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Network Information Flow
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~ Abstract—We introduce a new class of problems calledetwork  gated traffic pattern the network needs to support. In other sit-
information flow which is inspired by computer network applica-  yations, the grapls may represent a subnetwork in a physical
tions. Consider a point-to-point communication network on which network, while the set of multicast requirements may pertain to

a number of information sources are to be mulitcast to certain sets ifi licati thi bnet K id f
of destinations. We assume that the information sources are mu- & SPECIIC application on this subnetwork, €.g., a video-conier-

tually independent. The problem is to characterize the admissible €nce call.
coding rate region. This model subsumes all previously studied In existing computer networks, each node functions as a
models along the same line. In this paper, we study the problem switch in the sense that it either relays information from an
with one information source, and we have obtained a simple char- it |ink to an output link, or it replicates information received
acterization of the admissible coding rate region. Our result can be f . t link and ds it t tai t of outout link
regarded as the Max-flow Min-cut Theorem for network informa- rom an mpu In a_n sends it oa F:er an S_e orou pu_ INKS.
tion flow. Contrary to one’s intuition, our work reveals thatitisin ~ From the information-theoretic point of view, there is no
general not optimal to regard the information to be multicast as a reason to restrict the function of a node to that of a switch.
“fluid” which can simply be routed or replicated. Rather, by em-  Rather, a node can function as an encoder in the sense that
ploying coding at the nodes, which we refer to asetwork coding 4 recejves information from all the input links, encodes, and
bandwidth can in general be saved. This finding may have signifi- ds inf tion to all th tout links. E ’ thi ',t f
cant impact on future design of switching systems. sgn s n O_rma, ion 1o a- € output links. From this point o
view, a switch is a special case of an encoder. In the sequel, we

will refer to coding at a node in a network astwork coding

Let R;; be a nonnegative real number associated with the
edge(i,j), andletR = [R;;, (¢, j) € E]. For afixed set of mul-
|. INTRODUCTION ticast requirements, a vectBris admissiblaf and only if there

L ET V be the set of nodes of a point-to-point communicae-XiStS a coding scheme satisfying the set of multicast require-

tion network. Such a network is represented by a directSfNts such that the coding rate from nade nodey (i.e., the

graphG = (V, E), whereE is the set of edges, such that inaverage number of bits sent from nade nodej per unit time)

formation can be sent noiselessly from nede nodej for all is less than or equal tB‘iﬂ'_ forall (i, j) € E. (At this p_o_lnt we
(4,7) € E. An example of this type of networks is the InterneLLeave the details of a coding scheme open because itis extremely

backbone, where with proper data link protocols informatiofiTicult to define the most general form of a coding scheme. A
can be sent between nodes essentially free of noise. class of coding schemes calleecodes will be studied in Sec-

Let X,,---,X,, be mutually independent informationtign [1.) In graph theory,R;; is called the capacity of the edge
sources. The information rate (in bits per unit time)Jof is

Index Terms—DPiversity coding, multicast, network coding,
switching, multiterminal source coding.

(4,4). Our goal is to characterize the admissible coding rate re-
denoted by:;, and leth = [y - - - k). Leta: {1,---,m} — V' gion R, i.e., the set of all admissibl&, for any graphG and

andb:{1,---,m} — 2" be arbitrary mappings. The sourcdnulticast requirements, b, andh. _ _
X, is generated at node(7), and it is multicast to nodg for The model we have described includes both multilevel diver-

all j € b(i). The mappings:. b, and the vectoh specify a set sity coding (without distortion) [12], [8], [13] and distributed
of multicast requirements source coding [14] as special cases. As an illustration, let us

In this model, the grapt¥ may represent a physical network Show how the multilevel diversity coding system in Fig. 1 can

while the set of multicast requirements may represent the agg}gg_formulated as a special case of our model. In this system,
there are two source¥l; and X,. Decoder 1 reconstrucfs;

" ) ed Feb o5 1998 revised March 6. 2000. Thi oknly, while all other decoders reconstruct bdfh and X. Let
anuscript received February 25, ; revised March 6, . This work ; L
was supported in part under Grants CUHK95E/480 and CUHK332/96E from be the_‘ coding rate of Encodgr = 1’ 2, 3 Inour m_Odel’ the
the Research Grant Council of the Hong Kong Special Administrative RegigpyStem is represented by the gra@hin Fig. 2. In this graph,

China. The material in this paper was presented in part at the IEEE Internationgde 1 represents the source, nodes 2, 3, and 4 represent the in-

Symposium on Information Theory, MIT, Cambridge, MA, August 16-21, 199 : _
R. Ahlswede is with Fakultéat fir Mathematik, Universitat Bielefeld, 3350@uts of Encoders 1, 2, and 3, respectlvely, nodes 5, 6, and 7 rep

Bielefeld, Germany (e-mail: hollmann@Mathematik.uni-Bielefeld.de). resent the outputs of Encoders 1, 2, and 3, respectively, while
N. Cai was with Fakultat fir Mathematik, Universitat Bielefeld, 3350lnodes 8, 9, 10, and 11 represent the inputs of Decoders 1, 2, 3,

Bielefeld, Germany. He is now with the Department of Information Engi:. ; ; i
neering, The Chinese University of Hong Kong, N.T., Hong Kong (e-mailg.‘nd 4, respectively. The mappingsnd?b are specified as

ncai@ie.cuhk.edu.hk).
S.-Y. R. Li and R. W. Yeung are with the Department of Information En- a(l)y=1 a(2)=1
gineering, The Chinese University of Hong Kong, N.T., Hong Kong (e-mail:
syli@ie.cuhk.hk; whyeung@ie.cuhk.hk). nd
Communicated by R. L. Cruz, Associate Editor for Communication Nee
works.
Publisher Item Identifier S 0018-9448(00)05297-4. b(1) = {8,9,10,11} b(2) = {9,10,11}

0018-9448/00$10.00 © 2000 IEEE



AHLSWEDE et al: NETWORK INFORMATION FLOW 1205

Decoder 1 X4 Encoder 1 Decoder 1 |— X
Encoder 1 Decoder 2 — X, X, Encoder 2 Decoder 2 '_ X4
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Encoder 3 Decoder 3 X
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Encoder 4 Decoder 4 l— X,
Encoder 3 Decoder4 — X, X,

Fig. 1. A multilevel diversity coding system.
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Fig. 2. The graplG representing the coding system in Fig. 1.

andh = [h1 ho] represents the information ratesXf and X.

Now all the edges irG except for(2,5), (3,6), (4,7) corre- Fig. 4. The graph representing the coding system in Fig. 3.

spond to straight connections in Fig. 1, so there is no constraint

on the coding rate in these edges. Therefore, in order to defgiser words, the information sourcé, is generated at node

mining R, the set of all admissibl®& for the graphz (with the and is multicast to nodes, - - -, ;. We will call s the source

set of multicast require_ments specified byb, andh), we set 44 t1,--- .t the sinksof the graphG. For a specific, the

Ri; = oo for all edges inGz except for(2,5), (3,6), (4,7) 10 proplem will be referred to as the one-soufesink problem.

obtain the admissible coding rate region of the problemin Fig. 1.| ot us first define some notations and terminology which will
A major finding in this paper is that, contrary to one’s inyg sed in the rest of the paper. két= (V, E) be a graph with

tuition, it is in general not optimal to consider the informatioR,;rces and sinkg,, - - -, t,. The capacity of an edgé, j) € E
to be multicast in a network as a “fluid” which can simply b&s given by, and letR — [Ri;, (i, ) € E]. The sul:;graph of
routed or replicated at the intermediate nodes. Rather, netweik.om < to tlj I=1.---. L refje7rs’to the grapls; = (V, Ey)

coding has to be employed to achieve optimality. This fact is {fyere
lustrated by examples in the next section.

In the rest of the paper, we focus our discussion on problemg, = {(¢, ;) € E: (i, 5) is on a directed path fromto #;}.
with m = 1, which we collectively refer to as the single-source
problem. For problems with. > 2, we refer to them collec- ¥ = [Fi;,(¢,j) € E] is aflow in G from s to ¢ if for all
tively as the multisource problem. The rest of the paper is ordd-J) € £
nized as follows. In Section II, we propose a Max-flow Min-cut
theorem which characterizes the admissible coding rate region 0=y <Ry
of the s_ingle—so.urce. problem. In Sectio.n 1, we formally St"’,‘tguch that for ali € V except fors and#;
the main result in this paper. The proof is presented in Sections
IV and V. In Section VI, we show that very simple optimal codes Z Firy = Z Fij
do exist for certain networks. In Section VII, we use our results (i )EE J(i,g)EE
for the single-source problem to solve a special case of the mif:. the total flow into nodé is equal to the total flow out of
tisource problem which has application in video conferencingodei. Fi; is referred to as the value df in the edge(i, j).
In this section, we also show that the multisource problem Id1€ value ofF" is defined as

extremely difficult in general. Concluding remarks are in Sec- Z F.;— Z F,
tion VIII. §:(s,5)CE i:(i,8)CE
which is equal to
[I. AMAX-FLow MIN-CUT THEOREM Z Fy, — Z F,;.
In this section, we propose a theorem which characterizes the (6, t)EE §i(t,§)EE

admissible coding rate region for the single-source problem. Foris a max-flowfrom s to #; in G if F'is a flow from s to #;
this problem, we let:(1) = s, andb(l) = {¢1,---,%r}. In whose value is greater than or equal to any other flow fsdm



1206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

@ (b) (©

Fig. 5. A one-source one-sink network.

t;. Evidently, a max-flow froms to ¢; in G is also a max-flow a max-flow fromsto¢;,/ = 1,---, L are greater than or equal
from s to ¢; in ;. For a graph with one source and one sinto &, the rate of the information source.
(for example, the grapty;), the value of a max-flow from the

source to the sink is called tiapacityof the graph. I\flax-flow Min-cut Theorem in graph theory [1]. Before we end

. we _begm our dlscuss_lon_by first reviewing a _basu_: result %nis section, we give a few examples to illustrate our conjecture.
diversity coding by considering the single-level diversity syste%e firstillustrate by the example in Fig. 5 that the conjecture is

in Fig. 3. In this systemX is the only information source (with _ : .
ratefr1), and it is reconstructed by all the decoders. Hencefortﬁ?e forL = 1.Fig. 5(a) shows the capacity of each edge. By the

we will drop the subscripts ok, andh; when there is only tOax—flow Min-cut Theorem [1], the value of a max-flow from

. . ‘ . . t1 is 3, so the flow in Fig. 5(b) is a max-flow. In Fig. 5(c), we
one information source. Let be the coding rate of encodér show how we can send three biis by, bs from s to £, based

and letr = [ry - --r4]. In order for a decoder to reconstru€t . ; o
it is necessary that the sum of the coding rates of the encodgar the max-flow in Fig. 5(b). The conjecture is trivially seen

accessible by this decoder is at leastThus the conditions t6 e true forL, = L becau_se when_ ther_e is only one smk,_ we
only need to treat the raw information bits as physical entities.

The spirit of our conjecture resembles that of the celebrated

T1+T2 2 h (1)  The bits are routed at the intermediate nodes according to any
o413 > h (2) fixed routing scheme, and they will all eventually arrive at the
T ?) si_nl_<. Sinc_e th_e routing s_cheme is fixed, thg sink kn_ows which
bit is coming in from which edge, and the information can be
T3 + T4 2 h (4)

recovered accordingly.
are necessary far to be admissible. On the other hand, these Next we illustrate by the example in Fig. 6 that the conjecture
conditions are seen to be sufficient by the work of Singleton [1§] true for L = 2. Fig. 6(a) shows the capacity of each edge. It
(also cf. [12]). is easy to check that the value of a max-flow frerp ¢; and

We now give a graph-theoretic interpretation of the above rgy+, are5 and6, respectively. So the conjecture asserts that we
sult. The graph corresponding to the system in Fig. 3 is giv@an send 5 bit8, , b2, bs, bs, b5 t0 £; andt, simultaneously, and
in Fig. 4, where we use to label the source ant] to label a Fjg. 6(b) shows such a scheme. Note that in this scheme, bits
sink. Now Ry, Ry, Ha7, andRys correspond tay, 72,73, @nd  only need to be replicated at the nodes to achieve optimality.
r4, respectively. Sothe edges 5), (2,6), (3,7),and(4,8)are  \ve now show another example in Fig. 7 to illustrate that the
labeled accordingly. The quantities, 72,3, andry are inter- e ctyre is true fof, = 2. Fig. 7(a) shows the capacity of each
preted as the capacity (in the sense of graph theory) of the cgfre 1t is easy to check that the value of a max-flow frcimit;

responding edges. For the other edges in the graph, each @ne; _ y 9 gq the conjecture asserts that we can send 2 bits
of them corresponds to a straight connection in the systembllq b, to #, andt, simultaneously, and Fig. 7(b) shows such a
Fig. 3. Since there is no constraint on the coding rate in thegg,ome wheret” denotes modul@ addition. Att;, b, can be
edges, we interp_ret the capacity of each of them as infinity. T_Qcovered fronb, andb, + bs. Similarly, b, can be recovered at
keep the graph simple, we do not label these edges. By considy gt that when there is more than one sink, we can no longer
ering the subgraph fromto ¢, in Fig. 4, the condition in (1) can yhiny of information as a real entity, because information needs
be interpreted as the value of the max-flow frertp ¢, being  , pe repjicated or transformed at the nodes. In this example,

greater than or equal tb, the information rate of the SOUTCe.information is coded at the node 3, which is unavoidable. For
Similar interpretations can be made for the conditions in (2)-(4). < 5 network coding is in general necessary in an optimal
Based on the graph-theoretic interpretation of the abo}?ﬁjﬁice;st scheme

diversity coding problem (which is a one-source four-sink

problem), we make the following conjecture. Finally, we illustrate by the example in Fig. 8 that the con-

jecture is true forl. = 3. Fig. 8(a) shows the capacity of each

Conjecture 1: Let G = (V, E) be a graph with sourceand edge. It is easy to check that the values of a max-flow fecim
sinksty, - - -, tr,, and the capacity of an edd¢ j) be denoted all the sinks are. In Fig. 8(b), we show how we can multicast
by R;;. Then(R, h, G) is admissible if and only if the values of 2 bits &1, b, to all the sinks.
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@) (b)

Fig. 6. A one-source two-sink network without coding.

(@) (b)

Fig. 7. A one-source two-sink network with coding.

The advantage of network coding can be seen from the &herefore,
amples in Figs. 7 and 8. As an illustration, we will quantify this

advantage for the example in Fig. 8 in two ways. First, we inves- k=[B3 U (B1 N By)
tigate the saving in bandwidth when network coding is allowed. <|Bs3|+|B1 N Bs|
For the scheme in Fig. 8(b), a total of 9 bits are sent. If network — |Bs| + |B1| + |Ba| — |B1 U Bo|

coding is not allowed, then it is easy to see that at least one more
bit has to be sent in order that fér, t2 and#s to recover both

by andb,. Thus we see that a very simple network code ¢
save 10% in bandwidth. Second, we investigate the increas

=6—K

Rhich impliesx < 3. In Fig. 8(c), we show how 3 bits, b,
eaHHbg can be multicast to all the sinks by sending 2 bits in each
r@ﬁge. Therefore, the throughput of the network can be increased

in Fig. 8(b), if 2 bits are sent in each edge, then 4 bits can §§ one-third using a very simple network code

multicast to all the sinks. If network coding is not allowed (an
2 bits are sent in each edge), we now show that only 3 bits can
be multicast to all the sinks. Lé8 = {b;,---,b,.} be the set . MAIN RESULT
of bits to be multicast to all the sinks. Let the set of bits sentin |, this section, we formally present the main result in this
the edgd(s, <) be B;, where|B;| = 2,i = 1,2, 3. Atnodei, the  aner | et = (V, E) be a directed graph with sourseand
recelved_blts are duphcated and sent in the two out-gomg edg&?rkstl, .-+ t;,, and R;; be the capacity of an eddé, j) in
Thus 2 bits are sent in each edge in the network. Since netwgsk ince our conjecture concerns only the values of max-flows
coding is not allowedB = B; U Bjforanyl <4 < j < 3. fom the source to the sinks, we assume without loss of gener-
Then we have ality that there is no edge i&8 from a node (other thas) to s,

Bs U (By N By)=(B3s U By) N (B3 U By) =B. because such an edge does not increase the value of a max-flow
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(c) (d)

Fig. 8. A one-source three-sink network.

from s to a sink. Further, we assune:) ¢ E forall : € V for where
the same reason.

Let us consider a block code of lengthWe assume that,
the value assumed by, is obtained by selecting an index from and
a set2 with uniform distribution. The elements i are called , ,
messages. F¢¥, j) € E, nodei can send information to node Qu =11k < ko(k) = u(k)}.
which depends only on the information previously received by 5) ¢:: I Awx — Q,1 <1< L, where
nodei. Since the grapty is arbitrary and may contain (directed) krew:

Q:{lv"'v |'2nh'|}

cycles, a network code can in general be very complicated. In Wi={1<k < K:o(k) =1t}
this paper, we confine our discussion to a class of block codes, such thatfor alll < I < L, qi(z) = zforall z € Q,
called thea-code, which is defined in the next paragraph. whereg;(x) denotes the value @f as a function ofr.

AN (n, (n:5, (i, j) € E), h) a-code onagrapt¥is defined by - (n, (ni;,(i,5) € E),h) a-code is constructed from these

the following components (the construction of @atode from L .
. : . L components as follows. At the beginning of the coding ses-
these components will be described after their definitions are o . :
sion, the value ofX is available to node. In the coding ses-

given): sion, there aré( transactions which take place in chronological
1) a positive integefs. order, where each transaction refers to a node sending informa-
2) w:{l,, K}y —V,v:{l,---,K} — V, such that tion to gnother node. In thﬁh_transqction, node(k) encodes
(u(k),v(k)) € E. according tof;, and sends an index ia, to nodeuv(k). The do-

main of f3, is the information received by nodgk) so far, and

c={1,-,|Ax | > <k<
8) A = AL [Akl} (IAe] 2 1), 1 < & < K, such that we distinguish two cases. (k) = s, the domain offy, is Q. If

H | Ax| = mi; u(k) # s, Qx gives the indices of all previous transactions for
kET:, which information was sent to nodgk), so the domain off,
where is kaer Ay. The setl;; gives the indices of all transactions
o . e for which information is sent from nodeo nodej, son;; is the
Ty ={L sk < K (u(h),vlk)) = _(L’J)}' number of possible index-tuples that can be sent from tiede
4) If u(k) = s, then fi.: & — Ay, otherwise node; during the coding session. Finall; gives the indices
fr: H A — Ay of all transactions for which information is sent#g andg; is

K EQn the decoding function d.
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We remark that thev-code is not the most general possible

definition of a block code. For example, the order of transac- = Z log, H | Ak
tions can depend on the value #f. Also, coding can be done (4,4)€EB k€T,
probabilistically. (However, we prove in the Appendix that prob- _ Z 1085 7i; -

abilistic coding does not improve performance.) Instead of a

block code, it is also possible to use a variable-length code. Thus i)k
Let R = [R;;,(¢,7) € E]. Atuple (R, h,G) is c-admis-
sibleif for any ¢ > 0 there exists, for sufficiently large, an h—e<n 'H(X)
(n, (m:5,(¢,7) € E),h — €) a-code onG such that < Z n~ logy
nt 1Og2 Mij < R“ + € (¢,j)CEB
for all (¢,7) € E. (Note thate-admissibility implies admissi- < Z (Rij +¢)
bility.) Define (4,)CEp
Ric = {R: (R, h,G) is a-admissiblg. < > Rj+|Ee
The problem is to characteriz®;, ; for anyh andG. (i.))CEB
For a directed grapi? = (V,E) with sources, sinks Minimizing the right-hand side over al¥, we have
t1,---,tr, and the capacity of an edde, j) equalsR;;, let .
’ ! .. ’ —e< i .
R}, ¢ be the set consisting of aR such that the values of a h-cs Ut ‘ ZE Rij + |Ele
max-flow fromsto¢;,{=1,---, L are greater than or equalfio . (hi)eEs _
The following theorem is the main result in this paper. By the Max-flow Min-cut Theorem [1], the first term on the
. right-hand side is equal to the value of a max-flow freto ¢;.
Theorem 1: Ry ¢ = R}, - Letting e — 0, we obtain the desired conclusion.
As aremark, even if we allow an arbitrarily small probability
of decoding error in the usual Shannon sense, by modifying our
IV. THE CONVERSE proof by means of a standard application of Fano’s inequality
[2], it can be seen that it is still necessary for the value of a
In this section, we prove th&, ¢ C Rj, g, i€, ifforany oy fow froms to t;,{ =1,--- L to be greater than or equal

e > 0 there exists for sufﬂmently large an (n i, (4, 9) €

to . The details are omitted here.
L), h — ¢) a-code onG such that

n~"logyni; < Rij + ¢ V. ADMISSIBILITY
for all (z,j) € E, then the values of a max-flow from to In this section, we prove th&, rcCRug.In Section V-A,
t,0 =1,---, L are greater than or equal ko we first prove the result when the graphis acyclic. Then this

Consider anyl <! < LandanyB C V suchthats € B result will be used to prove the general case in Section V-B.
and#; ¢ B. Let

Ep = {(i,5) € E:i € Bandj ¢ B}. A. Acyclic Networks
Let Assume the graphy is acyclic. Let the vertices 6/ be la-
beled byo, 1, -- -, |[V|—1inthe following way. The sourcehas
< the labeld. The other vertices are labeled in a way such that for
wr (&) = (fu(2), k € Viey Lit,) 1<j<|V]-1,(,5) € Eimpliesi < 5. Such alabeling is
possible becaus@ is acyclic. We regard, ¢, - - - , t7, as aliases

wherez € (2 and fi.(x) denotes the value ¢f; as a function of ¢ ,o corresponding vertices.

x. wy,(x) is all the information known by, during the whole We will consider an(n, (;;, (i, ) € E),h) -code on the
coding session when the messagerisSince for anx-code, graphG defined by !

fx(z) is a function of the information previously received by

nodeu(k), we see inductively thaty, (x) is a function of foi @ —={1, -+ ns5}
ful), k€ U ;. forall j € V such thats, j) € E, whereQ2 = {1,---,[2""]}
_ . (4.5)EER fii: H {1, mni} — {1, i}
Sincez can be determined at nodg we have V(i B)CE
H(X) = H(w, (X)) for all (4, 5) € E such that # s, and
_ ;- . L gi: H {17"'777i’t1}_>9
=H | fi(X), k€ ‘ U L (i 4 EE
(i,j)€ER
(X)) forall 1 < I < L such thatg;(z) = = forall z € Q (re-
Z Z fk call thatg;(«) denotes the value gf; as a function ofz). In
 Gi)Es KeT, the abovey;; is the encoding function for the edgg 5), while
< > Y logs|Axl g is the decoding function for the sink. In the coding ses-

(:,j)CEg kETy; sion, f;; is applied beforef,; if ¢ < 4, and f;; is applied
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before f;;- if j < j'. This defines the order in which the en-where

coding functions are applied. Sinée < i if (i/,¢) € FE, all

the necessary information is available when encoding at node Ep={(i,j) e E:i€ B,j & B}.

i is done. If the sefs’': (¢/,¢) € E} is empty, we adopt the ' iy .

convention thatf;; is an arbitrary constant taken from the set L€t ¢ be any fixed positive real number. For alj) € E,

{1, .mi;}. An (n, (15, (i,j) € E),H) B-code is a special @keni; such that

case ofarfn, (n;;. (¢, ) € E), h) a-code defined in Section Il1.
Now assume that the vect8ris such that, withf2;; being the

capacity of the edgg, ) in G, forall 1 <[ < L, the values of

a max-flow froms to ¢; is greater than or equal fa It suffices

for us to show that for any > 0, there exists for sufficiently

largen an(n, (1;;, (¢,4) € E), h — ¢) 3-code onG such that

Rij+(¢<n 'logny; < Rij+e
for some0 < ¢ < e. Then

P{By =B} < H 9= (Ri;+0)

7’L_1 10g2 g < R“ + ¢ (9)CEs
for all (¢,7) € E. Instead, we will show the existence of an < 9 " (CJ’E@@@B R“)
(n,(mj, (i, 5) € E), h) p-code satisfying the same set of con- < 9Nl

ditions, and this will be done by a random procedure. For the
time being, let us replac® by ' = {1,---, [C2""*]}, where
C'is any constant greater thanThus the domain of; is ex-
panded front2 to €’ for (s,5) € E.

We now construct the encoding functions as follows. For am
Jj € Vsuchthats,j) € E, forall z € €, f,;(x) is defined
to be a value selected independently from the{set- -, 7,,}
with uniform distribution. For all, j) € E,¢ # s, and for all

In the second inequality above, we have ugégd| > 1, and the
last inequality follows from the Max-flow Min-cut Theorem [1].
ote that this upper bound does not depend3oisinceV” has
VI subsets, and is some subset df

P{Ztl (.’L’) = 2z (xl)} < 2|V|2—n(h+<)'

ze H (1, mis) Further,
LR P{z,(z) = 2,(2") for somex’ € ', 2" # z}
f:;(2) is defined to be a value selected independently from the < (Y — 1)2lVIg=n(h+0)
set{1,---,n;} with uniform distribution. < OonlolVig—n(i+¢)

Let z;(z) = =z, and forj € V,j # s, let z;(x) =
(fis(x),(4,7) € E), wherex € € and f;;(x) denotes the
value of f;; as a function ofx. z;(x) is all the information
received by nodg during the coding session when the messag@erefore,
is z. For distinctz,z’ € €, x andz’ are indistinguishable at
the sink¢; if and only if z,, () = 2, (2'). For allz € €, define

=C2lVig=n¢,

P{F(z) =1} < LC2IVl2™¢,

1, if 2, (@) = 2, (2) Let §(n,¢) = LO2VI2=¢, Thené(n,() — 0 asn — oo.
F(z) = forsomel < I < Landz’ € Q,2' # Hence, there exists a deterministic code for which the number
0, otherwise. of messages which can be uniquely determined at all sinks is at
least
F(x)isequaltal ifand only if x cannot be uniquely determined
at at least one of the sinks. Now fix € Q andl <[ < L. (1—6(n,))C2™"

Consider any:’ € € not equal tar and define the sets o o
which is greater thag”" for sufficiently largen. Let Q to be

By ={i € V: zj(z) # z(2)} any set o2"”* such messages Y. Upon defining
By ={i € V:zi(x) = z(a")}.
gi(z)=x
Obviously,s € By andB; = V\ By.
Now supposez, (z) = z,(z'). ThenB, = B for some Wherex € { such that: = 2, (x), 1 <1< L and
B c V,wheres € B andt; ¢ B.Forany(i,j) € E
z € H {17"'777i’t1}7

P{fij(x) = fis(x")|zi(e) # zi(a")} = ;" (i1, e
Therefore, we have obtained a desiréd, (n;;, (i, 5) € E)h) 3-code. The
P{By = B} = P{By = B, By > B} theorem is proved.
=P{By = B|By D B}P{B, > B} B. Cyclic Networks
<P{Bo = B|By > B} For cyclic networks, there is no natural ordering of the nodes
= H 7751 which allows coding in a sequential manner as in our discussion

(i,5)CExn on acyclic networks in the last section. In this section, we will
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prove our result in full generality which involves the construcd;)h, whered; is the maximum length of a simple path fram

tion of a more elaborate code. to #;.

Consider any grapliz = (V, E) (acyclic or cyclic) with Proof: Letl < [ < L be fixed. LetF be a max-flow
sources and sinksty,---,tr, and the capacity of an edgefrom s to ¢; in G with value i such thatF does not contain
(i,5) € EgivenbyR;;. Assumeforall =1,---,L, thevalue a posmve directed cycle Usmg the last lemma, we can write
of a max-flow froms to ¢, is greater than or equal faWewil F — F + o4 P , whereF , 7 = 1,---,w contains a
prove that(R, h, G) is a-admissible. positive S|mple pati?. from s to ¢ only. Specifically

We first construct a time-parametrized gragh= (V*, E*) o
from the graphZ. The sett’* consists of\ + 1 layers of nodes, F; — { Cry if (z,7) € by (6)
each of which is a copy d¥ . Specifically, ’ 0, otherwise

where
A
ve=|J v ¢4 ey =h @)

Let g,. be the length of’... For an edgé€, j) € P., leta,.(¢,5)
where be the distance of nodefrom s along P,.. Clearly,
VO = (V.5 e V) a(i,J) < ¢ < du.
Now for0 < A < A — d; — 1, define
As we will see later) is interpreted as the time parameter. The

setE* consists of the following three types of edges: FO = [FG, (u,0) € B
1) ({0 M), 1< A<A; where
2) (BN M) 1< a<A-1; ey i (u,v) = (85, sM) 1< A< A — 4
3) (W, DY (i) e B, 0<A<A-L. cry if (u,v) = U“Wm”f”“W”W
EM) = wmeo) (8)

ForG*, lets* = s(® be the source, and let = +*) be a sink
which corresponds to the sinkin G, 1 < I < L. Clearly, G*
is acyclic because each edgedti ends at a vertex in a layer
with a larger index. Since

Let the capacities of the edges & be given byR =
[Rij,(i,4) € E]. Let R%,,(u,v) € E* be the capacity of an At g SA+di<A-1
edge(u,v) € E*, where

Atgr) g
Cr, If(v )_(§+Q)7t1)
0, otherwise.

the third case in (8) and hend@™" is well defined for0 <
A< A—d— 1. F* isaflow froms* to ¢} in G* derived
from the flow " in G as follows. A flow ofe, is generated at
s* and enters thath layer of nodes frons»). Then the flow
traverses consecutive layers of nodes by emulating thelpath
. in G until it eventually reacheé“q*), and it finally leaves7*
and letR” = [R},, (u,v) € E7]. at the sinkt;. Based onf"™"), we construct

Lemma 1: Let s andt be the source and the sink of a graph
respectively. Then there exists a max-fl#in G expressible FO = Z FOW
as the sum of a number of flows for which each of them consists
of a simple path (i.e., a directed path without cycle) fremo ¢+ and
only. ATt

Proof. Let F be a max-flow froms to ¢ in G which does Fr = Z PO,

not contain a positive directed cycle (cf. [1, p. 45]). Liatbe
any positive path frons to ¢ in F' (evidently P is simple), and e will prove thatF™ < R" componentwise. TheA™ is a flow
let c; be the minimum value oF in an edge along’;. Let F' from s* to ¢} in G*, and from (7), its value is given by

Ry, if (u,v) = (i()\)7j()\+1))
R, = for some(i,j) € Eandl < A< A -1 (5)

&%) otherwise

7

be the flow froms to ¢ anngP% with valuec;. Subtractingl?71 Adiel w Aedi—1
from F', F'is reduced td&" — F', a flow from s to t which does Z Z Cr = Z h=(A—dp)h.
not contain a positive directed cycle. Apply the same procedure ; _

repeatedly untilF" is reduced to the zero flow. The lemma i

Srhis implies that the value of a max-flow frosi to ¢; in G* is
proved.

at least(A — d;)h, and the lemma is proved.

Lemma 2: Forl = 1,---, L, ifthe value of a max-flow from  Toward proving thatF"* < R", we only need to consider
s 10 #; in G is greater than or equal t, then the value of a (u,v) € E* such tha(u,v) = (iV, jA+D) for some(i, j) € E
max-flow froms* to ¢; in G* is greater than or equal {&A — and0 < A < A — 1, because&;,, is infinite otherwise (cf. (5)).
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For notational convenience, we will adopt the convention thatLet A be a positive integer, and let= Ar. Using thes-code
F = 0forA < 0.Nowfor0 < A< A —1and(4,j) € E onG*, we now construct aw, (ij, (4,7) € E),(A — d)h/A)
~-code onZ, where

A—di—1
;E*)j(f\‘kl) = Z ‘Fi((ﬁ,\sz(,\+1) Al .
n= Nij = H (0 51y
A—d;—1 w A=0
_ () I i .
- Z Z Fi<§>jtx+1> which is defined by the following components:
pH= r=1
w o 1) for (¢,j) € E such that # s, aconstanf(l) taken from
— Z F()‘_a'r’(zzj)f") the Set{l . }
i) O+ ! 7771(())](1),
=t 2) forl < A< A
pr A ¥
= z_:l i f( a1, M- joo t
=F; forall j € V suchthats, j) € E, where
< Rij Q={1,... 2v(A-dhy
:Riu)j(um-

. . ) and for2 < A < A
In the above, the third equality follows from (8), and the first

inequality is justified as follows. First, the inequality is justified £ 1L 6 mfocsomn
for A < a.(i,5) sinceF ") = 0foru < 0.ForA > a.(i,7), ki(k,i)ER
we distinguish two cases. From (8) and (6)(ifj) € F,., we — {1, 'qu—wjm}
have
N for all (¢,5) € E such that # s (if the set{k: (k,i) €
Fi((’};j‘f;f;{ )= Fi’]’» = cp. E} is empty, we adopt the convention tryé}“ is a con-
stant taken from{1, - -, i, 1) ;0 15
If (¢,7) € P,., we have 3) forl <1< L
A—ar(4,5),r e
F;((Mj(w(rl;) ) = ‘sz =0.

A—1
_ o 9i: {1, }— 0
Thus the inequality is justified for all cases. Hence we conclude g i:(igeE T oy

thatF* < R*, and the lemma is proved. O
. . such thatg;(z) = = for all x € § (recall thatg;(z)
From Lemma 2 and the result in Section V-A, we see that denotes the value af as a function of:):

(R", (A — d)h,G*) is a-admissible, wheré = max;<;<y, d;.
Thus for everye > 0, there exists for sufficiently large a Where

(v, (0, (u,v) € E*, (A — d)h) g-code onG* such that 1) for (¢,7) € F such that # s, f(l) = fio;wm (fi*@j(1>

et < R is an arbitrary constant il - - -, 7%, ;1) } since{u €

o082 aw = fuy € V*: (u,i®) € E*}is empty);
for all (v,v) € E*. For this-code onG*, let us usef;;, to 2) forl < A< A, forallz € Q, fs,(?)(a:) = [l (@),
denote the encoding function for an edgev) € £*, and use and for2 < A < A and all(4, j) € E such thati £ s,
g; to denote the decoding function at the sitik1 < [ < L. f(A)( ) _f* - (y) forall y in
Without loss of generality, we assume thatfog A < A — 1 A0
fosoo(@) == H L oo -0k
k:(k,i)EE

for all = in

3) forl <1< L, gi(2) = g () forall zin
Q — {17 . , 2U(A—d)h}

A-1
and I Ir .- Minypr

A=0 i:(¢,t;)CE

ftg*h; W) =y The coding process of thecode consists af + 1 phases:
1) InPhase 1, foralli, j) € £ suchthat # s, nodei sends

for all  in 1) ) ) )
fi;” to nodey, and for allj € V such that(s, j) € E,
I - Mh-p b LSTS L nodes sendf{}(z) to nodej.
k(k,ty)E R 2) In Phase\, 2 < A < A, for aII (4,7) € E, nodei sends

A
Note that if the3-code does not satisfy these assumptions, it can fé, )(z) to nodej, wheref )(z) denotes the value of
readily be converted into one. /1 as a function of, and it depends only oy} " («)
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for all £ € V such that’k,i) € E, i.e., the information
received by node during Phase\ — 1.
3) In PhaseA + 1, for 1 < I < L, the sink¢; usesg; to
decodez.
From the definitions, we see that@n (7;;, (¢, 5) € E), (A—
d)h/A) v-code ond is a special case of dn, (1;,, (i, §) € E),
(A—d)h/A) a-code onGG. For they-code we have constructed

A-1
n~* log, i = (Av) "t log, H 77:(A>j(x+1>
A=0
A-1
<A Z (Rioo o +6€)
A=0
A-1
=AY (R4 o)
A=0
=R +e¢

forall (i,5) € E. Finally, foranye > 0, by taking a sufficiently
large A, we have

—(A_d)h > h—e.

1213

Fig. 9. An example of a cyclic network.

We now show that? is admissible by presenting a coding
scheme which can multicagteo(k), z1(k), 22
source to all the sinks. To simplify notation, we adopt the con-

(k)} from the

A vention thatz;(k) = 0 for k£ < 0. Attime & > 1, information

Hence, we conclude théR, ., G) is a-admissible.

VI. AN EXAMPLE

Despite the complexity of our proof of Theorem 1 in the last
two sections, we will show in this section that very simple op-
timal codes do exist for certain cyclic networks. Therefore, there
is much room for further research on how to design simple op-
timal codes for (single-source) network information flow. The
code we construct in this section can be regarded as a kind of

convolutional code, which possesses many desirable properties
T

of a practical code.

Consider the grapt¥ = (V, E) in Fig. 9, where

V = {s,v0,v1,v2, u0, u1,u2,to,t1,t2}

transactions occur in the following order:

T1. ssendsg(k)tov, [ =0,1,2

T2. v; sendse (k) to wy, tior, andé;ep, {1 = 0,1,2
T3. ug SendSIZ()(/{J) + 371( — 1) + 372(/{} — 1) to 1y
T4. uq SendSIZo(/{J) + 371( ) + 372(/{} — 1) tots
T5. u; Sendsro(k') + .’L’l(k') + .’L’Q( — 1) to us
T6. uo Sendsro(k') + .’L’l(k') + .’L’Q( — 1) totg

T7. us SendSL‘o(I%) + xl(k) + .7}2( ) to ug

T8. ug sendseo(k) + z1(k) + z2(k) to ty

T9. ¢, decodesea(k — 1)

(
10. ¢y decodeseo(k)
T11.

t; decodes; (k)

where “+-” denotes addition in GEy). Note that the coding rate
in each edge is equal tg since exactly one symbol is sent in

andE contains the following types of edges foe 0, 1, 2:

1)
2

s, u0);

) (v, w);

3) (v, tic1) and (v, tis2);
4) (ur, uien);

5) (U'lvtl@l);

NN N N

each edge in one unit time.

We now show that these information transactions can actually
be performed. Let us start &t= 1. At ¥ = 1, T1 and T2 can
obviously be performed. T3 and T4 can be performed because
21(0) = x2(0) = 0. T5 and T6 can be performed sineg(1)
andz; (1) have been sent t@, from uo andwy, respectively. T7
and T8 can be performed sineg(1) + x1(1) andx2(1) have
been sent ta, from «; andwvs, respectively. T9 can obviously

where@ denotes modul@ addition. Heres is the source and be performed since,(0) = 0. T10 can be performed since

to,t1,t2 are the sinks. In the grap&’, the edgesug,u1),

(u1,u2), and(us, ug) form a cycle.

In this example, we let the information ratebe 3. Without
loss of generality, we assume that the information sofirgen-
z3(k) attimek = 1,2,-- -,
wherez,;(k) are elements of some finite field GF). For the

erates three symbols (%), z2(k),

x1(1), z2(1), andzo(1) + z1(1) have been sent tpy from vy,
vo, andus, respectively. Finally, T11 can be performed since
zo(1), z2(1), andzo(1) + x1(1) + z2(1) have been sent tg
from wg, vo, andug, respectively.

Now assume that T1-T11 can be performed up to timel
for somek > 2, and we will show that they can be performed at

purpose of our discussion, we can regard the sequence of syime k. T1 and T2 can obviously be performed. Just before T3

bols {z;(k)} as deterministic. Consider the rate tuple= 1

is performed;zo(k) has been sent te, from vg at timek, and

the vector whose components are all equdl.t®hen the value zq(k—1) andzq(k—1)+x1(k—1)+22(k—1) have been sent
of a max-flow froms to ¢; is 3,1 = 0, 1,2, and Theorem 1 as- to uo from v, andus, respectively, at timé& — 1. Therefore, at

serts thatR is admissible.

timek, ug can determineo(k)+z1(k—1)+2x2(k—1),and T3
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and T4 can be performed accordingly. By similar arguments, vas prescribed above. Therefore, coding by superposition is not
see that T5-T8 can be performed. Just before T9 is performegdtimal in general, even when the two information sources are
zo(k) andzo(k) + z1(k — 1) +x2(k — 1) have been sent s  generated at the same node.
from vg anduy , respectively, at timé, andz; (k — 1) has been  In [5],! it was found that coding by superposition is optimal
sent tot, fromwv; attimek — 1. Therefore, attimé, T9 can be for 86 out of all 100 configurations of multilevel diversity
performed. By similar arguments, we see that T10 and T11 cemding systems with three encoders. In [8] and [13] it was
be performed. shown that coding by superposition is optimal for all sym-

Attime k, ;01 (k) andz;o2(k) are sent td; from v;s1 and  metrical multilevel diversity coding systems. However, how
ve2, respectively] = 0,1, 2. With T9-T11, at timek, to and to characterize multilevel diversity coding systems for which
t; can recover:o(k'), x1 (k") andxzo (k") for all &’ < k, while coding by superposition is always optimal is still an open
to can recovero(k’) andxy (k') for all &' < k, andzs(k’) for  problem.
all ¥ < k — 1. Note the unit time delay fof. to recoverzs (k). Although the multisource problem in general is extremely
Thus our coding scheme can multicdsg (%), x1(k), z2(k)} to  difficult, there exist special cases which can be readily solved
all the sinks, and hencl® = 1 is admissible. by the results for the single-source problem. Consider a net-

Itis also possible to design convolutional codes for an acyclieork information flow problem withm information sources.
network. Compared with the block code we used in provirlget a(i¢) = s;, and supposé(i) = {t1,---,tr}, 1 < i < m.
Theorem 2, it seems that a convolution code has the advantatpge, each information source; is multicast froms; to sinks
that the code can be very simple, and both the memory at each - -, ¢;. It turns out that this problem can be reduced to a
node and the end-to-end decoding delay can be very small. single-source problem by adding the following components to

the graphG:
VII. M ULTIPLE SOURCES

1) a nodes;

In the classical information theory for point-to-point com- ,
munication, if two information sources are independent, opti- 2) edgegs,s;), ~l<i<m.
mality can be achieved (asymptotically) by coding the sourc8etR; ;. to h;, the information rate oX;, 1 < ¢ < m, and call
separately. This coding method is referred to as coding by shis augmented grapf’. Then we can regard all information
perposition [12]. If this coding method is always optimal fosourcesXy, -- -, X,, as one information sourc& (with rate
multisource network information flow problems, then in orde} """ | ;) generated at node whereX; is sent to node; via
to solve the problem, we only need to solve the subprobleradge(s, s;) at rateh,;. Then the problem can be regarded as a
for the individual information sources separately, where eachafie-source.-sink problem on the grap”’ with sources and
these subproblems is a single-source problem. However, assirkst,,---,¢r.
will see shortly, the multisource problem is not a trivial exten- In video-conferencing, the information generated by each
sion of the single-source problem, and it is extremely difficufsarticipant is multicast to all other participants on the network.
in general. This is a special case of the situation described in the last

Let us consider the multilevel diversity coding system in Figparagraph.
1. Assume thak; = hs = 1. Since the sourceX; and X, are
independent, if coding by superposition is always optimal, then VIIl. D ISCUSSION
for any admissible coding rate triple;, 2,73), fori = 1,2, 3,

we can write Inthis paper, we have proposed a new class of problems called

network information flow which is inspired by computer net-
i =11 47 work applications. This class of problems consolidates all pre-
vious work along this line [12], [8], [14] into a new direction in
wherer} andr? are the subrates associated with souféeand  multiterminal source coding.
X», respectively. Sincél; is multicast to all the decoders, from  |n the past, most results in multiterminal source coding are
the discussion in Section Il, we have the fO”OWing COﬂStrainEﬁgneranzaﬂons of either the S|epian_WO|f prob|em [9] or the

forr},i =1,2,3: multiple descriptions problem [3]. The class of problems we
r>1 have proposed are generalizations of neither of these problems.
> Further, they distinguish themselves from most classical multi-
11 terminal source coding problems in the following ways:
Ty +713 21
Pl > 1. 1) there is no rate-distortion consideration;

2) the sources are mutually independent;

3) the network configuration, described by a graph, is arbi-
, trary;

iy 21 4) the reconstruction requirements are arbitrary.

2 2

T +713 21

Similarly, sinceXs is multicast to Decoders 2, 3, and 4, we have
the following constraints for?,i = 1,2,3:

2 Our formulation covers a large class of problems instead of
rp+ry 21 one patrticular problem. For most classical multiterminal source

However, it was shown in [12] that the rate trigle 1, 1) is ad-

missible, but it cannot be decomposed into two sets of subrateshe reader can contact Raymond Yeung for a copy of this reference.
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coding problems, the problem degenerates if there is no rate-a@ind-to-end decoding delay can be very small. These are all de-

tortion consideration and the sources are mutually independesitable features for practical codes.

For our class of problems, neither of these assumptions is maderinally, by imposing the constraint that network coding is not

Yet they are highly nontrivial problems. allowed, i.e., each node functions as a switch in existing com-
In this paper, we have characterized the admissible codipgter networks, we can ask whether a rate tules admis-

rate region of the single-source problem. Our result can be g#ble. Also, we can ask under what condition can optimality be

garded as the Max-flow Min-cut Theorem for network informaachieved without network coding. These are interesting prob-

tion flow. We point out that our discussion is based on a classlems for further research.

block codes called-codes. Therefore, it is possible, though not Recently, there has been a lot of interest in factor graph

likely, that our result can be enhanced by considering more g¢nl, a graphical model which subsumes Markov random field,

eral coding schemes. Nevertheless, we prove in the AppenBiayesian network, and Tanner graph. In particular, the problem

that probabilistic coding does not improve performance. of representing codes in graphs [11], [6] has received much
In analog telephony, when a point-to-point call is establisheaitention. The codes we construct for a given network in this

there is a physical connection between the two parties. Whgaper can be regarded as a special type of codes in a graph.

a conference call is established, there is a physical connection

among all the parties involved. In computer communication

(which is digital), we used to think that for multicasting, there APPENDIX

must be a logical connection among all the parties involved®ROBABILISTIC CODING DOESNOT IMPROVE PERFORMANCE

such that raw information bits are sent to the destinationsg, ana-code, thekth transaction of the coding process is

via such a connectlo.n. '.I'he.notlon of a logical connect|o ecified by a mapping. Suppose instead of the mappifig
in computer communication is analogous to the notion oft

: L e kth transaction is specified by a transition matrix from the
physical connection in analog telephony. As a result, multl-Omain off to the range of . Also, instead of the mappi
casting in a computer network is traditionally being though k 9€ Of s ' bpINg,

of as replicating bits at the nodes, so that each sink eventua cod_ing at sink, is specified by a transition matrix from the

receive a copy of all the bits. The most important contributio main ofg, to th_e range Of, 1 < I < L. Then the code be-

of the current paper is to show that the traditional technique fop™MeS & probabilistic code, and we refer to such a code as a prob-

multicasting in a computer network in general is not optimaf°ilistic a-code. With a slight abuse of notation, we continue to

Rather, we should think of information as being “diffused¥S€/x to denote the code in theth transaction (wherg;, is a

through the network from the source to the sinks by meafdom variable), and we usg, to denote fx, k € Uicy Tir,).

of network coding. This is a new concept in multicasting in a N general, one can use probabilistic coding schemes in-

point-to-point network which may have significant impact ogtead of deterministic coding schemes. By using probabilistic

future design of switching systems. schemes, it may be possible to multicast information from
In classical information theory for point-to-point communis t0 ¢;, 1 < I < L at a rate higher than that permitted by

cation, we can think of information as a “fluid” or some kind ofleterministic schemes. Before showing that this is impossible,

physical entity. For network information flow with one sourcehowever, we first discuss a subtlety of probabilistic coding.

this analogy continues to hold when there is one sink, becausé-or a probabilisticx-code on a grapld, it seems intuitively

information flow conserves at all the intermediate nodes in @aorrect that for anyt <7 < L and anyB C V such that € B

optimal scheme. However, the analogy fails for multicasting bandt; ¢ B, the information sourc&l, (fx, k € U jyee, Tij),

cause information needs to be replicated or coded at the nodersdw,, form a Markov chain because all the information sent
The problem becomes more complicated when there drém s to ¢, has to go through the set of nodgse E: (4, j) €

more than one source. In the classical information theory fEB}_ If this is the case, then by the Data Processing Theorem

point-to-point communication, if two sources are independeng], we have

optimality can be achieved (asymptotically) by coding the ; 7

sources separately. However, it has been shown by a simplgl(fk’k € Veiers Tig) 2 LX5 fio b € U ey, 1)

example in [12] that for simultaneous multicast of two sources, 2 I(X;wy,)

it may be necessary to code the sources jointly in order to = H(X)

achieve optimality. A special case of the multisource multisinkere the last equality holds becausean be recovered at sink

problem which finds application in satellite communicatiogl However, we show next by an example that the Markov chain
has been studied in [14]. In this work, they obtained inner ar&@:serted is not valid in general.

outer bounds on the admissible coding rate region. Consider the grapt¥ in Fig. 10 with three nodes, 1, andt.

For future research, the multisource multisink problem IS8y v — (X1, X) be uniformly distributed on GE2)?, andZ

challenging problem. For the single-source problem, there %reeindependentof( and uniformly distributed on Gf2). Con-
still many unresolved issues which are worth further investiga- '

tion. In proving our result for acyclic graphs, we have usedséderthe following probabilistie:-code with five transactions:

random block code. Recently, Li and Yeung [4] have devised a wl)=s, v()=1, A=X
systematic procedure to construct linear codes for acyclic net- u(2) =1, v(2) =t, fLh=X1+2
works. Along another line, the example in Section V shows z

. ! . 3) =t 3) = =X1+7Z
that convolutional codes are good alternatives to block codes. u3) =t v(3) = ff’ Lt
It seems that convolutional codes have the advantage that the wéd) =s, wv(4)=1, Jf4 = (X1, Xo + 2)
code can be very simple, and the memory at each node and the w(®) =1, w(d)=t, f=(X,Xo+2).
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m Now observe that for a fixeél, the coding scheme becomes de-
S \lJ -t terministic. Therefore, the probabilistic coding scheme is actu-
ally a mixture of deterministic coding schemes. By time-sharing

these deterministic coding schemes according#g6) (use

approximation if necessary), we obtain a deterministic coding

scheme. Hence, any coding rate tuple achievable by a proba-
Fig. 10. A three-node network. bilistic coding scheme can be achieved asymptotically by a se-

o ] guence of deterministic coding schemes.
Note that the fourth transaction is possible because upon

knowing X; andX; + Z, Z can be determined. F& = {s},
Eg = {(s,1)}. Then
(frrk € U jyces Lij)

=(fi,ke€Ts)=(f1,f1) =(X1, X2+ 2)
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and

wy = (Xl + Z, XQ + Z, Xl)
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