example, the classical theorem on sums of two squares in
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arithmetic shows that a prime p can be either written as a sum of two squares,
i.e., p = x2 + y2 for some integers x and y, or p ∤ x2 + y2 unless p|x and p|y.
In the language of quadratic forms, this means that the binary quadratic form
q = X2 + Y 2 is either anisotropic over Fp or p is represented by q over Z (see the
precise definition of anisotropic forms in §2). We have a similar dichotomy for the
polynomial version of the two squares theorem and the quadratic value theorem.

The quadratic value theorem provides a very helpful principle which can be used
to give a unified treatment of many theorems in the theory of quadratic forms
and some related results on sums of squares. For example, the well-known Artin-
Springer theorem [13] which states that an anisotropic quadratic form remains
anisotropic after a scalar extension of odd degree, is a quasi-immediate corollary
of it. Also, another result which has a similar esprit (see [12]) stating that if F is
an ordered field and f(X) is an irreducible polynomial on F which changes sign on
F then the ordering of F can be extended to F [X ]/(f(X)) and more generally a
substitution principle, can be easily deduced from the quadratic value theorem (see
[2, 18.9] and (6.3)).

Particular cases of the quadratic value theorem or very related results can be
found in [8, Ch. X, 2.13], [10, Ch. 7, 1.7], [6], [7], [11, Ch. 2, 8.6] and [5, §5].
The proof of many of the above results is reminiscent of the proof of Artin-Springer
theorem. Primes of the form 4k + 3 in the theorem on sums of two squares play
a similar role as the polynomials of odd degree in the Artin-Springer theorem.
According to [10, p. 99], the main idea of these proofs “comes from an old theorem
of Legendre on ternary quadratic forms over Z.”

A first step, used in the proof of many of the above results, is to apply a suitable
division algorithm. Roughly speaking, if in an integral domain A, a prime p of
type 4k + 3 (or a polynomial of odd degree, depending on the context) divides an
expression like a1β

2
1 + · · · + anβ

2
n, then the technique consists in estimating the

magnitude of a1γ
2
1 + · · ·+anγ

2
n where γ1, · · · , γn are the remainders of the divisions

of β1, · · · , βn by p. The relation p|a1γ
2
1 + · · · + anγ

2
n leads to a contradiction,

either by an infinite descent or by finding a smaller prime of type 4k + 3 dividing
a1γ

2
1 + · · ·+ anγ

2
n and finishing by induction. This is actually what happens in the

classical proof of Artin-Springer theorem where A is the polynomial ring F [X ] over
a field F and p is an irreducible polynomial odd degree.

Unfortunately the ordinary euclidean division algorithm is not always avail-
able. Already for the case where A = R[X ] where R is an integral domain but
not a field, one does not have such an algorithm with respect to the ordinary
degree map. Nevertheless, we have a division algorithm in a weak sense: for
every polynomial f(X), g(X) ∈ R[X ] there exist a nonzero scalar α ∈ R and
the polynomials q(X), r(X) ∈ R[X ] such that αf(X) = g(X)q(X) + r(X) with
deg(r(X)) + 1 ≤ deg(g(X)). In this situation, the constant polynomials, i.e., the
elements of R such as α, are infinitesimal, in the sense that an inequality like
deg(a(X)) ≤ deg(b(X)) does not change if one multiplies a(X) by the elements of
R. Also, the degree function satisfies the ultrametric inequality deg(f(X)+g(X)) ≤
max{deg(f(X)), deg(g(X))}. It was perhaps Hurwitz, who for the first time, im-
plicitly used such kinds of division algorithms in the context of number fields in [3].
Some of their number theoretics applications in connection with euclidean number
fields appeared several decades later in [9]. For the polynomial ring F [X1, · · · , Xn]
where F is a field, this division algorithm has been implicitly used in the proofs of
a norm principle in [7] and in the quadratic value theorem in [2, 18.3].

In this work, we apply and further exploit this machinery for more general weak
division algorithms. Inspired by the division algorithm mentioned above, we con-
sider an (ǫ, δ,m, n)-division algorithm in an arbitrary integral domain A, with a
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degree like homomorphism d : A → (Γ,+) where Γ is a commutative positive
totally ordered semigroup such that for every a, b ∈ A with b 6= 0, there exist
q, r ∈ A such that αa = bq + r and α comes from a subset Sb of the nonzero ele-
ments of A depending only on b such that d(α1 · · ·αn) + d(r) + δ ≤ d(b) for every
α1, · · · , αn ∈ Sb (this intuitively encodes the “infinitesimal” nature of the elements
of Sb) and d(a1 + · · ·+ am) ≤ max{d(a1), · · · , d(am)}+ ǫ for every a1, · · · , am ∈ A
(this interprets the “ultrametric” nature of d).

In such circumstances, we state and prove in (4.3), a general dichotomy principle
which shows that under reasonable assumptions, for a quadratic form q(X1, · · · , Xn)
with coefficients in a unique factorization domain A and a prime p ∈ A, one has two
alternatives: either q is anisotropic over the residue field of A at p or there exists
an invertible element c ∈ A such that cp belongs to the group generated by the
nonzero values represented by the form q in the multiplicative group of the field of
fractions of A. In order to obtain truly number theoretic applications of this result,
we also need a corresponding Cassels-Pfister type theorem. This Cassels-Pfister
theorem is proved in (5.1).

In the last section of this paper, by considering different weak division algorithms
(e.g., the binary division algorithm in Z), we present some applications of the
dichotomy principle given in this work.

2. Notation and Terminology

Unless otherwise stated, all fields considered in this work are of arbitrary char-
acteristic. Let A be an integral domain. A quadratic form on A is a homogeneous
polynomial q(X1, · · · , Xn) ∈ A[X1, · · ·Xn] of degree 2. The set of all nonzero values
represented by q = q(X1, · · · , Xn) over A is denoted by DA(q) or simply by D(q)
if no confusion arises, in other words

DA(q) = {q(α) 6= 0 | α ∈ An}.

The group generated by D(q) in the field of fractions of A is denoted by 〈D(q)〉.
The bilinear form associated to q is denoted by B, i.e.,

(1) B(X,Y ) = q(X + Y )− q(X)− q(Y ), X, Y ∈ An.

The A-submodule rad(B) = {v ∈ An : B(v, w) = 0 for all w ∈ An} of An is called
the radical of B. The standard Gram matrix of q =

∑
i<j aijXiXj is the matrix

G = [bij ] where bii = 2aii and bij = aij for 1 ≤ i 6= j ≤ n. It follows that utGu =
2q(u) for every column vector u ∈ An. A quadratic form q is called nondegenerate if
the associated bilinear form B is nondegenerate. Alternatively q is nondegenerate if
the standard Gram matrix of q is invertible (or equivalently rad(B) = 0). The form
q is said to be isotropic, if there exists a vector u ∈ An\rad(B) such that q(u) = 0;
such a vector u is called an isotropic vector for q. Hence, if q is nondegenerate,
then q being isotropic simply means that there exists a nonzero vector u ∈ An such
that q(u) = 0. The form q is called anisotropic if q is not isotropic, in other words
q(u) = 0 implies that u ∈ rad(B). In this sense, the form X2 + Y 2 is anisotropic
over F2.

For an integral domain A and a prime element p (resp. prime ideal P ) of A,
the residue field at p (resp. at P ) is defined as the field of fractions of the integral
domain A/(p) (resp. A/P ) and is denoted by A(p) (resp. A(P )).

We recall that an ordered semigroup (S,≤) is called positive if for every x, y ∈ S
we have x ≤ xy and x ≤ yx. Let N0 denote the set of nonnegative integers.

For a real number x, the largest integer less than or equal to x and the smallest
integer greater than or equal to x are respectively denoted by ⌊x⌋ and ⌈x⌉. The
fractional part of a positive real number x is denoted by {x}, i.e., {x} = x− ⌊x⌋.
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3. A weak division algorithm

Consider a commutative totally ordered positive semigroup (Γ,+,≤). We con-
sider two extra symbols −∞,+∞ with the following formal properties ±∞+ γ =
±∞, ±∞+(±∞) = ±∞ and −∞ < γ < +∞ for all γ ∈ Γ. Let m,n be two positive
integers and ǫ, δ ∈ Γ∪{±∞}. We say that an integral domain A has an (ǫ, δ,m, n)-
division algorithm with respect to a degree-like function d : A → Γ ∪ {−∞} if the
following conditions are satisfied:
(i) d(a) = −∞ if and only if a = 0.
(ii) d(ab) = d(a) + d(b) for all a, b ∈ A.
(iii) d(a1 + a2 + · · ·+ am) ≤ max{d(a1), d(a2), · · · , d(am)}+ ǫ for all ai ∈ A.
(iv) For every b ∈ A with b 6= 0, there exists a subset Sb of nonzero elements of
A with 1 ∈ Sb such that for every a ∈ A there exists q, r ∈ A and α ∈ Sb with
αa = qb+ r and d(α1α2 · · ·αn) + d(r) + δ ≤ d(b) for all αi ∈ Sb, i = 1, · · · , n.

We say that d is δ-strict, if in the condition (iv) above, d(α1α2 · · ·αn)+d(r)+δ <
d(b). We say that d is ǫ-strict if in the condition (iii) above we have the strict
inequality d(a1 + a2 + · · ·+ am) < max{d(a1), d(a2), · · · , d(am)}+ ǫ if for some i, j
we have d(ai) 6= d(aj).

Lemma 3.1. (a) For every invertible element u of A, the element e = d(u) is the
minimum element of the image of d.
(b) We have e+ e = e.
(c) If Γ is a cancellative semigroup then e is the neutral element of Γ.

Proof. (a) Since Γ is a positive semigroup, we have d(u) ≤ d(u) + d(u−1a) = d(a)
for every a ∈ A.
(b) We have e ≤ e + e by the positiveness of Γ. On the other hand, if u is an
invertible element of A we have e + e = d(u) + d(u) = d(u2) ≤ e since u2 is
invertible. Hence, e+ e = e.
(c) This follows from the general fact that in a cancellative semigroup an element
e is the neutral element if and only if e is idempotent. �

Example 3.2. (a) For every positive integers n,m, the absolute value function
d : Z → (N0,+) ∪ {−∞}, d(x) = |x|, x 6= 0 and d(0) = −∞ gives a (+∞, 1,m, n)-
division algorithm. In this case for every nonzero integer b, we can take Sb = {1}.
This is the classical euclidean division algorithm.
(b) If A[X ] is the polynomial ring over an arbitrary integral domain A, then the
ordinary degree function d : A[X ] → (N0,+) ∪ {−∞} gives a (0, 1,m, n)-division
algorithm for every positive integers n,m. In this case for every polynomial b ∈
A[X ], one can take Sb = A\{0}. If A is a field, then we have the ordinary division
algorithm of polynomials and one can take Sb = {1}.

Lemma 3.3. Let c be a real number with c > 1. Then, for every real number x,
there exists an integer k ∈ {1, 2, · · · , ⌈c− 1⌉} and an integer q such that |kx− q| ≤
1/c. This inequality is strict unless there exists an integer k ∈ {1, 2, · · · , ⌈c − 1⌉}
such that {kx} = c−1

c
.

Proof. First consider the case where 1 < c ≤ 2. We should prove that there exists
an integer q such that |x − q| ≤ 1/c. In fact there exists an integer q such that
|x− q| ≤ 1/2 ≤ 1/c and the proof is complete.

Now consider the case where c > 2. If for some k ∈ {1, · · · , ⌈c − 1⌉}, the
quantity {kx} belongs to one of the intervals [0, 1/c[ or [(c− 1)/c, 1[ then for q = 0
or q = 1 we obtain |kx − q| ≤ 1/c and the proof is complete (note that this
inequality is strict unless {kx} = c−1

c
). Otherwise, for every k ∈ {1, · · · , ⌈c − 1⌉}

we have {kx} ∈ [1/c, (c − 1)/c[. Since [1/c, (c− 1)/c[ is the union of the intervals
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I1 ∪ · · · I⌈c−1⌉−1 where

Ii = [
1

c
+ (i − 1)

c− 2

c(⌈c− 1⌉ − 1)
,
1

c
+ i

c− 2

c(⌈c− 1⌉ − 1)
[,

by pigeonhole principle there exists an interval Ii for some i with 1 ≤ i ≤ ⌈c−1⌉−1
such that {kx} ∈ Ii. It follows that for some m,n ∈ {1, · · · , ⌈c−1⌉} with m > n we
have {mx}, {nx} ∈ Ii. This implies that |{mx}−{nx}| < length(Ii) =

c−2
c(⌈c−1⌉−1) ≤

1/c. Now if we put q = ⌊mx⌋ − ⌊nx⌋ we obtain |(m− n)x− q| = |{mx} − {nx}| <
1/c. �

In the below lemma we use the convention logc(0) = −∞ for a real number
c > 1.

Lemma 3.4. Let c > 1 be a real number and m,n be positive integers. Then Z has
a (logc m, 1 − n logc(⌈c − 1⌉),m, n)-division algorithm with respect to the function
d : Z → R≥0 ∪ {−∞} given by d(x) = logc |x|.

Proof. We should check the validity of (i), (ii), (iii) and (iv). We obviously have
(i) and (ii). To prove (iii), consider a1, · · · , am ∈ Z with ai 6= 0 for all i. Choose i
with 1 ≤ i ≤ m such that

|ai| = max{|a1|, |a2|, · · · , |am|}.

We obtain d(a1+· · ·+am) = logc(|a1+a2+· · ·+am|) ≤ logc(|a1|+|a2|+· · ·+|am|) ≤
logc(m|ai|) = logc(|ai|) + logcm and the proof of (iii) is finished.

To prove (iv), consider a nonzero b ∈ Z. Take the set Sb = {1, · · · , ⌈c − 1⌉}
(here Sb does not depend on b). Consider an element a ∈ Z. First note that since
d(−1) = 0, we have d(z) = d(−z) for every z ∈ Z, hence proving the result for
−a or −b instead of a or b are equivalent. Thus, without loss of generality we may
assume that both a and b are positive. Also, note that if x = a/b is an integer
then by taking α = 1 and r = 0, the validity of (iv) is established. Hence, we may
assume that x is not integer. According to (3.3), there exists an integer q and an
element α ∈ {1, · · · , ⌈c− 1⌉} such that |αx− q| ≤ 1/c hence

(2) d(αx − q) = logc(|αx− q|) ≤ logc(1/c) = −1

We have αx − q = (αa − qb)/b. Putting r := αa − bq ∈ Z, we obtain αa =
qb + r. It remains to show that d(α1α2 · · ·αn) + d(r) + δ ≤ d(b) or equivalently
logc(α1α2 · · ·αn) + logc(|r/b|) + δ ≤ 0 for every α1, · · · , αn ∈ Sb. But this inequal-
ity can be proved as follows: logc(α1 · · ·αn) + logc(|r/b|) + δ = logc(α1 · · ·αn) +
logc(|αx− q|)+ δ ≤ n logc(⌈c− 1⌉)− 1+ δ = 0 by (2) and the fact that αi ≤ ⌈c− 1⌉
for i = 1, · · · , n. �

4. A dichotomy principle

Definition 4.1. Let (Γ,+) be an abelian torsion-free group. We say that a qua-
dratic form q(X1, · · · , Xn) =

∑
i≤j aijXiXj ∈ A[X1, · · · , Xn] is Γ-equilibrated if ev-

ery solution (γ1, · · · , γn) ∈ Γn of the equations γi+γj = γi′+γj′ = γi′′+γj′′ = · · · =
γ where γ1, · · · , γn ∈ Γ and γ ∈ G is a constant and (i, j), (i′, j′), (i′′, j′′), · · · are all
indices for which aij , ai′j′ , ai′′j′′ , · · · are nonzero, is of the form γ1 = γ2 = · · · = γn.

Example 4.2. Every diagonal quadratic form q = a1X
2
1 + · · ·+anX

2, ai ∈ A is Z-
equilibrated since the equations 2γ1 = · · · = 2γn = γ imply that γ1 = · · · = γn. The
two dimensional form q(X1, X2) = X1X2 is not Z-equilibrated since the equation
γ1 + γ2 = γ does not imply that γ1 = γ2.
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Theorem 4.3. Let A be a unique factorization domain. Assume that A has an
(ǫ, δ,m, n − 1)-division algorithm with respect to a degree-like function d : A →
Γ∪{−∞} where Γ is a commutative positive totally ordered cancellative semigroup.
Assume further that the image of d has the least element property and let e be the
minimum element of the image of d and suppose that δ > e.

Let q(X1, · · · , Xn) =
∑

i≤j aijXiXj ∈ A[X1, · · · , Xn] be a quadratic form with

m nonzero terms and let µ = max{d(aij) : 1 ≤ i, j ≤ n}. Assume that for all
primes p for which q is degenerate over A(p), there exists an invertible element
c ∈ A such that pc ∈ 〈D(q)〉. Consider the following situations:
(v) 2δ > µ+ ǫ.
(vi) 2δ ≥ µ+ ǫ and d is δ-strict.
(vii) µ = e, 2δ ≥ ǫ, q is Γ-equilibrated, d is ǫ-strict, and for every element a ∈ A
with d(a) 6= e there exists a prime element in A, depending only on d(a), which
divides a.
Assume that in the situations (v) and (vi) for all primes p of degree e (if any) and
in the situation (vii) for all primes p of degree ≤ ǫ (if any) one of the following
alternatives holds: either q is anisotropic over A(p) or there exists an invertible
element c ∈ A such that pc ∈ 〈DA(q)〉. Then the same alternatives hold for all
primes p in all situations (v), (vi) and (vii).

Proof. By (3.1), e is necessarily the neutral element of Γ. Since the image of d is
well-ordered, we can proceed by induction on the degree of p. Assume that the
assertion is true for all primes of degree less than γ, for some γ in the image of
d. It is enough to show that if p is a prime element of degree γ such that q is
nondegenerate over A(p) and q is isotropic over A(p) then there exists an invertible
element c ∈ A such that pc ∈ 〈D(q)〉. By the hypotheses, this assertion is true
if q is degenerate over A(p). Hence, we may that q is nondegenerate over A(p).
We may also assume that d(p) > e (resp. d(p) > ǫ) in the situations (v) and
(vi) (resp. (vii)), since otherwise the conclusion is guaranteed by the hypotheses.
Let ξ = (α1, · · · , αn) ∈ A(p)n be an isotropic vector for q. Hence, q(ξ) = 0 and
ξ 6∈ rad(BA(p)) = {0}. It follows that there exist elements f1, · · · , fn, h ∈ A such
that at least one of fi’s is nonzero modulo p and

(3) q(f1, · · · , fn) = ph.

Since A has an (ǫ, δ,m, n− 1)-division algorithm with respect to d, there exists
a subset Sp of nonzero elements of A and an element αi ∈ Sp such that

(4) αifi = qip+ ri, i = 1, · · · , n,

where qi, ri ∈ A and for every β1, · · · , βn−1 ∈ Sp

(5) d(β1 · · ·βn−1) + d(ri) + δ ≤ d(p), i = 1, · · · , n.

We claim that for every β ∈ Sb we have p ∤ β. In fact, if for some β ∈ Sp we have
p|β, then (5) implies that d(p)+δ ≤ d(p), hence d(p)+δ = d(p) since Γ is a positive
semigroup. This implies that δ = e, because Γ is cancellative, this contradicts our
assumption that δ > e. In particular, we have p ∤ αi for all i = 1, · · · , n. We now
claim that at least one of ri’s is nonzero. In fact, if ri = 0 for all i = 1, · · · , n then
the relation (4) together with the fact that p ∤ αi imply that p|fi for all i. This
contradicts our assumption that at least one of fi’s is nonzero modulo p. Now, by
multiplying both sides of (3) by α2

1 · · ·α
2
n and using (4), we obtain

(6) q(f ′
1, · · · , f

′
n) = ph′, for some h′ ∈ A,

where f ′
1 = α2α3 · · ·αnr1, · · · , f

′
n = α1α2 · · ·αn−1rn. Since

α1, α2, · · · , αn ∈ Sp,
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using (5), we obtain d(f ′
i) + δ ≤ d(p) for every i = 1, · · · , n. Hence, from the

beginning we may assume that in the relation (3), the following additional condition
holds

(7) d(fi) + δ ≤ d(p).

We may assume that the terms f1, · · · , fn do not have a common prime divisor; in
fact if a prime element p1 ∈ A divides all fi’s then by (3) we obtain p21|ph. As we
have mentioned, at least one of fi’s is nonzero modulo p, hence p and p1 are not
associated primes, it follows that p21|h and we may cancel p21 from both sides of (3).

Since we have an (ǫ, δ,m, n− 1)-division algorithm with respect to d, we obtain

(8) d(q(f1, · · · , fn)) ≤ max{d(aij) + d(fifj)) : aij 6= 0}+ ǫ

By adding 2δ to both sides of (8) and using (7) and the assumption d(aij) ≤ µ for
aij 6= 0 we obtain:

(9) d(q(f1, · · · , fn)) + 2δ ≤ µ+ 2d(p) + ǫ

In the situation (v) or (vi), at least one of the inequalities 2δ ≥ µ+ ǫ or (5) (hence
(7)) is strict. Note that since (9) is a consequence of (7), the inequality (9) is strict
too. Hence, in both cases, from (9) we obtain the strict inequality

(10) d(q(f1, · · · , fn)) < 2d(p).

We claim that in the situation (vii), this inequality holds as well. First note that
the condition µ = e implies that d(aij) = e for all nonzero aij ’s. To prove (10), note
that as mentioned at the beginning of the proof, we may assume that d(p) > ǫ in the
situation (vii). If for some i < j we have d(fi) 6= d(fj) then as q is Γ-equilibrated,
there exist two pairs (r, s) and (r′, s′) with r ≤ s and r′ ≤ s′ such that ars 6= 0
and ar′s′ 6= 0 and d(frfs) 6= d(fr′fs′). This relation together with the hypothesis
in (vii) that d is ǫ-strict, imply that the inequality (8) is strict too. Consequently,
(9) is strict and we obtain (10). If for all i < j, d(fi) = d(fj), then by the last
hypothesis in (vii), either f1, · · · , fn have a common prime divisor or d(fi) = e for
i = 1, · · · , n. But since fi’s do not have a common prime divisor, it follows that
the first case cannot occur. Hence, d(fi) = e, for all i. Now, using (3) and (8) we
obtain d(p) ≤ d(q(f1, · · · , fn)) ≤ e+ ǫ = ǫ which is a contradiction. Thus, we have
shown the validity of (10) in all situations (v), (vi) and (vii).

The relation (10) together with (3) imply that

(11) d(h) < d(p).

First consider the case where h is a non-invertible. Let h = p1 · · · pr be a decompo-
sition of h into prime elements pi’s. By (11) we have d(pi) < d(p) for i = 1, · · · , r.
We claim that there exists an invertible element ci ∈ A such that pici ∈ 〈D(q)〉 for
i = 1, · · · , r. The correctness of this claim is guaranteed by the hypotheses if q is
degenerate overA(pi). If q is nondegenerate overA(pi) then considering the relation
(3) modulo pi (and remarking that f1, · · · , fn do not have a common prime divisor,
hence at least one of them is nonzero modulo pi) we obtain that q(X1, · · · , Xn) is
isotropic over A(pi). By induction, the second alternative holds and the proof of
the claim is completed. Hence, for every i we have pici ∈ 〈D(q)〉. It follows that
hc1 · · · cr ∈ 〈D(q)〉 and the relation (3) implies that pc1 · · · cr ∈ 〈D(q)〉 as desired.

Finally, consider the case where c = h is invertible. The relation (3) implies that
pc ∈ 〈D(q)〉 and the proof is complete. �

Corollary 4.4. With the same hypotheses as in (4.3), assume further that q repre-
sents 1, then for a nonzero element f ∈ A the following conditions are equivalent:
(a) There exists an invertible element f0 ∈ A such that f0f ∈ 〈D(q)〉.
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(b) The form q is isotropic over A(p) for every prime divisor p of f occurring to
an odd power in the factorization of f .

Proof. (a)⇒(b): We may assume that f is not invertible; Let p a prime divisor of f
occurring to an odd power in the factorization of f . By (a) there exist anisotropic
vectors v1, · · · , vr, u1, · · · , us ∈ An such that

f0fq(u1) · · · q(us) = q(v1) · · · q(vr).

We can write ui = pαiu′
i and vj = pβjv′j for some nonnegative αi, βj ∈ Z such that

at least one entry of u′
i and v′j is not divisible by p. From the above relation we

obtain

p2αf0fq(u
′
1) · · · q(u

′
s) = p2βq(v′1) · · · q(v

′
r),

where α = α1 + · · · + αs and β = β1 + · · · + βr. Since p occurs to an odd power
in a factorization of f , the above relation implies that either there exists an index
i such that p|q(v′i) or there exists an index j such that p|q(u′

j). In both cases, q
becomes isotropic over A(p).
(b)⇒(a) If f is invertible, then by taking f0 = f−1, (a) holds. Otherwise, it suffices
to prove that for every prime divisor p of f occurring to an odd power in the
factorization of f , there exists an invertible element c such that pc ∈ 〈D(q)〉, but
this is exactly the conclusion of (4.3). �

5. A Cassels-Pfister’s representation theorem

Theorem 5.1. Let A be an integral domain. Assume that A has an (ǫ, δ,m, n)-
division algorithm with respect to a degree-like function d : A → Γ ∪ {−∞} where
Γ is a commutative positive totally ordered cancellative semigroup. Assume further
that the image of d has the least element property and let e is the minimum element
of the image of d and suppose that δ > e and d−1(e) consists only of invertible
elements. Let q(X1, · · · , Xn) =

∑
i≤j aijXiXj ∈ A[X1, · · · , Xn] be an anisotropic

quadratic form with m nonzero terms and let µ = max{d(aij) : 1 ≤ i, j ≤ n}.
Assume that one of the following conditions hold
(v) 2δ > µ+ ǫ.
(vi) 2δ ≥ µ+ ǫ and d is δ-strict.
In this case, if an element b ∈ A is represented by q over the field of fractions K of
A then b is already represented by q over A.

Proof. As we have mentioned in (3.1), e is the neutral element of Γ. Since b is
represented by q over the field of fractions of A, there exist f0, f1, · · · , fn ∈ A with
f0 6= 0 such that

(12) q(
f1
f0

, · · · ,
fn
f0

) = b.

We proceed by induction on d(f0). If d(f0) = e, the hypothesis on d−1(e) implies
that f0 is invertible, hence fi/f0 ∈ A for i = 1, · · · , n and the proof is complete.
We may assume that d(f0) > e and d(f0) is minimal (with f0 6= 0) among all
representations of the form (12). The relation (12) leads to

(13) q(f1, · · · , fn)− bf2
0 = 0.

Thus, if we put Q(X1, · · · , Xn+1) = q(X1, · · · , Xn)−bX2
n+1, for u = (f1, · · · , fn, f0)

we have Q(u) = 0. We may assume that f1, · · · , fn, f0 do not have a non-invertible
common divisor, otherwise we can cancel it from both sides of (13). As we have an
(ǫ, δ,m, n)-division algorithm with respect to d, there exists a subset Sf0 of nonzero
elements of A such that

(14) αifi = gif0 + ri,
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where ri, gi ∈ A, αi ∈ Sf0 and for every β1, · · · , βn ∈ Sf0 we have

(15) d(β1 · · ·βn) + d(ri) + δ ≤ d(f0).

In particular, we can take r0 = 0 and α0 = g0 = 1. Consider the vector

(16) v = (
g1
α1

, · · · ,
gn
αn

,
g0
α0

) = (
g1
α1

, · · · ,
gn
αn

, 1) ∈ Kn+1.

We have Q(v) 6= 0, since we would otherwise obtain

q(
α2 · · ·αng1
α1 · · ·αn

, · · · ,
α1 · · ·αn−1gn

α1 · · ·αn

) = b

which contradicts the minimality of the degree of f0 (note that by (15) we have
d(α1 · · ·αn) < d(α1 · · ·αn) + δ ≤ d(f0) since δ > e). The map τv : Kn+1 → Kn+1

defined by

(17) τv(x) = x−
B(x, v)

Q(v)
v,

where B is the bilinear form associated to Q as defined in (1), is an isometry
(c.f., [2, 7.2]). If char(K) 6= 2 (resp. char(K) = 2 ), the map τv is usually called
the reflection (resp. orthogonal transvection) along v. Since Q(u) = 0 we obtain
Q(τv(u)) = 0, in other words

Q(u−
B(u, v)

Q(v)
v) = 0.

Multiplying this relation by Q(v)2 we obtain Q(Q(v)u−B(u, v)v) = 0. Put

(18) w = Q(v)u −B(u, v)v.

Hence Q(w) = 0. We can write w = (w1, · · · , wn, w0) where

wi = Q(v)fi −B(u, v)
gi
αi

.

We try to simplify the last entry w0 of w. We have

(19)

w0 = Q(v)f0 −B(u, v)
g0
α0

= Q(v)f0 −B(u, v)

= f0(Q(v)−B(u, v)
1

f0
) = f0Q(v −

1

f0
u) =

1

f0
Q(f0v − u)

The i-th entry of f0v − u is equal to f0
gi
αi

− fi =
1
αi
(f0gi − αifi) = − ri

αi
by (14),

hence

(20) f0v − u = (−
r1
α1

, · · · ,−
rn
αn

,−
r0
α0

) = (−
r1
α1

, · · · ,−
rn
αn

, 0)

As Q(w) = 0, we obtain Q(w′) = 0 where w′ = α1 · · ·αnw ∈ An+1. We can
write w′ = (w′

1, · · · , w
′
n, w

′
0) where w′

i = α1 · · ·αnwi. Thus,

(21) q(w′
1, · · ·w

′
n)− bw′

0
2
= 0

Using (19) and (20) we obtain

(22)

w′
0 = α1 · · ·αnw0 = (α1 · · ·αn)

1

f0
Q(f0v − u)

= (α1 · · ·αn)
1

f0
Q(−

r1
α1

, · · · ,−
rn
αn

, 0)

Now by setting

(23) (f ′
1, · · · , f

′
n, f

′
0) = (−α0α2 · · ·αnr1, · · · ,−α0α1 · · ·αn−1rn, 0)

and multiplying (22) by α1 · · ·αnf0 we obtain

(24) α1 · · ·αnf0w
′
0 = Q(f ′

1, · · · , f
′
n, f

′
0) = Q(f ′

1, · · · , f
′
n, 0) = q(f ′

1, · · · , f
′
n)
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Assume that d(aijf
′
if

′
j) is maximum among all terms of

q(f ′
1, · · · , f

′
n) =

∑

i<j

aijf
′
if

′
j

for some i, j. The relations (23), (24) and the fact that there exists an (ǫ, δ,m, n)
division algorithm with respect to d imply that

(25)

d(w′
0) + d(f0) + d(α1 · · ·αn) = q(f ′

1, · · · , f
′
n)

≤ max{d(aij) + d(f ′
if

′
j)}+ ǫ

= d(aij) + d(f ′
i) + d(f ′

j) + ǫ

≤ µ+ 2d(α1 · · ·αn) + d(ri) + d(rj) + ǫ.

Adding 2δ to all sides of (25) and thanks to (15) we obtain:

(26)

d(w′
0) + d(f0) + 2δ ≤ d(w′

0) + d(f0) + 2δ + d(α1 · · ·αn)

≤ µ+ 2d(α1 · · ·αn) + d(ri) + d(rj) + ǫ+ 2δ

≤ µ+ 2d(f0) + ǫ,

hence

(27) d(w′
0) + 2δ ≤ µ+ d(f0) + ǫ.

In the case (v), we have 2δ > µ+ǫ, hence (27) leads to the inequality d(w′
0) < d(f0).

In the case (vi), the inequality (15) is strict, hence the second inequality in (26) is
strict too. Hence, the inequality (27) which is an implication of (26) is strict. Thus,
in this case we also have the inequality d(w′

0) + 2δ < µ+ d(f0) + ǫ. This together
with the hypothesis 2δ ≥ µ + ǫ in (vi) imply that d(w′

0) < d(f0). Thus, in both
cases we obtain the inequality d(w′

0) < d(f0). Also, note that w′
0 is nonzero; since

otherwise (21) and the fact that q is anisotropic implies that w′
1 = · · · = w′

n = 0.
We obtain then w1 = · · · = wn. Hence, w = (w1, · · · , wn, w0) = 0. Now the
definition of w given in (18) implies that u and v are linearly independent. Since
Q(u) = 0, we obtain Q(v) = 0. This is a contradiction, because we have shown
that Q(v) 6= 0. Hence, we have proved that w′

0 is nonzero and d(w′
0) < d(f0). This

together with (21) contradict our assumption of the minimality of d(f0). �

6. Some applications

Example 6.1. (Cassels-Pfister’s Theorem, [10, 2.3]) Consider the polynomial ring
F [t] over a field F . Let q(X1, · · · , Xn) =

∑
aij(t)XiXj be an anisotropic quadratic

form where aij(t) ∈ F [t] is of degree at most 1 for every i and j. Let f(t) ∈ F [t]
be a polynomial which is represented by q over the field of fractions F (t) of F [t].
Then f(t) is already represented by q over F [t].

In this situation, we use the ordinary degree function d : F [X ] → N0 mentioned
in (3.2)(b). The function d induces a (0, 1,m, n)-division algorithm for every m,n.
In particular, we can take n (resp. m) as the number of variables (resp. the number
of nonzero terms) of the form q. With the notations of (5.1) we have µ ≤ 1. Thus,
the condition 2δ > µ + ǫ is satisfied and the conclusion holds. Note that the
hypothesis on d−1(e) in (5.1) prevents to replace the field F with an arbitrary
unique factorization domain.

Example 6.2. (Quadratic value theorem, [2, Thm. 18.3]) Let F be a field and
let F [T ] = F [t1, · · · , tr]. Consider a nondegenerate anisotropic quadratic form
q(X1, · · · , Xn) =

∑
aijXiXj where aij ∈ F . Let p be a prime element of F [T ].

Then either q(X1, · · · , Xn) remains anisotropic over F [T ](p) or there exists a nonzero
element c ∈ F such that cp ∈ 〈DF [T ](q)〉.
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We prove this result by induction on r. For r = 0, the conclusion holds since
F [T ] = F does not contain any prime element. Hence, let assume that r ≥ 1.
Put A = F [t1, · · · , tr−1], hence F [T ] = A[t]. According to (3.2)(b), we have a
(0, 1,m, n− 1) division algorithm on A[t] with respect to the usual degree function
d : A[t] → N0, where m denotes the number of nonzero terms of q. We have µ = 0,
hence the condition 2δ ≥ µ+ǫ is satisfied. In order to apply (4.3), it suffices to check
that for every prime p ∈ A[t] of order e = 0 (hence p ∈ A) either q is anisotropic
over A[t](p) or there exists an invertible element c ∈ A[t] such that cp ∈ 〈DA[t](q)〉.
We have a ring isomorphism A[t]/(p) ≃ A(p)[t] since p ∈ A, hence we have a field
isomorphism A[t](p) ≃ A(p)(t). If q is isotropic over A[t](p), the relation A[t](p) ≃
A(p)(t) implies that q is isotropic over A(p) = F [t1, · · · , tr](p). By induction there
exists a nonzero c ∈ F such that cp ∈ 〈DF [t1,··· ,tr−1](q)〉 ⊆ 〈DF [t1,··· ,tr](q)〉 and the
proof is complete. Thus, we have checked the validity of the result for all primes of
degree ≤ e = 0. The conclusion now follows from (5.1).

Example 6.3. (Compare [2, 18.9]) Let F be a field and let F [T ] = F [t1, · · · , tr].
Consider a nondegenerate anisotropic quadratic form q(X1, · · · , Xn) =

∑
aijXiXj

where aij ∈ F . Let p(T ) be an irreducible polynomial in F [T ]. Suppose that there
exists an element c ∈ F r such that p(c) 6∈ 〈DF [T ](q)〉. Then q is anisotropic over
F [T ](p(T )).

By (6.2) if q is not anisotropic over F [t](p(T )), there exists an invertible scalar
λ ∈ F such that λp(T ) ∈ 〈DF [T ](q)〉. It follows that there exist polynomials
fi(T ) ∈ DF [T ](q) and gj(T ) ∈ DF [T ](q) for i = 1, · · · , n and j = 1, · · · ,m, such
that f1(T ) · · · fn(T )p(T ) = g1(T ) · · · gm(T ). Putting T := c in this identity, implies
that p(c) ∈ 〈DF [T ](q)〉, which is a contradiction.

Example 6.4. (Multivariable version of Artin-Springer’s theorem) With the same
notation as in (6.3), if the degree of p with respect to one of its variables t ∈
{t1, · · · , tr} is odd then q remains anisotropic over F [T ](p).

It is enough to compare the degrees of both sides of f1(T ) · · · fn(T )p(T ) =
g1(T ) · · · gm(T ) with respect to the corresponding variable t.

Example 6.5. (Two squares theorem)
(a) If an integer is a sum of two rational squares, then it can be written as a sum
of two integral squares.
(b) Every prime number of the form 4k + 1 can be written as a sum of squares of
two integers.
(c) If p is a prime number of the form 4k+3 and p|a2 + b2 for some integers a and
b then p divides both a and b.

Consider the quadratic form q(X1, X2) = X2
1 +X2

2 . Here, we have n = m = 2.
By (3.4) for c = 2, the ring Z has an (ǫ, δ,m, n) = (1, 1, 2, 2)-division algorithm with
respect to the degree function d(x) = log2 |x|. Note that the image of d is a discrete,
hence a well-ordered subset of nonnegative reals. Hence, for A = Z, Γ = (R≥0,+),
we can apply (4.3) if the respective hypotheses are satisfied. We have µ = 0, hence
2δ > ǫ+ µ is satisfied and the conclusion of (a) follows from (4.3).

Again using (3.4) for c = 2, the ring Z has an (ǫ, δ,m, n − 1) = (1, 1, 2, 1)-
division algorithm with respect to the degree function d(x) = log2 |x|. Also, q is
nondegenerate over all Fp for all primes p. In this situation we have µ = 0, hence
2δ > µ + ǫ holds. Consider a prime number p of the form 4k + 1. According to
(4.3), either q remains anisotropic over Fp or pc is a sum of two squares in Q for

some c ∈ {1,−1}. The former case is ruled out (for instance, one has p|(p−1
2 !)2 + 1

by Wilson’s theorem). In the latter case, c = −1 is rules out since q is a positive
definite form. Hence, p is a sum of two squares in Q. Now (6.5) (a) implies that p
is a sum of two integral squares.
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(2) If p does not divide a or b then q becomes isotropic over Fp. By (4.3) we deduce
that p is represented by q over Q, hence over Z. Now a congruence argument
modulo 4 yields a contradiction.

Example 6.6. (a) A nonnegative integer can be written, in the form x2 +xy+ y2

for some x, y ∈ Q if and only if it can be written in the same form for some x, y ∈ Z.
(b) A nonnegative prime p 6= 3 can be written in the form x2 + xy + y2 for some
x, y ∈ Z if and only if p of the form 3k + 1.

Consider the quadratic form q(X1, X2) = X2
1 + X1X2 + X2

2 over Z. Here we
have n = 2 and m = 3. According to (3.4), for c = 2 we have an (ǫ, δ,m, n) =
(log2 3, 1, 3, 2) on Z with respect to the degree function d : Z → R≥0 given by
d(x) = log2 |x|. Here we have µ = 0, hence the condition 2δ > µ+ ǫ is satisfied and
the conclusion of (a) follows from (5.1).

To prove (b), it is enough by (a) to show that p ∈ DQ(q) if and only if p is of the
form 3k + 1. We first show that 〈DZ(q)〉 = DQ(q). To see this note that since the
discriminant of q is 3, the form q is equivalent to the form q′(X1, X2) = X2

1 + 3X2
2

over Q. Hence, 〈DZ(q)〉 = 〈DZ(q
′)〉 = DQ(q

′) = DQ(q) (in fact, more generally this
argument shows that if a quadratic form q defined over an integral domain A is
equivalent to a multiplicative form over the field of fractions K of A then 〈DA(q)〉 =
DK(q)). Hence, it is enough to prove that p ∈ 〈DZ(q)〉 if and only if p is of the
form 3k+1. Again using (3.4), for c = 2 we have an (ǫ, δ,m, n−1) = (log2 3, 1, 3, 1)
division algorithm with respect to the degree function d defined above. Note that
p = 3 is the only prime number for which q is nondegenerate over Fp, by the
way 3 ∈ DQ(q). By (4.3), for every prime p, either q is anisotropic over Fp or
p ∈ 〈DZ(q)〉. But since the discriminant of q is 3, it is anisotropic precisely when
the Legendre symbol (−3/p) is nontrivial or equivalently p is not of the form 3k+1.

Example 6.7. (L. Aubry, 1912, [1, p. 273]) Let n be an integer which is a sum of
three rational squares. Then n is a sum of three integral squares.

Consider the quadratic form q(X1, X2, X3) = X2
1+X2

2+X2
3 . We havem = n = 3.

According to (3.4), for c = 2 there exists a (ǫ, δ,m, n) = (log2(3), 1, 3, 3)-division
algorithm with respect to the degree function d(x) = log2(|x|) on Z. Here we have
µ = 0 and the condition 2δ > µ+ ǫ holds. According to (5.1), we conclude that n
is a sum of three integral squares.

Example 6.8. (Weak version of the four squares theorem) Every prime number p
can be written as a sum of four rational squares.

Consider the quadratic form q(X1, X2, X3, X4) = X2
1 +X2

2 +X2
3 +X2

4 . Here we
have m = n = 4. We use the same notation as in the proof of (6.5). According
to (3.4), for c = 2 the ring Z has a (2, 1, 4, 3)-division algorithm with respect to
the degree-like function d(x) = log2 |x|. Here µ = 0 and 2δ = µ + ǫ and we apply
(4.3) (vii). It follows that q remains anisotropic over Fp or p is represented by q
over Q. The first case is ruled out since every form of dimension ≥ 3 over a finite
field is isotropic. Hence, p is a sum of four squares in Q.
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