
Abstract

Much work has been done studying amenable group actions, but
until recently, it has been difficult to handle non-amenable actions.
A break-through was made with work of Levitt, Kechris, Gaboriau,
which defines a new invariant, the cost of a group action (or equiva-
lence relation). Gaboriau showed how to use this invariant to distin-
guish between group actions of, for example, the free group on two
generators and the free group on three generators.

In joint work with Golodets, we used the theory of index cocycles of
Feldman, Sutherland and Zimmer to calculate the cost of equivalence
relations which are finite extensions. This enables us to resolve some
conjectures of Gaboriau, and also to show that many group actions
cannot be isomorphic.

I will give an introduction to the theory of costs and an outline of
our main results.
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1 History

J. Feldman and C. Moore (1977) introduced the notion of a
standard countable measure-preserving equivalence relation to
investigate the orbit properties of dynamical systems. This part
of ergodic theory has deep relations with von Neumann algebras.

Connes-Feldman-Weiss and Ornstein-Weiss(1980, 1981)
Investigated amenable countable equivalence relations. They
proved that any ergodic measure-preserving free action of a
countable amenable group is orbit equivalent to a free action
of Z.

Non-amenable measure-preserving equivalence relations are
more complicated. For example, there are countable groups
which have uncountably many actions which are pairwise non-
orbit equivalent. Further, there exist measure-preserving count-
able equivalence relations which have countable fundamental
groups (Golodets-Gefter), analogue of phenomena for von Neu-
mann algebras discovered by Connes, Popa.

Zimmer’s(1977 – 1980) work on strong rigidity for ergodic
actions of semi-simple Lie groups and their lattices made a start
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in the study of non-amenable actions. But it was still not pos-
sible to distinguish between actions of the free group on 2 gen-
erators and the free group on 3 generators!

Recent results of Adams (1990), Furman(1999), Gaboriau
(2000–2004), Levitt (1995) and other authors develop the no-
tion of costs `2-Betti numbers for measured equivalence rela-
tions. Kechris and Miller ’s lecture notes on costs of equivalence
relations and groups are a good source for this theory.

In particular, Gaboriau showed that free actions of groups
Fn and Fm, are not orbit equivalent if n 6= m. He did this by
calculating the cost of Fn = n.

2 Our results

Let E ⊆ F be aperiodic countable Borel equivalence relations on
a Lebesgue space (X,µ), where µ is a finite F -invariant measure.
Let [F : E] = n < ∞. Then

Cµ(E)− µ(X) = n(Cµ(F )− µ(X)). (1)

Here Cµ(E) and Cµ(F ) are the costs of E and F respectively.
In particular, this answers a question of Kechris and Miller.
We also prove if E ⊆ F are as above then F is treeable if and

only if E is treeable.

3 Measured equivalence relations

A relation R on a set X is a set of ordered pairs from X, R ⊂
X2. If R is a relation we write

xRy ⇔ (x, y) ∈ R.
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A graph G with vertex set X is a non-reflexive (i.e., (x, x) 6∈
G ∀x ∈ X), symmetric (i.e., G = G−1) relation on X. The
neighbours of x ∈ X in the graph G are {y ∈ X : (x, y) ∈ G}.

A G-path from x to y is a finite sequence of vertices x =
x0, x1, · · · , xn = y such that (xi, xi+1) ∈ G, ∀i < n, and xi 6= xj

if i 6= j. Define an equivalence relation on X given by

xEy ⇔ ∃ a G-path from x to y.

Its equivalence classes are the connected components of G.
A cycle is a G-path x0, x1, · · · , xn = x0, starting and ending at
the same point. A graph G is acyclic if it contains no G-cycles.
An acyclic graph containing only one connected component is
called a tree.

3.1 Countable Borel equivalence relations.

Let X be a standard Borel space. An equivalence relation E on
X is called Borel if it is a Borel subset of the product space X2.

A Borel equivalence relation E is countable if every equivalence
class [x]E, x ∈ X, is countable.

If Γ is a countable group Γ and (g, x) 7→ g ·x is a Borel action
of Γ on X, then the orbit equivalence relation

xEX
Γ y ⇔ ∃g ∈ Γ such that g · x = y

is countable. The converse assertion is also true. Feldman and
Moore showed that a countable Borel equivalence relation al-
ways arises from a countable group Borel action.

A countable equivalence relation E in X is called aperiodic
if every equivalence class [x]E is infinite. A Borel subset S of
X is called a complete section if it meets every equivalence
class.
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We denote by [E] the set of all Borel automorphisms f of X
with f(x)Ex for all x ∈ E, and by [[E]] the set of all partial
Borel automorphisms f : A → B, where A,B are Borel subsets
of X, with f(x)Ex, ∀x ∈ A.

We further denote by Aut(E) the group of all Borel auto-
morphisms of E, that is to say, f ∈ Aut(E) if f is a Borel
automorphism of X and xEy ⇔ f(x)Ef(y). Observe that
[E] ⊂ Aut(E).

We call elements of [E] inner automorphisms of E and we
call f ∈ Aut(E) \ [E] an outer automorphisms if x is not
E-equivalent to f(x) for all x ∈ X.

For f, g ∈ Aut(E) we write f = g(mod[E]) if there exists
h ∈ [E] with f = g ◦ h.

3.2 Invariant measures.

Let µ be a measure on a standard Borel space X and E a count-
able Borel equivalence relation on X.

We say that µ is E-invariant if there is a countable group
Γ and a Borel action of Γ on X with EX

Γ = E, such that µ is
Γ-invariant. We call E a measured equivalence relation if
there exists an E-invariant measure µ on X. An E-invariant
measure µ is ergodic if every E-invariant Borel subset of X is
either null or conull.

If µ is an E-invariant measure we can define a measure Mµ

on E as follows

Mµ(A) =

∫
|Ax|dµ(x),

where A is a Borel subset of E, |S| = card S, Ax = {y : (x; y) ∈
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A}. It turns out that∫
|Ax|dµ(x) =

∫
|Ay|dµ(y)

where Ay = {x : (x, y) ∈ A}.

3.3 Graphings.

A graph on a standard Borel space (X,B) is a graph G on the
set X, such that G ⊆ X2 is Borel, and every x ∈ X has at
most countably many neighbours. Let E be a countable Borel
equivalence relation. A Borel graphing of E is a graph G
such that the connected components of G are exactly the E-
equivalence classes. If G is a tree, this is called a treeing.

There is another concept of graph which is called an L-graph
(L stands for Levitt). This is a countable family Φ = {ϕi}, i ∈ I,

of partial Borel isomorphisms ϕi : Ai → Bi where Ai, Bi are
Borel subsets of X,ϕi ∈ [[E]]. We say that Φ is an L-graphing
of E if Φ generates E, i.e. xEy means that x = y or there
is a sequence i1, · · · , ik ∈ I and ε1, · · · , εk ∈ {±1} such that
x = ϕε1

i1
· · ·ϕεk

ik
(y). Similarly one defines an L-treeing.1

For every L-graph Φ = {ϕi} we can define an associated
graph GΦ which generates the same equivalence relation as Φ.
Conversely, for every graph G one can find an L-graph ΦG such
that G = GΦG .

3.4 Cost of an equivalence relation.

Let E be a countable Borel equivalence relation on X and µ an
E-invariant measure. Now we define the (µ) cost of E, which
will be denoted by Cµ(E).

1µ{x ∈ domw : wx = x} = 0 for all non-empty reduced words w.
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If G is a graphing of E we define its cost by Cµ(G) = 1
2M(G).

If Φ = {ϕi}i∈I , ϕi ⊆ [[E]] is an L-graph, define its cost by

Cµ(Φ) =
∑

i∈I

µ(dom(ϕi))

=
∑

i∈I

µ(rng(ϕi))

Then

Cµ(Φ) =
1

2

∫ ∑

i∈I

(χAi
(x) + χBi

(x))dµ(x)

where Ai = dom(ϕi), Bi = rng(ϕi). Hence if GΦ is the graph
associated to Φ, then |(GΦ)x| ≤

∑
i∈I(χAi

(x) + χBi
(x)), and

Cµ(GΦ) = 1
2M(GΦ) ≤ Cµ(Φ).

Conversely, let G be a graphing of E and ΦG be the associated
L-graph. Then Cµ(G) = Cµ(ΦG). Thus we can define the µ cost
of E as

Cµ(E) = inf{Cµ(G) : G is a graphing of E a.e.}
= inf{Cµ(Φ) : Φ is an L− graphing of E a.e.}

This notion was introduced by G. Levitt. It is clear that 0 ≤
Cµ(E) ≤ ∞.

Levitt and Gaboriau showed that Cµ(E) = Cµ(G), if and
only if G is a treeing. The same result holds for L-graphings
and L-treeings.

Gaboriau showed:

• Let S ⊆ X a Borel complete section for E and µ an E-
invariant measure. Then

Cµ(E) = Cµ|S(E|S) + µ(X\S)
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• Cµ(E1 ∗E3
E2) = Cµ(E1) + Cµ(E2)− Cµ(E3) where ∗ is the

amalgamated join of equivalence relations.

If Γ is a group, one defines C(Γ) = inf{Cµ(E) : E is induced
by a free action of Γ}.

Gaboriau showed further that:

• C(Fn) = n

• SL(2,Z) is treeable with price 1 + 1
12

• The fundamental group π1(Σg) of a surface of genus g is
fixed price, of cost 2g − 1

• If ∆ is a closed normal subgroup of Γ then C(Γ)− 1 = [Γ :
∆](C(∆)− 1)

A group is said to have fixed price if C(Γ) = Cµ(E) for all
E induced by a free action of Γ.

A group is cheap if C(Γ) = 1
A re-phrasing of some theorems of Ornstein and Weiss says

that every infinite amenable group is cheap, treeable and of fixed
price!

If E ⊆ F are equivalence relations and every F -class contains
exactly n E-classes then we say that index of E in F is n, or

[F : E] = n.

We say that E has finite index in F, in symbols

[F : E] < ∞,

if every F -class contains only finitely many E-classes.
Gaboriau’s theorem above will follow from our result, which

had been conjectured by Kechris and Miller.
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Theorem 3.1 Let F be an aperiodic countable Borel equiva-
lence relation on a standard Borel measure space (X, µ) and µ

an F -invariant finite measure, E be a Borel subrelation of F

with finite index: [F : E] = n then

Cµ(E)− µ(X) = n(Cµ(F )− µ(X)). (2)

There are 3 main steps in the proof of the theorem:

1. Step 1 Suppose that E is generated by F together with a
finite group K.

2. Step 2 Suppose F is ergodic and use index cocycles to
reduce to Step 1.

3. Step 3 Use the ergodic decomposition of F to reduce to
Step 2.

4 Step 1: Equivalence relations of finite index

Let E ⊆ F be two countable Borel equivalence relations on the
standard Borel space X. E is said to be normal in F , written
E C F, if there is a countable group of Borel automorphisms
{gi}i∈N, of X which generates F , i.e.

xFy if and only if there exists i ∈ N such that gix = y (3)

and such that each gi preserves E, i.e.

xEy if and only if gi(x)Egi(y). (4)

For example, if G is a countable group with a Borel action on
X, and N is a normal subgroup of G then EX

N C EX
G .

A slightly stronger notion is:
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Definition 4.1 We say that E is a strongly normal sub-

relation of F , denoted E
s
C F , if there is a family {fi}i∈I⊆N, of

Borel automorphisms of X, such that the following conditions
hold

(i) fi ∈ Aut(E), i.e. xEy ⇒ fi(x)Efi(y),

(ii) f1 = id mod ([E]) and for i > 1, fi is an outer automor-
phism of E, i.e. for all x ∈ X, x is not E-equivalent to
fi(x).

(iii) The functions {fi}i∈I form a group mod [E], that is, for all
i, j there exists k(i, j) ∈ I such that fifj = fk(i,j)c(i, j), for
some c(i, j) ∈ [E].

(iv) E and {fi} generate F , in the following sense: xFy ⇔
fi(x)Ey for some i ∈ I.

It is obvious how to adapt this definition to the case where
E is a measured equivalence relation.

Below, we shall consider the case where |I| < ∞ so that
{fi}i∈I is a finite group (mod[E]).

Lemma 4.2 Let F be a measured equivalence relation on (X, µ)

and suppose that E
s
C F . Then E C F .

If F is not ergodic, then it is not hard to give an example

where E C F but E 6 sC F .
The situation changes if E is ergodic. In this case, F is also

ergodic, and if E ⊆ F with E C F , then E
s
C F .

In the case of a normal subrelation of finite index, we can
weaken the hypotheses.
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Lemma 4.3 Let E, F be as above, with F ergodic, E C F and
[F : E] < ∞. Then there exists n ∈ N such that [F : E] = n,

and E
s
C F .

Theorem 4.4 Let E ⊆ F be aperiodic countable Borel equiva-
lence relations on a standard Borel space (X,B) equipped with
a finite F -invariant measure µ. Suppose that [F : E] = n < ∞
and that there is a finite group K, of order n, which consists of
outer automorphisms of E and is such that F is generated by E

and K. Then

Cµ(E)− µ(X) = n(Cµ(F )− µ(X)). (5)

The condition [F : E] = n in the statement of Theorem 4.4
is equivalent to the following conditions:

• if (x, y) ∈ E, then (kx, ky) ∈ E for a.e. (x, y) ∈ X ×X,

• for all k ∈ K \ {e}, we have (x, kx) 6∈ E for a.e. x ∈ X.

In particular, it follows that every nontrivial element of K acts
freely on (X, µ). Note also that every element k ∈ K either
acts inside each ergodic component of E or transposes ergodic
components.

The main technique is the following idea:

4.1 Invariant graphings.

Definition 4.5 Let (X, µ), E and K be as in the statement of
Theorem 4.4. We will say that a graphing G of E is K-invariant
if kGk−1 = G for all k ∈ K. An L-graphing Φ = {ϕi}i∈N, of E
is K-invariant if kΦk−1 = {kϕik

−1} = Φ for any k ∈ K.
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Note that G is K-invariant if and only if (x, y) ∈ G implies
(kx, ky) ∈ G for all k ∈ K.

It is clear that a K-invariant L-graphing Φ of E defines a
K-invariant graphing G of E. The converse statement is also
true.

Proposition 4.6 Suppose that Cµ(E) < ∞. If for any ε > 0
there is a K-invariant L-graphing Φ = {ϕi}i∈N, of E such that
Cµ(Φ) ≤ Cµ(E) + ε, then (5) holds.

Proposition 4.7 Let Cµ(E) < ∞. Then for any given ε > 0
there is a K-invariant L-graphing Φε of E such that

Cµ(E) ≤ Cµ(Φε) < Cµ(E) + ε (6)

Note that Theorem 4.4 is a consequence of Propositions 4.6 and
4.7.

Let ΦK = {ϕi ∈ Φ : ∀k ∈ K, k−1ϕik ∈ Φ}, and Φr = Φ\ΦK .

Notice that if ϕ ∈ Φr and A ⊆ domϕ, with µ(A) > 0, then ϕ|A
does not belong to ΦK .

The key idea in the proof is:

Lemma 4.8 Let E, K and Φ be as above and suppose that ϕ1 ∈
Φr. Then for any Y ⊆ domϕ1 of positive measure, there exists
Y1 ⊂ Y , also of positive measure, such that if we define the
family {fk} of Borel functions by

fk(x) = kϕ1k
−1(x), x ∈ kY1, k ∈ K,

and set ΦK
1 = ΦK ∪{fk, k ∈ K}, then there exists an L-graphing

Φ1 of E for which

Cµ(Φ) = Cµ(Φ1), (Φ1)
K = ΦK

1 and Cµ(Φ
K
1 ) > Cµ(Φ

K).

12



Proof. We may suppose that there is a subset Y ′
1 ⊂ Y, with

µ(Y ′
1) > 0, and k1 ∈ K such that the function k1ϕ1k

−1
1 (x) does

not belong to Φ for x ∈ k1Y
′
1 . It follows from the definition of

an L-graphing that there are Borel functions ψ1, · · ·ψt, t < ∞,

belonging to Φ and ε1, · · · , εt, where εi = ±1, 1 ≤ i ≤ t, such
that:

k1ϕ1k
−1
1 (x) = ψε1

1 . . . ψεt
t (x) for x ∈ k1Y

′
1 . (7)

Furthermore, there is a function ψp amongst the functions {ψi}, 1 ≤
i ≤ t, such that ψp 6∈ ΦK . Let f ′1 = ϕ1|Y ′

1
. As (x, k1x) 6∈ E, we

can choose Y ′
1 such that f ′1 is not the restriction of one of the

functions {ψi}, 1 ≤ i ≤ t, from (7).
We shall define a new L-graphing Φ′

1. To simplify the discus-
sion we assume that εt = 1 and ψt 6∈ ΦK . (The other cases are
similar). Then ψt = ϕm2

∈ Φr for some m2 ∈ N. Let

f ′1(x) = ϕ1(x) for x ∈ Y ′
1 ,

f ′2(x) = k1ϕ1k
−1
1 (x) for x ∈ k1Y

′
1 ,

ϕ′1(x) = ϕ1(x) for x ∈ dom ϕ1 \ Y ′
1 ,

ϕ′m2
(x) = ϕm2

(x) for x ∈ dom ϕm2
\ k1Y

′
1 .

Define Φ′
1 as follows:

(Φ′
1)

r = {ϕi : i ∈ N \ {1,m2}} ∪ {f ′1, f ′2, ϕ′1, ϕ′m2
}, (Φ′

1)
K = ΦK .

By our construction of Φ′
1 and (7), we see that Φ′

1 is an L-
graphing of E and Cµ(Φ

′
1) = Cµ(Φ).

We can apply this construction simultaneously to the family
of functions {kϕ1k

−1}k∈K , and obtain an L-graphing Φ1 of E

with the following properties:

ΦK
1 = ΦK ∪ {fk : k ∈ K}
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where fk, k ∈ K, are as in the statement of the Lemma, and

Φr
1 = {ϕi : i ∈ N, i 6= 1, m2, · · · ,mn−1} ∪ {ϕ2

1, ϕ
2
m2

, · · · , ϕ2
mn−1

}

where ϕ2
1 = ϕ1 for x ∈ dom ϕ1\Y1,

ϕ2
mj

= ϕmj
for x ∈ dom ϕmj

\kjY1, 2 ≤ j ≤ n− 1.

Here Y1 ⊆ Y ′
1 is a subset of dom ϕ1 as in the statement of the

Lemma, with sufficiently small positive measure. It follows from
our construction that Cµ(Φ) = Cµ(Φ1). ¤

Continuing this process we obtain, after j steps, an L-graphing
Φj with the following properties:

Cµ(Φj) = Cµ(Φj−1) = C(Φ); (8)

ΦK
j−1 ⊂ ΦK

j , Cµ(Φ
K
j−1) < Cµ(Φ

K
j ); (9)

Φr
j = {ϕj

i}i∈N, (10)

where ϕj
i = ϕi for x ∈ domϕj

i ⊆ domϕi, ϕi ∈ Φr, and domϕj
i =

domϕi except for a finite set of integers i.

Note that this allow us to define ϕ∞i = limj→∞ ϕj
i , where

ϕj
i ∈ Φr

j, ϕ∞i = ϕi for x ∈ domϕ∞i ⊆ domϕj
i .

5 Step 2: Index cocycles

We describe the structure of equivalence relations E ⊆ F, where
[F : E] = n < ∞, using the theory of index cocycles devel-
oped by Feldman, Sutherland and Zimmer. The main structure
theorem is as follows.
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Theorem 5.1 Let E ⊆ F be aperiodic countable Borel equiva-
lence relations on (X, µ) where µ(X) < ∞ and µ is F -invariant.
Assume that F is ergodic, [F : E] = n < ∞ and let X = ∪t

i=1Xi

be the partition of X into the ergodic components of E, that is
Ei = E

∣∣
Xi

is an ergodic component of E, for all 1 ≤ i ≤ t. Then
the following assertions hold:

1. Let Fi = F |Xi
and [Fi : Ei] = ni : then n =

∑t
i=1 ni and

hence 1 ≤ t ≤ n.

2. There is an equivalence relation N , which is a subrelation
of finite index of both E and F , and which has the following
properties:

(i) Ni = N |Xi
is ergodic in (Xi, µ|Xi

);

(ii) Ni is a strongly normal subrelation of finite index in
both Ei and Fi. In particular, if n1 = n2 = · · · = nt

then N is strongly normal in E.

(iii) There exists Z ⊂ X, with µ(Z) > 0, which is a com-
plete Borel section of both E and F , such that N |Z ⊆
F |Z and N |Z is a strongly normal subrelation of F |Z .

The case when E is ergodic, (i.e. t = 1) was dealt with by
Sutherland.

The general case is seen by using index cocycles for the pair
E ⊆ F . If F is ergodic then there exist Borel functions ϕj :
X → X such that ϕj ∈ [[F ]] and {Eϕj(x), 1 ≤ j ≤ n} is
a partition of the orbit Fx for µ-a.e. x ∈ X. The functions
ϕj(x), 1 ≤ j ≤ n, are called “choice functions” for the pair
E ⊆ F. If E is also ergodic then we can choose ϕj such that
ϕj ∈ [F ]. For every family of choice functions {ϕj(x)}n

j=1, we
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define a cocycle σ : F → Σ(n), by

σ(x, y)(i) = j

if ϕi(y)Eϕj(x). Then σ ∈ Z1(F, Σ(n)), and the class of σ in
H1(F, Σ(n)) is independent of the family of choice functions
{ϕj}, j = 1, · · · , n.

σ is called the index cocycle of the pair E ⊆ F.

Let F be an ergodic equivalence relation and σ a cocycle on
F with values in a locally compact group G. The Mackey action
of G associated with σ is always ergodic. If the action is trivial,
then σ is called a cocycle with dense range in G.

If G is a finite group then the Mackey action associated with
σ is transitive and is isomorphic to an action of G on the ho-
mogeneous space G/K where K is a subgroup of G. Zimmer
showed that the cocycle σ is cohomologous to a cocycle σ′ with
values in K. That is, there exists a Borel function v : X → G

such that
σ′(x, y) = v(x)−1σ(x, y)v(y)

and σ′(x, y) ∈ K for µ-a.e. x, y ∈ X. Now our group G has a
transitive action on G/K but σ′ has dense range in K. Let µK

be the Haar measure of K, and define an equivalence relation
FK on (X ×K, µ× µK) by

(x, k1) ∼ (y, k2)

if (x, y) ∈ F, with k1 = σ′(x, y)k2. Then FK is ergodic, or equiv-
alently the Mackey action of K, associated with σ′, is trivial.
Now let

N = ker σ′ = {(x, y) ∈ X ×X : xFy, σ′(x, y) = e}.
It follows from the ergodicity of FK and the finiteness of K that
N is an ergodic equivalence subrelation of F.
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Indeed, it follows from the ergodicity of N that for every
k ∈ K there exists uk ∈ [F ] such that

σ′(ukx, x) = k, x ∈ X,

and
uk1

uk2
= uk1k2

n, n ∈ [N ].

Hence {uk}, k ∈ K, generates a group of outer automorphisms of
N mod [N ]. Moreover, {uk : k ∈ K}, and N together generate
F because σ′ has dense range in K. Now if xNy for x, y ∈ X

then ukxNuky because

σ′(ukx, uky) = σ′(ukx, x)σ′(x, y)σ′(y, uky)

= kek−1 = e.

It follows that N is a strongly normal ergodic subrelation of F

and hence [F : N ] = |K|.

6 Step 3: Ergodic decomposition

Theorem 6.1 Let F be a countable Borel equivalence relation
on a standard Borel space X and assume IF 6= 0. Then EIF 6= 0
and there is a Borel surjection π : X → EIF such that

(i) π is F -invariant.

(ii) If Xf = {x : π(x) = f} for f ∈ EI then f(Xf) = 1 (in fact,
f is the unique F -ergodic invariant measure on F |Xf

).

(iii) For any µ ∈ IF , µ =
∫

π(x)dµ(x) =
∫

fdν(f) where ν =
π∗µ.

Moreover:
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Corollary 6.2 For any µ ∈ IF

Cµ(F ) =

∫
Cπ(x)(F )dµ(x) =

∫
Cf(F )dµ(f). (11)

It is clear that if [F : E] = n then [F |Xf
: E|Xf

] = n for ν-a.e.
f ∈ EIF . Furthermore, the surjection π : X → EIF of Theorem
6.1 is also E-invariant.

Cµ(E) =

∫
Cπ(x)(E)dµ(x) =

∫
Cf(E)dν(f). (12)

7 Treeability

Theorem 7.1 Let E ⊆ F be aperiodic countable Borel equiv-
alence relations on a standard Borel space (X,µ) with a finite
F -invariant measure µ. Suppose that [F : E] = n < ∞. Then
F is treeable if and only if E is treeable.

The path of the proof is similar to that above. We first con-
sider the case where F is a finite strongly normal extension of

E, i.e. E
s
C F .

Then we establish the existence of K-invariant L-treeings of
E.

Proposition 7.2 Let (X, µ), E and K be as before, and Φ =
{ϕi}i∈N an L-treeing of E. Then there is a K-invariant L-treeing
of E.

This proposition is an analogue of Proposition 4.7 above.

Lemma 7.3 Suppose that the assumptions of Lemma 4.8 are
satisfied, and that Φ is an L-treeing of E. Then all the conclu-
sions of that Lemma hold and in addition Φ1 is an L-treeing of
E.
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We obtain the following.

Corollary 7.4 Let E ⊆ F be as in the statement of Theorem
7.1, with Cµ(E) < ∞. Suppose that F is a strongly normal
extension of E. Then F is treeable if and only if E is treeable.

Example 7.5 (i) Let Fn be the free group on n generators,
and Σ(n) the group of permutations of {1, . . . , n}. Then
Σ(n) acts as a group of outer automorphisms of Fn. We
can show that the semi-direct product FnoΣ(n) is a treeable
group.

(ii) Let p ≥ 3 be a prime number, and let Tp be an outer au-
tomorphism of Zp (for example, Tp could be multiplication
by 2). Then Fn acts on Zp by the automorphism Tp, so we
may define the semi-direct product G = Zp o Fn. Then G

is treeable.

(iii) We saw above that for g > 1, the group π1(Σg) = Fg ∗Z Fg

has fixed price and is weakly treeable. Thus, for any finite
group K, π1(Σg)×K and K o π1(Σg) both have fixed price
and are both weakly treeable.

8 Subgroups of treeable groups.

It is well known that any Borel subrelation of a measured tree-
able equivalence relation is also treeable. We prove an analogous
result for treeable groups. This resolves another conjecture of
Kechris and Miller.

Theorem 8.1 Let G be a countable group which is treeable, and
H a subgroup of G. Then H is also treeable.
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In order to prove this theorem, we show that if a countable
group H as above has a treeable action α on a Lebesgue space
(X, µ), and a free action on an α-invariant factor space (Y, ν) of
(X, µ), then the restriction of α to (Y, ν) is also treeable. Then
we construct a free action TG

β of G from any free action of β of
H, the co-induced action. Since G is treeable, it follows that
TG

β is treeable, and hence its restriction TH
β to H is a treeable

action of H. This action is such that it has an invariant factor
action isomorphic to β.

Theorem 8.2 Suppose that a countable group G has a free tree-
able action on a standard Borel space which is equipped with
a G-invariant probability measure (i.e. G is weakly treeable).
Then G is treeable in the sense of Gaboriau.

Lemma 8.3 Let G and H be as in the statement of Theorem
8.1 and let β be any measure-preserving free action of H on a
Lebesgue probability space (Y, C, µ). Then EY

H is treeable.

Co-induction We use β to construct a free measure-preserving
action of G on a Lebesgue probability space (Z, ν). Fix a section
s : H\G → G of the homogeneous space H\G with s[e] = e,
where e is the identity of G. Consider the product space (Z, ν) =∏

H\G(Y, µ), where ν = ⊗H\Gµ. Then an element z ∈ Z has the
form z = (zθ), where zθ ∈ Y for all θ ∈ H\G. We define the
co-induced action of G on Z by the formula

(gz)θ = s(θ)gs(θg)−1zθg (13)

where we note that the cocycle (g, θ) 7→ s(θ)gs(θg)−1 takes val-
ues in H. An easy calculation shows that this action is a well-
defined, free left action of G, which preserves the probability

20



measure ν on Z. In particular, if h ∈ H, then

(hz)[e] = h(z[e]).

Corollary 8.4 Let G be a treeable group and H a cheap sub-
group of G. Then H is amenable.

21



References

[1] S. Adams, Trees and amenable equivalence relations, Ergodic Th. Dyn.
Syst., 10 (1990), 1-14.

[2] S. Adams and R. Spatzier, Kazhdan groups, cocycles and trees, Amer.
J. Math., 112 (1990), 271-287.

[3] A. Connes, A type II1-factor with a countable fundamental group, J.
Operator Theory 4 (1980), 151-153.

[4] A. Connes, J. Feldman and B. Weiss, An amenable equivalence relation
is generated by a single transformation, Ergod. Th. and Dyn. Syst., 1
(1981), 431-450.

[5] A.H. Dooley, V. Golodets, D.J. Rudolph, S.D. Sinel’shchikov, Non-
Bernoulli systems with completely positive entropy, (submitted)

[6] J. Feldman, C. Moore, Ergodic equivalence relations, cohomology, and
von Neumann algebras, I. Transaction Amer. Math. Soc., 234 (1977),
289-324; II 234 (1977), 325-359.

[7] J. Feldman, C. Sutherland, R. Zimmer, Subrelation of ergodic equiva-
lence relations, Ergod. Th. Dyn. Syst., 9 (1989), 239-269.

[8] A. Furman, Gromov’s measure equivalence and rigidity of higher rank
lattices, Ann. Math., 150 (1999) 1059-1081.

[9] A. Furman, Orbit equivalence rigidity, Ann. Math., 150 (1999), 1083-
1108.
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