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The Plan

Study aperiodic order via dynamical systems:

A< ———>(X(A), ).

e Dynamical system arises by gathering together
all manifestations of the “same” form of

(dis)order.

e Properties of the dynamical system reflect prop-
erties of its elements and vice versa.



1. Local topology

e Compactness and finite local complexity.

e Unique ergodicity and uniform patch frequen-
cies.

e A word on symmetry.

e Pure point dynamical spectrum and pure point
diffraction.

2. Autocorrelation topology

e Compactness, e-periods, and pure point diffrac-
tion.

3. Where local topology and autocor-
relation topology meet: Model sets
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Notation
| - || Euclidean norm on R<.
Dr:={ACR?: |z —y| >rforallz,y €A, 7y}

By = {z € R%: 2] < s}

A, I' always supposed to be uniformly discrete i.e.
to belong to some Dy.



1. Local topology

Idea: A, I' are close if they are locally close after
a small shift, i.e. if they agree on a large ball after
a small shift.

More precisely, the local topology is introduced via
the following metric:

dlt(Aap) L=
inf{e >0:3x,y € Bes.t. Bin(z+A) = Bin(y+1I")}A2~

Theorem 1. (D,,d;) is a complete metric space.
T he action

IS continuous.

The hull of A € D, in the local topology is defined
by

X(A) = {z + A : x € RINE,

Then, X(A) is invariant under «. Hence, (X(A), o)
IS a topological dynamical system.



Compactness and finite local complexity

Definition 1. A has finite local complexity (FLC) if
for every R > 0

t{(—z 4+ A)NBr:z € A} < co.

Note: A FLC <— A — A locally finite.
Proof. Upcp((—z 4+ A)NBr) =(A—A)N Bg

Theorem 2. X(A) compact <= A has FLC.

See Radin/Wolff '92, Schlottmann ‘00.



Proof —: Assume the contrary. Then, there ex-
ists an R > 0 with

tH{(—e+A)NBr:z e A} = o0.

Let z1,z0,23,... in R% be given such that

are pairwise disjoint. Consider

Ap = —xn + A € X(A).

Then, (Ay) has no converging subsequence.

<—=: Consider only A Delone, i.e. there exists R > 0
with (p + Bp) N A # ( for every p € R4,

Let (Ap) be a sequence in {—z + A : z € R%}.

(To show: (A,) has converging subsequence).



By assumption, for each n € N, there exists xz, €

W.l.0.9. zn — = € Br, n — 0.

W.log. =2, =0 forall n e N. (A, — —— >
Ap — Tp).

Consider for each k € N (An N By)n.

. 1
FLC —— exists subsequence (n§ ))j of (n) s.t.

A (1yN By the same for all j.
n:
J

FLC —= exists subsequence (n§2))j of (n§1)) s.t.
A 2y N By the same for all j.

n:

J

FLC —— exists subsequence (n§3))j of (n§2)) s.t.

A 3y N B3 the same for all j.
n:
J

Then (A (), converges. B
n
k



Unique ergodicity and uniform patch
frequencies

Definition 2. For A € D, and P C Bs with O € P
define the locator set of P in A by

L(A,P) :={zc A: (—z+ A) N Bs = P).

Note: L(A,P) = ( is possible.

Definition 3. A has uniform patch frequencies
(UPF) if for every P

n— o0 |Bn|

exists uniformly in q € R%.

Theorem 3. Let A have (FLC). Then:
A has UPF <— (X(A),«) is uniquely ergodic.

For a proof see e.g. Solomyak '96, Schlottmann
'00, Lee/Moody/Soloymak '02.



Proof. For ¢ € C.(R%) and P patch define

fo.p :Dr —C, fop(I):i= 3  w(-2).

zeL(I',P)
Then,

[ fop(t+Dydt = [ o()dt-sL(I, P) By + BT,

T herfore,

(UPF) < lim —/ fop(t+ ) dtex. all f,p

_ 1
<— lim —/an(t—l—l“)dt ex. all cont. f

n—oo Bn

<= Unique ergodicity.



A word on symmetry
X(A) may have “more” symmetry than A.

More precisely, consider a rotation

Then, S may leave X(A) invariant and then act on
X(A) via

S X(A) — X(A), I'— S(IN)
without A being fixed by S.

In this case, if X(A) admits a unique « invariant
probability measure m, then m is invariant under S

as well (as S(m) is another a-invariant probability
measure).



Pure point dynamical and pure point
diffraction spectrum

Let A with FLC and UPF be fixed.
Thus, (X(A),a) is compact and uniquely ergodic.

Denote unique a-invariant probability measure on
X(A) by m.
L2(X(A),m) := {f : X(A) — C : /|f|2dm < oo}

Hilbert space with inner product

(fyg) = /ngm-



Unitary representation T of R% on L2(X(A), m):

For each z € R¢
Ty 1 L2(X(A), m) — L2(X(A), m)

(Tzf)(I') = fla—zl")

is unitary (i.e. isometric and onto).

An f € L2(X(A),m) is called eigenfunction of T to
the eigenvalue y € RY if

Tef = ™Y f for all z € R4,

Hpp(T') := Lin{eigenfunctions of T' } C L2(X(A), m).

T is said to have pure point spectrum if

Hpp(T) = L?(X(A), m).

Then, (X(A),a,m) is said to have pure point dy-
namical spectrum.



We now come to a circle of ideas going back
to Dworkin '93 (see Enter/Miekisz '92, Hof '98,
Schlottmann '00, Lee/Moody/Solomyak '02... as
well).

For ¢ € C.(R%) define
fo 1 Dr — C, fo(IN) :1= Z p(—x) = ¢ *dr(0).

xcl’
Proposition 1.
. ~ 1 _
im0 % 65 o Grs, * 8- (s, ) O = (Fe, Tif)

for every I' € X(A) and t € R4,

Proof. By unique ergodicity we have

<f§07 th90>
1

= lim — folasI) folas—tI)ds

n— 00 |Bn| B,

lim L/ Y o(=s—z) > o(—s—t—1y)ds

"% | Bp| JBn xel yel’
, 1
= nl|_>mooB— Z o(—s — x) Z o(—s —t —1y)c
| Bn| xel'NBy yel'NBy,
. 1
= 1im ——(@*d_(rnp,)) * (¢ *drnp,) ().



From this result (or by other means) we may infer

that

1

exists for every I' € X(A) and does not depend on
I'.

Then, the proposition may be reformulated as say-
ing that

(fo, Tifo) = @ *x @ *v(1)
for every t € R?.

On the other hand, by spectral theory, for every
f € L?(X(A),m) there exists a finite measure p; on
R4 with

(1) = [ €™ dps(y)

for every t € R4,

Putting this together we infer
o x @ xy(t) = /eity dpy,(y)

for every ¢ € C.(R%) and ¢ € R4,



Theorem 4. Let A with (FLC) and (UPF) be given.
Then, 5§ is pure point if and only if (X(A),«) has
pure point dynamical spectrum.

Remark. In this form due to Lee/Moody/Solomyak
'02; later generalised see Gouéré '02, '03, Baake/L.
'03; for an earlier result in symbolic dynamics see
Quefféléc '87.

Proof. As shown above
o x @ xy(t) = /eity dpy,(y)

for all ¢ € Ce.(R%) and ¢t € R% Fourier transform
yields

B1°7 = py,
for all ¢ € C.(RY). This gives
App <= py, pure point for all ¢ € Cc(R?)
<= pys pure point for all f € C(X(A))
< f € Hpp(T) for all f € C(X(A))
= Hpp(T) = L*(X(A),m).



2. Autocorrelation topology

(Introduced in Baake/Moody '02; further studied in
Moody/Strungaru '03.)

Idea: A, I' are close if they are statistically close
after a small shift.

Statistical closeness captured by
A\NT'UI'\A)NB
o(A,T) = Iimsuph( \ \A) =z

Note: p(z + A,z + I') = p(A, IN)) for all z € R,

Define pseudo-metric on D, by

det(A, I") == inf{e > 0: 3dx,y € B% plx+Ay+1") <e}.
Define A = I if and only if d,:(A,I") = 0 and

’D,r.E = DT/E .



Theorem 5. (Moody/Strungaru) (D ,dg) is a
complete metric space. The action

a:RYx D — D=, ax([4]) = [z + 4],

IS continuous.

This leads to a new notion of hull

A(A) = {az([A]) : = € Rd}al

and a new dynamical system

(A(A), @).

Important: Due to translation invariance of p the
hull A(A) is actually a group. It can be considered
to be the completion of R under the translation
invariant pseudo-metric

pA(t,8) = pa(t —s,0) = p(t+ A, s+ A).



Assume:

e A Meyer (i.e. A — A uniformly discrete).

o v = limp—- ﬁCSAﬂBn * 5—(AﬂBn) = YteA—an(t)d
exists, where

) = fim KA+ )0 By

nToo | Bn|
Recall p(t,s) = ps(t —s,0) = p(t+ A, s+ A).
Theorem 6. TFAE:
(i) A is pure point diffractive (i.e. 7 is pure point).

(ii) For every € > 0 the set of e-periods P := {t €
R%: pa(t,0) < e} is relatively dense in R<.

(iii) A(A) is compact.

Equivalence of (i) and (ii) shown in Baake/Moody
'02, equivalence of (ii) and (iii) shown in
Moody/Strungaru '03. Almost periodicity enters
(see Gouéré '02, '03 as well).



Crucial link p,(¢,0) = 2(n(0) —n(t)).

Proof.
pA(t,0) = ngnﬁsolépﬁ“tH)\AU|§\|<t+A>>mBn
= IimSUD(ﬂ(t_I_A)DBRTE(T‘l'A)ﬂAﬂBn
+ﬂ(AﬂBn)—ﬂ|/;ﬂ|(t+A)ﬂBn)

= 1n(0) —n(t) +n(0) —n(t).



3. Where local topology and
autocorrelation topology meet: Model
sets

We have provided two frameworks to study aperi-
odic order:

(DT, dlt) and (Drza dat)-

Here, d;; measures |local complete coincidence and
d,: measures long range statistical coincidence.

Accordingly, a Meyer set A gives rise to two dynam-
ical systems

(X(A),a) and (A(A), ).

Apriori the two frameworks (and then these two dy-
namical systems) are unrelated, even though there
IS a natural map

For model sets these two frameworks meet:



Theorem 7. (Baake/L./Moody) A Meyer. TFAE:
(i) (X(A),«) comes from a regular model set.

(ii) 8 : X(A) — A(A) is continuous and almost
everywhere 1 : 1.

(iii) (X(A),«) has pure point dynamical spectrum
with continuous eigenfunctions, which separate al-
most all points.

In some sense aperiodic model sets mark the border
between periodicity and aperiodicity:

Theorem 8. (Baake/L./Moody) A Meyer. TFAE:
(i) A is crystallographic.
(ii) B : X(A) — A(A) is continuous and injective.

(iii) (X(A),«) has pure point dynamical spectrum
with continuous eigenfunctions, which separate all
points.



