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NOTE

KATONA’S INTERSECTION THEOREM: FOUR PROOFS

R. AHLSWEDE, L. H. KHACHATRIAN

Received December 19, 2001

It is known from a previous paper [3] that Katona’s Intersection Theorem follows from the
Complete Intersection Theorem by Ahlswede and Khachatrian via a Comparison Lemma.
It also has been proved directly in [3] by the pushing–pulling method of that paper. Here
we add a third proof via a new (k,k+1)-shifting technique, whose impact will be exploared
elsewhere. The fourth and last of our proofs is a gift from heaven for Gyula’s birthday.

1. Introduction

We begin right away with notation and basic concepts in the study of in-
tersection properties. In standard notation in combinatorics N is the set
of positive integers, [i,j] = {i, i + 1, . . . , j} for i,j ∈ N, [n] = [1,n] and
for k < n 2[n] = {A : A ⊂ [n]} are the unrestricted subsets of [n] and([n]

k

)
={A⊂2[n] : |A|=k} stands for the subsets restricted to cardinality k.
A system of sets A⊂ 2[n] is called t-intersecting, if |A1 ∩A2| ≥ t for all

A1,A2∈A. Basic in our presentation are the following sets and quantities:

I(n, t) = the set of all such systems, I(n, k, t) =

{
B∈ I(n, t) : B⊂

(
[n]
k

)}
,

M(n, t) = max
A∈I(n,t)

|A|, and M(n, k, t) = max
A∈I(n,k,t)

|A|.
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The Katona sets

K(n, t) =



{
A ⊂ 2[n] : |A| ≥ n+t

2

}
, 2 | (n + t);{

A ⊂ 2[n] : |A| ≥ n+t+1
2

}
∪
{

A ∈
(

[n]
n+t−1

2

)
: 1 ∈ A

}
, 2 � (n + t).

The Frankl sets

Fi(n, k, t) =

{
F ∈

(
[n]
k

)
: |F ∩ [1, t + 2i]| ≥ t+ i

}
, 0 ≤ i ≤ n − t

2
;

and finally d-diametric (d∈N) systems of sets B⊂2[n], for which

|B1�B2| ≤ d for all B1, B2 ∈ B,

the set of all such systems D(n,d) and their maximal cardinality N(n,d)=
max

B∈D(n,d)
|B|.

Let us next recall:

Theorem (Katona 1964).

M(n, t) =




n∑
i= n+t

2

(
n

i

)
, if 2 | (n + t);

2
n−1∑

i= n+t−1
2

(
n − 1

i

)
, if 2 � (n + t).

Well-known is also the isodiametric

Theorem (Kleitman 1966).

N(n, n − t) = M(n, t).

Ahlswede and Katona [1] observed that this theorem easily implies Ka-
tona’s Theorem and vice versa. Katona’s Theorem settles the intersection
problem raised by Erdős, Ko, and Rado [4] in the unrestricted case.

In the restricted case these authors gave the answer for t=1 and for t>1,
if n is sufficiently large. A complete solution was established later.

Theorem (Ahlswede and Khachatrian 1997). For 1≤ t≤k≤n with

(i) (k−t+1)
(
2+ t−1

r+1

)
<n<(k−t+1)

(
2+ t−1

r

)
for some r∈N∪{0}, we have

M(n, k, t) = |Fr(n, k, t)|

and Fr(n,k,t) is – up to permutations – the unique optimum (by con-
vention t−1

r =∞ for r=0).
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(ii) (k− t+1)
(
2+ t−1

r+1

)
=n for r∈N∪{0} we have

M(n, k, t) = |Fr(n, k, t)| = |Fr+1(n, k, t)|
and an optimal system equals up to permutations – either Fr(n,k,t) or
Fr+1(n,k,t).

For the proof we introduced a concept of “generating sets”. However
we found no direct way to prove (the easier) Theorem of Katona by this
approach. Instead we derived it from Theorem AK via a simple analytical
approach, which we called

Comparison Lemma. Let αt ≥ αt+1 ≥ ·· · ≥ αt+2r ≥ 0, αt �= 0 be a non-
increasing sequence of real numbers such that max

A∈I(t+2r,t)

∑t+2r
i=t |Ai| · αi is

assumed at A=K(t+2r,t), where Ai={A∈A : |A|= i}.
Then the same holds if

αt = · · · = αt+2r = 1,

which is equivalent to Katona’s Theorem.

Using Theorem AK we showed that such a sequence αt, . . . ,αt+2r exists,
which implies (in view of the Comparison Lemma) Katona’s Theorem.

Later we found a new proof of Theorem AK based on a new shifting
technique, which we called “pushing–pulling”.

By the same method we proved also Katona’s Theorem – our second
proof [3].

In the next Section we present our third proof and then finally in the last
Section our fourth proof, simpler than anyone we have seen. It is remark-
ably simple and makes the Theorem appear to be a triviality. But we are
convinced that our most important message is the new shifting technique in
the third proof. Whereas the standard shifting, which is originally due to
Erdős, Ko and Rado involves exchanges of two positions we operate on more
positions! Is shifting an art?

We have already other problems where “2 by 2” switches are adequate
and a whole theory of shifting is ready to be born! It may dramatically
change the field of extremal set theory.

2. Third proof: A new shifting technique

For a family A⊂2[n] and disjoint sets J,K∈2[n] define

B =
{
A ∈ A : A ∩ J = J, A ∩ K = φ and (A � J) ∪ K ∈ A

}
;

C =
{
A ∈ A : A ∩ J = J, A ∩ K = φ and (A � J) ∪ K /∈ A

}
;

and D = A � (B ∪ E).
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The (|J |,(K))-shift SJ,K applied to A gives E=SI,J(A)=B∪C̄∪D, where
C̄=

{
C̄ :C̄=(C �J)∪K, C∈C

}
.

Clearly, |E| = |A| and it is easy to show that for A ∈ I(n,t) also E ∈
I(n,t) for (1,2)-shifts. After finitely many applications of (1,2)-shifts we get
a family A∗ which is (1,2)-stable that is stable with respect to (1,2)-shifts.

We iterate than with (2,3)-shifts, but before we apply one of them we
first guarantee that the family is (1,2)-stable.1 This procedure ends with a
family which is (1,2)-stable and (2,3)-stable. Then we go on to (3,4)-shifting
and come to a (1,2)-, (2,3)-, and (3,4)-stable family. Finally we continue this
until we end with a (1,2)-, . . . ,(k,k+1)-stable A∗ family.

We show first that for A ∈ I(n,t) and all SJ,K(A) ∈ I(n,t) for |K| =
|J |+1< k+1, this is also the case for |K|= |J |+1= k+1. Clearly, by our
assumptions B,D are t-intersecting and also |B∩D| ≥ t for B ∈ B, D ∈D.
Furthermore, since C is t-intersecting C̄ is even (t+1)-intersecting, and also

|C̄ ∩ B| = |C ∩
(
(B � J) ∪ K| ≥ t.

So the only non-obvious case is

|C̄ ∩ D| ≥ t for C̄ ∈ C,D ∈ D.(1)

To see this, define

δ = min(|D ∩ J), |K| − |D ∩ K| − 1).(2)

There are J ′⊂D∩J , K ′⊂D∩K with |J ′|=δ and |K ′|=δ+1. Since δ<k
and A is δ-stable necessarily D′=(D�J ′)∪K ′∈A. Furthermore

(C ∩ D) = |C ∩ D′|+ δ ≥ t+ δ(3)

and since |C̄ ∩D| = |C ∩D| − |D ∩ J |+ |D ∩K| by (3) and (2) |C̄ ∩D| ≥
t+min(|D∩K|, |K|−1−|D∩J |)≥ t, because |K|−1=k= |J |≥|D∩J |.

We establish now the bound on M(n,t).
For A∈A∗ and k=min(|A|,n−|A|−1) there is a B∈A∗ with |A∩B|=

|A| − k and |([n]� A) ∩B| = k + 1. Necessarily |A| − k ≥ t and therefore
|A|≥ t+min(|A|,n−|A|+1).

Hence |A| ≥ t+n− |A|+1 and |A| ≥ n+t−1
2 . In the case 2 | (n+ t) this

implies |A|≥ n+t
2 and thus M(n,t)=

n∑
i= n+t

2

(n
2

)
.

Finally by Lemma 1 of [5] M(n,t)=2(M(n−1, t), if n+t is odd, completing
the proof of the Theorem. Alternatively, the maximum number of sets of size
n+t−1

2 can be determined by using complementation and the classical EKR-
theorem for t=1 on level �= n−t+1

2 .
1 A referee kindly asked whether this is not automatically the case. Indeed it is and we
prove this in the Appendix.
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3. Fourth: The simplest (possible?) proof
(for mathematicians above 60)

Case 2 |(n+ t) (the case 2 �(n+ t) is similar).
We can assume that the optimal family A∈I(n,t), t>1 is left-compressed

(in the sense of EKR).
Let A1={A∈A :1∈A},A0={A∈A :1 /∈A}, and

A∗
j = {A ∩ [2, n] : A ∈ Aj}, j = 0, 1.

Simple observations:
A∗

1 ∈ I(n − 1, t − 1) (trivial) and A∗
0 ∈ I(n − 1, t+ 1) (since A is left-

compressed).

Induction: For t=1, t=n the statement is true and by Pascal’s identity

|A| = |A∗
1|+ |A∗

0| ≤
n−1∑

i= n+t
2

−1

(
n − 1

i

)
+

n−1∑
n+t
2

(
n − 1

i

)
=

n∑
i= n+t

2

(
n

i

)
.

Remark: The uniqueness of the optimal family also follows.
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Appendix: Improvement of the shifting technique

Proposition. Given A⊂ 2[n], 1< k,n let E � SJ,K(A) for some J,K ⊂ [n]
with |J |= |K|−1=k. Then if A is (i, i+1)-stable for all 1<i≤k−1 so is E .
Proof. We have A=(B∪D)∪C and E =(B∪D)∪C̄ (keeping the notation
above).

The proof is based on the following two observations.
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Observation 1. B∪D is (i, i+1)-stable for all 1< i≤ k−1, i.e. for every
disjoint J,K⊂ [n] with |J |= |K|−1≤k−1 holds SJ,K(B∪D)=B∪D.

Proof. Suppose for contradiction C � SJ ′,K ′(E) ∈ C for some E ∈ (B∪D)
with |J ′|= i≤k−1, |K ′|= i+1 and C∩(J∪K)=J . Denote F =E∩J . Clearly
|F |= |J |− |J ′|−1=k− i−1. Let also j ∈J �F , K1 ⊂K with |K1|= |J ′|= i
and K2 �K �K1. It is not hard to observe now that

SF∪{j},K2
(SJ ′,K1∪{j}(E)) = (C � J) ∪ K.

This is a contradiction with C∈C since |F ∪{j}|= |K2|−1=k− i≤k−1
and |J ′|= |K1∪{j}|−1= i≤k−1.

Observation 2. For every (i, i+1)-shift SJ ′,K ′ with 1<i≤k−1 we have

SJ ′,K ′(C) ⊂ (B ∪ D).

Proof. Let E�SJ ′,K ′(C̄) (C̄ �SJ,K(C)) for some C̄∈C̄ and |J ′|= |K ′|−1=
i≤k−1.

Define K1=K ′�J , K2=E∩K and F =K ′∩J . Note that |K2|=k+i−1.
Consider now some J1⊂J �F with |J1|= |K1|−1 and J2 �J �(F ∪J1).

Clearly |J2|=k− i. Observe now that

SJ2,K2(SJ1,K1(C)) = E.

This completes the proof since |J1|= |K1|−1, |J2|= |K2|−1 and |J1|, |J2|≤
k−1.

Evidently Observations 1 and 2 imply the statement.
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