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Abstract


This paper introduces a novel approach to the axiomatic theory of


quadratic forms. We work internally in a category of certain partially or-


dered sets, subject to additional conditions which amount to a strong form


of local presentability. We call such partial orders presentable. It turns out


that the classical notion of the Witt ring of symmetric bilinear forms over


a field makes sense in the context of quadratically presentable fields, that


is fields equipped with a presentable partial order inequationaly compati-


ble with the algebraic operations. As an application, we show that Witt


rings of symmetric bilinear forms over fields, of both characteristic 2 and


6= 2, are isomorphic to Witt rings of suitably built quadratically presentable


fields, which therefore provide a uniform construction of Witt rings for all


characteristics.


Keywords: axiomatic theory of quadratic forms, abstract Witt rings, partial
orders, hyperfields, special groups.


1 Introduction


The algebraic theory of quadratic forms in its modern form goes back to the sem-
inal work of Witt [20], who introduced the notion of what is now called the Witt
ring of a field, and by Pfister [17] and Cassels [2] who identified first significant
properties of Witt rings. First attempts to approach the Witt theory from ax-
iomatic point of view go back to the mid 1970’s. Objects such as quadratic form
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schemes by Cordes [3, 4], also studied by Carson and Marshall [1], Szczepanik
[18, 19] and others, became of interest. Over the years, numerous other axiomatic
approaches were considered as well, like the notion of quaternionic maps due to
Carson and Marshall [1], abstract Witt rings due to Knebusch, Rosenberg and
Ware [11, 12], as well as Marshall [15], strongly represational Witt rings due to
Kleinstein and Rosenberg [10], and the theory of special groups by Dickmann and
Miraglia [5, 6]. Quadratic form schemes, quaternionic maps, strongly represen-
tational Witt rings, and special groups are equivalent descriptions of the same
objects. A further formalism used to describe the same phenomena is the theory
of rings with multivalued addition, called hyperrings [16].


In this work we propose an approach to the axiomatic theory of quadratic forms
by generalising the underlying principles of hyperrings. Our starting point are
partially ordered sets subject to additional conditions which amount to a strong
form of local presentability when these partial orders are seen as categories. We
call such partial orders presentable. Roughly speaking, presentable posets reflect
the behaviour of pierced powersets, that is powersets excluding the empty set
ordered by inclusion. The most salient order-theoretic feature of pierced powersets
is that they exhibit a generating set of minimal elements, this since a non-empty
set is a union of singletons. It is precisely this feature which is captured in the
definition of presentable posets. The objective here is to build an axiomatic theory
of quadratic forms by describing the behaviour of their value sets.


In Section 2 we formally introduce presentable posets and elaborate on exam-
ples including the set of integers greater or equal 1 augmented with a point at
infinity and ordered by division, as well as the set of proper ideals of a Noethe-
rian ring reversely ordered by inclusion. We also mention some simple categorical
properties of the category of presentable posets.


In Section 3 we introduce presentable algebras, which are monoid objects in
the category of presentable posets that satisfy additional properties: presentable
groups, presentable rings, and presentable fields, respectively. These algebraic
objects are used for the construction of Witt rings peculiar to this setting. A
word of caution might be in order here as far as the terminology is concerned: a
presentable group is not an internal group, not even a cancellative monoid. We
choose to stick to an established vocabulary, but a similar comment can be made
about the notion of hypergroup underlying the notion of hyperring [16]. On the
other hand, the Witt rings we construct are rings without further ado.


In Section 4 we provide more examples of presentable algebras. In particular,
we show how presentable groups, rings and fields arise in a natural way in the
study of hypergroups, hyperrings and hyperfields, respectively. This connection
provides the main link between our theory and already existing axiomatic theories
of quadratic forms.


In Section 5 we define pre-quadratically and quadratically presentable fields,
which share certain similarities with groups of square classes of fields, endowed
with partial order and addition. We then exhibit a Witt ring structure naturally
occuring in quadratically presentable fields. As an application, for every field
verifying some mild assumptions one can form a hyperfield by defining on the
multiplicative group of its square classes multivalued addition that corresponds
to value sets of binary forms. The presentable field induced by this hyperfield
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is quadratically presentable, and its Witt ring in our sense is isomorphic to its
standard Witt ring. What makes our construction of interest is the fact that it
uniformely works for fields of both characteristic 2 and 6= 2. The construction is
technically reminiscent of the one used by Dickmann and Miraglia to build Witt
rings of special groups [6].


In Sections 6 and 7 we explain how a pre-quadratically presentable field can be
obtained from any presentable field. For that purpose we introduce quotients of
presentable fields (with respect to the multiplicative structure) in Section 6, while
in Section 7 we use these quotients in order to build pre-quadratically presentable
fields from presentable fields. The techniques here heavily rely on the connection
between presentable algebras and hyperalgebras.


2 Presentable posets


Recall that a partially-ordered set or poset is a set equipped with a reflexive,
transitive and anti-symmetric relation. Let A be a poset. An element a ∈ A is
minimal if a′ 6 a implies a′ = a. Let A be a poset and SA be the set of A’s


minimal elements. We shall write Sa
def .
= ↓ a∩SA stands for the set of all minimal


elements below a ∈ A, and SX
def .
=
⋃


x∈X Sx for the set of minimal elements below
X ⊆ A. The elements of the sets


↑ a
def .
= {a′ ∈ A|a 6 a′}


↓ a
def .
= {a′ ∈ A|a > a′}


are called a’s upper bounds and a’s lower bounds respectively. Moreover, for a
subset X ⊆ A, denote


↑ X
def .
=


⋃


x∈X


(↑ x)


↓ X
def .
=


⋃


x∈X


(↓ x)


If it exists, we shall call supremum of X the least element of the set ↑ X and
infimum of X the greatest element of the set ↓ X . We shall write


⊔
X for the


supremum of X ⊆ A and x ⊔ y for
⊔
{x, y}.


Definition 2.1. A poset (A,6) is presentable if


i. every non-empty subset R ⊆ A admits a supremum;


ii. Sa is non-empty and a =
⊔
Sa for each a ∈ A.


We shall call the minimal elements of a presentable poset supercompact .


Remark 2.2. Let A be a presentable poset and x, y ∈ A. The following are
equivalent


i. x 6 y;


3







ii. Sx ⊆ Sy.


To see this, assume x 6 y. We have y =
⊔


Sy and supercompacts are not
comparable. Conversly, if Sx ⊆ Sy then y =


⊔
Sy is an upper bound of x =


⊔
Sx.


Proposition 2.3. Let A be a presentable poset. If x 6
⊔
Y then for each x′ ∈ Sx


there is an y ∈ Y such that x′ 6 y.


Proof. Let x and Y be as required, and fix x′ ∈ Sx. Clearly x′ ∈ S⊔
Y . Moreover


⊔


Y =
⊔


{
⊔


Sy | y ∈ Y } =
⊔⋃


y∈Y


Sy


and ⊔⋃


y∈Y


Sy =
⊔


S⊔
Y ⇔


⋃


y∈Y


Sy = S⊔
Y ,


which is the case by Remark 2.2. Thus there exists y ∈ Y such that x′ ∈ Sy.


Remark 2.4. Given a poset A one classically defines the way-below relation [8] as


x≪ y
def .
⇐⇒ if y 6


⊔


D then there is d ∈ D such that x 6 d


for any directed subset D ⊆ A


If A is a presentable poset we have in particular s ≪ x for any supercompact
s ∈ Sx, yet in the case of presentable posets the property is stronger. Also, we
have s ≪ s for any supercompact s ∈ Sx, so supercompacts are compact in the
order-theoretical sense.


Example 2.5. The pierced powerset P∗(X)of a set X (that is its set of nonempty
subsets) is presentable with respect to the ordering by inclusion. The singletons
are the supercompacts.


Example 2.6. The set (Z≥1∪{∞}, |, n), where n > 0, of integers greater or equal 1
with a point at infinity added is an accesible poset with respect to the ordering by
division. The powers of prime numbers and the number 1 are the supercompacts.
Clearly Z≥1 here can be replaced with conjugation classes of non-units of any
factorization domain (not neccessarily unique) with powers of nonzero irreducibles
as supercompacts.


Example 2.7. The set (I∗(R),⊇, I) of all ideals of a Noetherian ring R, where
I ⊳ R, is a presentable poset with respect to the ordering by reverse inclusion.
The primary ideals and the trivial ideal R are the supercompacts. Indeed, every
element of I∗(R) is either contained in a maximal ideal (which, in particular, is
primary), or is equal to R. Every proper ideal is an intersetion of some primary
ideals due to the Noether-Lasker theorem, and, clearly, an intersection of any
family of proper ideals is a proper ideal.


Example 2.8. The set A∗(F n) of all nonempty affine algebraic sets in F n, where F
is assumed to be algebraically closed, is accesible with respect to the ordering by
inclusion. The affine varietes in F n, i.e. the nonempty irreducible affine algebraic
sets, are the supercompacts. This follows immediately from the previous example
by the Hilbert’s Nullstellensatz. The sup of an arbitrary family of algebraic sets
is the Zariski closure of its union.
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Recall that a pointed set is a pair (A, a) where A is a set and a ∈ A a distin-
guished element called basepoint . A map f : A → B is pointed if it preserves the
basepoint.


Definition 2.9.


1. A map f : X → Y of presentable posets is continuous if it preserves suprema
of non-empty sets.


2. A pointed presentable poset (A, p) is an presentable poset equipped with a
supercompact basepoint p ∈ SA.


3. A map f : X → Y of pointed presentable posets is a homomorphism if it is
pointed and continuous.


It is easily seen that continous map is monotone. We shall write aPos∗ for
the category of pointed presentable posets and their homomorphisms.


Remark 2.10. aPos∗ has a zero-object as well as binary products. Any singleton
equipped with the trivial order is a pointed presentable poset, easily seen to be
a zero-object. The binary product is the cartesian product equipped with the
coordinatewise order.


3 Presentable algebras


Definition 3.1. A presentable monoid is a commutative monoid object in the
(symmetric monoidal) category aPos∗.


Remark 3.2.


1. Unravelling the definition, a presentable monoid (M,≤, 0,+) is a pointed pre-
sentable poset (M,≤, 0) with a distinguished supercompact 0 and a suprema-
preserving binary addition + : M ×M →M such that


i. a+ (b+ c) = (a+ b) + c for all a, b, c ∈M ;


ii. a+ 0 = 0 + a = a for all a ∈M ;


iii. a+ b = b+ a for all a, b ∈ M .


2. The addition is in particular monotone, so


(a ≤ b) ∧ (c ≤ d) ⇒ (a + c ≤ b+ d)


for all a, b, c, d ∈M .


3. Suppose a ≤ b+ c. We have


a 6 b+ c


=
⊔


Sb +
⊔


Sc


=
⊔


{t+ u|t ∈ Sb, u ∈ Sc}


so for any s ∈ Sa there are t ∈ Sb and u ∈ Sc such that


s 6 t+ u
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Example 3.3. Let (M, 0,z) be a commutative monoid. The pointed presentable
poset (P∗(M),⊆, {0}) is made into a presentable monoid by defining the addition
as


+ : P∗(M) × P∗(M) −→ P∗(M)
(A,B) 7→ {azb : a ∈ A, b ∈ B}


This addition preserves suprema, here unions:


(
⋃


i∈I


Ai


)


+


(
⋃


j∈J


Bj


)


=
⋃


i∈I,j∈J


(Ai +Bj)


Example 3.4. The pointed presentable poset (Z≥1 ∪ {∞}, |, 1) is made into a
presentable monoid by defining the “addition” to be the usual multiplication of
integers. This addition preserves suprema, here least common multiples:


lcm(X) lcm(Y ) = lcm{xy|x ∈ X, y ∈ Y }


Example 3.5. Similarly, the pointed presentable poset (I∗(R),⊇, R), where R is
Noetherian, is made into a presentable monoid by defining the binary operation
to be the usual multiplication of ideals.


Example 3.6. The presentable set (A(kn),⊆, ∅), where k is a field, is made into a
presentable monoid by defining the binary operation to be ∪.


Definition 3.7. An presentable group G is a presentable monoid together with
involutive monotonic endomorphism − : G→ G verifying


(s ≤ t+ u) ⇒ (t ≤ s+ (−u))


for all s, t, u ∈ SG.


Remark 3.8. Unravelling the definition, the additive inversion operation of an
presentable group is an involutive endomorphism of presentable sets − : G → G
in aPos∗ such that


G×G G×G


G G
−


−×−


+ +


commutes.


Remark 3.9. Assume a presentable group (G,6, 0,+,−).


1. Notice that the inversion is in particular monotone, so we have quite counter-
intuitively


(a ≤ b) ⇒ (−a ≤ −b)


for all a, b ∈ G.
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2. We have 0 6 s+ (−s), for all s ∈ SG, since s 6 0 + s implies that 0 6 s+ (−s).
This entails that, in fact


0 6 a + (−a)


for any a ∈ G. Since Sa 6= ∅ there is a supercompact s ∈ Sa such that s 6 a,
hence


0 6 s− s


6 a− a


3. It is in general not true that a ≤ b+c implies b ≤ a−c for arbitrary a, b, c ∈ G.
Take the presentable group (P∗(Z),⊆, {0},+), where Z is endowed with the
usual addition. Then


{1, 2} ⊆ {0, 1} + {0, 2} = {0, 1, 2, 3},


but
{0, 2} * {1, 3} − {0, 2} = {1,−1, 3}.


Example 3.10. Let (G, 0,z) be an abelian group and denote by ⊸ a the opposite
element of a with respect to z. The presentable monoid P∗(G) as defined in
Example 3.3 is made into a presentable group by defining the subtraction as


− : P∗(G) −→ P∗(G)
A 7→ {⊸ a : a ∈ A}


Example 3.11. The presentable monoid (Z≥1 ∪ {∞}, |, 1, ·) can be made into a
presentable group by defining subtraction to be the identity function. The tech-
nique still works for presentable monoids (I∗(R),⊇, R), where R is Noetherian,
or (A(kn),⊆, ∅), where k is a field.


Definition 3.12. An presentable ring R is a presentable group (R,≤, 0,+,−)
equipped with a commutative monoidal structure (R, ·, 1), such that · is compat-
ible with ≤ and −, distributative with respect to +, and verifies


Sab = {st|s ∈ Sa, t ∈ Sb}


for all a, b ∈ R. a presentable ring R such that S∗
R = SR \ {0} is a multiplicative


group will be also called an presentable field.


Example 3.13. Let (R, 0,z, •, 1) be a ring (with the identity 1). The presentable
group (P∗(R),⊆, {0},+) defined in Example 3.10 is made into a presentable ring
with {1} as the identity by defining multiplication as


A · B
def.
= {a • b : a ∈ A, b ∈ B}


Remark 3.14. Assume a presentable ring (R,≤, 0,+,−, ·, 1). We have


1. The element 1 ∈ R is uniquely defined.


2. 1 6= 0.


3. −1 ∈ SR.


Items 1 and 2 are immediate. For item 3 fix s ∈ S(−1). Then s ≤ −1 and,
consequently, −s ≤ 1. But 1 is a supercompact, so −s = 1, hence −1 = s ∈ SR.
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4 Presentable algebras from hyperalgebras


Definition 4.1. A hypermonoid is a pointed set (M, 0,⊕) equipped with a mul-
tivalued addition


⊕ : M ×M → P∗(M)


such that


i. a⊕ 0 = a = 0 ⊕ a for all a ∈M ;


ii. a⊕ b = b⊕ a for all a, b ∈M ;


iii. (a⊕ b) ⊕ c =
⋃
{a⊕ x|x ∈ b⊕ c} = a⊕ (b⊕ c) for all a, b, c ∈M .


Remark 4.2. Let (M, 0,⊕) be a hypermonoid. The pointed presentable poset
(P∗(M),⊆, {0}) can be made into a presentable monoid by defining


+ : P∗(M) × P∗(M) −→ P∗(M)
(A,B) 7→


⋃
{a⊕ b : a ∈ A, b ∈ B}


Presentable monoids P∗(M) are behind the basic intuition underlying this work.


Definition 4.3. A hypergroup (G, 0,⊕,⊖) is a hypermonoid (G, 0,⊕) together
with a map ⊖ : G→ G such that


i. 0 ∈ a⊕ (⊖a) for all a ∈ G;


ii. (a ∈ b⊕ c) ⇒ (c ∈ a⊕ (⊖b)) for all a, b, c ∈ G.


Example 4.4. Let (G, 0,⊕,⊖) be a hypergroup. The presentable monoid (P∗(G),⊆
, {0},+) is made into a presentable group by defining


− : P∗(G) −→ P∗(G)
A 7→ {⊖a : a ∈ A}


Definition 4.5. A hyperring (R, 0,⊕,⊖, 1,⊙) is a hypergroup (R, 0,⊕,⊖) such
that (R, 1,⊙) is a commutative monoid and


i. 0 ⊙ a = 0 for all a ∈ R;


ii. a⊙ (b⊕ c) ⊂ (a⊙ b) ⊕ (a⊙ c) for all a, b, c ∈ R;


iii. 0 6= 1.


If, in addition, every non-zero element has a multiplicative inverse, then R is
called a hyperfield.


Example 4.6. Let (R, 0,⊕,⊖, 1,⊙) be a hyperring (or a hyperfield). The pre-
sentable group (P∗(R),⊆, {0},+,−) is made into a presentable ring (or a pre-
sentable field, respectively) by defining the following multiplication:


A ·B = {a⊙ b : a ∈ A, b ∈ B},


for A,B ∈ P∗(R), and the identity to be just the singleton {1}.
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Remark 4.7. Let (F , 0,⊕,⊖, 1,⊙) be a hyperfield, and let T be a subgroup of the
multiplicative group (F , 1,⊙). Denote by F /mT the set of equivalence classes of
the relation ∼ defined on F as follows:


x ∼ y if and only if x⊙ s = y ⊙ t, for some s, t ∈ T.


Denote by x̄ the class of x and introduce the following obvious operations on
F /mT induced from F :


x̄ ∈ ȳ⊕̄z̄ if and only if x⊙ s ∈ (y ⊙ t) ⊕ (z ⊙ u), for some s, t, u ∈ T,


x̄⊙̄ȳ = x⊙ y, ⊖̄x̄ = ⊖x.


(F /mT, 0̄, ⊕̄, ⊖̄, 1̄, ⊙̄) is then a hyperfield that we shall call the quotient hyperfield
of F modulo T (see [16]).


Example 4.8. Let k be a field. Firstly, consider the case when char k 6= 2, k 6=
F3,F5. This, in particular, is an example of a hyperfield with a⊕ b = {a+ b}. Let
T = k∗2. It is not difficult to check that the following equivalence holds true, for
x, y, z ∈ k:


x = s2y + t2z for some s, t ∈ k if and only if x̄ ∈ ȳ⊕̄z̄ in k/mk
∗2,


so that
ȳ⊕̄z̄ = D(y, z) ∪ {0̄},


where D(y, z) denotes the value set of the binary quadratic form (y, z). Roughly
speaking, k/mk


∗2 is the same object as the quadratic form scheme of k (terminol-
ogy as in [13] and [14]) with zero adjoined, and provides a first-order axiomatiza-
tion of the algebraic theory of quadratic forms over fields.


If char k = 2, or k = F3, or k = F5, the equivalence


x = s2y + t2z for some s, t ∈ k ⇐⇒ x̄ ∈ ȳ⊕̄z̄ in k/mk
∗2


fails to hold in general, and it is necessary to modify the definition of addition in
k/mk


∗2, defining ȳ⊕̄z̄ “by hand”, for y, z 6= 0. Namely, we set


ȳ⊕̄′z̄ =











ȳ⊕̄z̄, if ȳ = 0̄ or z̄ = 0̄,


ȳ⊕̄z̄ ∪ {ȳ, z̄}, if ȳ 6= 0̄, z̄ 6= 0̄, ȳ 6= −z̄,


k/mk
∗2, if ȳ 6= 0̄, z̄ 6= 0̄, ȳ = −z̄.


k/mk
∗2 equipped with this new addition is again a hyperfield, that we refer to as


the prime hyperfield of k/mk
∗2. The construction of the prime addition can be


carried out for every hyperfield (see [9, Proposition 2.1]). Note that, for char k 6= 2,
k 6= F3,F5, the prime addition ⊕̄′ is just ⊕̄. The prime hyperfield of k/mk


∗2 will
be also called the quadratic hyperfield of k and denoted Q(k).


Example 4.9. Let k be a field with two square classes. Consider, for example, the
case when k is formally real. The two sqare classes are represented by 1,−1, so that
k is Euclidean (for example, k = R, or the field of real algebraic numbers, or the
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field of real constructible numbers etc.), and Q(k) = {0̄, 1̄,−1} with multiplication
defined in an obvious way and multivalued addition as follows:


⊕̄ 0̄ 1̄ −1
0̄ 0̄ 1̄ −1
1̄ 1̄ 1̄ {0̄, 1̄,−1}
−1 −1 {0̄, 1̄,−1} −1


The presentable ring P∗(Q(k)) with identity I consists of 7 elements:


θ = {0̄}, I = {1̄}, κ = {−1}, β = {0̄, 1̄,−1},
α1 = {0̄, 1̄}, α2 = {0̄,−1}, α3 = {1̄,−1},


the arithmetic of P∗(Q(k)) is described by the following two tables:


+ θ I κ α1 α2 α3 β
θ θ I κ α1 α2 α3 β
I I I β I β β β
κ κ β κ β κ β β
α1 α1 I β α1 β β β
α2 α2 β κ β α2 β β
α3 α3 β β β β β β
β β β β β β β β


and


θ I κ α1 α2 α3 β
λθ θ θ θ θ θ θ θ
λI θ I κ α1 α2 α3 β
λκ θ κ I α2 α1 α3 β
λα1 θ α1 α2 α1 α2 β β
λα2 θ α2 α1 α2 α1 β β
λα3 θ α3 α3 β β α3 β
λβ θ β β β β β β


and the relation of partial order in P∗(Q(k)) is illustrated by the graph below:


β


α1


>>⑤⑤⑤⑤⑤⑤⑤⑤⑤
α2


OO


α3


``❇❇❇❇❇❇❇❇❇


θ


OO ==⑤⑤⑤⑤⑤⑤⑤⑤
I


aa❇❇❇❇❇❇❇❇


==⑤⑤⑤⑤⑤⑤⑤⑤
κ


aa❇❇❇❇❇❇❇❇


OO


where arrows correspond to inclusions and obvious compositions of arrows are
omitted for clarity.


5 Witt rings of quadratically presentable fields


Definition 5.1. Let (R,≤, 0,+,−, ·, 1) be a presentable field. We shall call R
pre-quadratically presentable, if the following conditions hold:


i. ∀a ∈ S∗
R, b ∈ SR[a ≤ a+ b];


ii. ∀a, b, c ∈ SR[(a ≤ 1 − b) ∧ (a ≤ 1 − c) ⇒ (a ≤ 1 − bc)];


iii. a2 = 1, for all a ∈ SR \ {0}.


Remark 5.2. Note that in the axiom i. the assumption that a ∈ S∗
R is cruicial: if


a = 0 then a ≤ a+ b is just 0 ≤ 0 + b = b, which means b = 0 for all b ∈ SR.
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Example 5.3. Following Examples 4.8 and 4.9, let k be a field, let Q(k) be its
quadratic hyperfield, and P∗(Q(k)) the presentable field that is induced. One
easily checks that this, in fact, is a pre-quadratically presentable field with ≤
being just ⊆.


Example 5.4. The presentable field P∗(R) constructed from a ring with identity
(R, 0,z, •, 1) in Example 3.13 doest not lead to a pre-quadratically accesible field:
it is, in general, not true that {a} ⊂ {a} + {b} = {a + b}, for arbitrary a, b ∈ R,
so that the axion i. is not satisfied.


Definition 5.5. A form φ on a pre-quadratically presentable field R is an n-tuple
〈a1, . . . , an〉 of elements of SR


∗; n is called the dimension of φ, dim φ, forms of
dimension 1 are called unary, and of dimension 2 – binary. We define the relation
∼= of isometry of forms of the same dimension by induction:


i. 〈a〉 ∼= 〈b〉 iff. a = b,


ii. 〈a1, a2〉 ∼= 〈b1, b2〉 iff. a1a2 = b1b2 and b1 ≤ a1 + a2,


iii. 〈a1, . . . , an〉 ∼= 〈b1, . . . , bn〉 iff. there exist x, y, c3, . . . , cn ∈ SR
∗ such that


• 〈a1, x〉 ∼= 〈b1, y〉,


• 〈a2, . . . , an〉 ∼= 〈x, c3, . . . , cn〉,


• 〈b2, . . . , bn〉 ∼= 〈y, c3 . . . , cn〉.


Proposition 5.6. The relation ∼= is an equivalence on the sets of all unary and
binary forms of a pre-quadratically presentable field R.


Proof. The statement is clear for unary forms. For binary forms, reflexivity follows
from the axiom i., and for symmetry assume that 〈a, b〉 ∼= 〈c, d〉, for a, b, c, d ∈ SR


∗.
Thus ab = cd and a ≤ c + d. But then a = bcd, so that bcd ≤ c + d. Thus
b ≤ cd(c+ d) = c+ d.


It remains to show trasitivity, so assume 〈a, b〉 ∼= 〈c, d〉 and 〈c, d〉 ∼= 〈e, f〉, for
a, b, c, d, e, f ∈ SR


∗. This means ab = cd, cd = ef , a ≤ c + d and, by symmetry,
e ≤ c + d. Therefore, c ≤ a − d and c ≤ e − d, which gives −cd ≤ 1 − ad and
−cd ≤ 1 − ed. By (2) this implies −cd ≤ 1 − ae. Since cd = ef , this is just
−ef ≤ 1 − ae, or, equivalently, ef ≤ ae− 1. But this is the same as ae ≤ 1 + ef ,
so a ≤ e+ f .


Remark 5.7. Recall that a pre-special group (terminology as is [6, Definition 1.2])
is a group G of exponent 2 together with a distinguished element −1 and a binary
operation ∼= on G×G such that, for all a, b, c, d ∈ G:


i. ∼= is an equivalence relation,


ii. (a, b) ∼= (b, a),


iii. (a,−a) ∼= (1,−1),


iv. [(a, b) ∼= (c, d)] ⇒ [ab = cd],


v. [(a, b) ∼= (c, d)] ⇒ [(a,−c) ∼= (−b, d)],
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vi. [(a, b) ∼= (c, d)] ⇒ ∀x ∈ G[(xa, xb) ∼= (xc, xd)].


Corollary 5.8. Let (R,≤, 0,+,−, ·, 1) be a pre-quadratically presentable field.
Then (SR


∗,∼=,−1) is a pre-special group.


Proof. The only non-trivial parts to check are that 〈a,−a〉 ∼= 〈1,−1〉 and that
〈a, b〉 ∼= 〈c, d〉 implies 〈a,−c〉 ∼= 〈−b, d〉, for a, b, c, d ∈ SR


∗. The first statement
follows from the fact that a ≤ a + 1 implies 1 ≤ a − a, and for the second one
assume ab = cd and a ≤ c+ d. Thus d ≤ a− c, so that 〈d,−b〉 ∼= 〈a,−c〉, and the
rest is obvious.


Definition 5.9. A pre-quadratically presentable field (R,≤, 0,+,−, ·, 1) will be
called quadratically presentable, if the isometry relation is an equivalence on the
set of all forms of the same dimension.


Remark 5.10. Let (G,∼=,−1) be a pre-special group. The relation ∼= can be
extended to the set G× . . .×G


︸ ︷︷ ︸


n


as follows:


(a1, . . . , an) ∼=n (b1, . . . , bn)


provided that there exist x, y, c3, . . . , cn ∈ G such that


i. (a1, x) ∼= (b1, y);


ii. (a2, . . . , an) ∼=n−1 (x, c3, . . . , cn);


iii. (b2, . . . , bn) ∼=n−1 (y, c3 . . . , cn).


A special group [6, Definition 1.2]) is a pre-special group (G,∼=,−1) such that ∼=n


is an equivalence relation for all n ∈ N.


Corollary 5.11. Let (R,≤, 0,+,−, ·, 1) be a quadratically presentable field. Then
(SR


∗,∼=,−1) is a special group.


Example 5.12. The pre-quadratically presentable field P∗(Q(k)), for a field k, is
quadratically presentable. That ∼= is an equivalence relation on the set of all forms
of the same dimension follows from the well-known inductive description of the
isometry relation of quadratic forms.


Definition 5.13. LetR be a pre-quadratically presentable field, let φ = 〈a1, . . . , an〉,
ψ = 〈b1, . . . , bm〉 be two forms. The orthogonal sum φ⊕ ψ is defined as the form


〈a1, . . . , an, b1, . . . , bm〉,


and the tensor product φ⊗ ψ as


〈a1b1, . . . , a1bm, a2b1, . . . , a2bm, . . . , anb1, . . . , anbm〉.


We will write k × φ for the form φ⊕ . . .⊕ φ
︸ ︷︷ ︸


k times


.
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Proposition 5.14. 1. Let R be a pre-quadratically presentable field. The direct
sum and the tensor product of isometric forms are isometric.


2. (Witt cancellation) Let R be a quadratically presentable field. If φ1⊕ψ ∼= φ2⊕ψ,
then φ ∼= ψ.


Proof. One proceeds by induction on the dimension of forms using basic prop-
erties of pre-quadratically presentable fields expresses in Corollary 5.8 and the
transitivity of ∼= on forms of dimension higher than 2 for Witt cancellation. The
arguments are essentially the same as in the proof of corresponding results for
pre-special and special groups and will be omitted here. See [6, Proposition 1.6]
for details.


Definition 5.15. Let R be a quadratically presentable field. Two forms φ and ψ
will be called Witt equivalent, denoted φ ∼ ψ, if, for some integers m,n ≥ 0:


φ⊕m× 〈1,−1〉 ≡ ψ ⊕ n× 〈1,−1〉.


Remark 5.16. It is easily verified that ∼ is an equivalence relation on forms over R,
compatible with (and, clearly, coarser than) the isometry. One also easily checks
that Witt equivalence is a congruence with respect to orthogonal sum and tensor
product of forms. Denote by W (R) the set of equivalence classes of forms over R
under Witt equivalence, and by φ the equivalence class of φ. With the operations


φ+ ψ = φ⊕ ψ, φ · ψ = φ⊗ ψ


W (R) is a commutative ring, having as zero the class 〈1,−1〉, and 〈1〉 as multi-
plicative identity. The proof depends is a cruicial way on Witt cancellation, but
essentially mimics the proof of the fact that similarity classes of forms over fields
form a ring under orthogonal sum and tensor product. The details are left to the
reader.


Definition 5.17. Let R be a quadratically presentable field. W (R) with binary
operations as defined above is called the Witt ring of R.


As one might expect, the main example of a Witt ring of a quadratically
presentable field, is the Witt ring of the quadratically presentable field induced
by the quadratic hyperfield of a field:


Theorem 5.18. For a field k, W (P∗(Q(k))) is just the usual Witt ring W (k) of
non-degenerate symmetric bilinear forms of k.


Proof. The map W (k) → W (P∗(Q(k))) that sends the Witt equivalence class of
the form (a1, . . . , an), a1, . . . , an ∈ k/k∗2, to the Witt equivalence class of the form
〈{a1}, . . . , {an}〉 is easily checked to be a well-defined isomorphism of rings.


Remark 5.19. Notice that Theorem 5.18 provides a uniform construction of the
Witt ring for all charateristics as well as for F3 and F5.
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6 Quotients in presentable fields


In order to investigate Witt rings of presentable fields, one needs to know how to
pass from presentable fields to quadratically presentable fields. We are “almost”
able to do that, and will show how one can build a pre-quadratically presentable
field from arbitrary presentable field – it is, however, not clear when the resulting
presentable field is quadratically presentable. The main tool to be used are quo-
tients of presentable fields. Before we proceed to general quotients, we focus on a
rather special case of quotients “modulo” multiplicative subsets of supercompacts.
These are, in fact, the only quotients that we need in the sequel, which explains
why we choose to present our exposition in this particular manner.


Theorem 6.1. Let (R,≤, 0,+,−, ·, 1) be a presentable field. Let T ⊆ S∗
R be a


multiplicative set i.e. for all s, t ∈ T , st ∈ T . Define the relation ∼ on SR by


a ∼ b if and only if ∃s, t ∈ Tas = bt.


This is an equivalence relation, whose equivalence classes will be denoted by a,
a ∈ SR. Let


a⊙ b = ab, ⊖a = −a,


and let
a ∈ b⊕ c if and only if ∃s, t, u ∈ T [as ≤ bt + cu].


Then (SR/ ∼, 0,⊕,⊖, 1,⊙) is a hyperfield.


Proof. The relation ∼ is clearly reflexive and symmetric, and for transitivity as-
sume as = bt and bu = cv, for some a, b, c ∈ SR, s, t, u, v ∈ T . Then asu = btu
and btu = cvt with su, tu, vt ∈ T thanks to the multiplicativity of T .


Next, the operation ⊙ is clearly well-defined, and to see that so is ⊕, assume
b = b′ and c = c′, say, vb = v′b′ and wc = w′c′, for some v, v′, w, w′ ∈ T . Then


a ∈ b+ c ⇔ ∃s, t, u ∈ T [as ≤ bt + cu]


⇒ ∃s, t, u[asvw ≤ bvwt+ cwvu]


⇔ ∃s, t, u[asvw ≤ b′v′wt+ c′w′vu]


⇔ a ∈ b′ ⊕ c′.


In order to show that SR/ ∼ with operations defined as above is, indeed, a
hyperring, we note that both the commutativity of ⊕ and the fact that (SR/ ∼
, 1,⊙) forms a commutative group are obvious, that 0 ∈ a⊖ a, for all a ∈ SR/ ∼,
follows immediately from 0 ≤ a− a for all a ∈ SR, that 0 ⊙ a = 0 is clear in view
of 0 · 1 = 0, and that 0 6= 1 is apparent, as 1 · t = 0, for some t ∈ T , leads to
0 = 1. It remains to show the neutrality of 0, associativity of ⊕, cancellation and
distributativity of ⊕ and ·.


Assume b ∈ a⊕ 0, so bs ≤ at+ 0 = at, for some s, t ∈ T . But then bst−1 ≤ a,
and, since a is a supercompact, this yields bst−1 = a and, consequently, b = a.


Assume d ∈ a⊕ (b⊕ c), so that d ∈ a⊕ e with e ∈ b⊕ c. Hence ds ≤ at+ eu
and es′ ≤ bt′ + cu′, for some s, t, u, s′, t′, u′ ∈ T . Thus dss′ ≤ ats′ + eus′ and
eus′ ≤ but′ + cuu′, so that dss′ ≤ ats′ + (but′ + cuu′) = (ats′ + but′) + cuu′. It
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follows that there exist supercompacts d′, f, c′ ∈ S∗
R with d′ ≤ dss′, f ≤ ats′ + but′


and c′ ≤ cuu′ with d′ ≤ f + c′. Using the same argument as in the proof of
neutrality of 0, we easily check that d′ = d and c′ = c. Therefore d ≤ f + c and
f ≤ ats′ + but′. This yields d ∈ f ⊕ c with f ∈ a⊕ b, so that d ∈ (a⊕ b) ⊕ c.


Assume a ∈ b ⊕ c, so that at ≤ bs + cu, for some s, t, u ∈ T . Then there are
supercompacts a′ ≤ at, b′ ≤ bs and c′ ≤ cu such that a′ ≤ b′ + c′. Using the same
trick as before we conclude a = a′, b = b′, c = c′, so that, in fact, a ≤ b + c, and
thus b ≤ a− c, which implies b ∈ a⊖ c.


Finally, if d ∈ a⊙ (b⊕ c), then d = ae with e ∈ b⊕ c, and thus es ≤ bt + cu,
for some s, t, u ∈ T . But then aes ≤ abt + acu, so ae ∈ ab⊕ ac.


Remark 6.2. We note here that the above result remains true for any presentable
ring (R,≤, 0,+,−, ·, 1) and a subgroup T ⊆ S∗


R of the multiplicative monoid S∗
R.


That is, we only need to be able to invert the elements of T for the argument to
go through.


Definition 6.3. The quotient of (R,≤, 0,+,−, ·, 1) modulo the multiplicative set T
is the presentable field (P∗(SR/ ∼),⊆, {0}) with the hyperfield (SR/ ∼, 0,⊕,⊖, 1,⊙)
defined in Theorem 6.1 and will be denoted by R/mT .


Theorem 6.1, as remarked before, is a special case of the following, more
general result:


Theorem 6.4. Let (R,≤, 0,+,−, ·, 1) be a presentable field. Let ∼ be a nontrivial
congruence on the set S∗


R of supercompacts of R, i.e. an equivalence relation such
that 0 ≁ 1, and, for all a, a′, b, b′ ∈ S∗


R, if a ∼ a′, and b ∼ b′ then


ab ∼ a′b′, a+ b ∼ a′ + b′, −a ∼ −a′.


Denote by a the equivalence class of a ∈ SR. Let


a⊙ b = ab, ⊖a = −a,


and let
a ∈ b⊕ c if and only if ∃a′ ∈ a, b′ ∈ b, c′ ∈ c[a′ ≤ b′ + c′].


Then (SR/ ∼, 0,⊕,⊖, 1,⊙) is a hyperfield.


The proof mimics the one of Theorem 6.1. That 0 6= 1 follows from the fact
that 0 ≁ 1.


7 From presentable fields to pre-quadratically


presentable fields


In this section it remains to explain how a pre-quadratically presentable field can
be obtained from arbitrary presentable field.
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Theorem 7.1. Let (R,≤, 0,+,−, ·, 1) be a presentable field and define the follow-
ing operations on the set SR of supercompacts of R:


a⊙ b = a · b, ⊖a = −a


and
a ∈ b⊕ c if and only if a ≤ b+ c.


Then (SR, 0,⊕,⊖, 1,⊙) is a hyperfield. Further, define the prime addition on SR


as follows:


a⊕′ b =











a⊕ b, if a = 0 or b = 0,


a⊕ b ∪ {a, b}, if a 6= 0, b 6= 0, a 6= −b,


SR, if a 6= 0, b 6= 0, a = −b.


Then (SR, 0,⊕
′,⊖, 1,⊙) is again a hyperfield, called the prime hyperfield of (R,≤


, 0,+,−, ·, 1), and the induced presentable field (P∗(SR),⊆, {0},+′,−, ·, {1}), that
will be called the prime presentable field, satisfies the condition:


∀{a} ∈ S∗
P∗(SR), ∀{b} ∈ S∗


P(SR)[{a} ⊆ {a} +′ {b}].


Proof. That (SR, 0,⊕,⊖, 1,⊙) is a hyperfield is apparent. That (SR, 0,⊕
′,⊖, 1,⊙)


is also a hyperfield is [9, Proposition 2.1]. The extra condition satisfied by the
presentable field P∗(SR) is then obvious.


Theorem 7.2. Let (R,≤, 0,+,−, ·, 1) be a presentable field such that


∀a ∈ S∗
R, ∀b ∈ SR[a ≤ a + b].


Let
T = {s ∈ S∗


R | s ≤ a2 for some a ∈ R}.


Then T is a multiplicative set and the quotient R/mT of R modulo T is a pre-
quadratically presentable ring.


Proof. That T is a multiplicative set is apparent, for if s ≤ a2 and t ≤ b2, for
some s, t ∈ S∗


R, a, b ∈ R, then st ≤ a2b2 = (ab)2 and st 6= 0, since S∗
R is a group.


The condition
∀a ∈ S∗


R, ∀b ∈ SR[a ≤ a+ b]


carries over to R/mT , non-zero supercompacts of R/mT form a group, since in
the process of taking a quotient modulo multiplicative set we end up with a
presentable field, and, finally, squares of all non-zero supercompacts of R/mT are
equal to identity, as they are just classes of squares of non-zero supercompacts in
R, which are, by definition, equivalent to 1.


It remains to show that for all supercompacts {a}, {b} and {c} in R/mT ,
if {a} ⊆ {1} − {b} and {a} ⊆ {1} − {c}, then {a} ⊆ {1} − {bc}. Fix three
supercompacts as above and assume the antedecent. This is equivalent to a ∈ 1⊖b
and a ∈ 1 ⊖ c in the hyperfield SR/ ∼, which, in turn, is equivalent to


sa ≤ t− ub and s′a ≤ t′ − u′c,
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for some non-zero supercompacts s, s′, t, t′, u, u′ ∈ R such that s ≤ x2, s′ ≤ x′2,
t ≤ y2, t′ ≤ y′2, u ≤ z2, u′ ≤ z′2, for some x, x′, y, y′, z, z′ ∈ R. Since S∗


R is a
group, the elements sa, s′a, ub, u′c are also supercompacts, which allows switching
terms between both sides of the above inequalities, and gives


ub ≤ t− sa and u′c ≤ t′ − s′a′,


and, in turn
ub ≤ y2 − x2a and u′c ≤ y′


2
− x′


2
a.


Hence


uu′bc ≤ (y2 − x2a)(y′
2
− x′


2
a)


= y2y′
2
− y2x′


2
a− x2y′


2
a+ x2x′


2
a2


≤ y2y′
2
− y2x′


2
a− x2y′


2
a+ x2x′


2
a2 + 2xx′yy′a− 2xx′yy′a


= (yy′ + axx′)2 − a(x′y + xy′)2


Let v and w be supercompacts with uu′bc ≤ v − w and v ≤ (yy′ + axx′)2 and
w ≤ a(x′y + xy′)2. If both v and w are equal to zero, then one of b or c is
zero, so a ∈ 1 ⊖ bc is just a ∈ 1 ⊖ b or a ∈ 1 ⊖ c. If v = 0 and w 6= 0, then
w = w′w′′ for w′, w′′ ∈ S∗


R with w′ ≤ a and w′′ ≤ (x′y + xy′)2. Thus w′ = a, since
a is a supercompact itself, and hence a minimal element, and w′′ ∈ T , so that
uu′bc ≤ −aw′′, w′′ ∈ T . But −aw′′ is again a supercompact, as S∗


R is a group,
so uu′bc = −aw′′. But −aw′′ ≤ −aw′′ + 1, so uu′bc = −aw′′ ≤ 1 − aw′′, yielding
a ∈ 1 ⊖ bc. Similarly, if v 6= 0 and w = 0, then bc = 1 ∈ 1 − a.


This leaves us with the case v 6= 0 and w 6= 0. Then v ∈ T and w = w′w′′,
for some w′, w′′ ∈ S∗


R with w′ ≤ a and w′′ ≤ (x′y + xy′)2. But then w′ = a, and
w′′ ∈ T . So, at the end we obtain


uu′bc ≤ v − aw′′,


with uu′, v, w′′ ∈ T , or, equivalently


aw′′ ≤ v − uu′bc,


which is the same as {a} ⊆ {1} − {bc}.


Remark 7.3. It is, in general, not clear when the pre-quadratically presentable
field that results is quadatically presentable.


Example 7.4. Let k be a field, let (P∗(k),⊆, {0}) be the induced presentable field.
It follows from the construction that applying Theorems 7.1 and 7.2 we obtain the
pre-quadratically presentable field P∗(SP∗(k))/mT , where T = {{s} ∈ SP∗(SP∗(k)) |


{s} ⊆ {a}2 for some {a} ∈ P∗(SP∗(k))}, which is isomorphic to P∗(Q(k)), and
hence quadratically presentable. In particular, W (P∗(SP∗(k))) ∼= W (P∗(Q(k))) ∼=
W (k).
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