ZIF COOPERATION GROUP SEARCH METHODOLOGIES

Workshop "Search Methodologies III"

September 3 - 7, 2012

Convenors: Ferdinando Cicalese Christian Deppe

PROGRAM AND BOOKLET OF ABSTRACTS

Contents

1 Search Methodologies	1
2 Program	3
3 Adaptive Group Testing: a Channel Coding Approach Matthew Aldridge	9
4 Strange Phenomena in Monte-Carlo Game Tree Search Ingo Althöfer	11
5 Quantum Error Correction: An Introduction <i>Harout Aydinian</i>	13
6 Extracting Significant Parameters from Noisy Observations and Their Use for Authentication Vladimir Balakirsky	15
7 Fuzzy Self-Learning Search Bernhard Balkenhol	17
8 Completeness and Multiplication of Fix-Free Codes Regarding Ahlswede's 3/4-Conjecture Michael Bodewig	19
9 Learning a Hidden Graph <i>Huilan Chang</i>	21
10 Restricted Isometry of Fourier Matrices and List Decodability of Random Linear Codes Mahdi Cheraghchi	23
11 k-Dimensional m-Part Sperner Families and Mixed Orthogonal Arrays <i>Eva Czabarka</i>	25

iii

iv 12 On Optimal Strict Multistage Group Testing Peter Damaschke	27
13 Computing Majority with Triple Queries Gianluca De Marco	29
14 Using Suffix Trees for Alignment-Free Sequence Comparison and Phylogenetic Reconstruction Andreas Dress	31
15 Superimposed Codes and Non-Adaptive Threshold Group Testing Arkadii D'yachkov	33
16 Communication-Less Agent Location Discovery Leszek A. Gasieniec	35
17 Majority and Plurality Problems Dániel Gerbner	37
18 Search in Hamming space, Mastermind game etc. Grigory A. Kabatyansky	39
19 When the Lie Depends on the Target Gyula O. H. Katona	41
20 Boundary Patrolling by Mobile Agents <i>Evangelos Kranakis</i>	43
21 Group Testing with Two Defectives Vladimir Lebedev	45
22 Some Problems and Algorithms in Non-Standard String Matching Zsuzsanna Lipták	47
23 On Connection with Compressed Sensing and Some Other New Developments in the Search Theory Mikhail Malyutov	49
24 Construction of Semi-Quantitative Group Testing Designs <i>Olgica Milenkovic</i>	51
25 Random Coding Bounds on the Rate for Non-Adaptive Threshold Group Testing Nikita Polyansky	53

	Contents	v
26 Efficient Signature Scheme for Network Coding <i>Ely Porat</i>		55
27 The Smoothed Competitive Ratio of Online Caching Rüdiger Reischuk		57
28 Search Problems Related to Dispersion, Graph Entropy and Guessing Games Soren Riis		59
29 Group Testing and Coding Theory Atri Rudra		61
30 On Superimposed Codes and Designs Vyacheslav V. Rykov		63
31 Some Constructions for the Diamond Problem László Székely		65
32 Multiparty Communication Complexity of Vector–Valued and Sum–Type Functions Ulrich Tamm		67
33 Search with Partial Information Olivier Teytaud		69
34 Upper and Lower Bounds for Competitive Group Testing Eberhard Triesch		71
35 On a problem of Rényi and Katona Gábor Wiener		73
36 List of Participants		75

SEARCH METHODOLOGIES

In 1979, Rudolf Ahlswede and Ingo Wegener wrote one of the first books on search (and surely the first in Germany). In the introduction the authors wrote that they would

"treat only search problems for which we know what our goal is and which search methods are available. Within this framework we look for search strategies which are as good as possible (successful, fast, economical, simple).

We want to use our concepts and classifications to make a contribution to working out the essential, common points of the various search problems. This ought to help the reader to understand more quickly the problems of this nature and get a quick grasp of the most recent results. At the same time, we would like to inspire as many readers as possible to engage in research. By contrasting the various search problems and the methods for their solution, we hope finally to improve the exchange of information between scientists in the various fields. The necessity for this is underscored simply by the fact that certain results are 'discovered' again and again.

We intentionally dispense with a uniform and universally polished theory of searching because this leads to premature conclusions in such a dynamic field and tempts one to leave further developments to the *perpetuum mobile* of the mathematical apparatus. We are interested in maintaining a certain consciousness of the problems and not in preventing controversies on the various assumptions and working methods. That is why we choose 'Search Problems' and not 'The Theory of Searching' for the title of this book."

Three decades ago it was often asked whether search is a scientific subject at all! Instead, in the three decades passed since the appearance of Search Problems, there has been an explosion of developments in the research field of "search". New models, novel techniques and analytical tools have been developed for attacking problems of search within Computer Science, Image Reconstruction, Machine Learning, Information Theory (classical and quantum theoretical), and Operation Research. There are already parallels in methods in different disciplines like data transmission over noisy channels with feedback corresponds to search with random answers and foraging of animals corresponds to search for information in the internet.

Time seems to be mature for a more comprehensive understanding of such a broad area of research, with the goal of defining the nature, scope (and the borders) of a general Theory of Search.

A broad class of search problems are defined in terms of a space of objects and a space of tests (questions). Different performance criteria can be chosen, e.g., number of tests performed, time of computation, space requirements, *et cetera*. Furthermore one distinguishes between combinatorial and probabilistic models. Especially important is the study of adaptive and non-adaptive strategies as well as the analysis of their intermediate forms.

These specifications define a first basic classification which captures most models we deal with in one-sided search, where, so to speak, the targets are passive. Lifting the assumption that the target is passive, i.e., does not change or move, during the process, like in two-sided search pioneered by B.O. Koopman, the new model includes for instance search in game trees and rendezvous search. Furthermore, Quantum searching has analogue models and genuine novelties. More needs to be done, and will be done.

PROGRAM

Monda	Monday September 03, 2012	
	- Chair H. Aydinian -	
9:00	Opening Joanna Pfaff-Czarnecka (Member of ZiF's Board of Directors),	
	Ferdinando Cicalese and Christian Deppe, Welcoming Address	
9:15	E. Czabarka, K-Dimensional M-part Sperner Families and Mixed Orthogonal Arrays	
10:10	- Coffee Break -	
	- Chair H. Aydinian -	
10:40	M. Bodewig, Completeness and Multiplication of Fix-Free Codes Regarding Ahlswede's 3/4-Conjecture	
11:20	R. Reischuk, The Smoothed Competitive Ratio of Online Caching	
12:30	- Lunch -	
	- Chair C. Deppe-	
14:00	S. Riis, Search Problems Related to Dispersion, Graph Entropy and Guessing Games	
15:10	I. Althöfer, Strange Phenomena in Monte-Carlo Game Tree Search	
15:50	- Coffee Break -	
	- Chair C. Deppe -	
16:10	U. Tamm, Multiparty Communication Complexity of Vector–Valued and Sum–Type Functions	
16:50	RUMP Session	
18:30	Welcome Dinner	

Tuesda	Tuesday September 04, 2012	
	- Chair F. Cicalese -	
9:00	A. Rudra, Group Testing and Coding Theory	
10:00	V. Lebedev, Group Testing with Two Defectives	
10:40	- Coffee Break -	
	- Chair F. Cicalese -	
11:00	P. Damaschke, On Optimal Strict Multistage Group Testing	
11:40	V. Rykov: On Superimposed Codes and Designs	
12:30	- Lunch -	
	- Chair H. Aydinian-	
14:30	A. D'yachkov, Superimposed Codes and Non-Adaptive Threshold Group Test- ing	
15:10	N. Polyanskii, Random Coding Bounds on the Rate for Non-Adaptive Threshold Group Testing	
15:50	- Coffee Break -	
	- Chair H. Aydinian -	
16:10	M. Aldridge, Adaptive Group Testing: a Channel Coding Approach	
16:50	M. Malioutov, On Connection with Compressed Sensing and Some Other New Developments in the Search Theory	
17:30	RUMP Session	

Wedne	Wednesday September 05, 2012	
	- Chair C. Deppe -	
9:15	E. Triesch, Upper and Lower Bounds for Competitive Group Testing	
9:55	H. Aydinian, Quantum Error Correcting: An Introduction	
10:35	- Coffee Break -	
	- Chair C. Deppe -	
11:00	G. Katona, When the Lie Depends on the Target	
11:40	G. De Marco, Computing Majority with Triple Queries	
12:30	- Lunch -	
	- Chair F. Cicalese -	
14:30	D. Gerbner, Majority and Plurality Problems	
15:10	G. Wiener, On a Problem of Rényi and Katona	
15:50	- Coffee Break -	
	- Chair F. Cicalese -	
16:10	E. Porat, Efficient Signature Scheme for Network Coding	
16:50	RUMP Session	
18:30	Conference Dinner	

Thurse	Thursday September 06, 2012	
	- Chair H. Aydinian -	
9:00	L. Gasieniec, Communication-Less Agent Location Discovery	
10:00	E. Kranakis: Boundary Patrolling by Mobile Agents	
10:40	- Coffee Break -	
	- Chair H. Aydinian -	
11:00	O. Teytaud, Search with Partial Information	
11:40	B. Balkenhol, Fuzzy Self-Learning Search	
12:30	- Lunch -	
	- Chair F. Cicalese -	
14:30	A. Dress, Using Suffix Trees for Alignment-Free Sequence Comparison and Phylogenetic Reconstruction	
15:10	Zs. Lipták, Some Problems and Algorithms in Non-Standard String Matching	
15:50	- Coffee Break -	
17:00	Sightseeing Tour	

Friday	Friday September 07, 2012	
	- Chair C. Deppe -	
9:00	L. Székely, Some Constructions for the Diamond Problem	
9:40	V. Balakirsky, Extracting Significant Parameters from Noisy Observations and Their Use for Authentication	
10:20	- Coffee Break -	
	- Chair C. Deppe -	
10:40	RUMP Session	
12:30	- Lunch -	

ADAPTIVE GROUP TESTING: A CHANNEL CODING APPROACH

Matthew Aldridge

University of Bristol School of Mathematics University Walk UK - Bristol, BS8 1TW

Group testing is the combinatorial problem of identifying the defective items in a population by grouping items into test pools. Recently, nonadaptive group testing - where all the test pools must be decided on at the start - has been studied from an information theory point of view. Using techniques from channel coding, upper and lower bounds have been given on the number of tests required to accurately recover the defective set, even when the test outcomes can be noisy. In this talk, we give the first information theoretic result on adaptive group testing - where the outcome of previous tests can influence the makeup of future tests. We show that adaptive testing does not help much, as the number of tests required obeys the same lower bound as nonadaptive testing. Our proof uses similar techniques to the proof that feedback does not improve channel capacity.

STRANGE PHENOMENA IN MONTE-CARLO GAME TREE SEARCH

Ingo Althöfer

Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Institut für Angewandte Mathematik D-07737 Jena

In a game tree, pure Monte Carlo search with integral parameter T (called MC(T) for short) runs as follows. In the current position, for each feasible move T random games are generated. The move with the best average score is played. Of course, often pure Monte Carlo will not play a game-theoretically perfect move. We report on several phenomena of pure Monte Carlo.

(1) The BASIN STRUCTURE in Self Play

When MC(T) plays versus MC(2T), typically MC(T) wins less than half of the games. Often there is an intermediate value T* such that the winning quota of MC(T) vs MC(2t) is smallest for this T*.

(2) LAZINESS of Monte Carlo

In positions where the winning probability in random games is far away from 50

(3) Asymptotically Perfect Play of Pure Monte Carlo in BOARD FILLING GAMES

(4) Monte Carlo Anomalies

There are situations where pure Monte Carlo converges to perfect play but MC(t) is clearly better than MC(T) for some pairs (t,T) of small parameters with t ; T.

Acknowledgement

Some of the results were achieved in collaboration with Matthias Beckmann (on 1) and Wesley Turner (on 4).

QUANTUM ERROR CORRECTION: AN INTRODUCTION

Harout Aydinian

Universität Bielefeld Fakultät für Mathematik Postfach 10 01 31 D - 33615 Bielefeld

We will give a brief introduction to the basics of quantum error correcting codes. Quantum error correction is needed to protect quantum information from errors due to decoherence and other quantum noise. Error correction is especially important in quantum computers, because efficient quantum algorithms make use of large scale quantum interference. The first quantum error correcting codes discovered by Shor, Steane, and Caldebank show that quantum error correction is possible, based on principles similar to classical error correction. Stabilizer codes are an important class of quantum codes which are the quantum analogues of classical additive codes.

EXTRACTING SIGNIFICANT PARAMETERS FROM NOISY OBSERVATIONS AND THEIR USE FOR AUTHENTICATION

Vladimir Balakirsky

American University of Armenia Engineering Research Center Marshal Baghramyan Ave., 40 AM - 0019 Yerevan

We deal with the setup when data, received at the enrollment stage, have to be mapped to a relatively short record that is stored in the database. At the verification stage, an investigation of other received data and the content of the database results in the acceptance (received data represent a noisy version of previous observations) or the rejection decision. The privacy protection requirements lead to the design of secret sharing schemes where a part of the secret, created at the enrollment stage, is published and another part is hidden by a one-way hash function. The hidden part has to be decoded after noisy observations arrive at the verification stage. An efficiency of the scheme essentially depends on parameters, extracted from the data, that are used to form the secret. They are called significant parameters. We present extracting algorithms and demonstrate the procedures for fingerprint-type images, available in digital format.

FUZZY SELF-LEARNING SEARCH

Bernhard Balkenhol infinity3 GmbH Boulevard 11 D - 33613 Bielefeld

A search algorithm will be presented which is used to find products in a huge database on the basis of incomplete or inaccurate data. A customer searches for a product in an online-store. To find his product he enters keywords which may be incomplete or inaccurate. The goal of the algorithm is to give the customer an ordered list of possible products such that the product he was searching for appears within the first ten suggestions.

COMPLETENESS AND MULTIPLICATION OF FIX-FREE CODES REGARDING AHLSWEDE'S 3/4-CONJECTURE

Michael Bodewig RWTH Aachen University Lehrstuhl für Mathematik D - 52056 Aachen

Given a nonnegative sequence α of integers with Kraftsum at most 3/4, Ahlswede *et al.* proposed in [1] the existence of a fix-free code with exactly α_n words for any length *n*.

According to Kraft's inequality, complete codes have the highest possible Kraftsum 1 among the class of thin fix-free codes. Their specific structure and property of delivering fix-free codes with Kraftsum at most 3/4 by leaving out words make them an interesting subject of study.

We describe the construction of a three-parametric class of complete fix-free codes. Using both so called *n*-closed systems and multiplication, these complete fix-free codes are used to enlarge the class of known fix-free codes.

In addition, we present a sufficient criterium for the conjecture in terms of elementary sequence-shiftings preserving the fix-freedom of the associated code.

This is joint work with Eberhard Triesch.

 Ahlswede, R., Balkenhol, B., Khachatrian, L.: Some properties of fix-free codes. Proc. Int. Seminar Coding Theory and Combinator., Thahkadzor, Armenia (1996) 20–33

LEARNING A HIDDEN GRAPH

Huilan Chang

National Chiao Tung University Department of Applied Mathematics 2F, Science Building 1001 Ta Hsueh Road Taiwan - Hsinchu, 30010

Classical group testing is a search paradigm where the goal is the identification of individual positive elements in a large collection of elements by asking queries of the form "Does a set of elements contain a positive one?". A graph reconstruction problem that generalizes the classical group testing problem is to reconstruct a hidden graph from a given family of graphs by asking queries of the form "Whether a set of vertices induces an edge". Reconstruction problems on families of Hamiltonian cycles, matchings, stars and cliques on *n* vertices have been studied where algorithms of using at most $2n \lg n$, $(1 + o(1))(n \lg n)$, 2n and 2n queries were proposed, respectively. In this talk we improve them to $(1 + o(1))(n \lg n)$, $(1 + o(1))(n \lg n2)$, $n + 2 \lg n$ and $n + \lg n$, respectively. Threshold group testing is another generalization of group testing which is to identify the individual positive elements in a collection of elements under a more general setting, in which there are two fixed thresholds *l* and *u*, with l < u, and the response to a query is positive if the tested subset of elements contains at least u positive elements, negative if it contains at most *l* positive elements, and it is arbitrarily given otherwise. For the threshold group testing problem with l = u1, we show that *p* positive elements among n given elements can be determined by using $O(p \lg n)$ queries, with a matching lower bound.

[Joint work with Hong-Bin Chen, Hung-Lin Fu, and Chie-Huai Shi.]

RESTRICTED ISOMETRY OF FOURIER MATRICES AND LIST DECODABILITY OF RANDOM LINEAR CODES

Mahdi Cheraghchi

Carnagie Mellon University Computer Science Department Gates-Hillman Complex 7223 5000 Forbes Avenue USA - Pittsburgh, PA 15213

We prove that a random linear code over \mathbb{F}_q , with probability arbitrarily close to 1, is list decodable at radius $1 - 1/q - \varepsilon$ with list size $L = O(1/\varepsilon^2)$ and rate $R = \Omega_q(\varepsilon^2/(\log^3(1/\varepsilon)))$. Up to the polylogarithmic factor in $1/\varepsilon$ and constant factors depending on q, this matches the lower bound $L = \Omega_q(1/\varepsilon^2)$ for the list size and upper bound $R = O_q(\varepsilon^2)$ for the rate. Previously only existence (and not abundance) of such codes was known for the special case q = 2 (Guruswami, Håstad, Sudan and Zuckerman, 2002).

In order to obtain our result, we employ a relaxed version of the well known Johnson bound on list decoding that translates the *average* Hamming distance between codewords to list decoding guarantees. We furthermore prove that the desired average-distance guarantees hold for a code provided that a natural complex matrix encoding the codewords satisfies the Restricted Isometry Property with respect to the Euclidean norm (RIP-2). For the case of random binary linear codes, this matrix coincides with a random submatrix of the Hadamard-Walsh transform matrix that is well studied in the compressed sensing literature.

Finally, we improve the analysis of Rudelson and Vershynin (2008) on the number of random frequency samples required for exact reconstruction of *k*-sparse signals of length *N*. Specifically, we improve the number of samples from $O(k \log(N) \log^2(k) (\log k + \log \log N))$ to $O(k \log(N) \log^3(k))$. The proof involves bounding the expected supremum of a related Gaussian process by using an improved analysis of the metric defined by the process. This improvement is crucial for our application in list decoding.

[Joint work with Venkatesan Guruswami and Ameya Velingker.]

K-DIMENSIONAL M-PART SPERNER FAMILIES AND MIXED ORTHOGONAL ARRAYS

Eva Czabarka

University of South Carolina Department of Mathematics USA - Columbia, SC 29208 czabarka@math.sc.edu

Aydinian *et al.* [J. Combinatorial Theory A **118**(2)(2011), 702–725] substituted the usual BLYM inequality for *L*-Sperner families with a set of *M* inequalities for $(m_1, m_2, ..., m_M; L_1, L_2, ..., L_M)$ type *M*-part Sperner families and showed that if all inequalities hold with equality, then the family is homogeneous. Aydinian *et al.* [Australasian J. Comb. **48**(2010), 133–141] observed that all inequalities hold with equality if and only if the transversal of the Sperner family corresponds to a simple mixed orthogonal array with constraint *M*, strength M - 1, using $m_i + 1$ symbols in the *i*th column. In this paper we define *k*-dimensional *M*-part Sperner multi-families with parameters $L_P : P \in {\binom{[M]}{k}}$ and prove $\binom{M}{k}$ BLYM inequalities for them. We show that if k < M and all inequalities hold with equality, then these multi-families must be homogeneous with profile matrices that are strength M - k mixed orthogonal arrays. For k = M, homogeneity is not always true, but some necessary conditions are given for certain simple families. Following the methods of Aydinian *et al.* [Australasian J. Comb. **48**(2010), 133–141], we give new constructions to simple mixed orthogonal arrays with constraint *M*, strength M - k, using $m_i + 1$ symbols in the *i*th column. We extend the convex hull method to *k*-dimensional *M*-part Sperner multi-families, and allow additional conditions providing new results even for simple 1-part Sperner families.

[Joint work with Harout Aydinian and László A. Székely.]

ON OPTIMAL STRICT MULTISTAGE GROUP TESTING

Peter Damaschke

Chalmers University Department of Computer Science and Engineering

This ongoing work is an effort to construct provably optimal strategies that find up to *d* defectives among n elements by group tests in *s* stages, for specific parameters *n*, *d*, *s*. We focus on strict group testing, i.e., the strategies shall identify up to *d* defectives or report that more than *d* defectives are present. The main challenge is to prove lower bounds on test numbers. One of our tools is a characterization of 1-stage pooling designs, given an arbitrary family of candidate sets for the defectives. The optimal test number is then the chromatic number of a certain conflict graph. This generalizes the well-known *d*-disjunctness property for strict 1-stage group testing when the candidate sets are all *d*-subsets. So far we are able to calculate exact test numbers for n < 11 (and any *d* and *s*) and almost exact test numbers for some larger *n*, comparable to the range considered by Huang and Hwang (2001) for the case s = 1.

[Joint work with Azam Sheikh Muhammad, supported by the Swedish Research Council.]

COMPUTING MAJORITY WITH TRIPLE QUERIES

Gianluca De Marco

Università degli Studi di Salerno Dipartimento di Informatica ed Applicazioni Via Ponte don Melillo I - 84084 Fisciano (SA)

Consider a bin containing n balls colored with two colors. In a k-query, k balls are selected by a questioner and the oracle's reply is related (depending on the computation model being considered) to the distribution of colors of the balls in this k-tuple; however, the oracle never reveals the colors of the individual balls. Following a number of queries the questioner is said to determine the majority color if it can output a ball of the majority color if it exists, and can prove that there is no majority if it does not exist. We investigate two computation models (depending on the type of replies being allowed). We give algorithms to compute the minimum number of 3-queries which are needed so that the questioner can determine the majority color and provide tight and almost tight upper and lower bounds on the number of queries needed in each case.

USING SUFFIX TREES FOR ALIGNMENT-FREE SEQUENCE COMPARISON AND PHYLOGENETIC RECONSTRUCTION

Andreas Dress infinity3 GmbH Boulevard 11 D - 33613 Bielefeld

In [QI, J., Wang, B., Hao, B., 2004. Whole proteome prokaryote phylogeny without sequence alignment: a k-string composition approach, Molecular Evolution 58, 1–11], Hao Bailin and coworkers presented a method for alignment-free sequence comparison that was based on a clever variant k-string comparison of protein sequences. In this work, they restricted their attention to comparing strings of fixed length k. In joint work with Alberto Apostolico and Olgert Denas, it was shown that making appropriate use of suffix trees and reinterpreting – and, thus, generalizing – their variant of k-string comparison from an information-theoretic point of view, one can not only speed up the required search procedures by several orders of magnitude, but at the same time take account of all (informative) strings of actually any lengths. In my lecture, I will shortly sketch our approach and present some of our results.

SUPERIMPOSED CODES AND NON-ADAPTIVE THRESHOLD GROUP TESTING

Arkadii D'yachkov

Moscow State University Faculty of Mechanics & Mathematics Department of Probability Theory Russia - Moscow 119899

I will discuss superimposed codes and non-adaptive group testing designs arising from the potentialities of compressed genotyping models in molecular biology. The given talk was motivated by the 30th anniversary of D'yachkov-Rykov recurrent upper bound on the rate of superimposed codes published in 1982. I was also inspired by recent results obtained for non-adaptive threshold group testing which develop the theory of superimposed codes.

COMMUNICATION-LESS AGENT LOCATION DISCOVERY

Leszek A. Gasieniec

University of Liverpool Department of Computer Science Ashton Building, Ashton Street UK - Liverpool L69 3BX

We study randomised distributed communication-less coordination mechanisms for n uniform anonymous agents located on a circle and a line segment. We assume the agents are located at arbitrary but distinct positions, unknown to other agents. The agents perform actions in synchronised rounds. At the start of each round an agent chooses the direction of its movement (clockwise or anticlockwise), and moves at unit speed during this round. Agents are not allowed to overpass, i.e., when an agent collides with another it instantly starts moving with the same speed in the opposite direction. Agents cannot leave marks on the ring, have zero vision and cannot exchange messages. However, on the conclusion of each round each agent has access to (some, not necessarily all) information regarding its trajectory during this round. This information can be processed and stored by the agent for further analysis.

The location discovery task to be performed by each agent is to determine the initial position of every other agent and eventually to stop at its initial position. Our first result [1] is a fully distributed randomised (Las Vegas type) algorithm, solving the location discovery problem w.h.p. in $O(nlog^2n)$ rounds under assumption that the information concerning trajectories of the agents on the ring is very limited. Further we show that with the full access to agents' trajectories the time complexity of the discovery process can be dramatically improved [2]. We conclude our presentation with a study on agent location discovery on a line segment. Literature:

- [1] Tom Friedetzky, Leszek Gasieniec, Thomas Gorry, and Russell Martin, Observe and remain silent (Communication-less agent location discovery), To appear in the Proceedings of MFCS 2102.
- [2] Jurek Czyzowicz, Leszek Gasieniec, Adrian Kosowski, Evangelos Kranakis, Oscar Morales Ponce, and Eduardo Pacheco, Position Discovery for a System of Bouncing Robots, To appear in the Proceedings of DISC 2102.

[Joint work with Tom Friedetzky, Thomas Gorry, and Russell Martin.]

MAJORITY AND PLURALITY PROBLEMS

Dániel Gerbner Rényi Institute Reáltanoda utca 13-15. H - 1053, Budapest

Given a set of n balls each colored with a color, a ball is said to be majority, k-majority, plurality if its color class has size larger than half of the number of balls, has size at least k, has size larger than any other color class; respectively. We address the problem of finding the minimum number of queries (a comparison of a pair of balls if they have the same color or not) that is needed to decide whether a majority, k-majority or plurality ball exists and if so then show one such ball. We consider both adaptive and non-adaptive strategies and in certain cases, we also address weighted versions of the problems.

SEARCH IN HAMMING SPACE, MASTERMIND GAME ETC.

Grigory A. Kabatyansky

Dobrushin Mathematical Laboratory Institute of Information Transmission Problems Russian Academy of Sciences Bolshoy Karetniy 19 RU - Moscow GSP-4 101 447

A new approach to investigating the Mastermind game and related problems, among them uniquely decodable codes for noiseless adder channel, based on ideas and methods of coding theory is proposed. This approach leads to improved bounds in various problems associated with the rigidity of Hamming spaces.

[Joint work with Vladimir Lebedev and Simon J. Thorpe.]

WHEN THE LIE DEPENDS ON THE TARGET

Gyula O. H. Katona

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences P. O. Box: 127 H - 1364 Budapest

The following model is considered. There is exactly one unknown element in the *n*-element set. A question is a partition of *S* into three classes: (A, L, B). If $x \in A$ then the answer is "yes" (or 1), if $x \in B$ then the answer is "no" (or 0), finally if $x \in L$ then the answer can be either "yes" or "no". In other words, if the answer "yes" is obtained then we know that $x \in A \cup L$ while in the case of "no" answer the conclusion is $x \in B \cup L$. The mathematical problem is to minimize the minimum number of questions under certain assumptions on the sizes of *A*, *B* and *L*. This problem has been solved under the condition $|L| \ge k$ by the author and Krisztián Tichler in previous papers for both the adaptive and non-adaptive cases. In this paper we suggest to solve the problem under the conditions $|A| \le a$, $|B| \le b$. We exhibit some partial results for both the adaptive and non-adaptive cases. We also show that the problem is closely related to some known combinatorial problems. Let us mention that the case b = n - a has been more or less solved in earlier papers.

BOUNDARY PATROLLING BY MOBILE AGENTS

Evangelos Kranakis

Carleton University School of Computer Science 1125 Colonel By Drive Canada - Ottawa, Ontario K1S 5B6

We study a problem concerning the traversal of a rectifiable curve with $k \ge 1$ mobile robots so as to minimize the idle time (i.e., duration of time any point on the curve is left unvisited by a mobile agent). At any time during the traversal the speed of the robots cannot exceed a max value (set equal to 1 for all robots). The rectifiable curve can be either closed (e.g., cycle) or open (e.g., segment) and consists of alternating contiguous subsegments of vital intervals (that must be traversed) and neutral intervals (that do not have to be traversed).Given such a rectifiable curve, our goal is to give algorithms describing the motion boundaries and movement of the robots within the curve so that the idle time is optimized. Despite its apparent simplicity, designing such algorithms and proving their correctness turns out to be quite a challenging problem. We give optimal algorithms for solving this problem in the case where the rectifiable curve is either a (straight line) segment or a cycle.

GROUP TESTING WITH TWO DEFECTIVES

Vladimir Lebedev

Institute of Information Transmission Problems Russian Academy of Sciences Bolshoy Karetniy 19 RU - Moscow GSP-4 101 447

We consider classical group testing (2, N) problem to finding D = 2 defective elements from N elements. We present adaptive algorithm W(k) such that the $(2, w_t)$ problem can be solved in t tests. We show that for any $\varepsilon > 0$ there exist constant $k(\varepsilon)$ and algorithm W(k) such that asymptotically $w_t = (1 - \varepsilon)2^{(t+1)/2}$ for $t \to \infty$.

SOME PROBLEMS AND ALGORITHMS IN NON-STANDARD STRING MATCHING

Zsuzsanna Lipták

University of Verona Department of Computer Science Strada Le Grazie, 15 I - 37134 Verona

In recent years, many new string problems have been introduced which are motivated by applications from molecular biology, but which are also of independent interest. In this talk, I will discuss two of these: weighted string matching and jumbled string matching.

The classical exact string matching problem is: Given a string s over a (finite) alphabet and a query string t, find all occurrences of t as substring of s. In weighted string matching, every character of the alphabet is assigned a (real or integer) weight (or mass), and the query is a (real or integer) number, the query mass: We want to find all occurrences of substrings whose total mass equals the query. In jumbled string matching, we have a standard alphabet but the query is a "jumbled string": the vector specifying the multiplicities of each character, also called Parikh vector.

For example, with w(a) = 2, w(b) = 3 and w(c) = 5, the string s = abacab has three occurrences of mass 7, and three occurrences of the Parikh vector (2, 1, 1). Both of these problems can be viewed as special cases of approximate string matching.

I will talk about different approaches and algorithms for several variants of these problems. I will also sketch the connections to a certain class of binary strings, the prefix normal strings. A binary string s is prefix normal if, for every $k \le |s|$, no substring of length k has more a's than the prefix of length k. For example, *aababaaab* is not prefix normal because the substring *aaa* has more a's than the prefix *aab*. Using the prefix normal forms of a string, it is possible to answer quickly jumbled pattern matching queries.

ON CONNECTION WITH COMPRESSED SENSING AND SOME OTHER NEW DEVELOPMENTS IN THE SEARCH THEORY

Mikhail Malyutov

Northeastern University Department of Mathematics 567 Lake Hall USA - Boston, MA 02115

Common features and distinctions between the Search theory and now extremely popular Compressed Sensing are outlined. The analysis methods in used in these two theories are compared. Capacity in the search theory with stationary noise is studied.

CONSTRUCTION OF SEMI-QUANTITATIVE GROUP TESTING DESIGNS

Olgica Milenkovic

University of Illinois Department of Electrical and Computer Engineering William L. Everitt Laboratory 211 W. California Ave. USA - Urbana, Illinois 61801-2918

Semi-quantitative group testing is a pooling paradigm inspired by practical problems arising in compressive high-throughput sequencing. The pooling scheme is, in general, non-binary and it allows for test outputs that indicate the range of values of the positives in the test. We discuss two constructive methods: one for the sparse positives regimes and one for an arbitrary number of positives. In the first case, we propose a concatenated disjunct coding scheme with efficient belief propagation decoding. For the second scenario, we extend a design by Lindstroem in terms of modulating it by Reed-Solomon codes.

RANDOM CODING BOUNDS ON THE RATE FOR NON-ADAPTIVE THRESHOLD GROUP TESTING

Nikita Polyansky

Moscow State University Faculty of Mechanics & Mathematics Department of Probability Theory RU - Moscow 119899

I will discuss analytical properties of the random coding bound on the rate for non-adaptive threshold group testing presented in the talk of Arkadii Dyachkov

EFFICIENT SIGNATURE SCHEME FOR NETWORK CODING

Ely Porat

Department of Computer Science Bar-Ilan University Ramat Gan 52900 Israel

Network coding helps maximize the network throughput. However, such schemes are also vulnerable to pollution attacks in which malicious forwarders inject polluted messages into the system. Traditional cryptographic solutions such as digital signatures are not suited for network coding in which nodes do not forward the original packets, but rather linear combinations of the data they receive. We describe a secure scheme that uses batch techniques and selective verification to efficiently verify the integrity of the received packets. For real peer-to-peer networks, our scheme is much more efficient than previously suggested schemes.

THE SMOOTHED COMPETITIVE RATIO OF ONLINE CACHING

Rüdiger Reischuk

Universität zu Lübeck Institut für Theoretische Informatik Ratzeburger allee 160 - Geb. 64 D - 23538 Lübeck

Solving an optimization problem that is described by a sequence of requests online means that the requests are received one after the other and one has to serve each request immediately. Thus, one has to make decisions that may influence the future without knowing which requests will come later. Typical problems considered in this setting are bin-packing, scheduling, data caching or the k-server problem as a generic problem.

To measure the performance of an online algorithm it is compared to an optimal offline algorithm that constructs a solution after knowing the whole request sequence. The quotient of these two values is called the competitive ratio.

We concentrate on the caching problem – the question which data to keep in the fast cache of a processor instead of the slow main memory – for which optimal online and offline algorithms are known. The worst-case competitive ratio of this problem is very large and much worse than what is typically observed in practice. We analyze the average-case complexity of this problem in a smoothed discrete setting.

For continuous data smoothed analysis has been applied by Spielman and Teng to Linear Programming. Their results give a better explanation concerning the runtime of the Simplex Algorithm.

A smoothed analysis of competitive ratios is a new task. Several variants for such a setting are discussed and first results are presented that give a more accurate picture concerning the complexity of online caching.

SEARCH PROBLEMS RELATED TO DISPERSION, GRAPH ENTROPY AND GUESSING GAMES

Soren Riis

Queen Mary, University of London Department of Computer Science UK - London E1 4NS

We introduce the (private) entropy of a directed graph (in a new network coding sense) as well as a number of related concepts. We show that the entropy of a directed graph is identical to its guessing number and can be bounded from below with the number of vertices minus the size of the graph's shortest index code. We show that the Network Coding solvability of each specific multiple unicast network is completely determined by the entropy (as well as by the shortest index code) of the directed graph that occur by identifying each source node with each corresponding target node. Shannon's information inequalities can be used to calculate upper bounds on a graph's entropy as well as calculating the size of the minimal index code. Recently, a number of new families of so-called non-shannon-type information inequalities have been discovered. It has been shown that there exist communication networks with a capacity strictly less than required for solvability, but where this fact cannot be derived using Shannon's classical information inequalities. Based on this result we show that there exist graphs with an entropy that cannot be calculated using only Shannon's classical information inequalities, and show that better estimate can be obtained by use of certain non-shannon-type information inequalities.

GROUP TESTING AND CODING THEORY

Atri Rudra

The State University of New York, Buffalo Department of Computer Science & Engineering 12 Capen Hall USA - Buffalo, New York 14260-1660

Group testing was formalized by Dorfman in his 1943 paper and was originally used in WW-II to identify soldiers with syphilis. The main insight in this application is that blood samples from different soldiers can be combined to check if at least one of soldiers in the pool has the disease. Since then group testing has found numerous applications in many areas such as (computational) biology, combinatorics and (theoretical) computer science.

Theory of error-correcting codes, or coding theory, was born in the works of Shannon in 1948 and Hamming in 1950. Codes are ubiquitous in our daily life and have also found numerous applications in theoretical computer science in general and computational complexity in particular.

Kautz and Singleton connected these two areas in their 1964 paper by using "code concatenation" to design good group testing schemes. All of the (asymptotically) best know explicit constructions of group testing schemes use the code concatenation paradigm. In this talk, we will focus on the "decoding" problem for group testing: i.e. given the outcomes of the tests on the pools, identify the infected soldiers. Recent applications of group testing in data stream algorithm require sub-linear time decoding, which is not guaranteed by the traditional constructions.

The talk will first survey the Kautz-Singleton construction and then will will show how recent developments in list decoding of codes lead in a modular way to sub-linear time decodable group testing schemes.

ON SUPERIMPOSED CODES AND DESIGNS

Vyacheslav V. Rykov

University of Nebraska at Omaha Department of Mathematics 6001 Dodge St., USA - Omaha, NE 68182-0243

We will discuss superimposed codes and non-adaptive group testing designs arising from the potentialities of compressed genotyping models in molecular biology. The given survey is also motivated by the 30th anniversary of our recurrent upper bound on the rate of superimposed codes published in 1982.

SOME CONSTRUCTIONS FOR THE DIAMOND PROBLEM

László Székely

Department of Mathematics University of South Carolina USA - Columbia, SC 29208

There is much interest recently in excluded subposets. Given a fixed poset P, how many subsets of [n] can found without a copy of P realized by the subset relation? The hardest and most intensely investigated problem of this kind is when P is a *diamond*, i.e. the power set of a 2 element set. In this paper, we show that even asymptotic results for the diamond problem imply *exact* results for some posets related to Cayley graphs of abelian groups. The connection is realized by the convergence of Markov chains on groups.

[Joint work with Éva Czabarka.]

MULTIPARTY COMMUNICATION COMPLEXITY OF VECTOR–VALUED AND SUM–TYPE FUNCTIONS

Ulrich Tamm

Marmara University German Language Department of Business Informatics TR - 34722 Istanbul

Rudolf Ahlswede's work on communication complexity dealt with functions defined on direct sums: vectorvalued functions and sum-type functions. He was interested in single–letter characterizations and provided several lower bound techniques to this aim. In this paper we shall review these lower bounds and extend them to the "number in hand" multiparty model of communication complexity.

SEARCH WITH PARTIAL INFORMATION

Olivier Teytaud

Université Paris-Sud TAO, projet Inria LRI, Batiment 490 - Bureau 85 F - 91405 Orsay cedex

Searching a target (pursuit, rendez-vous) is sometimes a problem with no information (blind search), sometimes a problem with full information (indeed the easiest case, from a complexity point of view), sometimes with no information at all (indeed more complex, yet it is not so intuitive). The most difficult case is the partial information case. Various formalizations lead to different conclusions; the talk will give an overview of known and new results, depending on the detailed assumptions.

UPPER AND LOWER BOUNDS FOR COMPETITIVE GROUP TESTING

Eberhard Triesch

RWTH Aachen Lehrstuhl für Mathematik Templergraben 55 D - 52056 Aachen

We consider algorithms for adaptive group testing problems when nothing is known in advance about the number of defectives. Du and Hwang suggested to measure the quality of such algorithms by its so-called competitive ratio. We develop an algorithm with competitive ratio smaller than 1.5 and prove a lower bound for the best possible competitive ratio.

ON A PROBLEM OF RÉNYI AND KATONA

Gábor Wiener

Hungarian Academy of Sciences Alfred Renyi Institute of Mathematics P.O. Box 127 H - 1364 Budapest

We are dealing with the classical problem of determining the minimum size of a separating system consisting of sets of size at most k. The problem was raised by Rényi, the first and most important results are due to Katona; Wegener and Ahlswede also proved important bounds. We give a simple, short proof of a strengthening of Katona's main theorem determining the minimum size of a separating system of sets of size at most k.

- Matthew Aldridge University of Bristol School of Mathematics University Walk UK - Bristol, BS8 1TW Tel.: +44 7507 163818 m.aldridge@bristol.ac.uk
- Ingo Althöfer Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Institut für Angewandte Mathematik D-07737 Jena Tel.: +49 (0)3641 946-210 Fax: +49 (0)3641 946-202 ingo.althoefer@uni-jena.de
- Harout Aydinian Universität Bielefeld Fakultät für Mathematik Postfach 10 01 31 D - 33615 Bielefeld Tel.: +49 (0)521 106-4789 ayd@math.uni-bielefeld.de
- 4. Vladimir Balakirsky American University of Armenia Engineering Research Center Marshal Baghramyan Ave., 40 AM - 0019 Yerevan Tel.: +7 812 594-4962 v_b_balakirsky@rambler.ru
- Bernhard Balkenhol infinity3 GmbH Boulevard 11 D - 33613 Bielefeld bernhard.balkenhol@infinity-3.de
- 6. Michael Bodewig RWTH Aachen University Lehrstuhl fr Mathematik D - 52056 Aachen Tel.: +49 (0)241 80-94604 Fax: +49 (0)241 80-92136 bodewig@math2.rwth-aachen.de
- Minglai Cai Universität Bielefeld Fakultät für Mathematik Postfach 10 01 31 33501 Bielefeld Tel.: +49 (0)521 106-4775 mlcai@math.uni-bielefeld.de

LIST OF PARTICIPANTS

- Ning Cai University of Xidian The State Key Laboratory of Integrated Services Network China - Xian Tel.: +86 (0)29 8820-4275 Fax: +86 (0)29 8820-4215 caining@mail.xidian.edu.cn
- Huilan Chang National Chiao Tung University Department of Applied Mathematics 2F, Science Building 1001 Ta Hsueh Road Taiwan - Hsinchu, 30010 Tel.: +886 3 571 2121 ext.56435 huilan0102@gmail.com
- Mahdi Cheraghchi Carnagie Mellon University Computer Science Department Gates-Hillman Complex 7223 5000 Forbes Avenue USA - Pittsburgh, PA 15213 Tel.: +1 512 586-5075 Fax: +1 412 268-5574 cheraghchi@gmail.com
- 11. Ferdinando Cicalese Dipartimento di Informatica ed Applicazion Universita' di Salerno I - Baronissi (SA) - 84081 Tel.: +39 089 969717 Fax : +39 089 969600 cicalese@dia.unisa.it
- 12. Eva Czabarka University of South Carolina Department of Mathematics USA - Columbia, SC 29208 Tel.: +1 803 422-8944 Fax: +1 803 777-3783 czabarka@math.sc.edu
- Peter Damaschke Chalmers University Department of Computer Science and Engineering S - 41296 Göteborg Tel.: +46 31 772-5405 ptr@chalmers.se

- 14. Annalisa De Bonis Università di Salerno Dipartimento di Informatica ed Applicazioni Via Ponte Don Melillo I - 84084 Fisciano (SA) Tel.: +39 (0)89 96-9719 Fax: +39 (0)89 96-9600 debonis@dia.unisa.it
- 15. Gianluca De Marco Università degli Studi di Salerno Dipartimento di Informatica ed Applicazioni Via Ponte don Melillo I - 84084 Fisciano (SA) Tel.: +39 (0)89 96-9721 demarco@dia.unisa.it
- 16. Christian Deppe Universität Bielefeld Fakultät für Mathematik Postfach 10 01 31 D - 33615 Bielefeld cdeppe@math.uni-bielefeld.de
- 17. Andreas Dress infinity3 GmbH Boulevard 11 D - 33613 Bielefeld Tel.: +49 (0)521 69-532 Fax: +49 (0)521 521-4403 dress@infinity-3.de
- Arkadii D'yachkov Moscow State University Faculty of Mechanics & Mathematics Department of Probability Theory Russia - Moscow 119899 dyachkov@mech.math.msu.su
- Leszek A. Gsieniec University of Liverpool Department of Computer Science Ashton Building, Ashton Street UK - Liverpool L69 3BX Tel.: +44 (0)151 795-4290 Fax: +44 (0)151 795-4235 I.a.gasieniec@liverpool.ac.uk
- 20. Dániel Gerbner Rényi Institute Reáltanoda utca 13-15. H - 1053, Budapest Tel.: +36 30 306-5464 gerbner@renyi.hu

- 21. Gisbert Janßen Technische Universität München Lehrstuhl fr Theoretische Informationstechnik Building N4, Room N4412 Arcisstr. 21 D - 80333 München Tel.: +49 (0)89 289-23247 gisbert.janssen@tum.de
- 22. Grigory A. Kabatyansky Dobrushin Mathematical Laboratory Institute of Information Transmission Problems Russian Academy of Sciences Bolshoy Karetniy 19 RU - Moscow GSP-4 101 447 kaba@iitp.ru
- 23. Gyula O. H. Katona Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences P. O. Box: 127 H - 1364 Budapest Tel.: +36 1 483-8318 Fax: +36 1 483-8333 ohkatona@renyi.hu
- 24. Evangelos Kranakis Carleton University School of Computer Science
 1125 Colonel By Drive Canada - Ottawa, Ontario K1S 5B6 Tel.: +1 613 521-0154 kranakis@scs.carleton.ca
- 25. Vladimir Lebedev Russian Academy of Sciences Institute of Problems of Information Transmission Bol'shoi Karetnyi per. 19 Russia - Moscow 101447 lebedev37@mail.ru
- 26. Zsuzsanna Lipták University of Verona Department of Computer Science Strada Le Grazie, 15 I - 37134 Verona Tel.: +39 329 737-2046 zsuzsanna.liptak@univr.it
- 27. Ulf Lorenz Technische Universitt Darmstadt FB Mathematik, Optimierung Dolivostr. 15 D - 64293 Darmstadt Tel.: +49 (0)6151 16-2961 lorenz@mathematik.tu-darmstadt.de

- 28. Mikhail Malyutov Northeastern University Department of Mathematics 567 Lake Hall USA - Boston, MA 02115 m.malioutov@neu.edu
- 29. Olgica Milenkovic University of Illinois Department of Electrical and Computer Engineering William L. Everitt Laboratory 211 W. California Ave. USA - Urbana, Illinois 61801-2918 Tel.: +1 217 244-7358 milenkov@ad.uiuc.edu
- 30. Tim Nattkemper Universität Bielefeld Center of Excellence
 Cognitive Interaction Technology -CITEC Postfach 10 01 31 D - 33501 Bielefeld Tel.: +49 521 106-6059 tim.nattkemper@uni-bielefeld.de
- 31. Nikita Polyansky Moscow State University Faculty of Mechanics & Mathematics Department of Probability Theory RU - Moscow 119899 nikitapolyansky@gmail.com
- 32. Ely Porat Department of Computer Science Bar-Ilan University Ramat Gan 52900, Israel Tel.: +972-3-531-8075 Fax.: +972-3-736-0498 porately@cs.biu.ac.il
- 33. K. Rüdiger Reischuk Universität zu Lübeck Institut für Theoretische Informatik Ratzeburger allee 160 - Geb. 64 D - 23538 Lübeck Tel.: +49 (0)451 500-5310 Fax: +49 (0)451 500-5301 reischuk@tcs.uni-luebeck.de
- 34. Soren Riis Queen Mary, University of London Department of Computer Science UK - London E1 4NS smriis@dcs.qmul.ac.uk Tel.: +44 020 759 331 3012 soren.riis@eecs.qmul.ac.uk

- 35. Atri Rudra
 The State University of New York, Buffalo
 Department of Computer
 Science & Engineering
 12 Capen Hall
 USA Buffalo, New York 14260-1660
 Tel.: +1 716 225-1655
 Fax: +1 716 645-3654
 atri@buffalo.edu
- 36. Vyacheslav V. Rykov University of Nebraska at Omaha Department of Mathematics 6001 Dodge St., USA - Omaha, NE 68182-0243 Tel.: +1 402 554-3117 Fax: +1 402 554-2975 vrykov@mail.unomaha.edu
- 37. Jens Stoye Universität Bielefeld Technische Fakultät Genominformatik Postfach 10 01 31 D - 33501 Bielefeld Tel.: +49 (0)521 106-3852 Fax: +49 (0)521 106-6495 jens.stoye@uni-bielefeld.de
- 38. László Székely Department of Mathematics University of South Carolina USA - Columbia, SC 29208 Tel.: +1 803 777-6262 Fax: +1 803 777-3783 szekely@math.sc.edu
- 39. Ulrich Tamm Marmara University German Language Department of Business Informatics TR - 34722 Istanbul Tel.: +49 (0)173 290 8622 ulrich.tamm@yahoo.com
- 40. Olivier Teytaud Université Paris-Sud TAO, projet Inria LRI, Batiment 490 - Bureau 85 F - 91405 Orsay cedex Tel.: +33 01 69 15 66 07 Fax: +33 01 69 15 65 86 olivier.teytaud@inria.fr

78

- 41. Eberhard Triesch RWTH Aachen Lehrstuhl für Mathematik Templergraben 55 D - 52056 Aachen Tel.: +49 (0)241 809 4995 Fax: +49 (0)241 809 2136 triesch@math2.rwth-aachen.de
- 42. Gábor Wiener Hungarian Academy of Sciences Alfred Renyi Institute of Mathematics P.O. Box 127 H - 1364 Budapest Tel.: +36 1 4633-162 Fax: +36 1 4633-157 wiener@cs.bme.hu