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Abstract

We report on ideas, problems and results, which occupied us during the past
decade and which seem to extend the frontiers of information theory in several di-
rections. The main contributions concern information transfer by channels. There
are also new questions and some answers in new models of source coding. While
many of our investigations are in an explorative state, there are also hard cores
of mathematical theories. In particular we present a unified theory of information
transfer, which naturally incorporates Shannon’s theory of information transmission
and the theory of identification in the presence of noise as extremal cases. It pro-
vides several novel coding theorems. On the source coding side we introduce data
compression for identification. Finally we are led beyond information theory to new
concepts of solutions for probabilistic algorithms.

The original paper [43] gave to and received from the ZIF-project essential stim-
ulations which resulted in contributions added as GTIT-Supplements “Search and
channels with feedback” and “Noiseless coding for multiple purposes: a combinato-
rial model”.

Other contributions - also to areas initiated - are published in the recent book
[57].

The readers are advised to study always the pioneering papers in a field - in this
case the papers [16], [17] on identification. It is not only the most rewarding way
to come to new ideas, but it also helps to more quickly grasp the more advanced
formalisms without going through too many technicalities. Perhaps also the recent
Shannon Lecture [58], aiming at an even wider scope, gives further impetus.

Footnote: Some of the ideas and results have been presented at the Tenth
Symp. on Inf. Theory in the Benelux, Houthalen, Belgium May 25–26, 1989,
at the Inf. Theory Meeting in Oberwolfach, April 1992, at an IEEE Workshop
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on Inf. Theory in San Salvador, Brazil, June 1992, at the ISIT San Antonio,
Texas, Jan. 1993, the IEEE Workshop on Inf. Theory in Rydzyna, Poland,
June 1995, and at the World Congress of the Bernoulli Society, Vienna, August
1996.
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1 Introduction

We have included in the references several articles and books ([19], [20], [21],
[23], [24]), which deal with information not just in a more or less techni-
cal engineering sense. They are meant to enlarge our horizon, stimulate our
awareness of what is unknown about “information”, and to bring us into the
spirit for new adventures. Some questions from [23] give indications of the
kind of thoughts which took us into their chains.

In the Appendix of [23] one finds the following definition or explication of the
concept “communication”:

“The establishment of a social unit from individuals, by the shared usage of
language or signs. The sharing of common sets of rules, for various goal–seeking
activities. (There are many shades of opinions.)”

Again in [23] on page 41 we read:

“Perhaps the most important technical development which has assisted in the
birth of communication theory is that of telegraphy. With its introduction
the speed of transmission of “intelligence” arose. When its economic value
was fully realized, the problems of compressing signals exercised many minds,
leading eventually to the concept of “quantity of information” and to theories
of times and speed of signalling.”

and on page 43:

“Hartley went further and defined information as the successive selection of
signs or words from a given list, rejecting all “meaning” as a more subjective
factor (it is the signs we transmit, or physical signs; we do not transmit their
“meaning”). He showed that a message of N signs chosen from an “alphabet”
or code book of S signs has SN possibilities and that the “quantity of infor-
mation” is most reasonably defined as the logarithm, that is, H = N log S.”

This concept of information is closely related to the idea of selection, or dis-
crimination and therefore sometimes called selective–information. It is also at
the very basis of Shannon’s celebrated statistical theory of communication [1].

This theory has by now been developed into a sophisticated mathematical
discipline with many branches and facets. Sometimes more concrete engineer-
ing problems led to or gave the incentive to new directions of research and
in other cases new discoveries were made by exploring inherent properties of
the mathematical structures. Some of our views on the state of this theory, to
which we also shall refer as the “Shannon Island”, are expressed in [8].
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The price for every good theory is simplification and its permanent challenge
is reality.

“We live in a world vibrating with information” and in most cases we don’t
know how the information is processed or even what it is at the semantic
and pragmatic levels. How does our brain deal with information? It is still
worthwhile to read von Neumann’s ideas about this [21].

Cherry writes on page of [23]:

“It is remarkable that human communication works at all, for so much seems
to be against it; yet it does. The fact that it does depends principally upon
the vast store of habits which one of us possess, the imprints of all our past
experiences. With this, we can hear snatches of speech, the vague gestures and
grimaces, and from this shreds of evidence we are able to make a continual
series of inferences, guesses, with extra ordinary effectiveness.”

We shall discuss the issue of “prior knowledge” later and we shall show that
some aspects are accessible to a rigorous mathematical treatment.

There are various stimuli concerning the concepts of communication and in-
formation from the sciences, for instance from quantum theory in physics, the
theory of learning in psychology [19], theories in linguistics [40], etc.

These hints give an idea of the size of the ocean around the Shannon Island.

We don’t have the intention to drown in this ocean. However, since the ocean
is large there ought to be some other islands. In fact there are.

Among those, which are fairly close to the Shannon Island we can see

1.) Mathematical Statistics
2.) Communication Networks
3.) Computer Storage and Distributive Computing
4.) Memory Cells

Since those islands are close there is hope that they can be connected by dams.

A first attempt to explore connections between Multi–user source coding and
hypothesis testing was made in [10]. For interesting ideas about relations be-
tween Multiple–access channels and communication networks see Gallager [24].
A multitude of challenges to Information Theory comes from Computer Sci-
ence. A proper frame for storage in memory cells is our abstract coding theory
[8]. Our work on identification has led us to reconsider the basic assumptions
of Shannon’s Theory. It deals with “messages”, which are elements of a pre-
scribed set of objects, known to the communicators. The receiver wants to

6



know the true message. This basic model occurring in all engineering work on
communication channels and networks addresses a very special communication
situation. More generally they are characterized by

(I) The questions of the receivers concerning the given “ensemble”, to be
answered by the sender(s)

(II) The prior knowledge of the receivers
(III) The senders prior knowledge.

Accordingly the paper starts with three parts.

It seems that the whole body of present day Information Theory will undergo
serious revisions and some dramatic expansions. We open several directions
of future research and start the mathematical description of communication
models in great generality. For some specific problems we provide solutions or
ideas for their solutions.

We continue in Part IV with (promised) capacity theorems for identification
via multi–way channels. We also study identification in conjunction with trans-
mission.

The proof of the “polynomial” weak converse is new even for the discrete
memoryless channel (DMC).

In Part V we discuss a new direction of research on sources, which goes back
to a problem of [15]: noiseless coding for multiple purposes. It stimulated to
go for a new concept: identification for sources.

Part VI concludes with striking results on the relation of identification and
common randomness and a general discussion.

Part I: One sender answering several questions
of receivers

2 A general communication model for one sender

To simplify matters we assume first that the noise is modelled by a DMC with
finite input (resp. output) alphabet X (resp. Y) and transmission matrix W .

The goal in the classical Shannon communication theory is to transmit many
messages reliably over this channel. This is done by coding. An (n, M, λ)–code
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is a system of pairs
{

(ui,Di) : 1 ≤ i ≤ M
}

with ui ∈ X n,Di ⊂ Yn and

Di ∩ Di′ = ∅ for i 6= i′, (2.1)

W n(Dc
i |ui) ≤ λ for i = 1, . . . , M. (2.2)

Given a set of messages M = {1, . . . , M}, by assigning i to codeword ui we
can transmit a message from M in blocklength n over the channel with a
maximal error probability less than λ. Notice that the underlying assumption
in this classical transmission problem is that both, sender and receiver, know
that the message is from a specified set M. They also know the code. The
receiver’s goal is to get to know the message sent. Having received an element
in decoding set Di he decides for codeword ui and then for message i. By the
assumptions his (maximal) error probability is bounded by λ.

An (n, M, λ) transmission code with randomization assigns to message i a
probability distribution Pi on X n, for which

∑

xn∈Xn

W n(Dc
i |xn)Pi(x

n) ≤ λ.

Observe that for some vi ∈ X n

W n(Dc
i |vi) ≤

∑

xn∈Xn

W n(Dc
i |xn)Pi(x

n) ≤ λ

and that therefore the code {(Pi,Di) : 1 ≤ i ≤ M} with randomization in
the encoding can be replaced by the (deterministic) code {(vi,Di) : 1 ≤ i ≤
M} satisfying also the bound λ on the error probability. Obviously the same
reduction holds for channels without time structure.

This implies that randomization is of no advantage for transmission over
one-way channels like the DMC. However, it has a dramatic effect on
performance for identification. To fix ideas, transmission concerns the
question “How many messages can we transmit over a noisy channel?” One
tries to give an answer to the question “What is the actual message from
M = {1, . . . , M}?”

On the other hand in identification it is asked “How many possible messages
can the receiver of a noisy channel identify?” One tries to give an answer to
the question “Is the actual message i?” Here i can be any member of the set
of possible messages N = {1, 2, . . . , N}.

Certain error probabilities are again permitted. From the Theory of Trans-
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mission one cannot derive answers for these questions in the Theory of Iden-
tification, which therefore goes beyond Shannon’s Theory.

An (n, N, λ) identification code for the DMC with transmission probability

matrix W is a system of pairs
{

(Pi,Di) : 1 ≤ i ≤ N
}

with Pi ∈ P(X n) and
Di ⊂ X n with error probability of misacceptance and also misrejection less
than λ, that is,

∑

xn

Pi(x
n)W n(Di|xn) > 1− λ for all i and

∑

xn

Pi(x
n)W n(Dj|xn) < λ for i 6= j.

We know from [16] that any (second order) rate R < CSh = C is achievable
for any λ > 0 and all large n, that is, there are (n, N, λ) codes with R ≤
1
n

log log N .

It is convenient to introduce the maximal code size

N(n, λ) = max
{

N : (n, N, λ) code exists
}

.

Already in [16] it was shown that for any exponentially small sequence of error
probabilities λn = e−εn (ε > 0)

lim
n→∞

1

n
log log N(n, λn) ≤ C.

This converse was named soft converse in [16]. We use here the more instructive
name “exponential weak converse”.

The (classical) weak converse states that

inf
λ>0

lim
n→∞

1

n
log log N(n, λ) ≤ C.

As a statement between these two we introduce now a polynomial weak con-
verse:

For some α > 0

lim
n→∞

1

n
log log N

(

n,
1

nα

)

≤ C.

Such a statement was derived for α = 1 in [35].

Again already in [16] a version of the strong converse was conjectured:

lim
n→∞

1

n
log log N(n, λ) ≤ C for 0 ≤ λ < 1/2.
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In case of feedback this was proved in [17] and the conjecture of [16] was
established by Han/Verdú [28] and with a simpler proof in [29].

Remark 1: The capacity concept used in [16], [17] is often called pes-
simistic capacity, that is, the maximal rate achievable with arbitrary small
constant error probability λ. Sometimes in the literature also the optimistic
capacity C̄ is used. Actually for many channels (like for instance non-stationary
memoryless channels) other performance criteria like capacity functions say
more about them. This is discussed in great detail in [62]. In this paper we dis-
cuss only pessimistic capacities C, Cpol, and Cexp where the latter are defined
as optimal rates achievable for all polynomial error probabilities λn = n−α,
α > 0, resp. exponential error probabilities λn = 2−ǫn with some small ǫ > 0.
It is important to notice that in order to establish a number as the (pes-
simistic) capacity neither strong nor weak converses are necessary. Further-
more, C ≥ Cpol ≥ Cexp and for instance for the DMC it is easy to prove that
Cexp ≥ C and these capacities are equal. The same holds for regions of the mul-
tiple access channel (MAC) and can also be shown for regions for identifi-
cation following the direct proofs of [16], [17] which are based on transmission
codes and for maximal errors can be improved also by the Ahlswede/Dueck
local converse [63]. It is essential that one stays near to memoryless channels;
in general the concepts go apart.

One can conceive of many situations in which the receiver has (or many re-
ceivers have) different goals. They lead to decoding rules with not necessarily
disjoint decoding sets.

A nice class of such situations can, abstractly, be described by a family Π(M)
of partitions of M. Each π ∈ Π(M) is associated with a receiver, who wants
to know only which member of the partition π = (A1, . . . , Ar) contains m, the
true message, which is known to the encoder.

We describe now some seemingly natural families of partitions.

Model 1: ΠS = {πSh}, πSh =
{

{m} : m ∈ M
}

. This describes Shannon’s
classical transmission problem stated above.

Model 2: ΠI = {πm : m ∈ M} with πm =
{

{m},Mr{m}
}

. Here decoder πm

wants to know whether m occurred or not. This is the identification problem
introduced in [16].

Model 3: ΠK = {πS : |S| = K,S ⊂ M} with πS = {S,MrS}. This is an in-
teresting generalisation of the identification problem. We call it K–identification.

This case also arises in several situations. For instance every person πS may
have a set S of K closest friends and the sender knows that one person m ∈ M
is sick. All persons πS want to know whether one of their friends is sick.
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Model 4: ΠR =
{

πr : πr =
{

{1, . . . , r}, {r + 1, . . . , M}
}

, 1 ≤ r ≤ M − 1
}

.
Here decoder πr wants to know whether the true message exceeds r or not.
We speak of the ranking problem.

Model 5: ΠB = {πA : A ⊂ M}. A receiver associated with πA = {A,MrA}
wants to know the answer to the binary question “Is m in A?” (Here, of course,
πA and πMrA can be viewed as the same questions).

Model 6: M = {0, 1}ℓ, ΠC = {πt : 1 ≤ t ≤ ℓ} with πt =
{

{(x1, . . . , xℓ) ∈
M : xt = 1}, {(x1, . . . , xℓ) ∈ M : xt = 0}

}

. Decoder πt wants to know the

t–th component of the vector valued message (x1, . . . , xℓ).

In all these models we can consider the first (or second) order capacities,
defined analogously to those in models 1,2, where they are known from [16]
and [17]. It is shown in Section 4 that for models 4 and 5 the capacities equal
Shannon’s transmission capacity.

The most challenging problem is the general K–identification problem of
model 3. Here an (n, N, K, λ)–code is a family of pairs

{

(P (·|i),Dπ) : 1 ≤
i ≤ N, π ∈ ΠK

}

, where the P (·|i)’s are PD’s on X n, Dπ ⊂ Yn, and where for

all π = {S,M r S}
(

S ∈
(

M
K

))

∑

xn

P (xn|i)W n(Dc
π|xn) ≤ λ for all i ∈ S,

∑

xn

P (xn|i)W n(Dπ|xn) ≤ λ for all i /∈ S. (2.3)

We also write DS instead of Dπ. A coding theorem is established in Section 3.

Remark 2: K-identification applies whenever persons want to know whether
a winner is among their favourite teams or lottery numbers or friends.

Remark 3: Most models fall into the following category of regular transfer
models. By this we mean that the set of partitions Π of M is invariant under
all permutations σ : M → M:

π = (A1, . . . , Ar) ∈ Π implies σπ =
(

σ(A1), . . . , σ(Ar)
)

∈ Π.

Remark 4: Many of the models introduced concern bivariate partitions. More
generally they are described by a hypergraph H = (M, E), where decoder
E, E ∈ E , wants to know whether the m occurred is in E or not.

Example 1: In a certain lottery a player can choose ℓ of the numbers 1, . . . , L,
say, {a1, . . . , aℓ}. A set {b1, . . . , bℓ} of ℓ numbers is chosen at random.
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Suppose that T players have chosen {a1
1, . . . , a

1
ℓ}, . . . , {aT

1 , . . . , aT
ℓ }, resp. Every

player wants to know whether he won, that shall mean, whether he has at least
ℓ − 1 correct numbers: For the t–th player

|{at
1, . . . , a

t
ℓ} ∩ {b1, . . . , bℓ}| ≥ ℓ − 1.

How many bits have to be transmitted in a randomized encoding, so that
every player knows with high probability, whether he won.

Example 2: Lets view the elements of {1, . . . , a}n as sequences of events. His-
torians (or observers of stockmarkets) have each their subsequence of events,
say,

(t11, . . . , t
1
s1

), . . . , (tℓ1, . . . , t
ℓ
sℓ

).

The ℓ persons are to be informed with high probability correctly about the
correct sequence of events. (Idea of binning, see [6], [7], [8]).

Example 3: In some countries 40% of the healthy men of an age–class are
drafted by random selection. Every candidate wants to know with high prob-
ability correctly whether he is among them. This falls under model 6.

3 Analysis of a specific model: K–identification

3.1 A relation to standard identification

Recall the definition of an (n, N, K, λ)–code given in Section 2. For reasons,
which become apparent soon, we assume K to grow exponentially in the block-
length n, that is,

K = 2κ·n, (3.1)

where κ is called a first order rate.

As for the standard identification problem (K = 1, κ = 0) N can grow double
exponentially, that is,

N = 22Rn

, R > 0, (3.2)

where R is called a second order rate.

The pair (R, κ) is achievable, if for any λ > 0, δ > 0 and all sufficiently large

n
(

n, 22(R−δ)n
, 2(κ−δ)n, λ

)

–codes exist.

Proposition 1. For every DMC the set K of all achievable rate pairs contains
{

(R, κ) : 0 ≤ R, κ; R + 2κ ≤ CSh

}

,
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where CSh is Shannon’s familiar capacity of the DMC.

Proof: In [16] the achievable triples (R, η1, η2) of second order rate R and
error exponents η1, η2 have been investigated. Theorem 2 of [16] completely
characterizes the set of achievable pairs (R, η2) in the limit η1 → 0 as follows:

lim
η1→0

{

(R, η2) : (R1, η1, η2) is achievable
}

=
{

(R, η2) : R ≤ CSh − 2η2

}

. (3.3)

Now, any identification code
{

(Pi,Di) : 1 ≤ i ≤ N
}

with parameters (R, η1, η2)

has an associated K–identification code
{

Pi,DS : 1 ≤ i ≤ N, S ∈
(

N
K

)}

, where

DS =
⋃

i∈S

Di, (3.4)

meeting the parameters (R, κ, η1, η2 − κ).

This means that

∑

xn

Pi(x
n)W n(DS|xn) ≥ 1 − 2−nη1 for all i ∈ S and

∑

xn

Pi(x
n)W n(DS|xn) ≤ K2−nη2 = 2−n(η2−κ) for all i /∈ S.

These inequalities and (3.3) imply that for sufficiently small η1 there exists for
all pairs of rates (R, κ) with R ≤ CSh − 2κ− δ an η2 > κ satisfying (3.3) such
that for n large enough all error probabilities above fall below any λ > 0.

Remark 5: Especially, for κ = 0, Proposition 1 gives the standard Coding
Theorem for Identification.

There is a very important connection to r–cover–free families.

A family of sets F is called r–cover–free if A0 6⊂ A1 ∪ A2 ∪ · · · ∪ Ar holds for
all distinct A0, A1, . . . , Ar ∈ F . Let M(n, r) denote the maximum cardinality
of such an F over an n–element underlying set. This notion was introduced
in terms of superimposed codes in [50], where for suitable constants c1, c2 the
inequalities

c1

r2
≤ log M(n, r)

n
≤ c2

r

were proved. This result was rediscovered several times. In [51], with a rather
complicated proof, the upper bound was improved to

log M(n, r)

n
≤ 2

log r + O(1)

r2
.
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After the purely combinatorial proof of [52] by a simpler argument (implicitly
contained in [51]) the slightly weaker bound

log M(n, r)

n
≤ 4

log r + O(1)

r2

was obtained in [53]. Let a = |X |. With the replacements r → aκn, n → an

we obtain
log M(an, aκn)

an
≤ c · log aκn

a2κn

and thus

Rn ,
log log M(an, aκn)

n
≤ (1 − 2κ) log a + o(1). (3.5)

In particular, for a = 2, R ≤ 1 − 2κ.

This raises the question of optimality of the bound in Proposition 1. For its
answer one needs a suitable bound for r–cover–free uniform families F of
subsets, each of cardinality ℓ exponential in n. However, the existing bounds
are too rough!

Technically very simple is the case of K–identification for noiseless channels,
if we require the error of first kind to be 0, because thus DS equals the union
of the support sets Di for the random strategies Pi(i ∈ S) and to just obtain
error probability of second kind to be less than 1, necessarily Dj 6⊂ DS for
j /∈ S. Now the bound on aκn–cover–free families is applicable.

Proposition 2. In the noiseless case and for zero error probability of first
kind the bound in Proposition 1 is tight.

Notice that in our definition of achievability of a pair (R, κ) we required the
existence of (n, N, K, λ)–codes for all small λ > 0 and n large. It is very
convenient to introduce the concept of λ(n)–achievable pairs (R, κ) by the
property that for all large n (n, N, K, λ(n))–codes exist. Moreover (R, κ) shall
be called polynomially achievable, if for λ(n) = n−α, with arbitrary α > 0
and n large, (n, N, K, λ(n))–codes exist. Similarly (R, κ) is exponentially
achievable, if for an ε > 0 it is λ(n)–achievable for λ(n) = e−εn.

Correspondingly we speak about Kλ(n), the region Kpol of polynomially achiev-
able rate pairs and the region Kexp of exponentially achievable rate pairs.

This terminology is consistent with the terminology for converses, which we
introduced in Section 2. Further qualifications for several kinds of probabilities
are given when needed. Actually for many coding problems several regions
coincide. However, as long as we don’t know this it is convenient to have this
flexible language.
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3.2 An equivalence of two coding problems

Let us start with an (n, N, K, λ)–code
{

Pi,DS : 1 ≤ i ≤ N, S ∈
(

N
K

)}

.

We say that S is λ∗–decodable for this code, if there is a partition ES = {Es :
s ∈ S} of DS such that

∑

xn

W n(Es|xn)Ps(x
n) ≥ 1 − λ∗ for all s ∈ S. (3.6)

If for an (n, N, K, λ)–code every S ∈
(

N
K

)

is λ∗–decodable, then we speak of

an (n, N, K, λ, λ∗)–code. K∗ denotes the set of pairs of rates for such codes,
which are achievable for every λ > 0, λ∗ > 0.

Equivalence Theorem 1 For every DMC

Kpol ⊂ K∗ ⊂ K.

Proof: Obviously, K∗ ⊂ K. The rate pairs in Kpol are achievable for every

λ(n) = n−α. We show now that an (n, N, K, λ)–code with N = 22Rn
, K =

2⌈κn⌉, λ(n) can be transformed in an
(

n, N, K, λ(n), λ∗(n)
)

–code with

λ∗(n) ≤ ⌈κn⌉λ(n). (3.7)

Fix any S ∈
(

N
K

)

and label its elements by the mapping

ϕ : S → {0, 1}⌈κn⌉. (3.8)

Then define for j = 1, 2, . . . , ⌈κn⌉

Sj =
{

s ∈ S : ϕ(s)j = 1
}

(3.9)

and

Sj = Sj ∪ S for S ⊂ N r S, |S| =
1

2
K. (3.10)

The Sj ’s are elements of
(

N
K

)

and the Sj’s (and also the Sj’s) form a separating

system on S : for every s, s′ ∈ S, s 6= s′, we have for some j

s ∈ Sj and s′ /∈ Sj . (3.11)
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Introduce now the function εj : S → {0, 1} by

εj(s) =







1 if s ∈ Sj

0 if s ∈ Sc
j

and use the convention A1 = A and A0 = Ac.

Then the sets

Es ,
⌈κn⌉
⋂

j=1

(DSj
)εj(s), s ∈ S, (3.12)

are disjoint, because for s 6= s′ there is an Sj with s ∈ Sj and s′ /∈ Sj and so
εj(s) 6= εj(s

′).

Finally, we have by the properties of the original code

∑

xn

W n(Es|xn)Ps(x
n) ≥ 1 − ⌈nκ⌉λ(n), s ∈ S. (3.13)

The choice λ(n) = 1
n2 is good enough. Every S is λ∗–decodable.

Furthermore, it becomes an exercise to show that the same argument also
yields for a DMC a relation weaker than Proposition 1, namely

K ⊃
{

(R, κ) : R + 2κ ≤ Cer

}

,

where Cer is the erasure capacity (c.f. [59]).

Indeed, for an erasure code
{

(ui,Di) : 1 ≤ i ≤ M
}

with erasure probability ε
we have

W n(Dj |ui) = 0 for i 6= j

W n(Di|ui) ≥ 1 − ε; i = 1, . . . , M.

In the previous argument we can replace {0, 1}n by U = {u1, . . . , uM}. Sub-
codes of cardinalities 2ρn and intersecting in at most 2−κn2ρn words give
rise to identification codes (by averaging) of error probability of second kind
λ2 ≤ 2−κn.

The erasure probability is only relevant for the error probability of first kind.

From here on we apply Gilbert’s bound with 2n replaced by 2ρn; ρ ≥ κ,
ρ ≤ Cer.

Remark 6: λ − K–identification, λ∗–decodable codes give rise to associated
identification codes with error probabilities smaller than λ + λ∗ by assigning
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to every i ∈ N a K-element subset Si containing i and the decoding set
Di = Ei ∈ ESi

. Therefore R < CSh, and by Shannon’s Coding Theorem also
κ ≤ CSh.

Remark 7: There is another instructive relation. Let us view
(

N
K

)

as set M of
objects, one of which, say S, is given to the sender for encoding. The receiver
wants to know whether it equals S ′ (any element of M) or not. This is a

standard identification problem with |M| =
(

N
K

)

.

Since 1
n

log log |M| cannot exceed CSh, we see that for K = 2κn and N = 22Rn

(

N
K

)

∼ 22(κ+R)n
. 22CSh·n

, or κ+R ≤ CSh. Thus κ cannot exceed CSh. Actually,
this is true even if N grows exponentially only, say like N = 2εn, ε > κ, because
then

22CShn

&

(

N

K

)

=

(

2εn

2κn

)

≥ 2(εn−κn)2κn ≥ 22κn

gives κ ≤ CSh.

3.3 An outer bound on the capacity region K

The simple idea here is to work with a “net” S ⊂
(

N
K

)

“almost” of cardinality

NK .

View a set S as 0–1–sequence of length N = 22Rn
with exactly K = 2κn 1’s.

By Gilbert’s bound we can find S = {S1, S2, . . . , SÑ} with the properties

|Si△Sj| ≥ (1 − α)2K, 0 < α < 1,

Ñ ≥
(

N

K

)

[

2K(N − K)(1−α)K
]−1

.

Therefore

Ñ & NαK = 22Rn·α2κn

= 2α2(R+κ)n

and
1

n
log log Ñ ≥ R + κ − 1

n
| log α|.

We summarize this.

Lemma 1. For every α ∈ (0, 1) there is a family S = {S1, . . . , SÑ} ⊂
(

N
K

)

with

(i) |Si△Sj| ≥ (1 − α)2K and |Si ∩ Sj | ≤ αK.

(ii) R + κ − 1
n
| log α| ≤ 1

n
log log |S| ≤ 1

n
log log

(

N
K

)

≤ R + κ.
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We can therefore by (ii) upperbound
(

N
K

)

by upperbounding |S|. For this we

relate S to a standard identification problem. For S ∈ S define PS ∈ P(X n)
by

PS(xn) =
1

K

∑

i∈S

P (xn|i), xn ∈ X n, (3.14)

if P (·|i) is the randomized encoding for i. Now by Lemma 1 (i) and the code
definition in (2.1) and (2.2) we have for S, S ′ ∈ S, S 6= S ′,

∑

xn

PS(xn)W n(DS|xn) ≥ 1 − λ

and
∑

xn

PS(xn)W n(DS′|xn) ≤ λ + α.

This is an (n, |S|, λ′) identification code with

λ′ = λ + α ≥ λ.

By the weak converse in Section 12 and Lemma 1 (ii) we get the desired bound
for K. The same proof works for the K–separating codes of Section 6, if we
define DE =

⋃

i∈E
DE,i.

So for this capacity region K++ we have the same bound.

Proposition 3. K ⊂
{

(R, κ) : R + κ ≤ CSh

}

Remark 8: There is a very simple proof for the noiseless BSC. Since the
decoding sets DS are distinct, it follows that
∣

∣

∣

∣

∣

(

N
K

)∣

∣

∣

∣

∣

≤ 22n

and thus
1

n
log log NK =

1

n
log log N +

1

n
log K = R + κ ≤ 1.

Remark 9: The two Propositions 1, 2 imply for κ = 0 the standard Identifi-
cation Capacity Theorem.

Remark 10: Using also the Equivalence Theorem we see that for R = 0 we
get the converse to Shannon’s Coding Theorem and only the achievable rate
1
2
CSh!

3.4 On K–identification in case of noiseless feedback

As in [17] we assume the presence of a letter by letter noiseless feedback link.
Again deterministic encoding functions for i are denoted by fn

i and random-
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ized encoding functions for i are denoted by F n
i . The corresponding regions of

achievable rate pairs are denoted by Kf and KF . Analogously, if all S ∈
(

N
K

)

are λ–decodable we denote the regions by K∗
f and K∗

F . We formulate now re-
sults, which are analog to those under 3.2 and 3.3. Notice that the argument
leading to (3.13) applies also in cases of deterministic and randomized feed-
back strategies. The results in [27], including constructive coding strategies,
go considerably beyond [17] and also, if necessary, [27] can be consulted for
detailed definitions of all concepts used in this section, when they are not
immediately clear.

Equivalence Theorem 2. For every DMC

(i) Kf pol ⊂ K∗
f ⊂ Kf

(ii) KF pol ⊂ K∗
F ⊂ KF .

Proposition 4. For every DMC W

KF ⊂
{

(R, κ) : R + κ ≤ max
P∈P(X )

H(Q)
}

,

where Q = P · W .

We use our entropy property for all discrete distributions.

Lemma 2 (Included in [27]) For P = (P1, P2, . . . ) ∈ P(N) define

ε(d, P ) = max







∑

j∈J

Pj : J ⊂ N, |J | = 2⌈H(P )d⌉+1







,

and set

ε(d) = min
P∈P(N)

ε(d, P ).

Then

ε(d) = 1 − 1

d
for all d ≥ 1.

Proof of Proposition 4: In any (n, N, K, λ)–code with feedback

{

(Fi,DS) : 1 ≤ i ≤ N ; S ∈
(

N
K

)}

let Y n
i be the output process generated by Fi via the channel. Furthermore

define the process Y n
S by the distribution

Prob(Y n
S = yn) =

1

K

∑

i∈S

Prob(Y n
i = yn).
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By assumption

Prob[Y n
i ∈ DS] ≥ 1 − λ, if i ∈ S, (3.15)

Prob[Y n
i ∈ DS′] ≤ λ, if i /∈ S ′. (3.16)

By Lemma 2 there are sets ES ⊂ Yn
(

S ∈
(

N
K

))

with

Prob[Y n
S ∈ ES] ≥ 1 − 1

d
, (3.17)

|ES| ≤ 2⌈d H(Y n
S )⌉+1. (3.18)

We show later that the net S ⊂
(

N
K

)

with the properties (i), (ii) in Lemma 1
satisfies

DS ∩ ES 6= DS′ ∩ ES′ for S, S ′ ∈ S; S 6= S ′, (3.19)

provided that λ is sufficiently small.

We know from [17], that

H(Y n
S ) ≤ n max

P :Q=P ·W
H(Q) = H (say). (3.20)

Therefore by (3.18) and (3.19)

|S| ≤ 22dnH

(3.21)

and since d can be made arbitrarily close to 1 we conclude that

|S| ≃ NK . 22g(λ)nH

(3.22)

with lim
λ→0

g(λ) = 1 (weak converse).

Therefore

1

n
log log NK =

1

n
(log K + log log N) = κ + R ≤ H g(λ).

It remains to be seen that (3.19) holds.

Suppose that for S, S ′ ∈ S ES ∩ DS = ES′ ∩ DS′. Then by (3.15) and (3.17)

Prob(Y n
S′ ∈ ES′ ∩ DS′) = Prob(Y n

S′ ∈ ES ∩ DS) ≥ 1 − 1

d
− λ. (3.23)

On the other hand, by (3.16)
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Prob(Y n
i ∈ ES ∩ DS) ≤ Prob(Y n

i ∈ DS) ≤ λ for i ∈ S ′
r S and by definition

of S |S ′
r S| ≥ (1 − α)K.

Therefore Prob(Y n
S′ ∈ ES ∩ DS) = 1

K

∑

i∈S′
Prob(Y n

i ∈ ES ∩ DS) ≤ λ + α.

This contradicts (3.23), if

λ + α < 1 − 1

d
− λ. (3.24)

This is equivalent with λ < 1
2

(

1 − 1
d

)

− α
2
.

So in order to show that for any ε > 0 κ + R ≤ H + ε, choose first d so that
d > 1 and dH ≤ H + ε, then choose λ smaller than 1

4

(

1 − 1
d

)

, and finally

choose α smaller than 1
2

(

1 − 1
d

)

.

Remark 11: Notice that we have used that 1
K

∑

i∈S
fi defines a randomized feed-

back strategy FS. So this approach does not work for the case of deterministic
feedback strategies!

Remark 12: We have upperbounded
(

N
K

)

via upperbounding |S|, for which
we used our old idea of “distinct carriers”. Instead we could also follow the
approach under 3.2, in which we relate the modified K–identification problem
with a standard identification problem. In case of feedback we get the upper
bound for randomized strategies by the strong converse of [17].

Remark 13: For small K, say for constant K while n grows, K–identification
reduces of course to K identifications and thus to identification.

K–identification means that any person E is interested in the question whether
the edge E in the hypergraph

(

N ,
(

N
K

))

occurred. Naturally, we can replace
(

N
K

)

by any set E of edges, if this describes the interests.

In order to motivate this model H = (V, E) let us suppose that V is the set of
roads in a region and E is the set of drivers. Driver E is primarily interested
in the roads of his tour. In case there has been an accident on one road v ∈ V
and this road is blocked, then all E’s want to know whether v ∈ E or not (and
in the affirmative case secondarily also which road it is).

There are more efficient ways of transferring the information of interest than to
broadcast the complete information, which specifies the road with the accident.

The converses in case of feedback show that

|E| < 22Hn

. (3.25)
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Now, if we choose E = 2N , the power set, R1 = rate (N) ≤ H .

By Section 4 decoding all subsets, gives optimal rate CSh. So the bound in
(3.25) is not achievable.

Problem 1: Does the Equivalence Theorem hold for general hypergraphs?

3.5 A combinatorial consequence

It is remarkable that a result for K–identification (Proposition 1) has an im-
portant consequence for r–cover–free families in relation to packings. We use
a result of Kuzjurin [55].

A family A of k–subsets of [m] = {1, 2, . . . , m} is called (m, k, ℓ)–packing iff
each ℓ–subset of [m] is contained in at most one member A ∈ A. Therefore
two members of A intersect in at most ℓ − 1 elements. (In other words A
can be viewed as a code with constant weight k, word length m and distance
dH = 2(k − ℓ) + 2.)

The density d(A) of a packing A is the average number of k–subsets of A
containing an ℓ–subset, that is, d(A) =

|A|(k
ℓ)

(m
ℓ )

. Let k = k(m) and let ℓ =

ℓ(m) ≥ 2.

A sequence of packings (Am)m≥k is called asymptotically good if

lim
m→∞ d(Am) = 1.

Roughly speaking the result of [55] says that k =
√

m is the threshold function
for the existence of asymptotically good packings. Here is the precise result.

Theorem K. Let α be the minimum constant such that for every ε > 0 and
sufficiently large n every interval [n, n + nα+ε] contains a prime number. It is
known that α ≤ 23

43
. The following bounds hold:

(i) Let c < 1 and k(m) < c
√

m, where lim
n→∞ k(m) = ∞. Further, let for some

ε > o ℓ(m) = o
(√

k(m)
)

and ℓ(m) = o
(

(

m
k(m)

)1−α−ε
)

.

Then asymptotically good (m, k, ℓ)–packings exist.

(ii) Let c > 1, k(m) > c
√

m and let ℓ(m) = o
(

k(m)
)

. Then nontrivial asymp-

totically good (m, k, ℓ)–packings do not exist.
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Corollary 1.

(i) Let m(n) = eµn, k(n) = eγn, and ℓ(n) = eβn. For µ
2

> γ, γ/2 > β and
(µ − γ)20

43
> β we have asymptotically good (m, k, ℓ)–packings.

(ii) Let m(n) = eµn, k(m) = e(
µ
2
+ε)n, and let ℓ(m) = eβn with β < µ

2
+ ε,

then asymptotically good (m, k, ℓ)–packings do not exist.

We derive from the assumptions on µ, γ, β

µ > 2γ, γ > 2β, µ > γ +
43

20
β. (3.26)

We apply this and (ii) to the set of codewords U ⊂ X n of a channel code
with error probability λ, |U| ∼ eIn = m, and 1

n
log K(n) = κ. Then I = µ,

κ = γ − β and we get for the maximal packing cardinality

N∗(n, I, κ) .

(

eIn

eβn

)

(

eγn

eβn

) =

(

eIn

eβn

)

(

e(β+κ)n

eβn

) , (3.27)

1

n
log log N∗ . β, (3.28)

and for γ ∼ I
2

the lower bound β = γ − κ ∼ I
2
− κ. Moreover, βmax ≤

min
(

I
4
, 20I

86

)

= 10
43

I, κmin = I
2
− βmax = 23

86
I, and R = 10

43
I.

However, our bound R = I − 2κ = 20
43

I in Proposition 1 is much better!

It can be seen from its derivation in 3.1 that this bound can be interpreted as
a lower bound on the size N(n, I, κ) of optimal r–cover–free families, where r
has rate κ. It is known and readily verified that always

N(n, I, κ) ≥ N∗(n, I, κ).

We know now that the quantities can be very different!

4 Models with capacity equal to the ordinary capacity

Some of the cases considered here were first treated by Já Já [13] for non–
randomized encoding on the BSC. If randomisation is permitted, the analysis
is somewhat more complicated. In this section we describe the various codes
and capacities by words.
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4.1 The ordering problem

Suppose that one of the events {1, 2, . . . , N} occurred and is known to the
sender. By proper coding he shall enable the receiver to answer the question “Is
the true number less than or equal to j?” Here j is any element of {1, . . . , N}.
We can also use the ordering function

f0(i, j) =







1 for i ≤ j

0 otherwise.

A (randomized) ordering code (n, N, λ1, λ2) is a family

{

(P (·|i),Di) : i = 1, 2, . . . , N
}

of pairs with

P (·|i) ∈ P(X n),Di ⊂ Yn for i = 1, 2, . . . , N (4.1)

and with errors of the first (resp. second) kind satisfying for every j

∑

xn∈Xn

P (xn|i)W n(Dj |xn) ≥ 1 − λ1 for i = 1, . . . , j (4.2)

and
∑

xn∈Xn

P (xn|i)W n(Dj|xn) ≤ λ2 for i > j. (4.3)

Of course, we can define this way deterministic ordering codes by letting P (·|i)
denote point masses on points ui ∈ X n.

Theorem 3. Even for randomized encoding the polynomial ordering problem
capacity does not exceed the transmission capacity. The same holds in case of
noiseless feedback.

Proof: Suppose first that N ≤
(

2|X |
)n

and that λ1, λ2 ≤ 1
n2 .

The ordering problem code gives rise to a transmission code as follows:

Choose first j1 = ⌈M
2
⌉. In case of a “yes” iterate the search for the “true

message” in {1, . . . , ⌊M
2
⌋} and otherwise in {⌈M

2
⌉, . . . , M} by choosing next j2

in the middle of these sets, resp. After log N iterations we are done. The total
error probability is bounded by

1

n2
log N ≤ 2|X |

n
.
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Next, if N >
(

2|X |
)n

, choose any subset of {1, 2, . . . , N} of a cardinality

exp
{

(C + δ)n
}

for some δ > 0.

Apply to the subcode corresponding to this set the previous argument. This
leads to a transmission code of a rate exceeding capacity and this contradiction

proves that actually N >
(

2|X |
)n

does not occur.

Finally, the same argument applies to the case of feedback.

Remark 14: We have shown that, generally speaking, whenever log N bits
specify an event with the code concept used, its rate does not exceed C. Thus
we have also the next result.

4.2 All binary questions

By proper coding the sender shall enable the receiver to answer all the ques-
tions “Is the true number in A?” Here A is any subset of {1, . . . , N}.

Theorem 4. Even for randomized encoding the binary questions capacity does
not exceed the transmission capacity. The same holds in case of noiseless feed-
back.

4.3 Identification of a component

In model 6, the number of components is linear in the blocklength. For expo-
nentially small error probability words can therefore be reproduced with small
error probability. (For small, but constant error probabilities, rate–distortion
theory is to be used).

Theorem 5. Even for randomized encoding the component identification ca-
pacity does not exceed the transmission capacity. The same holds in case of
feedback.

Part II: Models with prior knowledge of the
receiver

The a priori structure is a hypergraph H = (V, E). The encoder of channel
W knows the message vertex v ∈ V and the decoder DE (E ∈ E) knows
beforehand whether the message to be transmitted is in E or not. In case it
is, he wants to know which element of E it is.
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We consider first abstract hypergraphs.

5 Zero–error decodable hypergraphs

If the decoder wants to know v ∈ E, then any two vertices x, y ∈ E must be
separable for instance by different colors assigned to them.

Definition: The separability graph G(H) = (V, E∗) is defined by

{x, y} ∈ E∗ ⇔ ∃F ∈ E : {x, y} ⊂ F. (5.1)

Let Ψ(G) be the chromatic number of G, then H is 0–error decodable iff
Ψ(G) ≤ 2C0n, where C0 is the zero–error capacity of the channel W used for

the transmission of this color. Now H is λ–identifiable iff Ψ(G) . 22C(W )n
.

Remark 15: Also if 2–separable only within edges by the results of [16], [28]
the answer is the same.

6 K–separating codes

Instead of zero–error decodability for hypergraphs one can consider λ-decoda-
bility, that is, an error probability not exceeding λ is permitted.

We call
{

(Pi,DE,i) : E ∈ E , i ∈ E
}

an [n, N, λ]–code for H = (V, E) and W , if

Pi ∈ P(X n) for i ∈ V = {1, 2, . . . , N}, DE,i ⊂ Yn, and for all E ∈ E

DE,i ∩ DE,i′ = ∅ for i, i′ ∈ E, i 6= i′ (6.1)

∑

xn

Pi(x
n)W n(DE,i|xn) ≥ 1 − λ for i ∈ E. (6.2)

The issue is to minimize n for given H (and thus N) and λ for the channel
W .

For abstract hypergraphs H not very much can be said. The subject becomes
interesting under reasonable assumptions on H.

Example 4: E = {V} describes Shannon’s theory of transmission.

Example 5: E =
(

V
K

)

, the family of all K–element subsets of V, defines the
complete K–uniform hypergraph. The codes defined above are denoted here
by [n, N, K, λ] and called K–separating codes.
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Clearly, their capacity region K++ contains K∗ and by the Equivalence Theo-
rem 1 also Kpol.

Moreover, the same proof as for Proposition 3 in Section 3 works for K-
separating codes, if we define DE =

⋃

i∈E
DE,i.

Corollary 2.

(i) K++ ⊃ K∗ ⊃ Kpol.
(ii) K++ ⊂ {(R, κ) : R + κ ≤ CSh}.

Problem 2: Determine K++!

6.1 Second order 2–separation capacity without and with feedback

Let us start with the first meaningful case K = 2.

For E = {i, j} we can write

DE,i = Dij and DE,j = Dji.

We also say that any two messages are λ–decodable.

Notice that an (n, N, λ)–ID–code
{

(Pi,Di) : 1 ≤ i ≤ N
}

satisfies

∑

xn

Pi(x
n)W n(Di|xn) ≥ 1 − λ and

∑

xn

Pj(x
n)W n(Di|xn) ≤ λ(i 6= j).

Therefore setting Dij = Di r Dj and Dji = Dj r Di we see that i and j
are 2λ–separable. It immediately follows that the second order capacity for
K = 2, say C2, is not smaller than the ID–capacity CSh. Whereas in ID-
codes the decoding sets carry one index, 2–separating codes carry two indices.
The decoding sets for two messages are adapted for these two and no other
message. Therefore 2–separation is a weaker notion than identification (except,
perhaps, for a small shift in error probability caused by the disjointness of the
two decoding sets).

Theorem 6.

(i) The 2–separation capacity of second order C2 equals the second order
identification capacity CSh.

(ii) The corresponding capacities for channel (deterministic and randomized)
feedback strategies are also equal.

Proof: The issues are the converses.
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(i) Here we can be brief, because inspection of the strong converse proof for
identification of Han/Verdú [28] shows that it is actually designed for
2–separation. The key fact, called resolvability in [29], is this:

For P ∈ P(X n) with Q = PW n and ε > 0 there is a P ∗ ∈ P(X n),
which is an equidistribution over at most ∼ exp{nCSh}, not necessarily
distinct, members of X n and such that for Q∗ = P ∗W n

‖Q − Q∗‖ ≤ ε for n ≥ n(ε). (6.3)

(Here ‖ ‖ denotes total–variation).
In this way to every encoding distribution Pi(1 ≤ i ≤ N) we can find a

distribution P ∗
i such that the corresponding output distribution is close to

that of Pi. By the code properties the Qi’s and also the Q∗
i ’s are distinct.

Therefore the P ∗
i ’s must be distinct and there number in second order

rate does not exceed CSh.
(ii) Let us consider the deterministic case. For the randomized case we just

have to replace H = max
x

H(W (·|x)) by H = max
P

H(PW ).

We know from Lemma 2 in Section 3.4, that for encoding function fi

there exists an Ei ⊂ Yn such that for Qi = W n(·|fi), Qi(Ei) ≥ 1− 1
d
, and

|Ei| ≤ 2⌈dHn⌉+1. Omit from Ei the elements with smallest probability until
we get a set E∗

i ⊂ Ei with Qi(E∗
i ) ≥ 1− 1

d
and which is minimal with this

property.
Set T = max

i
|E∗

i |. The number of different such sets is

∣

∣

∣

∣

∣

(

yn

T

)∣

∣

∣

∣

∣

≤ 2(n log |Y|)2⌈dHn⌉+1

. (6.4)

This is the desired upper bound. However, not all E∗
i ’s are necessarily

different. Therefore, we have to upperbound the multiplicity with which
a set, say F , occurs among the E∗

i ’s. W.l.o.g. we label them E∗
1 , . . . , E∗

M .
By our definitions

1 − 1

d
+

Qi(E∗
i )

|F| ≥ Qi(E∗
i ) ≥ 1 − 1

d
. (6.5)

For i, j ∈ {1, . . . , M} we have for λ small

Qi(F ∩Dij) ≥ 1 − λ − 1

d
> λ, Qj(F ∩ Dji) ≥ 1 − λ − 1

d
> λ,

and Qi(Dji), Qj(Dij) ≤ λ.

If we now set D′
ℓk = F ∩ Dℓk and renormalize the measure Qi on F

from total measure ∼ 1 − 1
d

(see 6.5) to 1, then we have a 2–separating
code of size M with output space F .

To this situation we apply the idea of resolvability in the following
setting: We want to know how many distributions can be 2–separated on
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a finite set T with T elements which we can view as subset of {0, 1}n,
T ≤ 2m. This is covered by Han/Verdú’s result, when W is the noiseless
BSC. We get the bound M ≤ 22m

or

M ≤ 22dHn

. (6.6)

Together with (6.4) we get

N ≤ 2(n log |Y|)2dHn · 22dHn ≤ 2(1+n log |Y|)2dHn

,

and thus the weak converse by choosing d close to 1, λ then small enough
and n ≥ n(d, λ).

6.2 Strong converses by the method of [17] for 2–separation in case
of feedback

We begin with Theorem 6, (ii) in 6.1. By Lemma 2 of [17] for any ε ∈ (0, 1)
we can find sets E∗

i (i = 1, . . . , N) of minimal size with

1 ≥ W n(E∗
i |fi) ≥ 1 − ε, (6.7)

|E∗
i | ≤ 2

(

H+
c(ε)√

n

)

n
. (6.8)

How many can be equal to F , say?

Now just repeat the previous proof in 6.1. Now (the sharper) (6.7) takes the
role of (6.5). Instead of (6.6) we get now the stronger

M ≤ 22

(

H+
c(ε)√

n

)

n

(6.9)

and finally

N ≤ 2(n log |Y|)2

(

H+
c(ε)√

n

)

n

· 22

(

H+
c(ε)√

n

)

n

and thus
1

n
log log N ≤ H +

c(ε)√
n

(Strong Converse). (6.10)

Replacing fi by Fi and H by H the same proof applies otherwise literally and
gives a strong converse for randomized encoding.

Remark 16: The results obviously generalize to any constant K.

Problem 3: Are the optimal rates for 2–separable codes and ID–codes equal
if they satisfy λ2 ≤ e−η2n ?
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7 Analysis of a model with specific constraints: 2–separation and
Rényi’s entropy H2

Let us assume that a set of persons N = {1, 2, . . . , N} are at a party. The
persons move randomly between α rooms and the set of persons in room i at
some time is Ai of cardinality

|Ai| = Pi N ; i = 1, . . . , α. (7.1)

We say that the partition Π = (A1, . . . , Aα) is of type P = (P1, P2, . . . , Pα) ∈
P(N ).

Let now Π1, Π2, . . . , Πm be a sequence of independent random partitions taking
as values a partition of type P with equal probabilities. Equivalently we can
say that a person z ∈ N belongs to the randomly chosen Ai with probability
Pi independently of what happens to the other persons. (At discrete time
points 1, 2, . . . the partition of the persons in several rooms is reported.)

Imagine now that somebody, the interrogator, has difficulties to distinguish
any two persons in his interest at the party, but is reported the sequence of
partitions described. So he knows at every time instance the set of persons in
all rooms, but he cannot identify the persons in a set.

Let now λN,m denote the probability that m such partitions separate any
two persons in N . Rényi [34] has shown that m2(N, ε), the smallest m with
λN,m ≥ 1 − ε, satisfies

m2(N, ε) ∼ 2 log2 N + o(ε)

H2(P )
, (7.2)

where H2 is Rényi’s entropy of order 2.

Now let us go a step further. The interrogator is at the receiver side of a noisy
channel. For partition Πi = (Ai1, . . . , Aiα) let

Fi(z) = j, if z ∈ Aij . (7.3)

For every z ∈ N
(

F1(z), . . . , Fm(z)
)

is known to the encoder. How fast can
the interrogator decide his question with high probability correctly?

Answer: Match (F1, . . . , Fm) with a 2–separation code.

It would be stupid to use a transmission code. There are several variations of
this model.
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In many situations of information transfer reduction to transmission would be
of poor performance.

8 Binning via channels

In Section 5 we considered vertex colorings with different colors in each edge.
They have been called strict colorings in [6] and [8]. Other colorings discussed
there are

(α) colorings, where in every edge no color occurs more than ℓ times (leading
to list–knowledge)

(β) colorings, where in every edge a high percentage of colors occurs only one
time

(γ) colorings, which are good, in the senses of (α) and/or (β) in average under
given probability distributions on vertices and/or edges.

The present investigations have born still another coloring (or binning) con-
cept.

Indeed, let us look at K–separation. We know from Proposition 1 that we can
choose N with second order rate R and K with rate κ, R + 2κ ≤ CSh, and
achieve K–identification.

Further, by the Equivalence Theorem the hypergraph
(

N ,
(

N
K

))

is in addition
K–separable. What does this mean? Well, the “color” on vertex i is the ran-
domized encoding Pi and within every edge S ∈

(

N
K

)

containing i this i is
decoded correctly with probability at least 1 − λ!

Notice that for the price of a small error probability λ now — in contrast to
the situation in (β) (or also (γ)) — every vertex can be decoded correctly.

Furthermore, the theory in [6], [8] works, if the number of vertices, the num-
ber of edges, and the edge sizes are roughly of the same growth, namely
exponential in n.

Here the edge sizes are at most exponential in n, but the number of vertices
and edges can grow double exponentially in n!

9 K–identifiability, K–separability and related notions

We discuss here connections between code concepts.
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To fix ideas let us first compare 1–identification (the classical identification)
and 2–separation. In both cases we have a fixed encoding structure (set of code-
words, set of probability distributions or set of randomized or non–randomized–
feedback functions). In any case they specify via the channel a set of output
distributions

Q = {Qi : i ∈ N}. (9.1)

The various code concepts associate with such a set a decoding structure.

In case of identification the decoding structure is

D = {Di : i ∈ N}. (9.2)

It is of precision λ, if

Qi(Di) ≥ 1 − λ(i ∈ N ) and Qi(Dj) ≤ λ(i 6= j). (9.3)

The precision relates to the whole encoding structure Q, however, in a pairwise
fashion (as specified in (9.3)).

The concept 2–separation allows more freedom in the decoding structure. We
say Q is 2–separable with precision λ, if for any S = {i, j} ∈

(

N
2

)

there are
two sets DSi and DSj with

DSi ∩ DSj = ∅, Qi(DSi), Qj(DSj) ≥ 1 − λ. (9.4)

These sets relate only to i and j.

Lemma 3. 1–identifiable with precision λ implies 2–separable with precision
2λ.

Proof: Define DSi = Di r Dj and DSj = Dj r Di, then Qℓ(DSℓ) ≥ 1− 2λ for
ℓ = i, j.

There is also a general connection.

Lemma 4. K–identifiable with precision λ(n) implies K–separable with pre-
cision λ′(n) = ⌈nκ⌉λ(n), where

κ = rate (K) =
1

n
log K.

Proof: See proof of Equivalence Theorem 1 in Section 3.
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Problem 4: For L ≥ K, how does K–identifiability relate to L–separability?

Finally we mention related concepts.

a. We say that a K–identification decoding is based on a 1–identification
decoding {Di : i ∈ N} of precision λ, if

DS =
⋃

i∈S

Di, S ∈
(

N
K

)

(9.5)

and
Qi(Di) ≥ 1 − λ for i ∈ N , Qi(DS) ≤ λ for i /∈ S. (9.6)

For the disjoint sets

DSi = Di r
⋃

j∈Sr{i}
Dj for i ∈ S

we have
Qi(DSi) ≥ 1 − 2λ for i ∈ S, (9.7)

a generalisation of Lemma 3.
b. As a weaker notion than K–separability we define for positive integers

α, β with α + β = K that Q is (α, β)–separable with precision λ, if for

every S ∈
(

N
K

)

and every partition {S0, S1} of S, where |S0| = α and

|S1| = β, there are disjoint sets DS0 and DS1 with

Qj(DS0) ≥ 1 − λ for j ∈ S0

and
Qj(DS1) ≥ 1 − λ for j ∈ S1.

c. Analogously we say that Q is (α, β)–identifiable with precision λ, if there

is a decoding structure
{

DS′ : S ′ ∈
(

N
α

)

∪
(

N
β

)}

such that for S = S0

.∪S1,

|S0| = α, |S1| = β

Qi(DSε) ≥ 1 − λ for i ∈ Sε

and
Qi(DSε) ≤ λ for i ∈ S1−ε

for ε = 0, 1.

K–identification concerns partitions {S,N r S}, S ∈
(

N
K

)

. One can consider
partitions πℓ, ℓ ∈ L, into more than 2 sets. Person ℓ wants to know the set in
its partition, which contains the “message”. There may be several channels.
(“From which country is a sportsman?”, “what is his age?” etc.)

This model includes compound channels, where the receiver knows the indi-
vidual channel, broadcast channels (also with degraded message sets) etc.
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Part III: Models with prior knowledge at the
sender

10 Identification via group testing and a stronger form of the Rate–
Distortion Theorem

Suppose that from the set N = {1, 2, . . . , N} of persons any subset S ⊂ N
of persons may be the set of sick persons. Moreover it is known that with
probability q a person is sick and that the RV S has the distribution

Prob(S = S) = q|S|(1 − q)N−|S|. (10.1)

For each subset of the test subjects, (B ⊆ N ), the binary, error-free test, which
determines whether at least one person in B is sick or not, is admissible. In the
group testing model introduced in [65] the goal is to determine the expected
number of tests L(N, q) for an optimal sequential strategy to diagnose all sick
persons (see also [S10], pp. 112-117).

Theorem ([65]) Nh(q) ≤ L(N, q) ≤ N

In our model the decoder (person) s wants to know whether he is sick. Any
other information is of much less relevance to him. In particular he does not
care who the other sick persons are. In terms of partitions

πs =
{

{S ⊂ N : s ∈ S}, {S ⊂ N : s /∈ S}
}

(10.2)

he wants to know which member of πs occurred.

We can reformulate this problem by identifying S ⊂ N with a word xS =
(x1, . . . , xN) ∈ {0, 1}N , xs = 1 iff s ∈ S. Thus the distribution defined in

(10.1) describes a discrete memoryless source (DMS)
(

{0, 1}N , QN , XN
)

with

QN (xN) =
∏N

t=1 Q(xt), where

Q(xt) =







q for xt = 1

1 − q for xt = 0,
(10.3)

and for XN = (X1, . . . , XN)

Prob(XN = xN ) = QN(xN ). (10.4)

For any encoding function fN : {0, 1}N → N and decoding function gt(1 ≤
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t ≤ N) : N → {0, 1} we can set

X̂t = gt

(

fN (XN)
)

(10.5)

and consider the error probability

λt = E d(Xt, X̂t),

where d is the Hamming distance.

Now the Rate–distortion Theorem tells us how small a rate R(q, λ) we can

achieve with rate(fN) = log(Number of values of fN )
N

under the constraint

N
∑

t=1

E d(Xt, X̂t) ≤ λ N. (10.6)

However, we are interested in the stronger condition

E d(Xt, X̂t) ≤ λ for 1 ≤ t ≤ N (10.7)

and the corresponding minimal rate R∗(q, λ). We know that

lim
λ→0

R(q, λ) = h(q)

and therefore as λ → 0 by the Source Coding Theorem also lim
λ→0

R∗(q, λ) =

h(q).

When λ is kept at a prescribed level we have the following result.

Theorem 7. The identification after group testing in a group of N persons,
everyone being independently sick with probability q, can be performed at error
probability λ with R(q, λ)N bits. Here R(q, λ) is the rate–distortion function
for the Bernoulli source with generic distribution (q, 1 − q) evaluated at dis-
tortion level λ.

Remark 17: Since space does not permit we leave the proof as an exercise
using balanced hypergraph covering, which we started in [8]. The Lemma
in Section VI of [58] can be used for q-typical N sequences as vertex set V
and p-typical N sequences as edge set E for covering or approximation. The
exceptional set V0 in that lemma can be kept empty (see Lemma 9 of [64]). Now
in addition to hypergraph (V, E) use also hypergraph (V1, E), where V1 = [N ].
There is a selection of edges E1, . . . , EL ∈ E which simultaneously covers V and
V1 in balanced ways. The second means (10.7), of course after polynomially
many pairs (q′, p′) with q′ close to q have been used.

Instead of two properties (sick and not sick) there can be any finite number
of properties k defining k classes and every person wants to know its class.
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This leads to a Rate–distortion theorem for a DMS stronger than
Shannon’s.

In case the encoding of S is transmitted via a noisy channel an argument
for the separation of source and channel coding is needed. To elaborate con-
ditions under which the “separation principle” is valid is a major subject in
Information Theory.

Part IV: Identification and transmission with
multi–way channels

11 Simultaneous transfer: transmission and identification

The issue of simultaneity comes up frequently in life and in science. In infor-
mation theory we encounter situations where the same code is used for several
channels, where several users are served by the same channel, where one code
serves several users etc.

A. Let us discuss now a specific example. Suppose that one DMC is used
simultaneously for transmission and identification. Since both, the trans-
mission capacity and the (second order) identification capacity, equal
CSh, here is the best we can do: We use an (n, M) transmission code
{

(ui,Di) : 1 ≤ i ≤ M
}

with average error λ = 1
M

M
∑

i=1
W n(Dc

i |ui). The

randomness in the messages produces via this code a common random
experiment for sender and receiver. Adding a few, say,

√
n letters, we can

get the desired identification code (n+
√

n, N, λ) as in [17] (see also [58])
by the following approach.
From common randomness (also called shared randomness in
physics) to identification: The

√
n-trick

Let [M ] = {1, 2, . . . , M}, [M ′] = {1, 2, . . . , M ′} and let T = {Ti :
i = 1, . . . , N} be a family of maps Ti : [M ] → [M ′] and consider for
i = 1, 2, . . . , N the sets

Ki = {(m, Ti(m)) : m ∈ [M ]}
and on [M ] × [M ′] the PD’s

Qi((m, m′)) =
1

M
for all (m, m′) ∈ Ki.

Transformator Lemma Given M, M ′ = exp{√log M} and ǫ > 0 there
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exists a family T = T (ǫ, M) such that |T | = N ≥ exp{M − c(ǫ)
√

n},
Qi(Ki) = 1 for i = 1, . . . , N , and Qi(Kj) ≤ ǫ ∀i 6= j.

Hence, (CSh, CSh) is achievable.
Next suppose that there is a noiseless feedback channel and we use the

same code as before. This generates an input process Xn = (X1, . . . , Xn)
and an output process Y n = (Y1, . . . , Yn), which is known also to the
sender by the feedback. So we get a common random experiment of rate
1
n
H(Y n). Again by the identification trick of [17] now

Rtransm. ∼
1

n
I(Xn ∧ Y n)

Rident. ∼
1

n
H(Y n), second order.

It is now easy to show the direct part in

Theorem 8. R = conv
{(

I(X ∧ Y ), H(Y )
)

: PX ∈ P(X )
}

is the set of
achievable pairs of rates for the simultaneous transmission and identifi-
cation over the DMC with noiseless feedback.

Proof of converse: Let the RV U take values in the set of codewords
U = {u1, . . . , uM} for transmission with equal probabilities. Further let
Fi(u) be the randomized encoding for i and u ∈ U , making use of the
feedback. Then for the transmission and disjoint decoding sets Dj

1

M

M
∑

j=1

W n
(

Dc
j |Fi(uj)

)

≤ λ for all i (11.1)

and for identification with decoding sets D∗
i

1

M

M
∑

j=1

W n
(

D∗
i |Fi(uj)

)

≥ 1 − λ for i = 1, . . . , N (11.2)

and
1

M

M
∑

j=1

W n
(

D∗
k|Fi(uj)

)

≤ λ for i 6= k. (11.3)

For every i = 1, 2, . . . , N we get input variables Xn
i = (Xi1, . . . , Xin)

and output variables Y n
i = (Yi1, . . . , Yin).

By Shannon’s weak converse proof for the DMC with feedback

log M ≤ I(Xn
i , Y n

i )

1 − λ
for all i (11.4)

and by the weak converse proof for identification on the DMC with feed-
back ([27])

log log N ≤ max
i

H(Y n
i ). (11.5)
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Therefore for some i

(

1

n
log M,

1

n
log log N

)

≤
(

1

n
I(Xn

i0
, Y n

i0
),

1

n
H(Y n

i0
)
)

· 1

1 − λ

≤
(

1

n

n
∑

t=1

I(Xi0t, Yi0t),
1

n

n
∑

t=1

H(Yi0t)

)

1

1 − λ

≤
(

I(X, Y ), H(Y )
) 1

1 − λ
,

if we use the concavity of I and of H . This completes the weak converse
proof.

We draw attention to the fact that it is a lucky coincidence
that these two proofs are available and can be combined. The
known strong converses for the separate problems cannot be
combined!

Finally we propose as

Problem 5: This proof assumes a deterministic transmission code. Can
randomized transmission codes give better overall performance?

B. More generally there is a theory of multiple purpose information transfer.
Different goal seeking activities are optimized in combinations. The famil-
iar compound and broadcast (also with degraded message sets) channels
are included.

Not just transmission and identification, but any collection of the mod-
els in Section 2 can occur in various combinations. For example consider a
MAC with three senders. For a given sportsman sender 1 says from which
country he comes, sender 2 informs about the age groups, and sender 3
is concerned about the fields of activities.

C. Memory decreases the identification capacity of a discrete channel with
alphabets X and Y in case of noiseless feedback.
(α) For non–random strategies this immediately follows from the inequal-

ity

max
xn

H
(

W n(·|xn)
)

≤
n
∑

t=1

max
xt

H
(

W (·|xt)
)

(β) For a randomized strategy F

H
(

W n(·|F )
)

= H(Y1, . . . , Yn) = H(Yn|Y1, . . . , Yn−1)+H(Y1, . . . , Yn−1)
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and

H(Yn|Y1, . . . , Yn−1) =
∑

yn−1

Prob(Y n−1 = yn−1) · H(Yn|y1, . . . , yn−1)

= H





∑

x

Wn(·|x)
∑

yn−1

Prob
(

Fn(y1 . . . yn−1) = x
)





≤ max
PX

H(PXWn).

12 A proof of the weak converse to the identification coding theo-
rem for the DMC

We present here a new approach to polynomial converses for identification,
which are explained in Section 2. We consider the proof being simpler than
its predecessors. (Except for those in case of feedback [17], [27].)

Moreover, the approach is applicable to multi–way channels.

Furthermore, in contrast to the proofs in [28], [29] the approach
works also for channels without a strong converse for transmission.

We begin our analysis with any channel W : X → Y , that is, a time free
situation and its (N, λ) codes

{

(Pi,Di) : 1 ≤ i ≤ N
}

with Pi ∈ P(X ),Di ⊂ Y ,

∑

x

Pi(x)W (Di|x) > 1 − λ for all i and
∑

x

Pi(x)W (Dj|x) < λ (i 6= j).

For any distribution PX ∈ P(X ) we write PXY for PX × W .

For any set G ⊂ X × Y we introduce

ρ(G) = min
(x,y)∈G

PXY (x, y)

PX(x)PY (y)
(12.1)

and

σ(G) = max
(x,y)∈G

PXY (x, y)

PX(x)PY (y)
. (12.2)

The ratio ρ(G)σ(G)−1 measures how “informationally balanced” the set G is
under PXY . Clearly 0 ≤ ρ(G)σ(G)−1 ≤ 1 and the closer to 1 the ratio is the
more balanced G is.

We state now our key results.
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Lemma 5. (Codes in informationally balanced sets)

For any G ⊂ X × Y, PXY = PXW , and any δ′ < PXY (G) there exists a

transmission code
{

(ui, Ei) : 1 ≤ i ≤ M
}

with

(i) Ei ⊂ Gui
=
{

y : (ui, y) ∈ G
}

(ii) W (Ei|ui) > δ′ for i = 1, 2, . . . , M

(iii) M ≥
(

PXY (G) − δ′
)

ρ(G)

(iv) M < σ(G)
δ′ (This holds for any code with (i) and (ii))

(v) PY

(

M
⋃

i=1
Ei

)

≥ PXY (G) − δ′.

(vi) For Q(y) , 1
M

M
∑

i=1
W (y|ui) Q(y) ≥ δ′ρ(G)σ(G)−1PY (y), if y ∈ E =

M
⋃

i=1
Ei.

Proof: Let u1 ∈ X satisfy W (Gu1|u1) > δ′. Its existence follows from PXY (G) >
δ′. Set E1 = Gu1, then define (u2, E2), . . . , (uj−1, Ej−1) and add uj ∈ X with

Ej = Guj
r

j−1
⋃

i=1
Ei and W (Ej|uj) > δ′.

The procedure terminates at M , when no pair can be added subject to the
constraints (i) and (ii). Consequently for all x ∈ X

W

(

Gx r

M
⋃

i=1

Ei

∣

∣

∣x

)

≤ δ′. (12.3)

Since obviously for all (x, y) ∈ G

W (y|x) ≥ ρ(G)PY (y) (12.4)

and since 1 ≥ W (Ei|ui), we have

PY (Ei) ≤ ρ(G)−1. (12.5)

It follows from (12.3) that

PXY

(

G r X ×
M
⋃

i=1

Ei

)

≤ δ′

and therefore also with (12.5)

PXY (G) ≤ δ′ +
M
∑

i=1

PY (Ei) ≤ δ′ + Mρ(G)−1.
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This is (iii).

From the definition of σ for (x, y) ∈ G PY (y)σ(G) ≥ W (y|x) and thus

PY (Ei)σ(G) ≥ W (Ei|ui) for i = 1, 2, . . . , M.

This gives (iv):

σ(G) ≥
M
∑

i=1

W (Ei|ui) > Mδ′.

Further, (12.3) leads to W (Gx|x) − W

(

M
⋃

i=1
Ei

∣

∣

∣x

)

< δ′, which implies

∑

x
PX(x)W (Gx|x)−∑

x PX(x)W

(

M
⋃

i=1
Ei

∣

∣

∣x

)

= PXY (G)− PY

(

M
⋃

i=1
Ei

)

< δ′ and

hence (v).

Finally, by definition of ρ for y ∈ Ei ⊂ Gui

W (y|ui) ≥ ρ(G)PY (y)

and by (iv)
1

M
W (y|ui) ≥ δ′σ(G)−1ρ(G)PY (y).

Therefore
Q(y) ≥ δ′σ(G)−1ρ(G)PY (y)

for all y ∈
M
⋃

i=1
Ei.

The freedom in the choice of G or even several G’s makes the power of this
approach. We explain this in Sections 13, 14 and 15.

Obviously, we get good bounds, if ρ(G) and σ(G) are close to each other. We
achieve this with our next idea to partition

GXY =
{

(x, y) ∈ X × Y : PXY (x, y) > 0
}

into informationally balanced sets and a set with big value of ρ, which we
exclude.

Introduce

G(I + β) = GXY (I(X ∧ Y ) + β)

=

{

(x, y) ∈ GXY : log
PXY (x, y)

PX(x)PY (y)
< I(X ∧ Y ) + β

}
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and for suitable θ > 0 and positive integer L, to be specified below, the
partition

G(I + β) =
L−1
⋃

ℓ=0

Gℓ
XY (I + β), where

Gℓ
XY (I + β) = GXY (I + β − ℓθ) − GXY

(

I + β − (ℓ + 1)θ
)

.

Its atoms are balanced, because

σ
(

Gℓ
XY (I + β)

)

ρ
(

Gℓ
XY (I + β)

) ≤ eθ.

For the further analysis we need a simple fact about I–divergences.

Lemma 6. For any PD’s p, q on Z and any Z ′ ⊂ Z

∑

z∈Z′
p(z) log

p(z)

q(z)
≥ −e−1 log2 e = −c, say.

Proof:

∑

z∈Z′
p(z) log

p(z)

q(z)
= p(Z ′)

∑

z∈Z′

p(z)

p(Z ′)
log

p(z)/p(Z ′)

q(z)/q(Z ′)
+ p(Z ′) log

p(Z ′)

q(Z ′)

≥ p(Z ′) log
p(Z ′)

q(Z ′)
(by nonnegativity of I–divergence)

≥ p(Z ′) log p(Z ′)

(

since log
1

q(Z ′)
≥ 1

)

≥ min
0≤t≤1

t log t = −e−1 log2 e.

We apply this fact to the PD’s PXY and PX × PY and Z ′ = G(I + β). Thus

I =
∑

(x,y)∈Z′
PXY (x, y) log

PXY (x, y)

PX(x)PY (y)
+

∑

(x,y)/∈Z′
log

PXY (x, y)

PX(x)PY (y)

≥ −c +
(

1 − PXY (G(I + β))
)

(I + β)

or

PXY

(

G(I + β)
)

≥ β − c

β + I
.
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We can choose ℓ such that

PXY

(

Gℓ
XY (I + β)

)

≥ β − c

(β + I)L
. (12.6)

The set Gℓ
XY (I + β) serves as our representation for PXY .

Lemma 7. For any distribution PXY and set D ⊂ Y with

PY (D) =
∑

x∈X
PX(x)W (D|x) ≥ 1 − λ

consider for any β > 0 and positive integer L the representative Gℓ
XY (I + β).

Then we have for G = Gℓ
XY (I + β) ∩ X × D

(i) PXY (G) ≥ β−c
(β+I)L

− λ = δ, say.

For any δ′ < δ there is a code
{

(ui, Ei) : 1 ≤ j ≤ M
}

with Ej ⊂ Guj
⊂ D for j = 1, . . . , M

and the properties

(ii) M ≤ 1
δ′ e

I+β−ℓ·θ

(iii) PY

(

M
⋃

i=1
Ei

)

≥ δ − δ′

(iv) 1
M

M
∑

j=1
W (y|uj) ≥ δ′e−θPY (y) for y ∈ E =

M
⋃

i=1
Ei

(v) 1
M

M
∑

j=1
W (E|uj) ≥ δ′e−θ(δ − δ′) = δ∗, say.

Proof: (i) is a consequence of (12.6) and the assumption on D. Inequality (ii)
follows from (iv) in Lemma 5 and inequality (iii) follows from (v) in Lemma
5 (and (i) above). Finally, this and (vi) in Lemma 5 give (iv) and (v).

Theorem 9. Let the discrete (not necessarily memoryless) channel W n :
n
∏

1
X →

n
∏

1
Y have an (n, N, λn) identification code {(Pi,Di) : 1 ≤ i ≤ N},

then for pairs of RV’s (Xn
i , Y n

i ) with distribution Pi × W n

log log N ≤ max
i

I(Xn
i ∧ Y n

i ) + o(n) if λn ≤ n−7.

Proof: Consider any pair (Pi,Di) and apply Lemma 7 for D = Di, PX =
Pi. However, we write now PXn instead of PX . Also, for Pi × W n we write
PXnY n (instead of PXY ) and thus we write the representation for PXnY n as
G = Gℓ

XnY n(I + β) ∩ (X n × D).
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Our goal is to choose parameters so that M in (ii) of Lemma 7 becomes small
and δ∗ in (v) of Lemma 7 becomes large. The first property guarantees that
(

|Xn|
M

)

is so small that the number of representing encoding sets {uj : 1 ≤ j ≤
M} meets the desired double exponential bound.

The second property insures an appropriate bound on the multiplicity of rep-
resenting encoding sets.

Accordingly the proof goes in two steps.

Step 1: We choose for ε > 0 β = εn and for convenience we choose δ′ = δ/2.
Clearly, for n large by Lemma 7, (i) since c is constant

PXnY n(G) ≥ β

(β + I)2L
− λn = δ∗n. (12.7)

We choose θ = β+I
2L

.

Using (12.7) and Lemma 7 (i), (v) we get now

δ∗n ≥ 1

4

(

β

(β + I)2L
− λn

)2

e−(I+β)/2L.

Since I = I(Xn ∧ Y n) ≤ n log |X |, we get

δ∗n ≥ 1

4

(

ε

(log |X | + ε)2L
− λn

)2

e−(log |X |+ε)(2L)−1n.

Notice that for any function f(n) → ∞(n → ∞) the choice L = Ln = n f(n)

yields lim
n→∞ e−(log |X |+ε)L−1

n n = 1 and the choices f(n) = n1/2, Ln = n3/2, λn =

n−7 yield δ∗n ≥ n−4 for n large.

These are not optimal calculations, but only polynomial growth and the fact
δ∗n ≫ λn are relevant here!

By our choices and Lemma 7 (ii) – (v), δ ≥ λn and

M ≤ 2n3 eI(Xn
i ∧Y n

i )+εn. (12.8)

This is the first desired property. The others are

PY

(

M
⋃

i=1

Ei

)

≥ δ

2
≥ 1

4
n−3/2. (12.9)
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For U = {u1, . . . , un}

QU(y) =
1

M

M
∑

j=1

W n(y|ui) ≥
1

2
n−3PY (y) (12.10)

and so

QU

(

M
⋃

i=1

Ei

)

≥ 1

8
n−9/2, (12.11)

which is much bigger than λn = n−7.

Step 2: If now U serves K ′ ≥ K other times as representative for (PY j ,DY j )
with decoding sets {E j

i : 1 ≤ i ≤ M}, j = 1, . . . , K ′, then K ′ can be suitably
bounded.

Indeed, set E j =
M
⋃

i=1
E j

i and define disjoint sets

E ′j = E j −
⋃

j′ 6=j

E j′; j = 1, 2, . . . , K. (12.12)

Since E j ⊂ DY j and the identification code has error probabilities less than
λn, we get from (12.9)

PY j(E ′j) ≥ 1

4
n−3/2 − Kλn (12.13)

and thus by (12.10)

QU





K
⋃

j=1

E ′j



 =
K
∑

j=1

QU(E ′j) ≥ K
(

1

4
n−3/2 − Kλn

)

· 1

2
n−3.

Now for K = 16 n9/2 and λn < 1
128

n−6 we have 1
4

n−3/2 − Kλn > 1
8

n−3/2 and
thus

QU





K
⋃

j=1

E ′j



 > 1, a contradiction.

So U serves at most 16 n9/2 times as representative and the result follows with
(12.8).

Remark 18: When determining pessimistic capacities or capacity regions the
observations in Remark 1 are relevant.
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13 Two promised results: characterisation of the capacity regions
for the MAC and the BC for identification

We know from [3], [47] that the transmission capacity region R of a (classical:
memoryless, stationary) MAC W : X × Y → Z can be characterized as the
convex hull of the set of pairs (RX , RY) of non–negative numbers which satisfy
for some input distribution PXY = PX × PY

RX ≤ I(X ∧ Z|Y )

RY ≤ I(Y ∧ Z|X)

RX + RY ≤ I(XY ∧ Z). (13.1)

Also, in [3] there is a non–single letter characterisation.

R = {
(

1

n
I(Xn ∧ Zn),

1

n
I(Y n ∧ Zn)

)

: n ∈ N, PXnY n ∈ P(X n × Yn),

PXnY n = PXn × PY n}. (13.2)

Quite surprisingly we can use this characterisation for the proof of the poly-
nomial weak converse for identification via the MAC.

Theorem 10. The second order identification capacity region for the MAC
equals the first order transmission capacity region R.

The broadcast channel is a stochastic map

W n : X → Y × Z

with components W n
1 : X → Z and W n

2 : X → Z and set of messages or the
object space is

N = NY ×NZ , |NY| = NY and |NZ | = NZ

An identification code (n, N1, N2, λ) for the BC is a family

{

(Pij,Di,Fj) : 1 ≤ i ≤ N1; 1 ≤ j ≤ N2

}

,
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where the Di’s are sets in Yn, the Fj ’s are sets in Zn and Pij ∈ P(X n), and

∑

xn

W n
1 (Di|xn)Pij(x

n) ≥ 1 − λ for all i and j (13.3)

∑

xn

W n
1 (Di′|xn)Pij(x

n) ≤ λ for all i 6= i′ and all j (13.4)

∑

xn

W n
2 (Fj|xn)Pij(x

n) ≥ 1 − λ for all j and i (13.5)

∑

xn

W n
2 (Fj′|xn)Pij(x

n) ≤ λ for all j 6= j′ and all i. (13.6)

Let B be the set of all achievable pairs (RY , RZ) of second order rates. For its
analysis we need the cones

R
2+
Y = {(R1, R2) ∈ R

2 : R1 ≥ R2 ≥ 0} and R
2+
Z = {(R1, R2) ∈ R

2 : R2 ≥ R1 ≥ 0}.

We can write B as a union B = B+
Y ∪ B+

Z , where

B+
Y = B ∩ R

2+
Y and B+

Z = B ∩ R
2+
Z .

Our key observation is that for identification we can relate the capacity re-
gions for identification of independent messages to the capacity regions for
identification for degraded message sets, AY and AZ , where AY (resp. AZ)
concerns the pairs of the rates of separate messages for Y (resp. Z) and of
common messages for Y and Z. Since common messages can be interpreted
as separated messages obviously

AY ,AZ ⊂ B.

We can also write

A+
Y = AY ∩ R

2+
Y and A+

Z = AZ ∩ R
2+
Z

and notice that
A+

Y ⊂ B+
Y ,A+

Z ⊂ B+
Z .

We come now to a key tool

Lemma 8 (Reduction).

(i) B+
Y ⊂ A+

Y and B+
Z ⊂ A+

Z .
(ii) B+

Y = A+
Y and B+

Z = A+
Z .

(iii) B = A.
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Proof: By previous observations it remains to show (i) and by symmetry only
its first part.

Let
{

(Pij,Di, Ej) : 1 ≤ i ≤ NY , 1 ≤ j ≤ NZ
}

be an identification code for the
BC with error probabilities ≤ λ. Since RZ ≤ RY we can define for

ℓ = 1, . . . , NZ and m = 1, . . . ,
NY
NZ

(where w.l.o.g. divisibility of NY by NZ can be assumed)

Qℓ,m = Pℓ,(m−1)NY+ℓ.

The Z–decoder identifies ℓ and the Y–decoder identifies (m − 1)NY + ℓ or
equivalently ℓ and m, that is, the common part and a separate part.

If RY > RZ , then with error probabilities ≤ λ

22
Ryn · 2−2Rzn ∼ 22

Ryn

.

If RY = RZ , then we can make the same construction with rates RY and
RZ − ε.

We need the direct part of the ABC (asymmetric broadcastchannel) Coding
Theorem for transmission ([5], [31], [30]). Here, there are separate messages
for decoder Y (resp. Z) and common messages for both decoders.

Achievable are (with maximal errors)

TY =
{

(RY , R0) : R0 ≤ I(U ∧ Z), R0 + RY ≤ min
[

I(X ∧ Y ), I(X ∧ Y |U) + I(U ∧ Z)
]

,

U 
 X 
 Y Z, ‖U‖ ≤ |X | + 2
}

resp.

TZ =
{

(R0, RZ) : R0 ≤ I(U ∧ Y ), R0 + RZ ≤ min
[

I(X ∧ Z), I(X ∧ Z|U) + I(U ∧ Y )
]

,

U 
 X 
 Y Z, ‖U‖ ≤ |X | + 2
}

.

This is our surprising result.

Theorem 11. For the (general) BC the set of achievable pairs of second order
rates is given by

B = T ′
Y ∪ T ′

Z ,

where

T ′
Y = {(R′

Y , R′
Z) : ∃(RY , R0) ∈ TY with R′

Y = RY + R0, R
′
Z = R0}
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and T ′
Z = {(R′

Y , R′
Z) : ∃(R0, RZ) ∈ TZ with R′

Y = R0, R
′
Z = R0 + RZ}.

14 The proof for the MAC

The proof of achievability is straightforward by the second method of Ahlswede/
Dueck [17], that is, the Transformator Lemma. Indeed, use an average error
transmission code in blocklength n

{

(ui, vj,Dij) : 1 ≤ i ≤ MX , 1 ≤ j ≤ MY
}

with
1

MX

1

MY

∑

i,j

W n(Dc
ij|ui, vj) ≤ λ. (14.1)

Then of course also

1

MX

∑

i





1

MY

∑

j

W n

((

⋃

j′
Dij′

)c

|ui, vj

)



 ≤ λ (14.2)

and we have a random experiment U with Prob(U = ui) = 1
MX

, whose outcome
is known to sender SX and with probability at least 1−λ also to the receiver.

Analogously, there is a random experiment V for the sender SY and the re-
ceiver. We have used blocklength n.

As in [17] by the Transformator Lemma with relatively few, say
√

n, letters
(actually even o(log n)) identification of second order rate ∼ 1

n
log MX can

be performed from SX to the receiver. Finally, with other
√

n letters the
identification of second order rate ∼ 1

n
log MY can be done from SY to the

receiver.

Remark 19: In our proof of the direct part the identification is done sepa-
rately for both encoders. The encoding strategy pair (Pi, Qj) and the decodings
Di,Fj identify i and j separately. We can also choose Eij = Di∩Fj and notice
that

∑

xn,yn

W n(Eij|xn, yn)Pi(x
n)Qj(y

n) > 1 − 2λ

∑

xn,yn

W n(E c
i′j′(x

n, yn)Pi(x
n)Qj(y

n) ≤ 2λ for (i′, j′) 6= (i, j).

On the other hand, starting with the Eij’s we can define Di =
⋃

j
Eij, Fj =

⋃

i
Eij .
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Remark 20: The decomposition principle (see [8]) does not hold for identi-
fication on the MAC. If both encoders have independent messages, but can
cooperate, then

RXY = max
PX×PY

I(XY ∧ Z)

and 22n RXY is much bigger than

22n RX · 22n RY ∼ 22n max(RX ,RY )

.

Remark 21 (Updating): Steinberg [60] did not use the Transformator Lemma,
but followed the first approach in [16], which is based on a transmission code
with small maximal errors. With deterministic maximal error transmission
code the (average error) capacity region of a MAC cannot be achieved. How-
ever, it can be achieved if stochastic encoders are used (as shown in [61]) and
for those coding the approach of [16] again applies.

Problems:

6. Develop a theory for identification of correlated data (see “correlated
codes” in [12]).

7. Develop approximation of output statistics for the MAC to obtain a
strong converse. Use random coding instead of maximal coding with rates

I(X ∧ Z) ≤ RX ≤ I(X ∧ Z|Y )

I(Y ∧ Z) < RY ≤ I(Y ∧ Z|X)

I(XY ∧ Z) ≤ RX + RY

and code structure {u1, . . . , uMX } and {vi1, . . . , viMY} for i = 1, . . . , MX .

Converse proof: We follow closely the proof for a one–way channel. Here it
is essential that our approach treats general channels with memory.
Secondly we use the characterisation (13.2) of the rate–region R for
the MAC.

In addition we partition our encoding pairs (Pi×Qj) i=1,...,NX
j=1,...,NZ

according to the

values of their corresponding pairs of mutual informations
(

I(Xn
i ∧Zn

ij), I(Y n
j ∧

Zn
ij)
)

where PXn
i

= Pi, PY n
j

= Qj , PZn
ij

= (Pi × Qj)W
n, as follows.

Endow R
2 and, particularly,

S =
{

(R1, R2) : 0 ≤ R1 ≤ log |X |, 0 ≤ R2 ≤ log |Y|
}

with a rectangular lattice with side lengths η. So we get g(η) = g1(η) · g2(η)

rectangles, if g1(η) = log |X |
η

, g2(η) = log |Y|
η

.
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Label them as Sa,b(1 ≤ a ≤ g1(η), 1 ≤ b ≤ g2(η) and associate with Pi × Qj

the rectangle Sa(i,j),b(i,j), where

(

1

n
I(Xn

i ∧ Zn
ij),

1

n
I(Y n

j ∧ Zn
ij)
)

∈ Sa(i,j),b(i,j). (14.3)

There is a rectangle S∗ with which at least NX ·NY
g(η)

encodings Pi × Qj are

associated. Denote them by (Pi × Qj)(i,j)∈N (η).

Their corresponding pairs of (normalized) mutual informations differ compo-
nentwise by at most η.

Furthermore, there is a row index i∗ and a column index j∗ so that

∣

∣

∣

{

(i∗, j) : (i∗, j) ∈ N (η)
}∣

∣

∣ ≥ |N (η)|
NX

≥ NY
g(η)

, (14.4)

∣

∣

∣

{

(i, j∗) : (i, j∗) ∈ N (η)
}∣

∣

∣ ≥ |N (η)|
NY

≥ NX
g(η)

. (14.5)

Now our previous converse proof comes in. To every triple (Pi, Qj ,Dij) we
assign two codes (U j

i , E j
i ), (V i

j ,F i
j), where U j

i ⊂ X n, E j
i = {Ej

i1, . . . , E
j

iMj
iX
},

(pairwise disjoint), V i
j ⊂ Yn, F i

j = {F i
j1, . . . , F

i
jM i

jY
} (pairwise disjoint), and

all decoding sets are subsets from Dij. Here

M j
iX ≤ exp

{

I(Xn
i ∧ Zn

ij) + o(n)
}

M i
jY ≤ exp

{

I(Y n
j ∧ Zn

ij) + o(n)
}

and (14.3) holds.

Moreover, for all indices

1

M j
iX

∑

u∈Uj
i

∑

yn

W n(Ej
iu ∩ Dij|u, yn)Qj(y

n) ≥ n−4 (14.6)

and analogous relations hold for V i
j .

Now observe that for all (i, j) ∈ N (η)

1.) 1
n

log M j
iX ≤ R∗

X + η and 1
n

log M i
jY ≤ R∗

Y + η.

2.) By (14.4), (14.5) there are at most
( |X |n

2
(R∗

X +η)n

)

different codes U j
i∗ in row

i∗ and at most
( |Y|n

2
(R∗

Y+η)n

)

codes V i
j∗ in column j∗.

Furthermore the multiplicity Ki∗ of codes in row i∗ (resp. Kj∗ for column j∗)
does not exceed n6 (as previously).
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Finally, therefore

1

n
log log NX ≤ R∗

X + 2η and
1

n
log logNY ≤ R∗

Y + 2η.

Problem 8 (Updating): In [60] Steinberg strengthens our polynomial con-
verse to a weaker converse. The main difference of his proof is a sharpening
of the bound in Theorem 9, which is based on a generalization of Lemma 5
in [29]. We suggest as a further improvement to establish a strong converse
by our hypergraph lemma, which is presented in Section VI of [58]. Otherwise
in his proof the same ideas are used, namely facts (13.1) and (13.2) and a
suitable subcode selection. The whole proof with all auxiliary results exceeds
the present one in length roughly by a factor 3.

15 The proof for the BC

The direct part: We use the Reduction Lemma and the ABC Coding The-
orem mentioned in Section 13. Eventhough that theorem holds for maximal
errors we use average errors so that the transmission codes establish two com-
mon random experiments of the sender with both receivers, resp., with rates
in T ′

Y ∪ T ′
Z .

The converse part: Suppose w.l.o.g. that RZ < RY + ε, ε arbitrarily small,
and that the Y–decoder has a separate part coded into row numbers and that
the common part for both decoders is coded into column numbers with the
encodings (Puv)u=1,...,NY

v=1,...,NZ

.

Note that we can start with a smaller common rate, so that MY ∼
MZ ·MY (If the common rate is bigger in the ABC model, we can convert this
by the Reduction Lemma 8).

We associate RV’s and information quantities as follows:

Let U, V be auxiliary RV’s with Prob((U, V ) = (u, v)) = 1
NYNZ

for u =
1, . . . , NY and v = 1, . . . , NZ . Furthermore let Xn take values in X n with
conditional PD PXn|U=u,V =v(x

n) = Puv(x
n), let Y n take values in Yn with

conditional PD PY n|U=u,V =v(y
n) =

∑

xn Puv(x
n)W n

1 (yn|xn), and let Zn take
values in Zn with conditional PD PZn|U=u,V =v(z

n) =
∑

xn Puv(x
n)W n

2 (zn|xn).

Thus we get information quantities

I(U ∧ Zn|V = v), I(Xn ∧ Y n|U, V = v), and I(Xn ∧ Y n|V = v)

and the Markov condition (U, V ) 
 Xn

 (Y n, Zn).
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As in the proof of Theorem 10 we make η–approximations, first for all 1
n
I(Xn∧

Y n|V = v) with biggest class of value Iη3 .

This gives as in the one–way channel coding theorem for identification

1

n
log log NY ≤ Iη3 . (15.1)

In the remaining matrix keep Iη2 for I(Xn ∧ Y n|U, V = v) and then all I(U ∧
Zn|V = v) approximately Iη1 .

We upper bound the number of columns by upper bounding the number of
codes (via Lemma 7) representing triples (PU |V =v, PZn|U,V =v,Dv). Thus for
λn = n−6 (as usual)

1

n
log log NZ ≤ Iη1 + 2η. (15.2)

Within column v∗ a significant number of terms has

1

n
I(Xn ∧ Y n|U = u, V = v∗) ≤ Iη2 + β∗.

This gives the desired row number estimate

1

n
log log NY ≤ min(Iη1 + Iη2 , Iη3) + 2η + β∗.

= min
(

I(U∧Zn|V = v∗)+I(Xn∧Y n|U, V = v∗), I(Xn∧Y n|V = v∗)
)

+2η+β∗

and thus (RY , RZ) ∈ T ′
Y by the converse in the ABC Coding Theorem, which

shows that the information quantities single-letterize.

Remark 22: Theorem 11 has an important consequence. Whereas for one-way
channels the common randomness capacity equals the transmission capacity
and the transmission capacity region is still unknown for general broadcast
channels we know now its common randomness capacity region, where
common random experiments for X -encoder and Y-decoder and, simultane-
ously, for X -encoder and Z-decoder are generated. Indeed it equals the
second order identification capacity region!

That the latter includes the former is clear from our proof of the direct part.
The reverse implication follows indirectly by the same argument.

Interesting here is that the outer bound for the common randomness capacity
region is proved via identification.
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The situation changes, if constraints like independency or security are imposed
on the two common random experiments.

A transmission code with rates (RY , RZ) can be used for independent common
random experiments and thus the transmission capacity region for the general
broadcast channel is contained in the identification capacity region.

Finally we mention that the identification capacity region T ′
Y ∪ T ′

Z is convex,
because it equals the common randomness capacity region for which time
sharing applies and thus convexity is given.

Part V: Data compression

16 Noiseless coding for identification

Let (U , P ) be a source, where U = {1, 2, . . . , N}, P = (P1, . . . , PN), and let
C = {c1, . . . , cN} be a binary prefix code (PC) for this source with ‖cu‖ as
length of cu. Introduce the RV U with Prob (U = u) = pu for u = 1, 2, . . . , N
and the RV C with C = cu = (cu1 , cu2, . . . , cu‖cu‖) if U = u.

We use the PC for noiseless identification, that is user u wants to know whether
the source output equals u, that is, whether C equals cu or not. He iteratively
checks whether C = (C1, C2, . . . ) coincides with cu in the first, second, etc.
letter and stops when the first different letter occurs or when C = cu.

What is the expected number LC(P, u) of checkings?

In order to calculate this quantity we introduce for the binary tree TC, whose
leaves are the codewords c1, . . . , cN , the sets of leaves Cik(1 ≤ i ≤ N ; 1 ≤ k),
where Cik = {c ∈ C : c coincides with ci exactly until the k’th letter of ci}. If
C takes a value in Cuk, 0 ≤ k ≤ ‖cu‖ − 1, the answers are k times “Yes” and
1 time “No”. For C = cu the answers are ‖cu‖ times “Yes”. Thus

LC(P, u) =
∑‖cu‖−1

k=0 P (C ∈ Cuk)(k + 1) + ‖cu‖Pu.

For code C LC(P ) = max
1≤u≤N

LC(P, u) is the expected number of checkings in

the worst case and L(P ) = min
C

LC(P ) is this number for a best code.

Analogously, if C̃ is a randomized coding, we introduce

LC̃(P, u), LC̃(P ) and L̃(P ).
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What are the properties of L(P ) and L̃(P )? We call for a kind of “identifica-
tion entropies” serving as bounds like Boltzmann’s entropy does in Shannon’s
source coding. Notice that every user comes with the same fixed code much
faster to his goal to know “it’s me – it’s not me” than the one person in
Shannon’s model, who wants to use the outcome of the source always.

Moreover, as in [44] one can replace the lengths ||cu|| by ϕ(||cu||) where ϕ :
R+ → R+ is continuous and strictly monotone increasing.

Thus one gets functionals

L(P, ϕ) and L̃(P, ϕ).

We shall analyze these quantities on another occasion and confine ourself here
to deriving some simple facts.

Let us start with PN =
(

1
N

, . . . , 1
N

)

and set f(N) = L(PN). Clearly

f(2k) ≤ 1 +
1

2
f(2k−1), f(2) = 1

and therefore

f(2k) ≤ 2 − 2−(k−1). (16.1)

On the other hand it can be verified that

f(9) = 1 +
10

9
> 2 and more generally, f(2k + 1) > 2.

1. What is sup
N

(

f(N)
)

?

2. Is L̃(P ) ≤ 2?
3. Suppose that encoder and decoder have access to a random experiment

with unlimited capacity of common randomness (see [46]). Denote the
best possible average codeword lengths by L∗(P ).

For P = (P1, . . . , PN), N ≤ 2k write P ′ = (P1, . . . , PN , 0, . . . , 0) with 2k

components. Use a binary regular tree of depth k with leaves 1, 2, . . . , 2k rep-
resented in binary expansions.

The common random experiment with 2k outcomes can be used to use 2k

cyclic permutations of 1, 2, . . . , 2k for 2k deterministic codes. For each i we
get equally often 0 and 1 in its representation and an expected word length
≤ 2 − 1

2k−1 . The error probability is 0. Therefore L∗(P ) ≤ 2 − 2−(k−1) ≤ 2 for
all P .
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17 Noiseless coding for multiple purposes

In the classical theory of data compression the main concern is to achieve a
short average length coding. Here we address a problem of noiseless coding,
where different persons are interested in different aspects of the data and their
accessibility. We begin with a specified question.

17.1 Persons are interested in different components of a Bernoulli
Source

Consider a discrete memoryless binary, symmetric source (BSS) producing the
output Xn = (X1, . . . , Xn). Suppose that there are n persons and that person
t is interested in the outcome of Xt(1 ≤ t ≤ n). A multiple purpose encoding
(or program) shall be a sequence f = (fi)

∞
i=1 of functions fi : {0, 1}n → {0, 1}.

Person t requests sequentially the values f1(X
n), f2(X

n), . . . and stops as soon
as he/she has identified the value of Xt. Let ℓ(f, t) denote the number of
requests of person t for program f . We are interested in the quantity

L(n) = min
f

max
1≤t≤n

Eℓ(f, t). (17.1)

The choice fi(X
n) = Xi(1 ≤ i ≤ n) gives ℓ(f, t) = t and thus max

1≤t≤n
ℓ(f, t) = n.

Since 1
n

n
∑

t=1
ℓ(f, t) = n+1

2
, one should do better. In [15] we stated the problem

to determine L(n). Don Coppersmith [26] gave a rather precise bound.

Theorem 12. n+1
2

≤ L(n) ≤ n+2
2

.

Proof: The lower bound is obvious, because

L(n) ≥ min
f

1

n

n
∑

t=1

Eℓ(f, t)

and
E|{t : 1 ≤ t ≤ n, ℓ(f, t) ≤ i}| ≤ i.

For the upper bound set f1(X
n) = X1 and for 2 ≤ i ≤ n set fi(X

n) =






Xi if X1 = 0

Xn+2−i if X1 = 1.

For t > 1 the stopping time is either t or n+2− t, each with probability 1
2
, so

that the mean is Eℓ(f, t) = n+2
2

, while obviously ℓ(f, 1) = 1. Thus L(n) ≤ n+2
2

.
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Remark 23: A weaker upper bound, but more uniform distribution of the
stopping times is obtained as follows: Let the first ⌈log2 n⌉ bits be

(

f1(X
n), f2(X

n), . . . , f⌈log n⌉(X
n)
)

= (X1, X2, . . . , X⌈log n⌉)

and let these log n bits index a cyclic shift of the remaining n − log n bits
so that the distribution of stopping times is approximately uniform between
log n and n for t > ⌈log n⌉. This leads to the weaker upper bound

L(n) ≤ (n + log2 n + c)/2.

Remark 24: Notice that both procedures are probabilistic algorithms. They
exploit the randomness of the source.

17.2 Noiseless source coding problems of infinite order: Ordering
and Identification

We consider here a source coding version of the ordering problem and also of
the identification problem.

To simplify technicalities we assume that N = 2n. We also assume that any
element of {0, 1}n is a source output with equal probabilities.

For any un ∈ {0, 1}n: Is the source output xn = (x1, x2, . . . , xn) before un,
that is, xn ≤ un (lexicographically), or not? There is a canonical encoding
function f = (f1, . . . , fn) with ft(X1, . . . , Xn) = Xt. The person interested in
un stops, when his/her question is answered. He/she stops at the smallest t
with ft(ut) 6= ft(Xt).

The distributions of the stopping times don’t depend on un. Let Tn denote
the expected stopping time.

Lemma 9. Tn = 1 + 1
2
Tn−1 = 2n−1

2n−1 , n ≥ 1.

This is a simple exercise. Notice that

lim
n→∞Tn = 2. (17.2)

So the compression rate exceeds any finite order.

Now let the question be “Does Xn equal un or not?” (Identification)

We use again a multi–purpose encoding function. Actually we can use the
same function as before. There is also the same recursion for Tn. Notice that
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in case of identification for Xn = un we have maximal running time, namely
n.

17.3 Problems

9. It is interesting to study the previous problems for other distributions
on {0, 1}n. In general the previous encoding function is not optimal (for
instance if Prob(X1 = 0) = 1).

An instructive source is given by the distribution which assigns proba-
bility 1

n
to the sequences starting with k 1’s and continuing with 0’s only.

For un = (1, 1, . . . , 1) the running time of the previous encoding function
is always n. However, by choosing f1(X

n) = X⌈n
2 ⌉ etc. the worst case

expected running time is still less than 2.
10. For any distribution P on {0, 1}n, is the worst case expected running

time less than 2? In case the answer is negative, determine the best
constant (independent of n) upper bound! An obvious algorithm: number
probabilities in decreasing order; P1 ≥ P2 ≥ · · · ≥ PN and divide as
equally as possible P1 + P2 + · · · + PN1 , PN1+1 + · · · + PN . f1(X

n) says
whether i ∈ {1, . . . , N1} or not, etc.

We conjecture that the bound 2 is achievable, if randomisation in the
encoding is permitted. Two simple examples illustrate the advantage of
randomisation. Denote by EP,i(f) the expected running time for source
distribution P , object i, and encoding function f .

For P =
(

1
4
, 1

4
, 1

4
, 1

4

)

and f based on division into two equal parts gives

TP,i(f) = 1 +
1

2
(i = 1, 2, 3, 4).

For Q =
(

1
3
, 1

3
, 1

3

)

and f based on the division
{{

1
3

}

,
{

1
3
, 1

3

}}

gives

TQ,1(f) = 1, TQ,i(f) = 1 +
2

3
(i = 2, 3).

Therefore maxi TP,i(f) < maxi TQ,i(f), however,
∑

i TP,i(f) >
∑

i TQ,i(f)
and randomisation takes advantage of this fact, by smoothing out the dif-
ferences between the individual running times.

Let F choose with probabilities 1
3

the partitions

{

{1}, {2, 3}
}

,
{

{1, 3}, {2}
}

,
{

{3}, {1, 2}
}

in the first step, the second step is canonical. Then

TQ,i(F ) =
1

3

(

1 +
(

1 +
2

3

)

+
(

1 +
2

3

))

= 1 +
4

9
< 1 +

1

2
(!).
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11. It is also reasonable to study alphabetical source codes for identification.
For example for different intervals of a pipeline different repairman are
responsible. They want to know whether a defect occurred in their interval
or not.

12. Suppose that N = 2k numbers are stored in 0–1 bits in a machine. Upon
request a further bit is revealed by the machine. What is the average
number of requests so that person i knows whether i occurred or not?

13. One can study multiple purpose coding problems with noise (see [22],
which gives a common generalisation of Shannon’s noiseless coding the-
orem and coding theorems for noisy channels). What are the generalisa-
tions (there is one in [22]) of Kraft’s inequality?

14. These source coding problems open a whole area of research. Are there
coding problems of an order between first order (as in the component
problem) and infinite order (as in the ordering problem)?

15. It is remarkable in this context also that the ordering problem via chan-
nels is not easier than transmission, if maximal errors are used. However,
if for the second kind error probability the average is taken, then the
ordering problem becomes of infinite order (similar as the identification
problem does). Indeed just map the numbers 1, . . . , N onto codewords of

a transmission code
{

(ui,Di) : 1 ≤ i ≤
}

as follows:

For any K < N write j ∈ {1, . . . , N} as j = rK + s, 0 ≤ s < K, and

map j on ur. Now just let N go to infinity and choose K =
⌈

N
M

⌉

.
16. It is also interesting that for maximal second kind error probabilities the

identification problem via channels has second order behaviour whereas
— as mentioned before — the ordering problem has first order behaviour.

We therefore ask the following question:
Is there a reasonable coding problem with average error of second kind

as performance criterion which is neither of first order nor of infinite order
behaviour? In the positive case, what is the hierarchy of all orders?

17. If κ < 1
2
CSh, then first order capacity R1 equals infinity. However, if

κ > 1
2
CSh, is then R1 > CSh possible?

Part VI: Perspectives

Our models go considerably beyond Shannon’s transmission model and the
model of identification. They will greatly enlarge the body of Information
Theory. We substantiate here this belief by a brief discussion of how already
the identification model alone had a significant impact.

Right now the most visible influences are new approximation problems (like
approximation of output statistics [29] or entropy approximations based on
Schur–convexity [27] etc.), a new emphasis on random number generation [47]
and, above all, an understanding of the concept of common randomness [17],
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in identification ([27], [35], [48]), cryptography [46], and classical transmission
problems of arbitrarily varying channels ([45], [41], [43]), and the paper [42],
with a novel capacity formula, which could not be derived before.

It is also fascinating to discover how transmission problems and identification
problems in multi–user theory show often some kind of duality. Often iden-
tification problems are mathematically more complex and in other cases we
encounter the opposite: there is a rather complete capacity theory for identi-
fication via multi–way channels in case of complete feedback ([27]), whereas
for transmission with feedback we don’t even understand the multiple access
channel.

We conclude with three more recently encountered directions of research.

18 Comparison of identification rate and common randomness ca-
pacity: Identification rate can exceed common randomness ca-
pacity and vice versa

One of the observations of [17] was that random experiments, to whom the
communicators have access, essentially influence the value of the identification
capacity CI . We introduce now common randomness capacity, which was
called mystery number in [27], and has subsequently been called by us in
lectures and papers by its present name.

The common randomness capacity CR is the maximal number ν such, that for
a constant c > 0 and for all ǫ > 0, δ > 0 and for all n sufficiently large there
exists a permissible pair (K, L) of random variables for length n on a set K
with |K| < ecn with

Pr{K 6= L} < ǫ and
H(K)

n
> ν − δ.

Actually, if sender and receiver have a common random capacity CR then by
the so called

√
n–trick of [17], that is, the Transformator Lemma (discussed

in [58]), always
CI ≥ CR if CI > 0. (18.1)

For many channels (see [17], [46]), in particular for channels with feedback
([17], [27]), equality has been proved.

It seemed therefore plausible, that this is always the case, and that the theory
of identification is basically understood, when common random capacities are
known.
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We report here a result, which shows that this expected unification is not valid
in general — there remain two theories.

Example 6: CI = 1, CR = 0. (Fundamental)

(Actually, in [56] one can find also an example with 0 < CI < CR)

We use a Gilbert type construction of error correcting codes with constant
weight words. This was done for certain parameters in [16]. The same argu-
ments give for parameters needed here the following auxiliary result.

Proposition 5. Let Z be a finite set and let λ ∈ (0, 1/2) be given.
For (23/λ)−1 < ε < (22/λ + 1)−1 a family A1, . . . , AN of subsets of Z exists
with the properties

|Ai| = ε|Z|, |Ai ∩ Aj | < λε|Z| (i 6= j)

and
N ≥ |Z|−12⌊ε|Z|⌋ − 1.

Notice that λ log
(

1
ε
− 1

)

> 2 and that for ℓ with 2−ℓ = ε necessarily ℓ > 2
λ
.

Choose now Z = {0, 1}n, ε = 2−ℓ and Ai’s as in the Proposition. Thus |Ai| =
2n−ℓ, N(n, λ) = 2−n 22n−ℓ − 1 and |Ai ∩ Aj| < λ2n−ℓ.

Consider now a discrete channel (W n)∞n=1, where the input alphabets Xt =

{1, 2, . . . , N(t, λ)} are increasing, X n =
n
∏

t=1
Xt are the input words of length

n, Yn = {0, 1}n are the output words and W n : X n  Yn is defined by

W n(·|i1i2 . . . in) = W n(·|in)

and W n(·|i) is the uniform distribution on Ai for 1 ≤ i ≤ N(n, λ).

By Proposition 5 and 3/λ > ℓ > 2/λ

N(n, λ) ≥ 2−n22n−3/λ

and

CI ≥ limn→∞
1

n
log log N(n, λ) ≥ 1.

However, for transmission every decoding set is contained in some Ai and for
error probability λ must have cardinality (1 − λ)|Ai| = (1 − λ)2n−ℓ.

Therefore M(n, λ) ≤ 2n

(1−λ)2n−ℓ ≤ 2ℓ+1, if λ < 1/2, and 1
n

log M(n, λ) ≤ ℓ+1
n

≤
3/λ+1

n
→ 0 (n → ∞). The transmission capacity is 0. Consequently also

CR = 0.
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Remarks:

25. The case of bounded input alphabets remains to be analysed. What are
“natural” candidates for equality of CI and CR?

26. For infinite alphabets one should work out conditions for finiteness of the
identification capacity.

19 Robustness, Common Randomness and Identification

It is understood now ([46], [42]) how the theory of AV–channels is intimately
related to the concept of robust common randomness. A key tool is the bal-
anced hypergraph coloring ([8]). We sketch now another direction concerning
robustness and identification.

For more robust channel models, for instance in jamming situations, where
the jammer knows the word to be sent (c.f. AV–channels with maximal error
criterion), the communicators are forced to use the maximal error concept.
In case of identification this makes the randomisation in the encoding (see
[16]) superfluous. Now, for a DMC W it was mentioned in [16] that in the
absence of randomisation the identification capacity, say C∗

I (W ), equals the
logarithm of the number of different row–vectors in W . This is easy to show,
however, a formidable problem arises if the DMC W is replaced by the AVC
W. In fact, for 0–1–matrices only in W we are — exactly as for transmission
— led to the equivalent Shannon–zero–capacity problem. But for general W
the identification problem is quite different from the transmission problem.

In so far there is a lower bound on C∗
I (W), which implies for

W = {( 1 0
0 1 ) , ( 1 0

δ 1−δ )} , δ ∈ (0, 1)

that C∗
I (W) = 1, which is obviously tight. It exceeds the known capacity for

transmission. The capacity for W =
{

( 1 0
0 1 ) ,

(

1−δ δ
δ 1−δ

)}

is unknown.

20 Beyond Information Theory: Identification as a new Concept
of Solution for Probabilistic Algorithms

Finally we mention as the perhaps most promising direction the study of prob-
abilistic algorithms with identification as concept of solution. (For example:
for any i, is there a root of a polynomial in interval i or not?)

The algorithm should be fast and have small error probabilities. Every al-
gorithmic problem can be thus considered. This goes far beyond Information
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Theory. Of course, like in general information transfer also here a more general
set of questions can be considered. As usual in complexity theory one may try
to classify problems.

What rich treasures do we have in the much wider areas of information trans-
fer?!
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GTIT-Supplement

Search and channels with feedback

I. Basic classical concepts

We say that a channel has noiseless feedback if the transmitter knows the
received letter before sending the next letter.

We cannot at this point go into the importance of this channel model for noisy
transmitting systems in communication situations, which occur above all in
concrete communication technology, but also in physics and psychology. We
can only mention that channels with feedback play a role, for example, in data
transmission from satellites to fixed earth stations since the latter (at least so
far) have enough energy to pretty much arrange for error-free retransmission
to the satellites.

In [S10] Chapter IX it is shown that every sequential search problem with
answers having chance errors is equivalent to an information-theoretical coding
problem for channels with feedback. A first systematic treatment was made
by considering the BSC, more generally the DMC, Gaussian channels, and the
AVC.

Furthermore for every sequential “combinatorial” search problem with given
number of errors or errors proportional to the search duration there exists
an equivalent coding problem for channels with feedback in the combinatorial
setting. This was already shown by Berlekamp in 1964 in [S19].

We address here first the DMC with transmission matrix W : X → Y , named
in short the DMC W .

For a search space U considered have been non-adaptive (automatically fixed
block length) search strategies or (equivalently) coding procedures without
feedback, and adaptive ones, which are further subdivided into those of fixed
block length and those of variable length (covering as a special case the fixed
block length).

For instance Shannon [S18] considered adaptive procedures for channels with
feedback of fixed block length for the two cases of zero error probabilities and
error probability approaching zero, respectively.

On the other hand his Noiseless Coding Theorem concerns the case of varying
lengths for a noiseless forward channel. Incorporation as a special case of
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sequential procedures for the DMC was done much later in [22]. This work
can also be found in [S10].

In case of variable lengths one has the following performance criteria for search
times. Associated with procedure C is a stopping time ℓ(Y∞), which depends
not only on the object u searched for, but also on chance coming from the
DMC. We denote by E(ℓ|C, u) the expected search time for u and by M(ℓ|C, u)
the maximal search time for u. This leads to four concepts of search time for
C:

(a) M(ℓ|C) = max
u∈U

M(ℓ|C, u), the maximal (maximal) search time

(b) E(ℓ|C) = max
u∈U

E(ℓ|C, u), the maximal expected search time

and in the presence of an a-priori PD P on U

(c) M(ℓ|C, P ) =
∑

u∈U
PuM(ℓ|C, u), the average (maximal) search time

(d) E(ℓ|C, P ) =
∑

u∈U
PuE(ℓ|C, u), the average expected search time.

Remark 1: In noiseless coding one has M(ℓ|C, u) = E(ℓ|C, u) and the concepts
in (a) and (b) are equal and so are the concepts in (c) and (d).

The remaining two cases constitute fixed block length and the standard vary-
ing length coding average search time.

For general DMC (a) gives the case of block-coding and we adopt (d) in the
following for the sequential case.

II. Search and Identification: performance criteria

Classical search for the realized (for instance also defective) object u ∈ U and
its connection to the DMC with passive noiseless feedback (in short: DMC
with feedback) has just been classified. (Active feedback carries us out of the
domain of Search Theory). Let us just mention that the sequential case has
not been fully analysed for instance in the zero error case! In the ε-error case
there is a strong converse for block coding, but not for sequential coding, but
the weak capacities are equal.

We come now to the classification of search models with the aim of identifica-
tion.

Again we consider only adaptive procedures.
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The work started in [17] for block coding. For the DMC (second order)
strong identification capacities were determined in [17]. If CSh > 0 then

Cf = max
x∈X

H(W (·|x)), (2.1)

and here randomized procedures give a bigger capacity

CF = max
P :Q=PW

H(Q). (2.2)

This work was extended to a large class of multi-way channels even with a con-
structive coding scheme [27], again always block coding is used. So everywhere
here we are in case (a). The sequential case, called noiseless source coding for
identification, started in [S5], was continued in [45] and led to the identifica-
tion entropy in [S6]. We give first the performance criteria used. They all
involve a PD P on the search space U . LC(P, u), LC(P ), and L(P ) are
defined in Section 16.

We also consider, if users are chosen by a RV V independent of U and defined
by Prob(V = v) = Qv for v ∈ V = U ,

LC(P, Q) =
∑

v∈U
QvLC(P, v) (2.3)

the average number of expected checkings, if code C is used, and also

L(P, Q) = min
C

LC(P, Q) (2.4)

the average number of expected checkings for a best code.

A natural special case is the mean number of expected checkings

L̄C(P ) =
N
∑

u=1

1

N
LC(P, u), (2.5)

which equals LC(P, Q) for Q =
(

1
N

, . . . , 1
N

)

, and

L̄(P ) = min
C

L̄C(P ). (2.6)

Already in [45] it was proved that L(P ) < 3 for every P = (P1, . . . , PN)!

All other quantities defined are even smaller. For their analysis we refer to
[S6] and the recent work [S8].
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III. Search and Identification: completing the landscape

In contrast to the classical theory described above, where search time always
goes with the order log |U|, in the two situations described in II, it goes in
block coding with the order log log |U| and in noiseless identification source
coding, which is sequential, with the even smaller constant order.

This difference in behaviour is to be understood. We shall gain clarity by
answering two questions.

1. Does sequentiality cause a big difference?
Notice that already classical sequentiality does help somewhat. Even-
though it does not increase capacity it makes the strong converse fail.

2. What is the effect of the presence of an a-priori distribution P on U?

We begin with the first question.

Ad1 We reconsider the two identification capacities Cf and CF in [16] for a
DMC with feedback and fixed blocklength procedures. For blocklength n we
introduced Nf(n, λ), the maximal number of messages for which identification
over the DMC W is possible in blocklength n with both type of error probilities
bounded by λ. Correspondingly NF (n, λ) stands for the analogously defined
quantity, if randomization in the coding procedure is permitted.

Then it was proved that for 0 < λ < 1
2

lim
n→∞

1

n
log log Nf(n, λ) = max

x∈X
H(W (·|x))

lim
n→∞

1

n
log log NF (n, λ) = max

P :Q=PW
H(Q)

(Coding theorem and strong converse).

We define now for cases (a) - (d) the corresponding functions

Na
f (n, λ), Na

F (n, λ), . . . , Nd
F (n, λ).

Here Na
f (n, λ) means that the maximisation is over coding or search procedures

(C, ℓ) with

M(ℓ|C) ≤ n. (3.1)

Thus obviously

Na
f (n, λ) = Nf (n, λ), Na

F (n, λ) = NF (n, λ).
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Presently we deal with N b
f(n, λ) and N b

F (n, λ) where (3.1) is replaced by

E(ℓ|C) ≤ n. (3.2)

Fortunately we found a satisfactory answer to question 1.

Theorem 1 (Weak converses).
For a DMC W

(i) inf
λ

lim
n→∞

1
n

log log N b
f (n, λ) ≤ max

x∈X
H(W (·|x)) = Cf(W )

(ii) inf
λ

lim
n→∞

1
n

log log N b
F (n, λ) ≤ max

P :Q=PW
H(Q) = CF (W )

(Since N b
f (n, λ) ≥ Nf (n, λ) and N b

F (n, λ) ≥ NF (n, λ) the capacities don’t
change if sequentiality is permitted).

Proof: We use our general Entropy-Set Size Relation (stated as Lemma 2 in
in Section 3.4).
For the set of PD’s P(N) on the set of positive integers and all d ≥ 1

min
P=(P1,P2,...,)∈P(N)







max
∑

j∈J

Pj : J ⊂ N, |J | =
⌈

2H(P )d
⌉

+ 1







= 1 − 1

d
. (3.3)

(i) Consider an (n, N, λ) IDF-code {(fi,Di, ℓi) : 1 ≤ i ≤ N}.
fi generates a RV Y ℓi

i with distribution Pr(Y ℓi
i = yt) = W t(yt|fi, ℓi =

t). Now

H(Y ℓi
i ) ≤ max

x∈X
H(W (·|x)) · Eℓi. (3.4)

Application of (3.3) to the distribution of Y ℓi
i gives a set Ei ⊂ Y∗ =

∞
⋃

t=1
Y t with

Pr(Y ℓi
i ∈ Ei) ≥ 1 − 1

d
and

|Ei| ≤ 2d H(Y
ℓi
i ) ≤ 2

d Eℓi max
x∈X

H(W (·|x)))
, K, say, and K ≤ 2dCf n.

For any integer s, since Eℓi ≤ n, by Chebyshev’s inequality for the set
Si = {ℓi ≥ ns}

Pr(Si) ≤
1

s
. (3.5)

Define now

D∗
i = (Di ∩ Ei) r Si.

Then

Pr(Y ℓi
i ∈ D∗

i ) ≥ 1 − λ − 1

d
− 1

s
.
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Under the assumption λ < 1−λ− 1
d
− 1

s
for d, s sufficiently large these

D∗
i are necessarily distinct. We get therefore (in the wonderful world of

double exponentiality)

N ≤
ns
∑

t=1

K
∑

k=1

(

|Y t|
k

)

≤ ns · K|Y|ns·K ≤ nsK|Y|ns·2dCf n

for every d > 1 and (i) follows.
(ii) Just observe that in case of randomized strategies

H(Y ℓi
i ) ≤ max

P :Q=PW
H(Q) · Eℓi. (3.6)

This replaces now (3.4) in the foregoing argument, which otherwise
goes through literally.

Remark 2: Since
H(Y ℓ) ≤ max H(Q) · Eℓ (3.7)

can we give a strong converse proof like in [17]?

If so, then we have an example where a strong converse holds for identification
(seemingly also for common randomness), but not for transmission.

Now we present the surprising results, that even for sequential pro-
cedures the strong converses hold for identification over a DMC
with noiseless feedback:

Recall that for transmission the strong converse does not hold in the sequen-
tial case and we now have the first case, where passing from transmission to
identification leads to stronger statements (Han/Verdú [28] in proving a strong
converse for identification assumed it to hold for transmission for a channel in
question!).

Lemma 1. (Image size for a sequential deterministic feedback strategy)

For any feedback strategy (f, ℓ) of expected length Eℓ ≤ n, where ℓ : Y∗ → N

is the stopping function for f ,

min
E⊂Y∗:W (E|f)≥1−ν

|E| ≤ K = 2nH(W (·|x∗))+α
√

n (3.8)

where

H(W (·|x∗)) = max
x∈X

H(W (·|x)), α =

√

β

ν
, (3.9)

and β = max{log2 3, log2 |Y|}.

Proof of Lemma 1: The cardinality of the set

E∗
f = {yn ∈ Y∗ : − log W n(yn|f) ≤ log K} ∩ L(f) = {yn ∈ Y∗ : ℓ(yn) = stop}
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(

W n(yn|f) ≥ 1
K

)

is clearly smaller than K, and it suffices to show that

W n(E∗
f |f) ≥ 1 − ν.

For this we first give another description of W n(E∗
f |f).

Strategy f induces the RV’s Y s = (Y1, . . . , Ys); s = 1, 2, . . . , ℓ; with distribu-
tion

Pr(Y s = ys) = W s(ys|f) for ys ∈ Ys ∩ {κs : ℓ(κs) ≥ s}.

Defining Zt = − log W (Yt|f(Y t−1)) we can write

W (E∗
f |f) = Pr

(

ℓ
∑

t=1

Zt ≤ log K

)

. (3.10)

We now analyse this expression by considering the conditional expectations
E(Zt|Y t−1).

Since Pr(Yt = yt|Y t−1 = yt−1) = W (yt|f(yt−1)), we have for yt−1 ∈ Y t−1

E(Zt|yt−1) = −
∑

yt∈Y
W (yt|f(yt−1) log W (yt|f(yt−1)) ≤ H(W (·|x∗))

and therefore
E(Zt|yt−1) ≤ H(W (·|x∗)). (3.11)

Finally, we introduce the RV’s

Ut = Zt − E(Zt|Y t−1) (3.12)

which obviously satisfy

E(Ut|Y t−1) = 0, EUt = 0. (3.13)

Moreover, since Us is a function of Y1, . . . , Ys, this implies for s < t

E(Ut|Us) = 0.

Therefore, the RV’s U1, . . . , Uℓ are uncorrelated, i.e.

E UsUt = 0 for s 6= t. (3.14)

Notice that (3.10)-(3.13) and the definition of K imply

W ℓ(E∗
f |f) ≥ Pr

(

ℓ
∑

t=1

Ut ≤ α
√

n

)

(3.15)
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and by Chebyshev’s inequality

Pr

(

ℓ
∑

t=1

Ut ≤ α
√

n

)

≥ 1 − ν

provided that
var Ut ≤ β for t = 1, 2, . . . , ℓ. (3.16)

Verification of (3.16) will complete the proof. Using (3.13) we can write

var Ut = E U2
t = E(Ut − E(Ut|Y t−1))2

=
∑

yt

Pr(Y t−1 = yt−1) · E(Ut − E(Ut|Y t−1)2|Y t−1 = yt−1)

and by the well-known minimality property of the expected value this can be
upper bounded by

∑

yt−1

Pr(Y t−1 = yt−1)E(Ut − E(Zt|Y t−1))2|Y t−1 = yt−1)

=
∑

yt−1

Pr(Y t−1 = yt−1)E(Z2
t |Y t−1 = yt−1).

By the definition of Zt

E(Z2
t |Y t−1 = yt−1) =

∑

yt∈Y
W (yt|f(yt−1)) · log2(W (yt|f(yt−1)).

Since x log2 x is bounded in [0, 1], this quantity is bounded by a function of
|Y| uniformly in t and yt−1.

A Lagrange multiplier argument gives the bound

β = max{log2 3, log2 |Y|}.

Thus,
var(Ut) ≤ β. (3.17)

Lemma 2. (Image size for a sequential randomized feedback strategy)

For any randomized feedback strategy (F, ℓ) with E ℓ ≤ n and any ν ∈ (0, 1)

min
E ′⊂Y∗:W (E ′|F )|E ′|≥1−ν

≤ K ′ = 2nH(Q′)+α
√

n

where H(Q′) = maxP H(P · W ), α =
√

β/ν and β = max{log2 3, log2 |y|}.
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Proof: The randomized strategy F can be viewed as a PD QF on the set Fℓ

of ℓ-length deterministic feedback strategies. Therefore,

W ℓ(E ′|F ) =
∑

g∈Fℓ

QF (g)W ℓ(E ′|g). (3.18)

QF induces the RV Y ℓ with distribution

Pr(Y ℓ = yℓ) =
∑

g∈Fℓ

QF (g)W ℓ(yℓ|g).

We write Q(yℓ) = Pr(Y ℓ = yℓ). The cardinality of the set

E ′∗ = {yℓ : − log(yℓ) ≤ log K ′}

is clearly smaller than K ′, and it suffices to show now that Q(E ′∗) ≥ 1 − ν.
Defining Z ′

t = − log Q(Yt|yt−1), we can write

Q(E ′∗) = Pr

(

ℓ
∑

t=1

Z ′
t ≤ log K ′

)

. (3.19)

For its analysis we consider now E(Z ′
t|Y t−1). Notice that

E(Z ′
t|yt−1) = −

∑

yt∈Y
Q(yt|yt−1) log(yt|yt−1)

and that Q(·|yt−1) is a distribution of the form PW, because

Q(yt|yt−1) =
∑

g∈Fℓ

QF (g)

t−1
∏

i=1
W (yi|g(yi−1))

∑

s
QF (g)

t−1
∏

i=1
W (yt|g(yt−1))

· W (yt|g(yt−1))

Therefore we have
E(Z ′

t|yt−1) ≤ H(Q′). (3.20)

This is the substitute for (3.11). Otherwise we continue exactly as before. We
define functions

U ′
t = Z ′

t − E(Z ′
t|Y t−1)

which again have the desired properties E Y ′
t = 0, E U ′

tU
′
s = 0 for s 6= t and

var U ′
t ≤ β. Application of Chebyshev’s inequality again establishes the result.

Ad2 Having understood that sequentiality alone does not help much, the su-
perperformance in source coding (L(P ) < 3) must depend on the conjunction
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with source distributions. It enters already the individual waiting times
LC(P, u) – without it the source identification problem is not even defined! In
the model just discussed the channel has noise and we allow error probability.
But those two ingredients alone should not be responsible for different be-
haviour – as was demonstrated in the classical situation in [17]. We check this
idea now by allowing a message distribution in identification (even without
feedback). We thus come back to a simple model already rejected in [27].

Use the uniform distribution
(

1
N

, . . . , 1
N

)

on the message set and consider

(for simplicity) X = Y = {0, 1, . . . , q − 1} and as DMC the identity matrix,
W (x|x) = 1 for all x ∈ X . Let N = qm and partition U = {1, . . . , N} into
U0, . . . ,Uq−1, each of cardinality qm−1, the messages in Uj are all encoded by
j and “decoded” by Di = Uj , if i ∈ Uj .

So i is thus never rejected in identification, if it is there. The error probability
of second type – accepted if not there – is

qm−1 − 1

qm
≤ 1

q
for all m. (3.21)

Thus 1
q

can be achieved for arbitrarily large N ! Partitioning U into qr sets of
equal cardinality one gets

qm−r − 1

qm
≤ 1

qr
for all m ≥ r. (3.22)

This already smells like “L(P ) < 3”. To complete the picture we have to use
the feedback to make the procedure sequential.

Start like in (3.21). In case of a rejection stop. Otherwise iterate with the set
Ui if the identification goes for i, etc. But this is exactly what we did in the
proof of Theorem 1 in [S6].

The expected waiting time TC(i) equals

1 +
1

q
+

1

q2
+ · · ·+ 1

qm−1
=

(

1
q

)m − 1
1
q
− 1

=
1 − 1

qm

1 − 1
q

≤ 1

1 − 1
q

=
q

q − 1

and lim
m→∞

(

1 + 1
q

+ · · ·+ 1
qm−1

)

= q
q−1

.

Also
(

1 +
1

q
+ · · · + 1

qm−1

)

= HI,q(P
N), N = qm. (3.23)

By Theorem 4 of [S6] we know that this is best possible.
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Remark 3: By Theorem 1 of [S8] the answer in (3.23) is obtained for all
PD’s P N ∈ P([N ]), so it is universal in this sense, and max

P N∈P([N ])
HI,q(P

N) =

q
q−1

(

1 − 1
N

)

.

Remark 4: Caution is in order with respect to the PD’s involved. The P in
the source (U , P ) is responsible for getting small values like in LC(P, u) – the
competition of u against the randomly chosen object, whereas in [16],
[27] the competition is for all pairs (i, j).

Another PD Q enters in LC(P, Q) – it serves only on averaging. In the analysis
above with the uniform distribution P Q was not relevant, because LC(P, u)
was independent of u.

Finally we propose the following seemingly essential remaining tasks.

Problem 1: Extend the L(P ) < 3 result to noisy channels.

Problem 2: Analyse the quantity L(P, Q) for arbitrary P, Q and find the
relevant entropy measure.

Problem 3: For the “pentagon” channel

W =





























1
2

1
2

0 0 0

0 1
2

1
2

0 0

0 0 1
2

1
2

0

0 0 0 1
2

1
2

1
2

0 0 0 1
2





























m′ steps are needed until
⌈

⌈N · 2
5
⌉ · 2

5

⌉

· · · · ≤ 1. So m′ ∼
(

log5
5
2

)−1 · log5 N ,

expected waiting time for uniform distributions ∼
5
2

5
2
−1

(

1 − 1
N

)

and log5
5
2

is

Coℓ, the zero-error list code capacity for W .

But if Coℓ is not of the form logq
q
r
, what is the answer?

This is to be worked out and may not be trivial!

For instance for Wǫ =







1 − ε ε

ε 1 − ε





 we have Coℓ = o. Is there a jump at Co,ℓ?

Problem 4:

One can use an (n, M, ε) transmission code of rate (M) ∼ 1−h(ε) for the DMC
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with transmission matrix Wǫ and put N
M

objects in every class corresponding
to a codeword. So now M corresponds to q and

1 +
1

M
+ · · · + 1

Mm−1
≤ M

M − 1
.

Choosing Mm ≥ N or m ≥ log N
log M

∼ log N
n(1−h(ε))

the error probability is bounded
by ε + ε + · · ·+ ε = mε.

Use the blocklength

n
M

M − 1

(

1 − 1

Mm

)

∼ n

and analyse this model for identification.

IV. New search models

We start or contribute to the following topics

— search under secrecy constraints
— noisy response channels with random or arbitrary varying parameters
— source statistics described by a class of PD
— the (Y ,N ,A) model for liars, a common generalization of Rényi’s search

model with size constrained tests and a recent liar model of Katona/
Tichler [S17].

1. Search under secrecy constraints

We address here first wire-tap channels introduced by A. Wyner and report on
[S9]. There transmission, identification and common randomness via a wire-tap
channel with secure feedback are studied. By secure feedback we mean that
the feedback is noiseless and that the wire-tapper has no knowledge about the
content of the feedback except via his own output. Lower and upper bounds
to the transmission capacity are derived. The two bounds are shown to coin-
cide for two families of degraded wire-tap channels, including Wyner’s original
version of the wire-tap channel. The identification and common randomness
capacities for the channels are completely determined. Also here again identi-
fication capacity is much bigger than common randomness capacity, because
the common randomness used for the (secured) identification needs not to be
secured!

Finally we mention that the adaptive schemes use constant blocklength and
uniform message statistics.
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Remark 5: Extension to general message distribution P with sequential pro-
cedures seems to be doable.

2. Search with random parameters for the response channel

S. Gelfand and M. Pinsker mention on page 20 of [S13] that the determi-
nation of the capacity is closely related to the study of broadcast channels.
This relation was used by the authors to determine this capacity region of
noiseless broadcast channels. On the other hand their direct coding theorem
is analogous to the direct coding theorem of K. Marton for broadcast channels.

Our observation here is that feedback does not increase the capacity,
thus the search problem is solved.

The same applies to our paper [S2], which treats arbitrarily varying parameters
known to the sender.

Proof of converse:

Going along the proof in [S2] we mention the necessary changes.
Instead of

(α) Pr(V = m, Sn = s, xn = x) =







M−1PSn(s), if x = ϕ(m, s)

0, otherwise

at the bottom of page 26, let

(α′) Pr(V = m, Sn = sn) = M−1PSn(sn)
(

= M−1
n
∏

i=1
PS(si)

)

,

xi = ϕi(m, Y i−1) and Y i is the output of W i(·|xi, si), when given input
Xi = xi and state Si = si and U(i)’s are still defined by

U(i) = (V, Y1, . . . , Yi−1, Si+1, . . . , Sn)

(but for new Xi’s and Yi’s).

Now

(β) PV SnXnY n = PV SnXn · PY n|XnSn

does not hold necessarily, but it is actually not needed either.

We only need

(β ′) Pr
((

U(i), Si, Xi, Yi

)

= (u, si, xi, yi)
)

= Pr
((

U(i), Si, Xi

)

= (u, si, xi)
)

Pr(Yi = yi|Xi = xi, Si = si),
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which obviously holds, because in case xi 6= ϕi(m, yi−1) (see the defi-
nition of U(i)) both sides vanish and otherwise they are

Pr
(

(U(i), Si) = (u, si)
)

W (y|xi, si).

Finally, (4.2) still holds by Fano’s inequality and (4.3) (Lemma 4) still holds,
because the proof uses properties of mutual information without special ref-
erence to feedback.

Therefore also the two inequalities at the bottom of page 28 hold and give the
converse (Proposition 3).

These channels with random parameters were robustified in [S2] to arbitrarily
varying parameters. The foregoing arguments also imply that our capacity
formula also holds in case of noiseless feedback and thus has its part in the
Theory of Search. For (standard) AVC this was treated in detail in [S10], ch.
IX. Robustness is also the issue in the next Section 3 and in the last Section
4 we shall see that the (Y ,N ,A) model discussed there opens a new direction
in the theory of AVC and zero-error capacity problems.

3. Noiseless coding for a class of PD’s

We returned to this problem in the context of identification for sources. For
classical block coding compound sources and AVS have been considered – but
not or less for abstract sources.

How do we encode 2 sources P, Q both on U?

Using the Min-Max Theorem we can proceed as follows. We use a PD r on
U for encoding, that is, cu gets length ⌈− log ru⌉ and we try to minimize the
worst case “expected length”:

L = min
r

max

(

∑

u

Pu log
1

ru
,
∑

u

Qu log
1

ru

)

(3.1)

and get that max
0≤λ≤1

H
(

λP + (1 − λ)Q
)

is best: H ≤ L ≤ H + 1.

Now it is clear how to handle a general class P of PD’s and not just two PD’s.

Let conv(P) be the closed convex hull of P. Clearly

max
P∈conv(P)

H(P ) ≥ sup
P∈P

H(P ).

Recall that the smaller quantity rules for compound sources and the larger
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quantity rules for AV-sources

— however, the two concepts are the same for abstract sources and the
closed convex hull comes in.

Note that

sup
P∈P

min
r

−
∑

κ

P (x) log r(x) = max
P∈conv(P)

min
r

−
∑

x

P (x) log r(x).

By the Min-Max Theorem there exists a pair (P ∗, r∗) assuming the max value

−
∑

x

P ∗(x) log r∗(x).

Since
∑

κ
P ∗(x) log P ∗(x)

r∗(κ)
≥ 0,

−
∑

x

P ∗(x) log r∗(x) ≥ −
∑

x

P ∗(x) log P ∗(x)

and necessarily r∗ = P ∗.

Therefore we have the

Noiseless Source Coding Theorem for class P

Let LC,P be the expected length of prefix code C for source (U , P ), then

max
P∈conv(P)

H(P ) ≤ min
C

sup
P∈P

LC,P ≤ max
P∈conv(P)

H(P ) + 1.

4. The (Y ,N ,A) model and AV channels

Recently Katona/Tichler considered a model with lies depending on targets
in the following sense: every permitted question specifies a subset B ⊂ U and
an A ⊂ B with |A| ≥ a. If the object u ∈ U searched for satisfies u ∈ A, the
answer is arbitrary YES or NO. We refer to it as KT model. Their abstract
in [S17] just says “We give results on the shortest search both in the adaptive
and the non-adaptive case”. Presently we still don’t know their results
on the non-adaptive case. The adaptive case is readily settled. It is done
analogously to the proof of Katona for separating systems with constrained
test sizes, which we first recall.

Consider the source U = {u1, . . . , uN} and let A = {A1, . . . , Am} be a system
of subsets of U , which is separating. That means that for any distinct uj and
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uℓ there exists an Ai (1 ≤ i ≤ m) such that

uj ∈ Ai and uℓ /∈ Ai or uj /∈ Ai and uℓ ∈ Ai. (4.1)

For any k ≤ N
2

we want to determine m(N, k) the minimal value of m for
which there exists a separating system A with |Ai| ≤ k (1 ≤ i ≤ m).

We view A as a matrix with column vectors Ai (1 ≤ i ≤ m) and row vectors

uj = (uj1, . . . , ujm) (1 ≤ j ≤ N).

By assumption these row vectors are distinct. We can then view the matrix

also as a code U =















u1

...

uN















with codewords uj (1 ≤ j ≤ N).

The specialty here is that the number of ones in every column of U does not
exceed k.

Let m∗(N, k) be the minimal number of questions in adaptive search. It is
determined in [S15] and stated in [S10] as

Theorem 2. For N ≤ 2k m∗(N, k) = ⌈log N⌉ and for N > 2k we have for

ℓ ,
⌈

N
k

⌉

− 2

m∗(N, k) = ℓ + ⌈log N − kℓ⌉.

Let t∗(N, a) be the minimal number of questions in adaptive search for the
KT-model with parameter a. Then

Theorem 3.

(i) For a ≤ 1
3
N t∗(N, a) ≤ 1 +

⌈

log
⌊

2
3
N
⌋⌉

(ii) For 1
3
N < a ≤ 1

2
N t∗(N, a) ≤ 1 + ⌈log N⌉

(iii) For a = N or a = N − 1 no successful search is possible
(iv) For a = N − 2 we get m∗(N, N − 2) = N − 1

Proof: Ad(i) Choose B and A with |A| = a and |B| = N+a
2

. Set C = [N ] rB
and so |C| = N−a

2
.

We know that the target is in B, if the answer is YES and that it is in C∪A, if
the answer is NO. In both cases we are left with N+a

2
possibilities. This number

does not exceed N
2

+ N
6

= 2
3
N . Let [N1] denote the set of left possibilities.
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Next choose always B’s with A’s included in [N ] r [N1]. We are done with a

total of 1 +
⌈

log 2
3
N
⌉

queries.

Ad(ii) Again we have the formula N1 = N+a
2

and N −N1 = N
2
− a

2
. [N ]− [N1]

can be used for A to reduce a to a1 =
(

a − (N − N1)
)

=
(

3a
2
− N

2

)

and since
8
3
a ≤ 4

3
N and equivalently 3a − N ≤ N

3
+ a

3
,

a1 ≤
1

2

(

N

3
+

a

3

)

=
1

3
N1. (4.2)

Now we continue with case (i) and get done with a total of

1 + 1 +
⌈

log
⌊

2

3
N1

⌋⌉

= 2 +
⌈

log
⌊

N + a

3

⌋⌉

≤ 1 + ⌈log N⌉.

Finally, the case (iii) being obvious we come to the last case

Ad(iv) Choose |A| = N−2, |B| = N−1. After one question we get N1 = N−1
and a1 = a − 1 = N − 3 = N1 − 2 and inductively we get the result.

Remark 6: The cases a > N
2

left are tricky because m∗(N, a) varies between
1 + ⌈log N⌉ and N − 1.

We turn now to the (Y ,N ,A) model. There a test (query) is a partition of
the search space U into 3 sets Y ,N , and A. If the object u ∈ U searched for
satisfies u ∈ Y the answer is YES, if it satisfies u ∈ N the answer is NO, and
it is for u ∈ A arbitrary YES or NO. The tasks become more difficult the
larger A is, for instance for |A| = |U| or |U| − 1 nothing can be done.

In the KT model |A| ≥ a was assumed, which immediately reduces to |A| = a.
One can make further specifications about |Y| and |N |, for instance

|Y| ≤ k and |N | = N − a − |Y|

gives a model (≤ k, a), which for a = 0 covers Rényi’s problem mentioned
above.

In the adaptive case the function of interest, defined canonically, is m∗(N, k, a).

m(N, k, a) is for the non-adaptive case, which we now consider.

Important here is the observation that we can use as response channel an
arbitrarily varying channel, in short AVC (the “arbitrary” answers make
the link not only in words).
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As class of channel matrices we choose W = {W1, W2}, where X = {0, 1, a} is
the input and Z = {0, 1} is the output alphabet and W1(0|0) = W1(1|1) = 1,
W1(1|a) = 1 and W2(0|0) = W2(1|1) = 1, W2(0|a) = 1.

The maximal error capacity of binary output AVC were determined in [S13]
as

C = max
P

min
W∈

=
W

I(P |W ) = min
W∈

=
W

max
P

I(P |W ), (4.3)

where
=

W is the row-convex hull of W and I(P |W ) is the mutual information
for channel W and input distribution P .

It has value 1 for the channel just defined (as is readily seen by not using
letter a). However, the new ingredient in this search problem is a frequency
constraint for the use of letters. In the non-adaptive case a search strategy
corresponds to a code {u1, . . . , uM} ⊂ X n such that the matrix

U =















u11 . . . u1n

...

uM1 . . . uMn















satisfies for the KT-model the column constraint

for all 1 ≤ t ≤ n |{i : 1 ≤ i ≤ M, uit = a}| ≥ a. (4.4)

This forces to use letters which are “bad” for communication and changes
AVC-theory. Notice that for instance our W has 0-1-matrices only, and there-
fore error probability λmax < 1 implies zero-error probability.

Actually it was shown that AVC-theory for 0-1-matrices is equivalent to Shan-
non’s zero-error capacity theory for DMC’s.

The column constraint starts a new enlargement of that theory!

To gain more insight we first come to subsections and return to the AVC-
model in the last section.

Search with a cardinality constraint on tests: revisited

In [S7] we proved that the minimum size m(N, αN), α ∈
(

0, 1
2

)

, of a separating

system B for the search space U = {1, 2, . . . , N} with

|B| ≤ αN for B ∈ B (4.5)

is ruled by the entropy h(α), namely,

m(N, αN) =
log N + o(log N)

h(α)
. (4.6)
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We raise the following additional questions.

A. For a search space (U , P ) with a PD assigned to U adaptive search is
generally superior with respect to the expected search time already in
the standard case with no constraint (4.5). How does the expected search
time behave under constraint (4.5)?

B. The proof of [S7] can be termed a large deviational existence proof. What
can we do constructively? 1

C. The search model of size constraint tests can be viewed as a special case
of what we call (Y ,N ,A) model with parameters (αN, (1−α)N, 0). What
are the implications?

D. How can we perform search for a class of PD’s, in particular also under
constraint (4.5)?

Remark 7: Parallel to Search Theory there is a spectrum of research problems
addressed in the Theory of Questionnaires. However, where solutions could
be offered mostly questionnaires reduce to error free tests. Therefore many
developments started to escape attention of researchers in search. In particular
we draw attention to Fig. 3.2 in [S10] and the topic explained there. It relates
to models where lies depend on targets. A better exchange between search and
questionnaires will be attempted in a forthcoming updated edition of [S10].

Remark 8: For the KT-model (as well as for the (k, N − k − a, a)-model
it is essential that adaptiveness is used immediately for every single step
(which is not so for AVC with feedback in the schemes [S3], [42]). Therefore
for this kind of problems our coding schemes with feedback (started in [S1])
are not optimal if applied to the (k, N − k − a, a) model. We begin with A.
and improve Theorem 2. to a probabilistic search space (U , P ) with minimal
expected number of questions m∗(P, N, k).

The previous strategy is only slightly modified by following the ordered prob-
abilities P1 ≥ P2 ≥ P3 ≥ · · · ≥ PN and beginning with the set {1, 2, . . . , k}
etc. Thus short search times go parallel with high probabilities.

1 Recently we found a simple construction. Let m be minimal with the properties

N ′ =
(m

l

)

≥ N and
(m

l

)

l ≤ αNm for l < m. Let M
(αN)
m,N ′ be the matrix with set of

column vectors equal to the set
([m]

l

)

of 0-1-vectors with l 1’s. They are distinct. By

symmetry every row contains
(m

l

)

l
m =

(m−1
l−1

)

≤ αN 1’s. Omitting N ′−N columns

gives a matrix M
(αN)
m,N with suitable tests in the rows.

Clearly for l = αm+o(m) we get (4.6) or equivalently m(N,αN) ≤ log N
h(α) +o(log N).

Actually, letting m be minimal with the properties N ′ =
∑l

i=0

(

m
i

)

≥ N and
∑l

i=0

(m
i

)

i
m =

∑l
i=1

(m−1
i−1

)

≤ αN for l < m, we get even a little bit better re-
sult.
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It is convenient to define

Qj = Pkj+1 + · · ·+ Pkj+k for j = 1, . . . , ℓ and Qℓ+1 = 1 −
ℓ
∑

j=1

Qj .

Then the expected time is between

T , Q1 + H

(

P1

Q1
, . . . ,

Pk

Q1

)

+ Q2 + H

(

Pk+1

Q2
, . . . ,

P2k

Q2

)

+ · · · + Qℓ

+ H

(

Pkℓ+1

Qℓ
, . . . ,

Pkℓ+k

Qℓ

)

+ H(Pk(ℓ+1)+1, . . . , PN) and T + ℓ + 1.

More precise bounds become very technical to derive. We address now B.

After the discovery of the “entropy principle” (equation 4.6) in [S7] G. Katona
pointed out that it must be derivable from his work [S16], [S17]. This is the
case. In fact for some parameters we can give the following very simple con-
struction, which also indicates how the remaining parameters can be settled
with additional approximations.

Indeed, consider parameters m, k, and N =
(

m
ℓ

)

satisfying

(

m

ℓ

)

ℓ = mk. (4.7)

Then choose the set of vectors
(

[m]
ℓ

)

as set of row vectors in U (in any labelling).

By symmetry all column vectors in U have by (4.7) k ones.

Elementary Information Theory gives the bounds

1

m + 1
exp

{

mh

(

ℓ

m

)}

≤
(

m

ℓ

)

≤ exp

{

mh

(

ℓ

m

)}

. (4.8)

Therefore

m ≤
log

(

m
ℓ

)

+ 2 log(m + 1)

h
(

ℓ
m

) =
log N + 2 log(m + 1)

h
(

k
N

)
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and thus

m(N, k) ≤ log N + O(log log N)

h
(

k
N

)

≤ log N + o(log N)

h
(

k
N

) , (4.9)

the desired entropy bound. Now comes the approximation.

Given N, k define α = k
N

≤ 1
2
, the maximal “density” of ones in U to be

tolerated.

Step 1 Define the column number m by the inequalities

(

m

⌊αm⌋

)

≤ N <

(

m + 1

⌊α(m + 1)⌋

)

(4.10)

and choose submatrix U1 with the N1 =
(

m
⌊αm⌋

)

row vectors from the set
(

[m]
⌊αm⌋

)

.

Thus all its rows have exactly ⌊αm⌋ ones and by symmetry all its columns
have exactly

k1 ,
N1 · ⌊αm⌋

m
≤ N1α = N1

k

N
=

N1

N
k (4.11)

ones.

Note that
1

(m + 1)2
exp

{

mh

(

⌊αm⌋
m

)}

≤ N and thus

m ≤ log N + 2 log(m + 1)

h
( ⌊αm⌋

m

) .

Since lim
m→∞

⌊αm⌋
m

= α, therefore

m ≤ log N + O(log log N)

h(α)
. (4.12)

It remains to be shown how U1 can be expanded to U by adding suitable rows.

Step 2 Let now t1 be the smallest positive integer with

(

m

⌊αm⌋

)

+

(

m

⌊αm⌋ − t

)

≤ N
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and add to U1 the submatrix

U2 =

(

[m]

⌊αm⌋ − t

)

.

Again by symmetry







U1

U2





 has fewer than k ones in its columns as simple calculation shows.

Step 3 Iterate the above construction with the smallest t2 > t1 such that

(

m

⌊αm⌋

)

+

(

m

⌊αm⌋ − t1

)

+

(

m

⌊αm⌋ − t2

)

≤ N.

Alternate approach

(

m

⌊αm⌋

)

≤ N <

(

m + 1

⌊α(m + 1)⌋

)

.

From the left inequality we get

m ≤ log N + 2 log(m + 1)

h
( ⌊αm⌋

m

)

and the right one guarantees the density and a subset of N rows quasi-balanced
in the columns: they differ at most by 1 in the number of ones. This is also
clear from Baranyai’s work [S12], if ⌊α(m + 1)⌋|m + 1 and otherwise from the
“generalized Baranyai” or Katona’s Step C on page 179 of [S14].

Note that the notation there differs from ours by exchanged roles of rows and
columns.

Probabilistic sources (U , P )

We begin with an extension of Theorem 1 and bound t∗(N, P, a), the minimal
expected number of questions in adaptive search for the KT-model.

Theorem 4. For a ≤ 1
3
N t∗(N, P, a) ≤ 2+H(P )

(

t∗(N, P, a) ≥ H(P ) being

obvious
)
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Remark 9: Presently we don’t know whether 2 can be replaced by 1 in the
bound and suggest to decide this question.

Proof: We begin as in the proof of Theorem 1 with the partition (Y ,N ,A).

For any behaviour of the jammer partitioning A into A+, where he answers
YES, and A−, where he answers NO, define the probabilities

QY =
∑

i∈Y
Pi, QN =

∑

i∈N
Pi, QA+ =

∑

i∈A+

Pi, and QA− =
∑

i∈A−
Pi. (4.13)

Also denote by L(P ′) for any PD P ′ the minimal expected noiseless coding
length for the source (U ′, P ′).

We know from Shannon that

H(P ′) ≤ L(P ′) ≤ H(P ′) + 1. (4.14)

Then

t∗(N, P, a) ≤ 1 + (QA+ + QY)

[

H

((

Pi

QA+ + QY

)

i∈A+∪Y

)

+ 1

]

+ (QA− + QN )

[

H

((

Pi

QA− + QN

)

i∈A−∪N

)

+ 1

]

.

We relate now the entropy quantities to H(P ) using the grouping axiom. The
quantity

α , (QA+ + QY)H

((

Pi

QA+ + QY

)

i∈A+∪Y

)

+ (QA− + QN )H

((

Pi

QA− + QN

)

i∈A−∪N

)

= (QA+ + QY)

[

H

(

QA+

QA+ + QY
,

QY
QA+ + QY

)

+
QA+

QA+ + QY
H

((

Pi

QA+

)

i∈A+

)

+
QY

QA+ + QY
H

((

Pi

QY

)

i∈Y

)]

+ (QA− + QN )

[

H

(

QA−

QA− + QN
,

QN
QA− + QN

)

+
QA−

QA− + QN
H

((

Pi

QA−

)

i∈A−

)

+
QN

QA− + QN
H

((

Pi

QN

)

i∈N

)]

.

Obviously QA+ + QA− = QA.
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Now we decompose H(P ).

H(P ) = H(QA+ , QA− , QY , QN ) + QA+H

((

Pi

QA+

)

i∈A+

)

+ QA−H

((

Pi

QA−

)

i∈A−

)

+ QYH

((

Pi

QY

)

i∈Y

)

+ QNH

((

Pi

QN

)

i∈N

)

and verify that

H(P ) − α = H(QA+ , QA−, QY , QN ) − (QA+ + QY)H

(

QA+

QA+ + QY
,

QY
QA+ + QY

)

− (QA− + QN )H

(

QA−

QA− + QN
,

QN
QA− + QN

)

= H(QA+ + QY , QA− + QN ) ≤ 1.

Thus

t∗(N, P, a) ≤ 2 + H(P ) − H(QA+ + QY , QA− + QN ) ≤ 2 + H(P ).

Remark 10: For the (N −k−a, k, a) = (α0N, α1N, αN) model we can follow
the first kind of steps until we are left with Nℓ candidates and aℓ arbitrary
tests with

Nℓ − aℓ

2
≤ min(N − k − a, k)

so that we can continue with the KT-model. We thus get the bound ℓ(α1, α0, α)+
H(P ). The details are left to interested readers.

The (Y ,N ,A)-model with non-adaptive strategies viewed in terms
of AV-response channels with input letter frequency constraints.

Recall the channel W and a code {u1, . . . , uM} ⊂ X n corresponding to a
non-adaptive strategy such that the matrix

U =















u11 . . . u1n

...

uM1 . . . uMn















satisfies the column constraints for all 1 ≤ t ≤ n

|{i : 1 ≤ i ≤ M uit = 0}| = N − k − a

|{i : 1 ≤ i ≤ M uit = 1}| = k

|{i : 1 ≤ i ≤ M uit = a}| = a. (4.15)
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To simplify calculations let us assume that

a = αN, k = α1N, and N − k − a = α0N. (4.16)

We mentioned that AVC-theory for frequency constraint is not far developed.
A capacity formula suggesting itself is

Cα,α1,α0 = min
W∈

=
W

I





























α1

α0

α















∣

∣

∣

∣

∣

W















. (4.17)

A basic idea here is that list codes allow a much more unified capacity theory
than ordinary codes do (see [6]). (U ,D) is a list code of list size L, if for
D = (D1, . . . , DM), Di ⊂ Zn

M
∑

i=1

1Di
(zn) ≤ L for all zn ∈ Zn.

It has error probability less than λ if W (Di|ui, s
n) ≥ 1 − λ for all i and

sn ∈ {0, 1}n defining a channel sequence.

Since we have 0-1-matrices only in W λ < 1 implies 0-error.

It was shown in [6] that for list sizes L(n) → ∞ as n → ∞ the formula gives
the capacity!

This gives hope also under our additional input constraints.

Lemma. (see [S3], [6] or [S12])

Let U =
(

[n]
α1n,α0n,αn

)

= T n
P for P =

( α1
α0
α

)

and Di =
{

zn : zt = uit for

uit ∈ {0, 1}
}

, then

L = max
zn

M
∑

i=1

1Di
(zn) = exp2{h(α)n + o(n)}.

Proof: Can be given directly or as special case of Lemma 7.1 of [S12].

Now notice that M = exp2{H(α1, α0, α)n + o(n)} and therefore

M

L
= exp2{H(α1, α0, α)n − h(α)n + o(n)}.
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For α1 = α0 this specializes to M
L

= exp2{(1 − α)n + o(n)}. Notice that this
rate equals

I

((

1−α
2

1−α
2
α

) ∣

∣

∣

∣

∣

(

1 0
0 1
1
2

1
2

)

)

= h
(

1
2

)

− αh
(

1
2

)

= 1 − α.

Final comments

Example: α1 = α0 = α = 1
3
.

There are three natural bounds:

1. Choose ui = vi a
1
3
n, where a

1
3
n = a . . . a ∈ {0, 1} 1

3
n and vi ∈ {0, 1} 2

3
n.

We get |U| = 2
2
3
n, rate = 2

3
.

2. Gilbert’s bound gives the rate = log 3
2
, which is smaller.

3. List size of
(

[n]
1
3
n, 1

3
n, 1

3
n

)

The sequence 1n/20n/2 ∈ Zn has maximal list size
(

1
2
n

1
3
n

)2

of rate h
(

1
3

)

and thus we get M
L

of rate log 3 − h
(

1
3

)

= 2/3, again like in 1.

But now we can iterate the list reduction as in [6] and observe that this can be
done with the frequency constraints in the columns (using balanced colorings
as in [8] and in [S4]).

For small list size (but not constant) we get

log N

2/3
.

More generally for
(

1−α
2

, 1−α
2

, α
)

case 1) and case 3) give 1−α instead of 2/3.

By 3) again with small (not constant) list size we achieve

log N

1 − α
.

This cannot be superceded, but what is best, if we go for list size 1?

All this gives nice zero-error capacity theory under frequency constraints.

Presently we can handle here also list versions for general parameters (α1, α0, α).
Furthermore we can extend this to q-ary models with parameters

(αq−1, . . . , α0, α).
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In the binary case for targets in A two answers can happen, YES and NO
or 1 and 0. Now for instance for q = 3 there are different A’s, namely, A012,
where three answers are possible, namely, 2, 1, and 0. Furthermore A01, A02,
A12 where the specified two answers are possible.

In the setting of an AV W contains 24 matrices of the structure

W =

0

1

2

01

02

12

012



















































0 1 2

V0

V1

V2

V01

V02

V12

V012



















































,

where

V0 = (100), V1 = (010), V2 = (001)
V01 ∈ {(100), (010)}, V02 ∈ {(100), (001)}, V12 = {(010), (001)},
V012 ∈ {(100), (010), (001)} and 2 · 2 · 2 · 3 = 24.

All these models can be handled in a new subject of list searching for mod-
erate list sizes. Problems are very difficult for constant list sizes. We end
here with the field of non-adaptive strategies wide open!
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GTIT-Supplement

Noiseless coding for multiple purposes: a combinatorial model

Important developments in Computer Science concerning communication as-
pects in parallel computing have been brought to our attention by Micah
Adler at the Dagstuhl Seminar “Algorithmic Aspects of Large and Complex
Networks”, 16.9.2001-21.9.2001.

Important references can be found in [A1] and [A2]. A basic model presented is
readily described. The model is different from the probabilistic model discussed
in Section 17.

Given is an n × n-matrix M with 0 and 1 as entries to a sender. There are n
receivers, receiver j wants to know the j-th column of M (perfectly).

There are two kinds of data:

Common information: the sender can give m bits about M to all re-
ceivers.

Separate information: each receiver can get a window with k rows of M
with its content. This counts kn bits for him and there is no price for specifying
the k rows (with ⌈log

(

n
k

)

⌉ bits).

Obviously, choosing k = n for all receivers (and m = 0) they all get their
desired information for the price n2. The same can be achieved by choosing
k = 0 and m = n2 bits of common information.

How can one do better?

The pointer idea

Concerning receiver j the sender proceeds as follows:

1. He looks at the first k rows in M and reads cj(k) in the upper j-th column
of length k.

2. If cj(k) appears as substring in some column between rows k + 1 and
n thus he gives as separate information to receiver j the k rows together
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with this column, which requires ⌈log n⌉ bits counting for the common in-
formation and counts kn bits separate information. Knowing 2k positions
receiver j is done with n − 2k last common bits.

3. If there is no such column-substring, then the sender just sends the first
k rows to receiver j.

Notice that in this case no substring cj(k) occurs in a column of the lower
part matrix, in particular not in column j.

This dramatically reduces the remaining possibilities for the lower part matrix.
Indeed, the number of 0-1-sequences of length n − k not containing cj(k)
is actually known to be independent of the value cj(k) of an k-length 0-1-
sequence and is bounded by

k−1
∑

t=0

(

n − k

t

)

≤ k 2h( k
n−k )(n−k).

This is bitwise less than h
(

k
n−k

)

(n − k)t log k.

The procedure gives kn separate bits for every receiver and the common num-
ber of bits is bounded by

n max

(

n − 2k + log n, h

(

k

n − k

)

(n − k) + log k

)

and for k = nα, for instance, this equals

n
(

n − 2k + o(k)
)

.

Finally we have not tried to be very efficient, but we have achieved our goal

n
(

n − 2k + o(k)
)

+ nk =
(

n − k + o(k)
)

< n2.
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