Zeitschrift für

## Wahrscheinlichkeitstheorie

und verwandte Gebiete

© by Springer-Verlag 1978

# An Inequality for the Weights of Two Families of Sets, Their Unions and Intersections

Rudolf Ahlswede<sup>1</sup> and David E. Daykin<sup>2</sup>

- <sup>1</sup> Fakultät für Mathematik, Universität 4800 Bielefeld, Federal Republic of Germany
- <sup>2</sup> Department of Mathematics, University of Reading, Whiteknights, Reading, Berkshire, England

### 1. Introduction

The object of this note is to prove

**Theorem 1.** Let S be the family of all subsets of the set  $\{1, 2, ..., n\}$ . If  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  are non-negative real valued functions on S such that

$$\alpha(a) \beta(b) \le \gamma(a \cup b) \delta(a \cap b)$$
 for all  $a, b \in S$ , (1)

then

$$\alpha(A) \beta(B) \leq \gamma(A \vee B) \delta(A \wedge B) \quad \text{for all } A, B \subset S,$$
 (2)

where  $\alpha(A) = \sum (a \in A) \alpha(a)$  and  $A \lor B = \{a \cup b; a \in A, b \in B\}$  and  $A \land B = \{a \cap b; a \in A, b \in B\}$ .

Since every distributive lattice can be embedded in the subsets of some set we get an immediate

**Corollary.** If S is a distributive lattice and (2) holds whenever A, B each contain exactly one point of S then (2) always holds. Here S, A, B may be infinite.

Our theorem contains as special cases results of Anderson, Daykin, Fortuin, Ginibre, Greene, Holley, Kasteleyn, Kleitman, Seymour, West and others<sup>1</sup>. We discovered it whilst guests at the Mathematisches Forschungsinstitut Oberwolfach and thank all concerned for their kindness to us.

#### 2. The Proof

Case n=1. Write 0,1 for  $\phi$ , {1} respectively. The Conditions (1) are

$$\alpha(0)\,\beta(0) \le \gamma(0)\,\delta(0) \tag{3}$$

This is explained in detail in the forthcoming paper "Inequalities for a pair of maps  $S \times S \to S$  with S a finite set" by the same authors (submitted to Math. Zeitschrift). This paper contains several new inequalities also for other binary operations

$$\alpha(0)\,\beta(1) \le \gamma(1)\,\delta(0) = \varepsilon \qquad \text{say} \tag{4}$$

$$\alpha(1)\,\beta(0) \le \varepsilon \tag{5}$$

$$\alpha(1)\,\beta(1) \le \gamma(1)\,\delta(1). \tag{6}$$

When A and B both contain two elements the result (2) becomes

$$(\alpha(0) + \alpha(1))(\beta(0) + \beta(1)) \le (\gamma(0) + \gamma(1))(\delta(0) + \delta(1)). \tag{7}$$

Suppose  $0 < \varepsilon$  for otherwise (7) is trivial. We decrease  $\gamma(0)$  and  $\delta(1)$  until we get equality in (3) and (6). Then (7) simplifies to

$$0 \le (\alpha(0) \beta(1) - \varepsilon) (\alpha(1) \beta(0) - \varepsilon)/\varepsilon$$

which holds by (4) and (5). The remaining choices for A, B hold by inspection, so case n=1 is verified.

Induction Step. Assume the result for  $n=m \ge 1$  and consider the case n=m+1. Write S, T, P for the family of all subsets of  $\{1, 2, ..., m+1\}, \{2, 3, ..., m+1\}, \{1\}$  respectively.

Given  $a \in S$  put  $a^* = a \setminus \{1\} \in T$  and  $*a = a \setminus \{2, 3, ..., m+1\} \in P$ . Let  $\alpha, \beta, \gamma, \delta, A$ , B be chosen and fixed. Define  $\alpha_2, \beta_2, \gamma_2, \delta_2$  on T by

$$\alpha_2(c) = \sum (a \in A, \ a^* = c) \alpha(a)$$
$$\gamma_2(c) = \sum (a \in A \lor B, \ a^* = c) \gamma(a)$$

with similar expressions for  $\beta_2$  and  $\delta_2$ . Then

$$\alpha(A) = \sum_{a \in A} \alpha(a) = \sum_{c \in T} \left( \sum_{\substack{a \in A \\ a^* = c}} \alpha(a) \right) = \sum_{c \in T} \alpha_2(c) = \alpha_2(T)$$

and similarly

$$\beta(B) = \beta_2(T), \quad \gamma(A \vee B) = \gamma_2(T), \quad \delta(A \wedge B) = \delta_2(T).$$

Assume for the moment that

$$\alpha_2(c) \beta_2(d) \leq \gamma_2(c \cup d) \delta_2(c \cap d)$$
 for all  $c, d \in T$ . (8)

Using  $T \vee T = T$  and our induction hypothesis we get

$$\alpha(A) \beta(B) = \alpha_2(T) \beta_2(T) \leq \gamma_2(T \vee T) \delta_2(T \wedge T) = \gamma(A \vee B) \delta(A \wedge B)$$

which is (2) as required. Hence it remains to prove (8).

Let  $c, d \in T$  be fixed arbitrarily. Write  $e = c \cup d$  and  $f = c \cap d$ . Define  $\alpha_1, \beta_1, \gamma_1, \delta_1$  on P by

$$\alpha_1(p) = \begin{cases} \alpha(p \cup c) & \text{if } p \cup c \in A \\ 0 & \text{otherwise} \end{cases}$$

$$\beta_1(p) = \begin{cases} \beta(p \cup d) & \text{if } p \cup d \in B \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{split} \gamma_1(p) = & \begin{cases} \gamma(p \cup e) & \text{if } p \cup e \in A \vee B \\ 0 & \text{otherwise} \end{cases} \\ \delta_1(p) = & \begin{cases} \delta(p \cup f) & \text{if } p \cup f \in A \wedge B \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Then

$$\alpha_2(c) = \sum_{\substack{a \in A \\ a^* = c}} \alpha(a) = \sum_{\substack{p \in P}} \left\langle \sum_{\substack{a \in A \\ a^* = c \\ *_a = p}} \alpha(a) \right\rangle = \sum_{\substack{p \in P}} \alpha_1(p) = \alpha_1(P)$$

and similarly

$$\beta_2(d) = \beta_1(P), \quad \gamma_2(e) = \gamma_1(P), \quad \delta_2(f) = \delta_1(P).$$

Assume for the moment that

$$\alpha_1(p) \beta_1(q) \leq \gamma_1(p \cup q) \delta_1(p \cap q)$$
 for all  $p, q \in P$ .

Then by the case n=1 we have

$$\alpha_1(P) \beta_1(P) \leq \gamma_1(P \vee P) \delta_1(P \wedge P),$$

or in other words (8) holds. So it now remains for (9) to be proved.

The left hand side of (9) is zero unless  $p \cup c \in A$  and  $q \cup d \in B$  in which case it is  $\alpha(p \cup c) \beta(a \cup d)$ . We then have

$$(p \cup c) \cup (q \cup d) = (p \cup q) \cup e \in A \lor B$$
 and  $(p \cup c) \cap (q \cup d) = (p \cap q) \cup f \in A \land B$ .

Hence the right hand side of (9) is  $\gamma((p \cup q) \cup e) \delta((p \cap q) \cup f)$  so (9) holds by hypothesis (1) and Theorem 1 follows inductively.

#### References

- 1. Anderson, I.: Intersection theorems and a lemma of Kleitman. Discrete Math. (To appear)
- 2. Daykin, D.E.: A lattice is distributive iff  $|A||B| \le |A \lor B||A \land B|$ . Nanta Math. (To appear)
- 3. Daykin, D.E.: Poset functions commuting with the product and yielding Čebyčev type inequalities. C.N.R.S. Colloque, Paris (1976) (To appear)
- 4. Daykin, D.E., Kleitman, D.J., West. D.B.: The number of meets between two subsets of a lattice. J. Combinatorial Theory [submitted]
- 5. Greene, C., Kleitman, D.J.: Proof techniques in the theory of finite sets. M.A.A. Studies in Combinatorics. Editor G.C. Rota (To appear)
- Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 89–103 (1971)
- 7. Holley, R.: Remarks on the FKG inequalities. Comm. Math. Phys. 36, 227-231 (1974)
- 8. Kleitman, D.J.: Families of non-disjoint subsets. J. Combinatorial Theory 1, 153-155 (1966)
- Seymour, P.D.: On incomparable collections of sets. Mathematika Period. Sb. Pererodov Inostran Statei. 20, 208–209 (1973)