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The Plan

Study aperiodic order via dynamical systems:

Λ < −−− > (X(Λ), α).

• Dynamical system arises by gathering together

all manifestations of the “same” form of

(dis)order.

• Properties of the dynamical system reflect prop-

erties of its elements and vice versa.



1. Local topology

• Compactness and finite local complexity.

• Unique ergodicity and uniform patch frequen-

cies.

• A word on symmetry.

• Pure point dynamical spectrum and pure point

diffraction.

2. Autocorrelation topology

• Compactness, ε-periods, and pure point diffrac-

tion.

3. Where local topology and autocor-
relation topology meet: Model sets
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Notation

‖ · ‖ Euclidean norm on Rd.

Dr := {Λ ⊂ Rd : ‖x− y‖ ≥ r for allx, y ∈ Λ, x 6= y}.

Bs := {x ∈ Rd : ‖x‖ ≤ s}

Λ, Γ always supposed to be uniformly discrete i.e.

to belong to some Dr.



1. Local topology

Idea: Λ, Γ are close if they are locally close after
a small shift, i.e. if they agree on a large ball after
a small shift.

More precisely, the local topology is introduced via
the following metric:

dlt(Λ, Γ ) :=

inf{ε > 0 : ∃ x, y ∈ Bε s.t. B1
ε
∩(x+Λ) = B1

ε
∩(y+Γ )}∧2−

1
2.

Theorem 1. (Dr, dlt) is a complete metric space.
The action

α : Rd ×Dr −→ Dr, αx(Λ) := x + Λ

is continuous.

The hull of Λ ∈ Dr in the local topology is defined
by

X(Λ) := {x + Λ : x ∈ Rd}lt.

Then, X(Λ) is invariant under α. Hence, (X(Λ), α)
is a topological dynamical system.



Compactness and finite local complexity

Definition 1. Λ has finite local complexity (FLC) if

for every R > 0

]{(−x + Λ) ∩BR : x ∈ Λ} < ∞.

Note: Λ FLC ⇐⇒ Λ− Λ locally finite.

Proof. ∪x∈Λ((−x + Λ) ∩BR) = (Λ− Λ) ∩BR

Theorem 2. X(Λ) compact ⇐⇒ Λ has FLC.

See Radin/Wolff ’92, Schlottmann ‘00.



Proof =⇒: Assume the contrary. Then, there ex-

ists an R > 0 with

]{(−x + Λ) ∩BR : x ∈ Λ} = ∞.

Let x1, x2, x3, . . . in Rd be given such that

(−xn + Λ) ∩BR

are pairwise disjoint. Consider

Λn := −xn + Λ ∈ X(Λ).

Then, (Λn) has no converging subsequence.

⇐=: Consider only Λ Delone, i.e. there exists R > 0

with (p + BR) ∩ Λ 6= ∅ for every p ∈ Rd.

Let (Λn) be a sequence in {−x + Λ : x ∈ Rd}.

(To show: (Λn) has converging subsequence).



By assumption, for each n ∈ N, there exists xn ∈
BR ∩ Λn.

W.l.o.g. xn −→ x ∈ BR, n →∞.

W.l.o.g. x = xn = 0 for all n ∈ N. (Λn − −− >

Λn − xn).

Consider for each k ∈ N (Λn ∩Bk)n.

FLC =⇒ exists subsequence (n(1)
j )j of (n) s.t.

Λ
n
(1)
j

∩B1 the same for all j.

FLC =⇒ exists subsequence (n(2)
j )j of (n(1)

j ) s.t.

Λ
n
(2)
j

∩B2 the same for all j.

FLC =⇒ exists subsequence (n(3)
j )j of (n(2)

j ) s.t.

Λ
n
(3)
j

∩B3 the same for all j.

Then (Λ
n
(k)
k

)k converges.



Unique ergodicity and uniform patch

frequencies

Definition 2. For Λ ∈ Dr and P ⊂ Bs with 0 ∈ P

define the locator set of P in Λ by

L(Λ, P ) := {x ∈ Λ : (−x + Λ) ∩Bs = P}.

Note: L(Λ, P ) = ∅ is possible.

Definition 3. Λ has uniform patch frequencies

(UPF) if for every P

lim
n→∞

]L(Λ, P ) ∩ (q + Bn)

|Bn|

exists uniformly in q ∈ Rd.

Theorem 3. Let Λ have (FLC). Then:

Λ has UPF ⇐⇒ (X(Λ), α) is uniquely ergodic.

For a proof see e.g. Solomyak ’96, Schlottmann

’00, Lee/Moody/Soloymak ’02.



Proof. For ϕ ∈ Cc(Rd) and P patch define

fϕ,P : Dr −→ C, fϕ,P (Γ ) :=
∑

x∈L(Γ,P )

ϕ(−x).

Then,∫
Bn

fϕ,P (t + Γ )dt =
∫

ϕ(t)dt · ]L(Γ, P ) ∩Bn + BT.

Therfore,

(UPF ) ⇐⇒ lim
n→∞

1

Bn

∫
Bn

fϕ,P (t + Γ ) dt ex. all fϕ,P

⇐⇒ lim
n→∞

1

Bn

∫
Bn

f(t + Γ ) dt ex. all cont. f

⇐⇒ Unique ergodicity.



A word on symmetry

X(Λ) may have “more” symmetry than Λ.

More precisely, consider a rotation

S : Dr −→ Dr, Γ 7→ S(Γ ).

Then, S may leave X(Λ) invariant and then act on

X(Λ) via

S : X(Λ) −→ X(Λ), Γ 7→ S(Γ )

without Λ being fixed by S.

In this case, if X(Λ) admits a unique α invariant

probability measure m, then m is invariant under S

as well (as S(m) is another α-invariant probability

measure).



Pure point dynamical and pure point

diffraction spectrum

Let Λ with FLC and UPF be fixed.

Thus, (X(Λ), α) is compact and uniquely ergodic.

Denote unique α-invariant probability measure on

X(Λ) by m.

L2(X(Λ), m) := {f : X(Λ) −→ C :
∫
|f |2dm < ∞}

Hilbert space with inner product

〈f, g〉 :=
∫

fg dm.



Unitary representation T of Rd on L2(X(Λ), m):

For each x ∈ Rd

Tx : L2(X(Λ), m) −→ L2(X(Λ), m)

(Txf)(Γ ) := f(α−xΓ )

is unitary (i.e. isometric and onto).

An f ∈ L2(X(Λ), m) is called eigenfunction of T to

the eigenvalue y ∈ Rd if

Txf = eixyf for all x ∈ Rd.

Hpp(T ) := Lin{eigenfunctions of T } ⊂ L2(X(Λ), m).

T is said to have pure point spectrum if

Hpp(T ) = L2(X(Λ), m).

Then, (X(Λ), α, m) is said to have pure point dy-

namical spectrum.



We now come to a circle of ideas going back
to Dworkin ’93 (see Enter/Miȩkisz ’92, Hof ’98,
Schlottmann ’00, Lee/Moody/Solomyak ’02... as
well).

For ϕ ∈ Cc(Rd) define

fϕ : Dr −→ C, fϕ(Γ) :=
∑
x∈Γ

ϕ(−x) = ϕ ∗ δΓ(0).

Proposition 1.

lim
n→∞ϕ ∗ ϕ̃ ∗

1

|Bn|
(δΓ∩Bn ∗ δ−(Γ∩Bn))(t) = 〈fϕ, Ttfϕ〉

for every Γ ∈ X(Λ) and t ∈ Rd.

Proof. By unique ergodicity we have

〈fϕ, Ttfϕ〉

= lim
n→∞

1

|Bn|

∫
Bn

fϕ(αsΓ )fϕ(αs−tΓ )ds

= lim
n→∞

1

|Bn|

∫
Bn

∑
x∈Γ

ϕ(−s− x)
∑
y∈Γ

ϕ(−s− t− y)ds

= lim
n→∞

1

|Bn|

∫ ∑
x∈Γ∩Bn

ϕ(−s− x)
∑

y∈Γ∩Bn

ϕ(−s− t− y)du

= lim
n→∞

1

|Bn|
(ϕ̃ ∗ δ−(Γ∩Bn)) ∗ (ϕ ∗ δΓ∩Bn)(t).



From this result (or by other means) we may infer

that

γ := lim
n→∞

1

|Bn|
δΓ∩Bn ∗ δ−(Γ∩Bn)

exists for every Γ ∈ X(Λ) and does not depend on

Γ .

Then, the proposition may be reformulated as say-

ing that

〈fϕ, Ttfϕ〉 = ϕ ∗ ϕ̃ ∗ γ(t)

for every t ∈ Rd.

On the other hand, by spectral theory, for every

f ∈ L2(X(Λ), m) there exists a finite measure ρf on

Rd with

〈f, Ttf〉 =
∫

eity dρf(y)

for every t ∈ Rd.

Putting this together we infer

ϕ ∗ ϕ̃ ∗ γ(t) =
∫

eity dρfϕ(y)

for every ϕ ∈ Cc(Rd) and t ∈ Rd.



Theorem 4.Let Λ with (FLC) and (UPF) be given.

Then, γ̂ is pure point if and only if (X(Λ), α) has

pure point dynamical spectrum.

Remark. In this form due to Lee/Moody/Solomyak

’02; later generalised see Gouéré ’02, ’03, Baake/L.

’03; for an earlier result in symbolic dynamics see

Quefféléc ’87.

Proof. As shown above

ϕ ∗ ϕ̃ ∗ γ(t) =
∫

eity dρfϕ(y)

for all ϕ ∈ Cc(Rd) and t ∈ Rd. Fourier transform

yields

|ϕ̂|2γ̂ = ρfϕ

for all ϕ ∈ Cc(Rd). This gives

γ̂ pp ⇐⇒ ρfϕ pure point for all ϕ ∈ Cc(Rd)

⇐⇒ ρf pure point for all f ∈ C(X(Λ))

⇐⇒ f ∈ Hpp(T ) for all f ∈ C(X(Λ))

⇐⇒ Hpp(T ) = L2(X(Λ), m).



2. Autocorrelation topology

(Introduced in Baake/Moody ’02; further studied in

Moody/Strungaru ’03.)

Idea: Λ, Γ are close if they are statistically close

after a small shift.

Statistical closeness captured by

ρ(Λ, Γ ) := lim sup
n→∞

](Λ \ Γ ∪ Γ \ Λ) ∩Bn

|Bn|
.

Note: ρ(x + Λ, x + Γ ) = ρ(Λ, Γ )) for all x ∈ Rd.

Define pseudo-metric on Dr by

dat(Λ, Γ ) := inf{ε > 0 : ∃x, y ∈ B ε
2

ρ(x+Λ, y+Γ ) ≤ ε}.

Define Λ ≡ Γ if and only if dat(Λ, Γ ) = 0 and

D≡r := Dr/ ≡ .



Theorem 5. (Moody/Strungaru) (D≡r , dat) is a

complete metric space. The action

α : Rd ×D≡r −→ D≡r , αx([Λ]) := [x + Λ],

is continuous.

This leads to a new notion of hull

A(Λ) := {αx([Λ]) : x ∈ Rd}at

and a new dynamical system

(A(Λ), α).

Important: Due to translation invariance of ρ the

hull A(Λ) is actually a group. It can be considered

to be the completion of Rd under the translation

invariant pseudo-metric

ρΛ(t, s) = ρΛ(t− s,0) = ρ(t + Λ, s + Λ).



Assume:

• Λ Meyer (i.e. Λ− Λ uniformly discrete).

• γ = limn→∞ 1
|Bn|δΛ∩Bn ∗ δ−(Λ∩Bn) =

∑
t∈Λ−Λ η(t)δt

exists, where

η(t) = lim
n→∞

](Λ ∩ (t + Λ) ∩Bn)

|Bn|
.

Recall ρΛ(t, s) = ρΛ(t− s,0) = ρ(t + Λ, s + Λ).

Theorem 6. TFAE:

(i) Λ is pure point diffractive (i.e. γ̂ is pure point).

(ii) For every ε > 0 the set of ε-periods Pε := {t ∈
Rd : ρΛ(t,0) ≤ ε} is relatively dense in Rd.

(iii) A(Λ) is compact.

Equivalence of (i) and (ii) shown in Baake/Moody

’02, equivalence of (ii) and (iii) shown in

Moody/Strungaru ’03. Almost periodicity enters

(see Gouéré ’02, ’03 as well).



Crucial link ρΛ(t,0) = 2(η(0)− η(t)).

Proof.

ρΛ(t,0) = lim sup
n→∞

]((t + Λ) \ Λ ∪ Λ \ (t + Λ)) ∩Bn

|Bn|

= limsup
n→∞

(
](t + Λ) ∩Bn − ](t + Λ) ∩ Λ ∩Bn

|Bn|

+
](Λ ∩Bn)− ]Λ ∩ (t + Λ) ∩Bn

|Bn|
)

= η(0)− η(t) + η(0)− η(t).



3. Where local topology and
autocorrelation topology meet: Model

sets

We have provided two frameworks to study aperi-

odic order:

(Dr, dlt) and (D≡r , dat).

Here, dlt measures local complete coincidence and

dat measures long range statistical coincidence.

Accordingly, a Meyer set Λ gives rise to two dynam-

ical systems

(X(Λ), α) and (A(Λ), α).

Apriori the two frameworks (and then these two dy-

namical systems) are unrelated, even though there

is a natural map

β : Dr −→ D≡r , Λ 7→ [Λ].

For model sets these two frameworks meet:



Theorem 7. (Baake/L./Moody) Λ Meyer. TFAE:

(i) (X(Λ), α) comes from a regular model set.

(ii) β : X(Λ) −→ A(Λ) is continuous and almost

everywhere 1 : 1.

(iii) (X(Λ), α) has pure point dynamical spectrum

with continuous eigenfunctions, which separate al-

most all points.

In some sense aperiodic model sets mark the border

between periodicity and aperiodicity:

Theorem 8. (Baake/L./Moody) Λ Meyer. TFAE:

(i) Λ is crystallographic.

(ii) β : X(Λ) −→ A(Λ) is continuous and injective.

(iii) (X(Λ), α) has pure point dynamical spectrum

with continuous eigenfunctions, which separate all

points.


