Universität Bielefeld Geistes-, Natur-, Sozial- und Technikwissenschaften – Transcending Boundaries

Arithmetic groups and Rigidity Talk 1: Introduction

Arithmetic groups...

Combine

- algebra,
- number theory,
- geometry,
- geometric group theory.

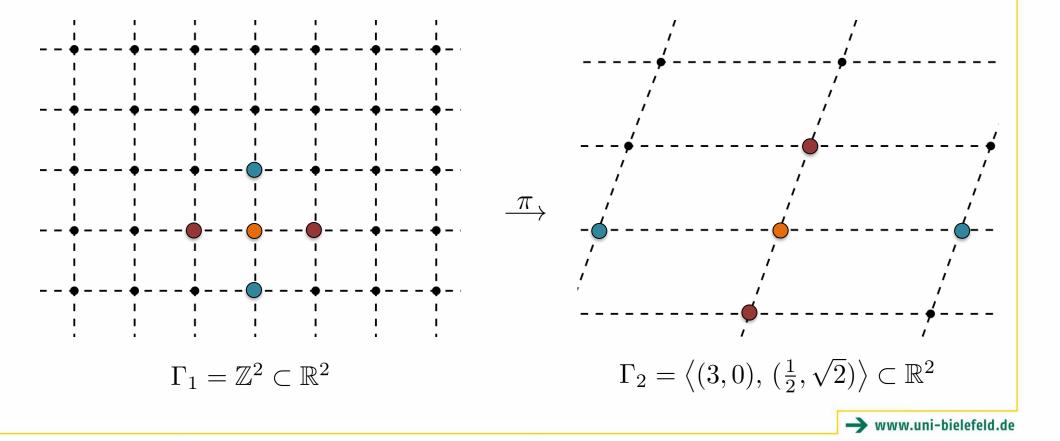
... and Margulis Superrigidity

- important consequences in algebra and geometry
- proof uses techniques from different areas
- influenced many other rigidity results

A rigidity theorem

Let $\Gamma_1 \leq \mathbb{R}^n$ and $\Gamma_2 \leq \mathbb{R}^m$ be discrete subgroups such that \mathbb{R}^n/Γ_1 and \mathbb{R}^m/Γ_2 are compact.

Then every group isomorphism $\pi: \Gamma_1 \to \Gamma_2$ extends to a continuous group isomorphism $\bar{\pi}: \mathbb{R}^n \to \mathbb{R}^m$.

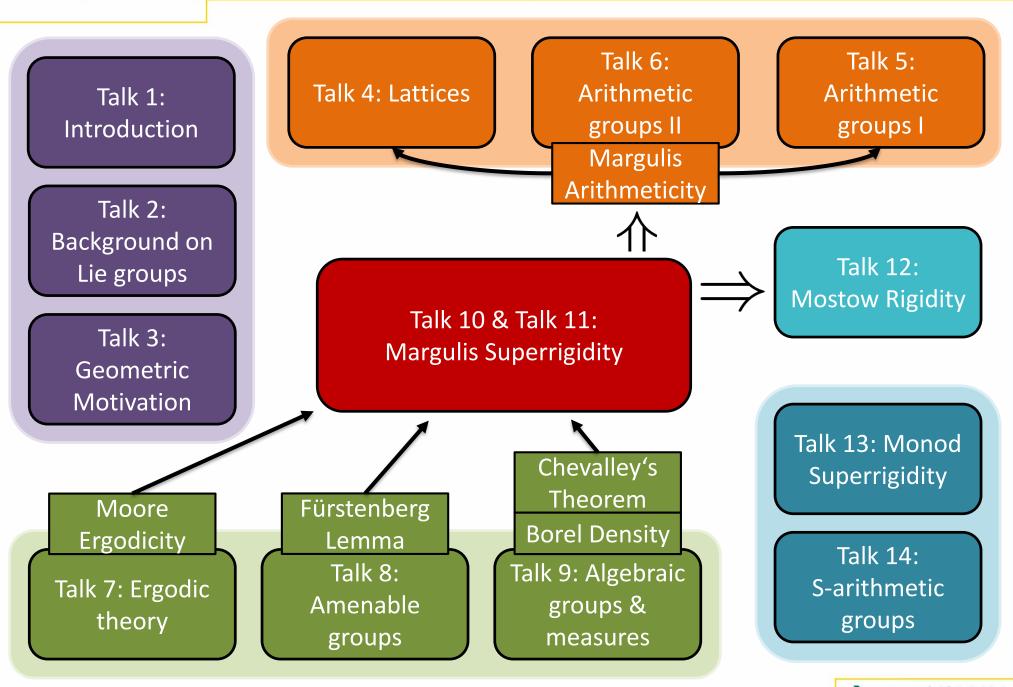


Margulis' Superrigidity Theorem ('77)

Let G and H be connected algebraic \mathbb{R} -groups that satisfy the following conditions:

- G is semi-simple, has \mathbb{R} -rank greater than 1 and $G^0_{\mathbb{R}}$ has no compact factors.
- H is simple and $H_{\mathbb{R}}$ is not compact.

Let $\Gamma \subset G^0_{\mathbb{R}}$ be an irreducible lattice. Then every homomorphism $\pi : \Gamma \to H$ whose image is Zariski dense extends to a rational homomorphism $\overline{\pi} : G \to H$ which is defined over \mathbb{R} . Universität Bielefeld Arithmetic groups and Rigidity - Introduction



Thanks for your attention!

