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1. Introduction

The object of this note is to prove

Theorem 1. Let S be the family of all subsets of the set {1,2,....n}. If o, B, v, 6 are
non-negative real valued functions on S such that

a(a) Bb) < ylaub)d(anb)  for all a,bes, (1)
then
a(A)f(B)Sy(AvB)S(AAB) forall A,BcS, (2)

where a(A)=) (acA)a(a) and Av B={aub;acA,beB} and A A B
={anb;acA,beB}.

Since every distributive lattice can be embedded in the subsets of some set
we get an immediate

Corollary. If S is a distributive lattice and (2) holds whenever A,B each contain
exactly one point of S then (2) always holds. Here S, A, B may be infinite.

Our theorem contains as special cases results of Anderson, Daykin, Fortuin,
Ginibre, Greene, Holley, Kasteleyn, Kleitman, Seymour, West and others!. We
discovered it whilst guests at the Mathematisches Forschungsinstitut Oberwol-
fach and thank all concerned for their kindness to us.

2. The Proof

Case n=1. Write 0, 1 for ¢, {1} respectively. The Conditions (1) are
a(0) $(0) < (0) 6(0) A3)

! This is explained in detail in the forthcoming paper “Inequalities for a pair of maps Sx§ =8

with S a finite set” by the same authors (submitted to Math. Zeitschrift). This paper contains several
new inequalities also for other binary operations
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«(0) f(1)=y(1)6(0)=¢  say 4)

(1) B0)=¢ )

(1) B(1) < y(1) 6(1). (6)
When A and B both contain two elements the result (2) becomes

(@(0) + (1)) (B(0) + B(1)) = (y(0) + 7(1)) (8(0) + 6(1)). (7

Suppose 0< ¢ for otherwise (7) is trivial. We decrease y(0) and (1) until we get
equality in (3) and {6). Then (7) simplifies to

0=((0) B(1) — &) (a(1) BO) — &)/,

which holds by (4) and (5). The remaining choices for 4, B hold by inspection, so
case n=1 is verified.

Induction Step. Assume the result for n=m=>=1 and consider the case n=m+ 1.
Write S, T, P for the family of all subsets of {1,2,...,m+1}, {2,3,....m+1}, {1}
respectively.

Given aeS put a*=a\{1}eT and *a=a\{2,3,...,m+1}eP. Let o, f5, y, 4, A4,
B be chosen and fixed. Define «,, §,, y,, 6, on T by

ay(c)=Y (aed, a*=c)a(a)

ya(c)=) (aed v B, a* =c) y(a)

with similar expressions for 8, and J,. Then

w(A4)= ZA“(a)= %( 24 oc(a))= ZTOCZ(C)=O‘2(T)

and similarly

BB)=pAT), yAvB)=y,(T), A AB)=0,(T)
Assume for the moment that

a,(¢) Bo(d) S y,(cud) by(cnd)  for all ¢, deT (8)
Using Tv T=T and our induction hypothesis we get

(A) B(B)=,(T) BAT)S 7TV T)S(TAT)=9(A v B)d(A A B)

which is (2) as required. Hence it remains to prove (8).
Let ¢, de T be fixed arbitrarily. Write e=cud and f=cnd. Define «, ,,7,,6,
on P by

(o) ={g(puc) if puceA

otherwise

Blpud) if pudeB
B 1@):{0 otherwise
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) ()= y(pue) if puecAVB
=0 otherwise

_Jolpuf) if pufeAnB
04(p) ~{0 otherwise
Then
ay(c)= Z afa)= Z Z a(a)\ = Z ay(p)=04(P)
:*6=AC peP :*E=Ac peP

*a=p

and similarly

By(d)=PB1(P),  vale)=p.(P),  O5(f)=0,(P).
Assume for the moment that

o, (p) B1(@) £7:(puq) 6,(png)  for all p,geP.
Then by the case n=1 we have

%,(P) B1(P)=y,(P v P)6,(P A P),

or in other words (8) holds. So it now remains for (9) to be proved.
The left hand side of (9) is zero unless puced and gudeB in which case it is
a(puc) flaud). We then have

(pucyulqgud)=(pug)uecAv B and
(pucin(qud)=(png)ufeA AB.

Hence the right hand side of (9) is yp((pug)ue)d((png)uf) so (9) holds by
hypothesis (1) and Theorem 1 follows inductively.
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