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Abstract. Let E be a field which is the center of a quaternion division algebra


and which is not real euclidean. Then there exists a biquaternion division alge-


bra over the rational function field E(t) which does not contain any quaternion


algebra defined over E. The proof is based on the study of Bezoutian forms


developed in [1].


Keywords: Milnor K-theory, quadratic form, valuation, ramification, Be-


zoutian form


Classification (MSC 2010): 12E30, 12G05, 12Y05, 19D45


1. Introduction


Let E be a field of characteristic different from 2. Let E(t) denote the rational


function field over E, where t is an indeterminate. It is easy to show that there


exists a quaternion division algebra over E(t) if and only if E has some field


extension of even degree. The purpose of this article is to provide sufficient


conditions to have that there exists a biquaternion division algebra over E(t).


In [6] and [4, Sections 3 and 4] such examples were given in the case where E is a


local number field. In this article a different approach will be presented that uses


the study of ramification sequences via associated Bezoutian forms developped


in [1].


For a, b ∈ E× consider the biquaternion algebra


B =
(


t2 + (a+ 1)t+ a, a
)


⊗E(t)


(


t2 + at + a, ab
)


over E(t). We will obtain by Theorem 4.2 that, for having that B is a division


algebra, it suffices that the E-quaternion algebra (a, b) is non-split and that


ab, (a − 4)b /∈ E×2. More precisely, under the same conditions the ramification


of B (with respect to the valuations on E(t) which are trivial on E) differs from


the ramification of any quaternion algebra over E(t), which means that B has


Faddeev index 4, in the terminology of [4].


This will yield the following sufficient condition for the existence of biquater-


nion division algebras over E(t).
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Theorem. Assume that E is not real euclidean and that there exists a non-split


quaternion algebra over E. Then there exists a biquaternion division algebra over


E(t) which does not contain any quaternion algebra defined over E.


Recall that E is real euclidean if the set of squares in E is an ordering of E.


It is clear that this case has to be excluded in the Theorem. In fact, if E is real


euclidean, then every E(t)-quaternion algebra is of the form (−1, f) for some


f ∈ E[t] and it follows that every E(t)-biquaternion algebra has zero divisors.


As a consequence of the Theorem one may therefore notice that whenever there


exist biquaternion division algebras over E(t) then there exist also biquaternion


algebras over E(t) of Faddeev index 4.


Note finally that the converse of the Theorem does not hold. It was shown


in [2] that one can construct a field E of cohomological dimension 1 – hence in


particular such that every E-quaternion algebra is split – and such that there


exist biquaternion division algebras over E(t).


2. Preliminaries


For an E-algebra A and a field extension F/E, we denote by AF the F -algebra


A⊗E F . Recall that an E-algebra A is central simple if and only if AF ≃ Mn(F )


for some field extension F/E and a positive integer n; we say that A is split if


one can take F = E, that is if A ≃ Mn(E). Note that any central simple algebra


is finite-dimensional and in particular it either has zero divisors or it is a division


algebra.


An E-quaternion algebra is a 4-dimensional central simple E-algebra. For


a, b ∈ E× an E-quaternion algebra denoted (a, b)E or just (a, b) is obtained by


endowing the vector space


E ⊕Ei⊕Ej ⊕Ek


with the multiplication given by the rules i2 = a, j2 = b and ij = k = −ji. Any


E-quaternion algebra is isomorphic to (a, b)E for certain a, b ∈ E×. A quaternion


algebra is either split or it is a division algebra.


An E-biquaternion algebra is an E-algebra which is isomorphic to Q ⊗E Q′


for two E-quaternion algebras Q and Q′. In particular, biquaternion algebras


are central simple. Given an E-biquaternion algebra B and an E-quaternion


subalgebra Q of B, we can decompose B ≃ Q ⊗E Q′ with the E-quaternion


algebra Q′ given as the centralizer of Q in B.


For our analysis of quaternion and biquaternion algebras over E and E(t), we


will work in the second Milnor K-groups modulo 2 of the fields.


For n ∈ N we denote by knE the nth Milnor K-group of E modulo 2; this


is the abelian group generated by symbols {a1, . . . , an} with a1, . . . , an ∈ E×
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which are subject to the defining relations that the map (E×)n → knE given


by (a1, . . . , an) 7→ {a1, . . . , an} is multilinear and further that {a1, . . . , an} = 0


whenever ai ∈ E×2 for some i 6 n or ai + ai+1 = 1 for some i < n. Note that


k0E ≃ Z/2Z and k1E ≃ E×/E×2. Here we only consider knE (and knE(t)) for


n = 1, 2. The group k2E is in tight relation to the Brauer group.


We denote by Br(E) the Brauer group of E and by Br2(E) its 2-torsion part.


Recall that there is a unique homomorphism


k2E → Br2(E)


that sends any symbol {a, b} with a, b ∈ E× to the Brauer equivalence class of


the E-quaternion algebra (a, b)E . Merkurjev’s Theorem asserts that this is in fact


an isomorphism. We only need special instances of this statement. For a, b ∈ E×


we have {a, b} = 0 in k2E if and only if the E-quaternion algebra (a, b)E is split.


Furthermore, for a, b, c, d ∈ E× the E-biquaternion algebra (a, b)⊗E (c, d) has zero


divisors if and only if {a, b} + {c, d} = {e, f} for certain e, f ∈ E×. These two


facts can be proven by elementary means, without using Merkurjev’s Theorem.


To the study of k2E(t) one uses Milnor’s Exact Sequence (2.1). To explain it


we first need to define the tame symbol map ∂v with respect to a Z-valuation v.


Let F be a field. By a Z-valuation on F we mean a valuation with value group


Z. Given a Z-valuation v on F we denote by Ov its valuation ring and by κv its


residue field. For a ∈ Ov let a denote the natural image of a in κv. By [5, (2.1)],


for a Z-valuation v on F , there is a unique homomorphism ∂v : k2F → k1κv such


that


∂v({f, g}) = v(f) · {g} in k1κv


for f ∈ F× and g ∈ O×
v . For f, g ∈ E× we obtain that f−v(g)gv(f) ∈ O×


v and


∂v({f, g}) =
{


(−1)v(f)v(g)f−v(g)gv(f)
}


in k1κv .


We turn to the case where F = E(t). Let P denote the set of monic irreducible


polynomials in E[t]. Any p ∈ P determines a Z-valuation vp on E(t) which is


trivial on E and with vp(p) = 1. There is further a unique Z-valuation v∞ on


E(t) such that v∞(X) = −1. We set P ′ = P ∪ {∞}. For p ∈ P ′ we write ∂p
for ∂vp and we denote by Ep the residue field of vp. Note that Ep is naturally


isomorphic to E[t]/(p) for any p ∈ P and that E∞ is naturally isomorphic to E.


We call


∂ =
⊕


p∈P ′


∂p : k2E(t) →
⊕


p∈P ′


k1Ep


the ramification map. For p ∈ P ′, the norm map of the finite extension Ep/E


yields a group homomorphism k1Ep → k1E. Summation over these maps for all
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p ∈ P ′ yields a homomorphism


N :
⊕


p∈P ′


k1Ep → k1E .


Let R2(E) denote the kernel of N. By [3, (7.2.4) and (7.2.5)] we obtain an exact


sequence


0 → k2E → k2E(t)
∂
→


⊕


p∈P ′


k1Ep
N
→ k1E → 0 .(2.1)


In particular, R2(E) is equal to the image of ∂. The elements of R2(E) are called


ramification sequences.


For a finite set S ⊆ P ′ we call
∑


p∈S[Ep : E] the degree of S and denote it by


deg(S). For ρ = (ρp)p∈P ′ ∈
⊕


p∈P ′ k1Ep we set Supp(ρ) = {p ∈ P ′ | ρp 6= 0} and


abbreviate deg(ρ) = deg(Supp(ρ)), and we call this the support and the degree


of ρ. We say that ρ ∈ R2(E) is represented by ξ ∈ k2E(t) if ∂(ξ) = ρ.


3. Bezoutians


We use standard terminology from quadratic form theory. For n ∈ N and


a1, . . . , an ∈ E× we denote the n-fold Pfister form 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 by


〈〈a1, . . . , an〉〉. The Witt ring of E is denoted by WE. For a nondegenerate


quadratic form ϕ over E we denote by [ϕ] its class in WE and we set c · [ϕ] = [cϕ]


for c ∈ E×. For c ∈ E× we abbreviate [c] = [〈c〉]. For α, α′ ∈ WE we write


α ∼ α′ to indicate that α′ = cα for some c ∈ E×.


Consider a square-free polynomial g ∈ E[t] and a polynomial f ∈ E[t] coprime


to g. Let θ denote the class of t in Eg = E[t]/(g), n = deg(g), and let sg : Eg → E


be the E-linear form with sg(θ
i) = 0 for i = 0, . . . , n − 2 and sg(θ


n−1) = 1. By


[1, Proposition 3.1]


q : Eg → E, x 7→ sg(f(θ)x
2)


is a nondegenerate quadratic form over E, called the Bezoutian of f modulo g.


We denote the class in WE given by the Bezoutian of f modulo g by


B


(


f


g


)


.


Bezoutians satisfy some computation rules, which are useful.


3.1. Proposition. For f, g1, g2 ∈ E[t] pairwise coprime and with g1 and g2 monic


and square-free, we have


B


(


f


g1g2


)


= B


(


fg2
g1


)


+B


(


fg1
g2


)


.


Proof. See [1, Proposition 3.5]. �
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3.2. Theorem. Let f, g ∈ E[t] be monic, square-free and coprime. Then


B


(


f


g


)


+B


(


g


f


)


=


{


0 if deg(f) ≡ deg(g) mod 2,


[1] if deg(f) 6≡ deg(g) mod 2.


Proof. See [1, Theorem 3.8]. �


These two rules will be used without explicit mention in the sequel.


3.3. Lemma. Let a1, a2 and g1, g2 ∈ E[t] monic of even degree and relatively


coprime and such that g1t is a square modulo g2. Let f ∈ E[t] be such that aif


is a square modulo gi for i = 1, 2. Then


B


(


f


g1g2


)


∼ [〈〈a1a2, g2(0)〉〉] .


Proof. Let b = g2(0). As g1t is a square modulo g2, we obtain that


B


(


g1
g2


)


= B


(


t


g2


)


= [1]−B


(g2
t


)


= [1]− [b] .


It follows that


B


(


g2
g1


)


= −B


(


g1
g2


)


= [b]− [1] .


We obtain that


B


(


f


g1g2


)


= a1B


(


g2
g1


)


+ a2B


(


g1
g2


)


= [a2〈〈a1a2, b〉〉] .
�


4. Ramification sequences not representable by a symbol


In [1, Section 5] Bezoutians are related to ramification sequences and it is shown


in [1, Theorem 5.12] that a non-trivial Bezoutian can present an obstruction for


the representability of a ramification sequence by a single symbol. Here this will


be used to obtain ramification sequences of degree 4 that do not correspond to a


symbol.


Given g ∈ E[t] monic and square-free and f ∈ E[t] coprime to g, we denote by


R


(


f


g


)


the element ρ ∈ R2(E) such that ρp = {f} for all p ∈ P dividing g and ρp = 0 for


all other p ∈ P; note that ρ∞ is given by the condition that ρ ∈ R2(E) = ker(N).


4.1. Proposition. Let g1, g2 ∈ E[t] monic of even degree, coprime and such


that g1t is a square modulo g2. Let a1, a2 ∈ E× be such that the quadratic form







6 KARIM JOHANNES BECHER


〈1,−a1a2〉 over E(t) does not represent g2(0) and for i = 1, 2 one has ai /∈ E×2
p


for any irreducible factor p of gi. Then


∂ ({g1, a1}+ {g2, a2}) 6= ∂ (σ)


for any symbol σ in k2E(t).


Proof. We set ρ = ∂ ({g1, a1}+ {g2, a2}) in R2(E). We have ρ∞ = 0 and


Supp(ρ) = {p ∈ P | p divides g1g2}. In particular deg(ρ) = deg(g1) + deg(g2),


which is even. Suppose there exists a symbol σ in k2E(t) with ∂(σ) = ρ. It fol-


lows by [1, Proposition 4.1] that there exist f, g, h ∈ E[t] square-free and pairwise


coprime and with g = g1g2 such that σ = {f, gh}, and ∂(σ) = R


(


f


g


)


. By [1,


Lemma 4.2] we obtain that


B


(


f


g


)


= 0 .


Since


R


(


f


g1


)


+R


(


f


g2


)


= R


(


f


g


)


= ∂(σ) = ρ = R


(


a1
g1


)


+R


(


a2
g2


)


,


we have that aif is a square modulo gi for i = 1, 2. thus by Lemma 3.3 we get


that


[〈〈a1a2, g2(0)〉〉] ∼ B


(


f


g


)


= 0 .


Thus 〈〈a1a2, g2(0)〉〉 is hyperbolic. Hence g2(0) is represented over E by the qua-


dratic form 〈1,−a1a2〉, which contradicts the hypothesis. �


We are ready to prove the statements in terms of symbols which were claimed


in the introduction in terms of quaternion algebras. For the translation we rely


only the fact that the ramification map ∂ : k2E(t) →
⊕


p∈P ′ k1Ep factors over the


natural homomorphism k2E(t) → Br2(E(t)).


4.2. Theorem. Let a, b ∈ E× be such that a /∈ E×2 and b /∈ aE×2 ∪ (a− 4)E×2.


The following are equivalent:


(i) {a, b} = 0 in k2E.


(ii) There exists a symbol σ ∈ k2E(t) with


∂
({


t2 + (a + 1)t+ a, a
}


+
{


t2 + at + a, ab
})


= ∂(σ) .


Proof. Set g1 = t2+(a+1)t+a, g2 = t2+at+a and ρ = ∂ ({g1, a}+ {g2, ab}). The


polynomials g1 and g2 are coprime, and we have g2(0) = a and g1t ≡ t2 mod g2.


The discriminant of g2 is a2 − 4a. Hence, the conditions on a and b imply that


g2 is separable and ab is a non-square modulo any irreducible factor of g2. In


particular, we have that Supp(ρ) = {p ∈ P | p divides g1g2} and deg(ρ) = 4.
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Moreover, as a /∈ E×2, we have that a is a non-square modulo the irreducible


factors of g1 = (t+ 1)(t+ a).


If {a, b} 6= 0, then 〈1,−b〉 does not represent a = g2(0), and we conclude by


Proposition 4.1 that ρ 6= ∂(σ) for any symbol σ in k2E(t). Assume conversely


that {a, b} = 0. Then 〈〈a, b〉〉 is hyperbolic. Hence choosing f ∈ E[t] such that


f ≡ a mod g1 and f ≡ ab mod g2, we obtain by Lemma 3.3 that B
(


f


g1g2


)


= 0,


and as ρ = R


(


f


g1g2


)


we conclude by [1, Theorem 5.9] that ρ = ∂(σ) for a symbol


σ in k2E(t). �


Note that k2E = 0 if and only if every E-quaternion algebra is split. Hence


the Theorem in the introduction is covered in the following statement.


4.3. Theorem. Assume that k2E 6= 0 and that E is not real euclidean. Then we


have the following:


(a) There exists ρ ∈ R2(E) with deg(ρ) = 4 and such that ρ 6= ∂(σ) for any


symbol σ in k2E(t).


(b) There exists an E(t)-biquaternion division algebra B such that B ⊗E(t) Q is


not defined over E for any E(t)-quaternion algebra Q. In particular, B does


not contain any E-quaternion algebra.


Proof. We claim that the inclusion


yE×2 ∪ (−xy)E×2 ⊆ xE×2 ∪ (x− 4)E×2


cannot hold for all x, y ∈ E× with {x, y} 6= 0.


We denote by DE(2) the set of nonzero sums of two squares in E and recall


that for c ∈ E× we have {−1, c} = 0 in k2E if and only if c ∈ DE(2).


If there exists a symbol σ 6= 0 in k2E that is not of the form {−1, c} for


any c ∈ E×, then for any x, y ∈ E× with {x, y} = σ, the elements x, y,−xy


represent distinct classes in E×/E×2, whereby the above inclusion cannot hold.


If there exists c ∈ E× such that c,−c ∈ E×
r DE(2), then {−1, c} 6= 0 and


for x = −1 and y = c, the above inclusion does not hold. Suppose now that


{−1,−1} is the only nonzero symbol in k2E. Then E× = DE(2) ∪ −DE(2) and


−1 /∈ DE(2), in particular E has characteristic zero. With x = −9
4
we obtain that


xE×2∪(x−4)E×2 = −E×2. By the hypothesis, there exists some c ∈ DE(2)rE×2.


We set y = −c and obtain that {x, y} = {−1,−c} = {−1,−1} 6= 0 and that the


above inclusion does not hold.


Since the preliminary claim is now established, we fix elements x, y, b ∈ E×


with {x, y} 6= 0 and b ∈ (yE×2 ∪ (−xy)E×2) r (xE×2 ∪ (x− 4)E×2) . We set


a = x and obtain that {a, b} = {x, y} 6= 0 and b /∈ aE×2 ∪ (a − 4)E×2. By
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Theorem 4.2 the ramification sequence


ρ = ∂({t2 + (a + 1)t+ a, a}+ {t2 + at+ a, ab})


satisfies the claim in (a).


To show (b), we consider the E(t)-biquaternion algebra


B = (t2 + (a+ 1)t+ a, a)⊗E(t) (t
2 + at+ a, ab) .


For any f, g ∈ E(t)× such that B ⊗E(t) (f, g) can be defined over E, we would


obtain that ρ = ∂({f, g}), in contradiction to (a). Therefore there exists no E(t)-


quaternion algebra Q such that B⊗E(t)Q can be defined over E. In particular, B


does not contain any E-quaternion algebra Q′, because otherwise the centraliser


of Q′


E(t) in B would be an E(t)-quaternion algebra Q such that B ⊗E(t) Q is


defined over E. Since B does in particular not contain M2(E), it follows that B


is a division algebra. �
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