Aperiodic Order and Dynamical Systems II

Daniel Lenz, Chemnitz

The Plan

Study aperiodic order via dynamical systems:

$$\Lambda < --- > (\mathbb{X}(\Lambda), \alpha).$$

- Dynamical system arises by gathering together all manifestations of the "same" form of (dis)order.
- Properties of the dynamical system reflect properties of its elements and vice versa.

1. Local topology

- Compactness and finite local complexity.
- Unique ergodicity and uniform patch frequencies.
- A word on symmetry.
- Pure point dynamical spectrum and pure point diffraction.

2. Autocorrelation topology

• Compactness, ε -periods, and pure point diffraction.

3. Where local topology and autocorrelation topology meet: Model sets

References:

- M. Baake and D. Lenz, Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra, Ergodic Theory & Dynamical Systems, (2004), math.DS/0302061.
- M. Baake, D. Lenz and R. V. Moody, Characterization of model sets by dynamical systems, in preparation.
- M. Baake and R. V. Moody, Weighted Dirac combs with pure point diffraction, J. Reine Angew. Math. (Crelle), (2004), math.MG/0203030.
- S. Dworkin, Spectral theory and X-ray diffraction, J. Math. Phys **34** (1993), 2965–2967.

- A.C.D. van Enter and J. Miękisz, How should one define a (weak) crystal?, J. Stat. Phys. 66 (1992), 1147–1153.
- J.-B. Gouéré, *Quasicrystals and almost periodicity*, to appear in: Commun. Math. Phys, preprint math-ph/0212012.
- A. Hof, *On diffraction by aperiodic structures*, Commun. Math. Phys. **169** (1995) 25–43.
- J.-Y. Lee and R. V. Moody, *A characterization* of multi colour model sets, preprint (2004).
- J.-Y. Lee, R. V. Moody and B. Solomyak, *Pure point dynamical and diffraction spectra*, Annales Henri Poincaré,**3** (2002) 1003–1018; mp_arc/02-39.
- R. V. Moody and N. Strungaru, *Point sets and dynamical systems in the autocorrelation topology*, Can. Math. Bulletin, **47** (2004) 82–99.

- M. Queffélec, Substitution Dynamical Systems

 Spectral Analysis, Lecture Notes in Mathematics 1294, Springer-Verlag. 1987.
- M. Schlottmann, Generalized model sets and dynamical systems, in: Directions in Mathematical Quasicrystals, eds. M. Baake and R. V. Moody, CRM Monograph Series, vol. 13, AMS, Providence, RI (2000), pp. 143–159.

Notation

 $\|\cdot\|$ Euclidean norm on \mathbb{R}^d .

 $\mathcal{D}_r := \{ \Lambda \subset \mathbb{R}^d : ||x - y|| \ge r \text{ for all } x, y \in \Lambda, \ x \neq y \}.$

 $B_s := \{x \in \mathbb{R}^d : ||x|| \le s\}$

A, Γ always supposed to be uniformly discrete i.e. to belong to some \mathcal{D}_r .

1. Local topology

Idea: Λ , Γ are close if they are **locally close** after a small shift, i.e. if they agree on a large ball after a small shift.

More precisely, the local topology is introduced via the following metric:

 $d_{lt}(\Lambda, \Gamma) :=$

 $\inf\{\varepsilon > 0 : \exists x, y \in B_{\varepsilon} \text{ s.t. } B_{\frac{1}{\varepsilon}} \cap (x + \Lambda) = B_{\frac{1}{\varepsilon}} \cap (y + \Gamma)\} \wedge 2^{-1}$

Theorem 1. (\mathcal{D}_r, d_{lt}) is a complete metric space. The action

 $\alpha : \mathbb{R}^d \times \mathcal{D}_r \longrightarrow \mathcal{D}_r, \ \alpha_x(\Lambda) := x + \Lambda$

is continuous.

The hull of $\Lambda \in \mathcal{D}_r$ in the local topology is defined by

$$\mathbb{X}(\Lambda) := \overline{\{x + \Lambda : x \in \mathbb{R}^d\}^{lt}}.$$

Then, $\mathbb{X}(\Lambda)$ is invariant under α . Hence, $(\mathbb{X}(\Lambda), \alpha)$ is a topological dynamical system.

Compactness and finite local complexity

Definition 1. Λ has finite local complexity (FLC) if for every R > 0

$$\sharp\{(-x+\Lambda)\cap B_R:x\in\Lambda\}<\infty.$$

Note: Λ FLC $\iff \Lambda - \Lambda$ locally finite. Proof. $\cup_{x \in \Lambda} ((-x + \Lambda) \cap B_R) = (\Lambda - \Lambda) \cap B_R$

Theorem 2. $\mathbb{X}(\Lambda)$ compact $\iff \Lambda$ has FLC.

See Radin/Wolff '92, Schlottmann '00.

Proof \implies : Assume the contrary. Then, there exists an R > 0 with

$$\sharp\{(-x+\Lambda)\cap B_R:x\in\Lambda\}=\infty.$$

Let x_1, x_2, x_3, \ldots in \mathbb{R}^d be given such that

$$(-x_n + \Lambda) \cap B_R$$

are pairwise disjoint. Consider

$$\Lambda_n := -x_n + \Lambda \in \mathbb{X}(\Lambda).$$

Then, (Λ_n) has no converging subsequence.

 \Leftarrow : Consider only Λ Delone, i.e. there exists R > 0with $(p + B_R) \cap \Lambda \neq \emptyset$ for every $p \in \mathbb{R}^d$.

Let (Λ_n) be a sequence in $\{-x + \Lambda : x \in \mathbb{R}^d\}$.

(To show: (Λ_n) has converging subsequence).

By assumption, for each $n \in \mathbb{N}$, there exists $x_n \in B_R \cap \Lambda_n$.

W.I.o.g. $x_n \longrightarrow x \in B_R$, $n \to \infty$.

W.I.o.g. $x = x_n = 0$ for all $n \in \mathbb{N}$. $(\Lambda_n - - - > \Lambda_n - x_n)$.

Consider for each $k \in \mathbb{N}$ $(\Lambda_n \cap B_k)_n$.

FLC \implies exists subsequence $(n_j^{(1)})_j$ of (n) s.t. $\Lambda_{n_j^{(1)}} \cap B_1$ the same for all j.

FLC \implies exists subsequence $(n_j^{(2)})_j$ of $(n_j^{(1)})$ s.t. $\Lambda_{n_j^{(2)}} \cap B_2$ the same for all j.

FLC \implies exists subsequence $(n_j^{(3)})_j$ of $(n_j^{(2)})$ s.t. $\Lambda_{n_j^{(3)}} \cap B_3$ the same for all j.

Then $(\Lambda_{n_k^{(k)}})_k$ converges.

Unique ergodicity and uniform patch frequencies

Definition 2. For $\Lambda \in D_r$ and $P \subset B_s$ with $0 \in P$ define the locator set of P in Λ by

 $L(\Lambda, P) := \{ x \in \Lambda : (-x + \Lambda) \cap B_s = P \}.$

Note: $L(\Lambda, P) = \emptyset$ is possible.

Definition 3. Λ has uniform patch frequencies (UPF) if for every P

$$\lim_{n \to \infty} \frac{\sharp L(\Lambda, P) \cap (q + B_n)}{|B_n|}$$

exists uniformly in $q \in \mathbb{R}^d$.

Theorem 3. Let Λ have (FLC). Then: Λ has UPF $\iff (\mathbb{X}(\Lambda), \alpha)$ is uniquely ergodic.

For a proof see e.g. Solomyak '96, Schlottmann '00, Lee/Moody/Soloymak '02.

Proof. For $\varphi \in C_c(\mathbb{R}^d)$ and P patch define

$$f_{\varphi,P}: \mathcal{D}_r \longrightarrow \mathbb{C}, \ f_{\varphi,P}(\Gamma) := \sum_{x \in L(\Gamma,P)} \varphi(-x).$$

Then,

$$\int_{B_n} f_{\varphi,P}(t+\Gamma)dt = \int \varphi(t)dt \cdot \sharp L(\Gamma,P) \cap B_n + \mathsf{BT}.$$

Therfore,

$$(UPF) \iff \lim_{n \to \infty} \frac{1}{B_n} \int_{B_n} f_{\varphi,P}(t+\Gamma) \, dt \text{ ex. all } f_{\varphi,P}$$
$$\iff \lim_{n \to \infty} \frac{1}{B_n} \int_{B_n} f(t+\Gamma) \, dt \text{ ex. all cont. } f$$
$$\iff \text{Unique ergodicity.}$$

A word on symmetry

 $\mathbb{X}(\Lambda)$ may have "more" symmetry than Λ .

More precisely, consider a rotation

$$S: \mathcal{D}_r \longrightarrow \mathcal{D}_r, \ \Gamma \mapsto S(\Gamma).$$

Then, S may leave $\mathbb{X}(\Lambda)$ invariant and then act on $\mathbb{X}(\Lambda)$ via

$$S: \mathbb{X}(\Lambda) \longrightarrow \mathbb{X}(\Lambda), \ \Gamma \mapsto S(\Gamma)$$

without Λ being fixed by S.

In this case, if $\mathbb{X}(\Lambda)$ admits a unique α invariant probability measure m, then m is invariant under Sas well (as S(m) is another α -invariant probability measure).

Pure point dynamical and pure point diffraction spectrum

Let \varLambda with FLC and UPF be fixed.

Thus, $(\mathbb{X}(\Lambda), \alpha)$ is compact and uniquely ergodic.

Denote unique α -invariant probability measure on $\mathbb{X}(\Lambda)$ by m.

$$L^{2}(\mathbb{X}(\Lambda), m) := \{f : \mathbb{X}(\Lambda) \longrightarrow \mathbb{C} : \int |f|^{2} dm < \infty\}$$

Hilbert space with inner product

$$\langle f,g\rangle := \int \overline{f}g\,dm.$$

Unitary representation T of \mathbb{R}^d on $L^2(\mathbb{X}(\Lambda), m)$:

For each $x \in \mathbb{R}^d$

$$T_x : L^2(\mathbb{X}(\Lambda), m) \longrightarrow L^2(\mathbb{X}(\Lambda), m)$$

 $(T_x f)(\Gamma) := f(\alpha_{-x} \Gamma)$

is unitary (i.e. isometric and onto).

An $f \in L^2(\mathbb{X}(\Lambda), m)$ is called *eigenfunction* of T to the eigenvalue $y \in \mathbb{R}^d$ if

$$T_x f = e^{ixy} f$$
 for all $x \in \mathbb{R}^d$.

 $\mathcal{H}_{pp}(T) := \overline{Lin\{\text{eigenfunctions of } T \}} \subset L^2(\mathbb{X}(\Lambda), m).$

T is said to have *pure point spectrum* if

$$\mathcal{H}_{pp}(T) = L^2(\mathbb{X}(\Lambda), m).$$

Then, $(X(\Lambda), \alpha, m)$ is said to have pure point dynamical spectrum. We now come to a circle of ideas going back to Dworkin '93 (see Enter/Miękisz '92, Hof '98, Schlottmann '00, Lee/Moody/Solomyak '02... as well).

For $\varphi \in C_c(\mathbb{R}^d)$ define

$$f_{\varphi}: \mathcal{D}_r \longrightarrow \mathbb{C}, \ f_{\varphi}(\Gamma) := \sum_{x \in \Gamma} \varphi(-x) = \varphi * \delta_{\Gamma}(0).$$

Proposition 1.

$$\lim_{n \to \infty} \varphi * \tilde{\varphi} * \frac{1}{|B_n|} (\delta_{\Gamma \cap B_n} * \delta_{-(\Gamma \cap B_n)})(t) = \langle f_{\varphi}, T_t f_{\varphi} \rangle$$

for every $\Gamma \in \mathbb{X}(\Lambda)$ and $t \in \mathbb{R}^d$.

Proof. By unique ergodicity we have

 $\langle f_{\varphi}, T_t f_{\varphi} \rangle$

$$= \lim_{n \to \infty} \frac{1}{|B_n|} \int_{B_n} \overline{f_{\varphi}(\alpha_s \Gamma)} f_{\varphi}(\alpha_{s-t} \Gamma) ds$$

$$= \lim_{n \to \infty} \frac{1}{|B_n|} \int_{B_n} \sum_{x \in \Gamma} \overline{\varphi(-s-x)} \sum_{y \in \Gamma} \varphi(-s-t-y) ds$$

$$= \lim_{n \to \infty} \frac{1}{|B_n|} \int_{x \in \Gamma \cap B_n} \overline{\varphi(-s-x)} \sum_{y \in \Gamma \cap B_n} \varphi(-s-t-y) ds$$

$$= \lim_{n \to \infty} \frac{1}{|B_n|} (\tilde{\varphi} * \delta_{-(\Gamma \cap B_n)}) * (\varphi * \delta_{\Gamma \cap B_n})(t).$$

From this result (or by other means) we may infer that

$$\gamma := \lim_{n \to \infty} \frac{1}{|B_n|} \delta_{\Gamma \cap B_n} * \delta_{-(\Gamma \cap B_n)}$$

exists for every $\Gamma \in \mathbb{X}(\Lambda)$ and does not depend on Γ .

Then, the proposition may be reformulated as saying that

$$\langle f_{\varphi}, T_t f_{\varphi} \rangle = \varphi * \tilde{\varphi} * \gamma(t)$$

for every $t \in \mathbb{R}^d$.

On the other hand, by spectral theory, for every $f\in L^2(\mathbb{X}(\Lambda),m)$ there exists a finite measure ρ_f on \mathbb{R}^d with

$$\langle f, T_t f \rangle = \int e^{ity} d\rho_f(y)$$

for every $t \in \mathbb{R}^d$.

Putting this together we infer

$$\varphi * \widetilde{\varphi} * \gamma(t) = \int e^{ity} d\rho_{f_{\varphi}}(y)$$

for every $\varphi \in C_c(\mathbb{R}^d)$ and $t \in \mathbb{R}^d$.

Theorem 4. Let Λ with (FLC) and (UPF) be given. Then, $\hat{\gamma}$ is pure point if and only if $(\mathbb{X}(\Lambda), \alpha)$ has pure point dynamical spectrum.

Remark. In this form due to Lee/Moody/Solomyak '02; later generalised see Gouéré '02, '03, Baake/L. '03; for an earlier result in symbolic dynamics see Quefféléc '87.

Proof. As shown above

$$\varphi * \widetilde{\varphi} * \gamma(t) = \int e^{ity} d\rho_{f_{\varphi}}(y)$$

for all $\varphi \in C_c(\mathbb{R}^d)$ and $t \in \mathbb{R}^d$. Fourier transform yields

$$|\hat{\varphi}|^2 \hat{\gamma} = \rho_{f_{\varphi}}$$

for all $\varphi \in C_c(\mathbb{R}^d)$. This gives

$$\hat{\gamma} pp \iff \rho_{f_{\varphi}}$$
 pure point for all $\varphi \in C_c(\mathbb{R}^d)$
 $\iff \rho_f$ pure point for all $f \in C(\mathbb{X}(\Lambda))$
 $\iff f \in \mathcal{H}_{pp}(T)$ for all $f \in C(\mathbb{X}(\Lambda))$
 $\iff \mathcal{H}_{pp}(T) = L^2(\mathbb{X}(\Lambda), m).$

2. Autocorrelation topology

(Introduced in Baake/Moody '02; further studied in Moody/Strungaru '03.)

Idea: Λ , Γ are close if they are **statistically close** after a small shift.

Statistical closeness captured by

$$\rho(\Lambda,\Gamma) := \limsup_{n \to \infty} \frac{\sharp(\Lambda \setminus \Gamma \cup \Gamma \setminus \Lambda) \cap B_n}{|B_n|}.$$

Note: $\rho(x + \Lambda, x + \Gamma) = \rho(\Lambda, \Gamma)$ for all $x \in \mathbb{R}^d$.

Define pseudo-metric on \mathcal{D}_r by

 $d_{at}(\Lambda,\Gamma) := \inf \{ \varepsilon > 0 : \exists x, y \in B_{\frac{\varepsilon}{2}} \ \rho(x + \Lambda, y + \Gamma) \leq \varepsilon \}.$ Define $\Lambda \equiv \Gamma$ if and only if $d_{at}(\Lambda,\Gamma) = 0$ and

$$\mathcal{D}_r^{\equiv} := \mathcal{D}_r / \equiv .$$

Theorem 5. (Moody/Strungaru) $(\mathcal{D}_r^{\equiv}, d_{at})$ is a complete metric space. The action

 $\alpha : \mathbb{R}^d \times \mathcal{D}_r^{\equiv} \longrightarrow \mathcal{D}_r^{\equiv}, \ \alpha_x([\Lambda]) := [x + \Lambda],$

is continuous.

This leads to a new notion of hull

$$\mathbb{A}(\Lambda) := \overline{\{\alpha_x([\Lambda]) : x \in \mathbb{R}^d\}^{at}}$$

and a new dynamical system

 $(\mathbb{A}(\Lambda), \alpha).$

Important: Due to translation invariance of ρ the hull $\mathbb{A}(\Lambda)$ is actually a group. It can be considered to be the completion of \mathbb{R}^d under the translation invariant pseudo-metric

$$\rho_{\Lambda}(t,s) = \rho_{\Lambda}(t-s,0) = \rho(t+\Lambda,s+\Lambda).$$

Assume:

• Λ Meyer (i.e. $\Lambda - \Lambda$ uniformly discrete).

• $\gamma = \lim_{n \to \infty} \frac{1}{|B_n|} \delta_{\Lambda \cap B_n} * \delta_{-(\Lambda \cap B_n)} = \sum_{t \in \Lambda - \Lambda} \eta(t) \delta_t$ exists, where

$$\eta(t) = \lim_{n \to \infty} \frac{\sharp (\Lambda \cap (t + \Lambda) \cap B_n)}{|B_n|}.$$

Recall $\rho_{\Lambda}(t,s) = \rho_{\Lambda}(t-s,0) = \rho(t+\Lambda,s+\Lambda).$

Theorem 6. TFAE:

(i) Λ is pure point diffractive (i.e. $\hat{\gamma}$ is pure point).

(ii) For every $\varepsilon > 0$ the set of ε -periods $P_{\epsilon} := \{t \in \mathbb{R}^d : \rho_A(t,0) \le \varepsilon\}$ is relatively dense in \mathbb{R}^d .

(iii) $\mathbb{A}(\Lambda)$ is compact.

Equivalence of (i) and (ii) shown in Baake/Moody '02, equivalence of (ii) and (iii) shown in Moody/Strungaru '03. Almost periodicity enters (see Gouéré '02, '03 as well). **Crucial link** $\rho_{\Lambda}(t,0) = 2(\eta(0) - \eta(t)).$

Proof.

$$\rho_{\Lambda}(t,0) = \limsup_{n \to \infty} \frac{\sharp((t+\Lambda) \setminus \Lambda \cup \Lambda \setminus (t+\Lambda)) \cap B_n}{|B_n|}$$

=
$$\limsup_{n \to \infty} \left(\frac{\sharp(t+\Lambda) \cap B_n - \sharp(t+\Lambda) \cap \Lambda \cap B_n}{|B_n|} + \frac{\sharp(\Lambda \cap B_n) - \sharp\Lambda \cap (t+\Lambda) \cap B_n}{|B_n|}\right)$$

= $\eta(0) - \eta(t) + \eta(0) - \eta(t).$

3. Where local topology and autocorrelation topology meet: Model sets

We have provided two frameworks to study aperiodic order:

$$(\mathcal{D}_r, d_{lt})$$
 and $(\mathcal{D}_r^{\equiv}, d_{at})$.

Here, d_{lt} measures local complete coincidence and d_{at} measures long range statistical coincidence.

Accordingly, a Meyer set \varLambda gives rise to two dynamical systems

$$(\mathbb{X}(\Lambda), \alpha)$$
 and $(\mathbb{A}(\Lambda), \alpha)$.

Apriori the two frameworks (and then these two dynamical systems) are unrelated, even though there is a natural map

$$\beta: \mathcal{D}_r \longrightarrow \mathcal{D}_r^{\equiv}, \Lambda \mapsto [\Lambda].$$

For model sets these two frameworks meet:

Theorem 7. (Baake/L./Moody) Λ Meyer. TFAE:

(i) $(\mathbb{X}(\Lambda), \alpha)$ comes from a regular model set.

(ii) $\beta : \mathbb{X}(\Lambda) \longrightarrow \mathbb{A}(\Lambda)$ is continuous and almost everywhere 1 : 1.

(iii) $(X(\Lambda), \alpha)$ has pure point dynamical spectrum with continuous eigenfunctions, which separate almost all points.

In some sense aperiodic model sets mark the border between periodicity and aperiodicity:

Theorem 8. (Baake/L./Moody) Λ Meyer. TFAE:

(i) Λ is crystallographic.

(ii) $\beta : \mathbb{X}(\Lambda) \longrightarrow \mathbb{A}(\Lambda)$ is continuous and injective.

(iii) $(X(\Lambda), \alpha)$ has pure point dynamical spectrum with continuous eigenfunctions, which separate all points.