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Abstract

The 3n+1 function is given by T (n) = n/2 for n even, T (n) = (3n+1)/2
for n odd. Given a positive integer a, another number b is a called a predecessor

of a if some iterate T ν(b) equals a. Here some ideas are described which may
lead to a proof showing that the set of predecessors of a has positive lower
asymptotic density, for any positive integer a 6≡ 0 mod 3. Three unbridged
gaps in the argument are formulated as conjectures.

Introduction

A dynamical system on the set N = {1, 2, . . .} of natural numbers (positive integers)
is given by the iterations of a function f : N → N in the following sense: If x ∈ N is
an arbitrarily chosen starting number, the trajectory of x is the sequence

Tf (x) :=
(
x, f(x), f2(x), . . . , fν(x), . . .

)
= (fν(x))ν≥0 ,

where we denote by fν the ν-th iterate of f , defined inductively by

f0(x) = x, fν+1(x) = f (fν(x)) .

A good deal of the amount of information provided for by a dynamical system is
incorporated in the predecessor sets

Pf (a) := {x ∈ N : there is an index ν ≥ 0 such that f ν(x) = a} .

The domain of attraction of a given trajectory Tf (x) is, by definition, the set of
all starting numbers y ∈ N whose trajectories Tf (y) eventually coalesce with Tf (x).
Such a domain of attraction is an increasing union of the predecessor sets Pf (f

ν(x)),
where ν runs through an arbitrary infinite set of non-negative integers. So, know-
ing the predecessor sets is essentially the same as knowing the dynamical system
generated by f .

One of the most interesting dynamical systems on N is that one which is given
by the so-called 3n+ 1 function:

T : N → N, T (n) =





T0(n) =
n

2
for even n,

T1(n) =
3n+ 1

2
for odd n.

Essentially due to L. Collatz is the famous 3n+ 1 conjecture:
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Any 3n+ 1 trajectory eventually ends in the cycle (1, 2).

For the time being, many mathematicians consider a proof of this conjecture as
intractably hard. But, as an aphorism quoted by Lagarias [3] says, ‘no problem is
so intractable that something interesting cannot be said about it’.

The topic we are going to consider here are the predecessor sets of the 3n + 1
function. In this setting, the 3n+1 conjecture is equivalent to the equation PT (1) =
N. We do not set out to prove this; rather, we are concerned with the lower
asymptotic density of various predecessor sets PT (a) ⊂ N in the set of positive
integers N. For an arbitrary subset S ⊂ N, its lower asymptotic density is defined
to be the non-negative real number

λS = lim inf
n→∞

|{x ∈ S : x ≤ n}|
n

.

Roughly speaking, λS > 0 means that, given a ‘randomly chosen’ positive integer
x, the assertion ‘x ∈ S’ is true with ‘positive probability’. In the setting of 3n + 1
dynamics, λPT (a) > 0 means that, for a ‘randomly chosen’ positive integer x, the
3n + 1 trajectory starting in x hits a with ‘positive probability’. Note that, for
a /∈ {1, 2, 4, 8}, the relation λPT (a) > 0 would not immediately follow from the
truth of the 3n + 1 conjecture. Moreover, note that a proof of positive density of
a 3n + 1 predecessor set is beyond the reach of methods applied so far to 3n + 1
dynamics [4].

Based on technical and scientific reasons, we are not merely heading to prove
positive lower asymptotic density of some predecessor set PT (a). We are interested
in some ‘uniform’ generalisation: Given a parametrized family {S(a) : a ∈ A} of
subsets S(a) ⊂ N, we are interested in some kind of ‘uniform lower bound’ for
the quantities λS(a). In the case of predecessor sets S(a) = Pf (a), the following
definition is natural for certain dynamical systems on N (including 3n+1 dynamics):

Definition 1 Let f : N → N be given. We say that the dynamical system generated
by f has the property of uniform positive predecessor density on the set A ⊂ N, if
there is a real constant c > 0 such that

lim inf
n→∞

|{x ∈ Pf (a) : x ≤ n}|
n

≥ c

a
for each a ∈ A.

In the case of 3n + 1 dynamics, it is not possible to choose A = N. Indeed, as the
T1-branch of the 3n + 1 function T never produces a number divisible by 3, it is
clear that

PT (3m) =
{
2k · 3m : k = 0, 1, 2, . . .

}
for any positive integer m.

This gives

λPT (3m) = lim inf
n→∞

1

n

⌊
log2

( n

3m

)
+ 1

⌋
= 0 for arbitrary positive integer m.

That means that we have to exclude at least the numbers divisible by 3. To be
precise, our aim is to get the following result:

Positive Density The predecessor sets of the 3n + 1 function have uniform

positive predecessor density on the set A = {a ∈ N : a 6≡ 0 mod 3, a non-cyclic}.

As it stands, this assertion appears to be logically independent from the 3n+ 1
conjecture: Neither it implies the conjecture, nor is it implied by it.

I do not have a proof of Positive Density. In this paper, several ideas to prove this
are presented—leaving three unbridged gaps as precisely formulated conjectures.
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Plan of the paper

The general method to attack the problem of uniform predecessor density of f -
predecessor sets is the following:

(A) Define appropriate predecessor counting function, and reformulate positive pre-
decessor density in terms of these functions.

(B) Prove that these predecessor counting functions have the required property.

Now let us restrict attention to the 3n+1 function T . In part (A), we arrive at
a statement that roughly sounds as follows: If the predecessors of a are sufficiently
uniformly distributed among the residue classes modulo powers of 3, then uniform
positive density holds. For various reasons coming both from the structure of the
3n + 1 function and our intention to treat distribution properties, we consider the
residue classes modulo 3` as balls in the (multiplicative) topological group Z×3 . So
we have a good theory of measure and integration at hands, and this turns out to
be important for performing part (B).

Concerning part (B), it is a nice feature that a sufficiently sophisticated notion
of self-similarity provides a good guide for this approach. What is meant by self-
similarity? Something that stabilizes on iteration, e.g., a strongly stable Markov
chain. So we are going to construct an appropriate strongly stable Markov chain,
and we have to show that our predecessor counting functions may be considered as
small perturbations of the successive measures generated by this Markov chain.

Technically, this attempt is divided into seven steps; step (1) corresponds to
part (A), and the remaining steps (2)–(7) correspond to part (B).

(1) The Elka functions e`(k, a) are our basic predecessor counting functions. In
terms of these, a condition (?1) is formulated which is sufficient for Positive
Density.

(2) In order to make a normalization procedure possible, we investigate compactly
supported generators of Elka functions g`(k, a) instead of Elka functions them-
selves. It is conjectured that condition (?1) translates to (?2).

(3) The generators g`(k, a) are normalized to continuous functions g̃` : X → R with
total integral 1 on a deliberately chosen common state space X. Condition (?2)
translates to (?3).

(4) A discrete dynamical system on X generating the functions g̃` is constructed as
a sequence of integral-preserving operators S` : C(X)→ C(X).

(5) The operators S` are shown to converge to a limiting operator S∞.

(6) The essential part of S∞ defines a strongly stable Markov chain on the unit
interval [0, 1] with a unique invariant density φ. It is conjectured that condition
(?3) translates to (?4).

(7) A conjectured property (?5) of the asymptotics of φ is shown to imply condition
(?4).

1 A first condition for positive density

We are interested in describing a predecessor set P(a) for the 3n + 1 function T ,
where a ∈ N is given. To this end, let us introduce the following notation for a
special set of paths in the Collatz graph of the 3n+ 1 function:

E`,k(a) :=
{
paths b

T→ . . .
T→ a

∣∣∣ k times T = T0
` times T = T1

}
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for arbitrary non-negative integers k, `. The connection to predecessor sets is given
by the following map:

E`,k(a)→ P(a),
(
b

T→ . . .
T→ a

)
7→ b.

Piecing them together gives a surjection

(1.1)
⋃

k,`≥0

E`,k(a)→ P(a).

This map is injective if and only if a is non-cyclic.
It is not really a problem to restrict attention to non-cyclic numbers a ∈ N, as any

predecessor set can be written as a finite union of mutually disjoint predecessor sets
of non-cyclic numbers. Therefore, excluding cyclic numbers avoids some technical
difficulties without producing serious restrictions in the results.

For reasons that will become clear in the sequel, we consider the counting func-
tions for the sets E`,k(a) as a sequence (indexed by `) of functions of two variables
k and a. The Elka functions are defined by

e` : N0 × N → N0, e`(k, a) := |E`,k(a)| .

As a first set of properties of Elka function, note that (cf. [4], section II.4)

a ≡ b mod 3` =⇒ e`(k, a) = e`(k, b) for each k ≥ 0.(1.2)

a ≡ 0 mod 3 =⇒ e`(k, a) =

{
0 if ` ≥ 1,

1 if ` = 0.
(1.3)

Property (1.2) allows to admit arbitrary 3-adic numbers a ∈ Z3 as arguments
for the second variable, whence we consider an Elka function as a map

e` : N0 × Z3 → N0.

Let Z×3 := {a ∈ Z3 : a 6≡ 0 mod 3} denote the multiplicative group of invertible
3-adic integers; note that Z×3 is a compact topological group. We infer from (1.3)
that, for ` ≥ 1, the support of e` is contained in N0 × Z×3 .

Denoting by da the normalized Haar measure on Z×3 , we have the following
averages of Elka functions (for ` ≥ 1):

(1.4) e`(k) :=

∫

Z×
3

e`(k, a) da =
1

2 · 3`−1
∑

a (mod 3`)
a 6≡ 0 mod 3

e`(k, a) =
1

2 · 3`−1
(
k + `

k

)
.

The next step is to use Elka functions and the surjection (1.1) to estimate, for
given n ∈ N, the quantity |{x ∈ P(a) : x ≤ n}| . This is quite easy: note that the
definition of the 3n+ 1 function readily implies

a ≥ 3`

2k+`
· b for each number b ∈ E`,k(a).

In other words: For any real number y, we have the implication

(1− log2 3)`+ k ≤ y & b ∈ E`,k(a) =⇒ b ≤ 2ya.

Now, using that (1.1) is surjective for non-cyclic a, we obtain the estimate

|{x ∈ P(a) : x ≤ 2ya}| ≥
∞∑

`=0

e` (b(log2 3− 1)`+ yc, a) for non-cyclic a.
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As we like to integrate on Z×3 , we omit the ` = 0 term and define the following
estimating series:

sy : Z×3 → R, sy(a) :=

∞∑

`=1

e` (b(log2 3− 1)`+ yc, a) .

In chapter III of [4] we proved the following (somewhat surprising) results:

• For each y ∈ R, the function sy is (Haar-)integrable.

• lim inf
y→∞

1

2y

∫

Z×
3

sy(a) da > 0.

The proof of the following result is based on the main idea of the proof of theorem
III.5.1 in [4].

To state the result, we need a further notation: For a given real number δ > 0,
put

(1.5) Aδ :=
{
(k`)`∈N ⊂ Z : |`− k`| ≤ δ

√
` for all ` ∈ N

}
.

Theorem 1 If there are real numbers δ, µ > 0 such that

(?1) lim inf
`→∞

e`(k`, a)

e`(k`)
≥ µ uniformly for sequences (k`) ∈ Aδ ,

then the 3n + 1 dynamical system has uniform positive predecessor density on the
set of non-cyclic numbers a 6≡ 0 mod 3.

Proof. We are heading to define a family of sets {∆y : y ∈ R} such that we can
prove, for sufficiently large y ∈ R, the following estimates:

2−ysy(a) = 2−y
∞∑

`=1

e`
(
b(log2 3− 1)`+ yc, a

)

= 2−y
∞∑

`=1

e`(k`(y), a) setting k`(y) := b(log2 3− 1)`+ yc,(1.6)

≥ 2−y
∑

`∈∆y

e`(k`(y), a) for any subset ∆y ⊂ N,

≥ µ1
∑

`∈∆y

2−y e`(k`(y), a) for µ1 < µ and large min∆y,(1.7)

= µ1
∑

`∈∆y

1

2y+1 · 3`−1
(
k`(y) + `

`

)
using (1.4),

= µ1
∑

`∈∆y

M(`)√
y

definition of M(`),(1.8)

≥ µ1 · c(`) ·
∑

`∈∆y

1√
y

setting c(y) := min
`∈∆y

M(`),(1.9)

≥ µ1 · c(y) · µ2 using |∆y| ≥ µ2
√
y.(1.10)

The sets ∆y ⊂ N are defined by
(1.11)

∆y :=
{
` ∈ N : |k`(y)− `| ≤ δ

√
`
}
=
{
` ∈ N :

∣∣by − (2− log2 3) · `c
∣∣ ≤ δ

√
`
}
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with k`(y) defined in (1.6). The obvious property

min∆y →∞ for y →∞

proves (1.7). There is also a constant µ2 > 0 such that

|∆y| ≥ µ2
√
y for large y,

which proves (1.10).
The asymptotics of the binomial coefficients is well-known; we take the following

form found in Feller’s book (cf. [2, p. 180, formula (2.7)]):

1

22ν

(
2ν

ν + k

)
∼ 1√

πν
exp

(
−k

2

ν

)
if ν →∞ with

k3

ν2
→ 0.

In our setting, we let `→∞ and use the equivalent formulation

(1.12)
1

22ν`

(
2ν`

ν` + d`

)
=
M1(`)√

ν`
exp

(
−d

2
`

ν`

)
,

where lim
`→∞

d3`
ν2`

= 0 implies lim
`→∞

M1(`) =
1√
π
> 0.

Now let y ∈ R be sufficiently large such that (1.7) and (1.10) are valid. From
the definition of ∆y in (1.11) we infer that there is sequence (k`)`∈N ∈ Aδ such that
k` = k`(y) for each ` ∈ ∆y. We have to put

ν` :=
`+ k`

2
=
blog2 3 · `+ yc

2
and d` :=

`− k`
2

.

This implies both

d2`
ν`
≤ δ2

2
and

1√
ν`
≥ c√

y
for ` ∈ ∆y,

where c > 0 is some constant not depending on y. Using (1.12), we infer that there
is a constant c1 = c · exp(−δ2/2) such that

1

2y+1 · 3`−1
(
k`(y) + `

`

)
≥ 1

2
· 1

22ν`

(
2ν`

ν` + d`

)
≥ c1 ·

M1(`)√
y

for ` ∈ ∆y.

As the quotient d3`/ν
2
` tends to zero when y →∞ and ` ∈ ∆y, we conclude that the

constant c(y) defined in (1.9) is positive for large y. This completes the proof. ♦

2 Generators for Elka functions

The basic idea for what follows is to find and exploit something that could be called
self-similarity of predecessor counting functions. To be more precise about what we
are looking for, let us define the notion weakly self-similar for counting functions in
the following way:

Definition 2 A sequence g1, g2, . . . , g`, . . . of mathematical objects (especially: count-
ing functions) will be called weakly self-similar, if we can construct

(i) a measure space X,

(ii) a normalization procedure g` 7→ µ` assigning to each g` a probability measure
µ` on X,
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(iii) a topological vector space V containing all the probability measures µ`,

(iv) a sequence of linear operators S` : V → V , and

(v) a Markov operator S∞ : V → V , i.e., a linear operator preserving probability
measures,

with the following properties:

(a) All the information contained in g` is also contained in µ`.

(b) For each ` ≥ 2, we have S`µ`−1 = µ`.

(c) The sequence of operator (S`) converges to S∞ in some appropriate topology.

Trying to apply this to Elka functions e` : N0 × Z×3 → N0, we have to seek
an appropriate normalization procedure. The Elka functions do have a common
domain of definition (which might facilitate the construction of X), but they are
not bounded nor integrable. Therefore, we come across a problem when trying to
normalize them.

To overcome these difficulties, we are going to replace the Elka functions by other
functions which we call generators for Elka functions. Like Elka functions them-
selves, their generators are defined as functions of two variables: a non-negative
integer k and a 3-adic number a. For convenience, we admit arbitrary 3-adic num-
bers (not only invertible 3-adic integers) as arguments for the second variable:

g` : N0 ×Q3 → N0.

The values g`(k, a) are defined inductively by (cf. [4], p. 103):

g0(k, a) :=

{
1 if k = 0 and a ∈ Z3,
0 otherwise,

g`+1(k, a) :=
2·3`−1∑

j=0

g`

(
k − j,

2j+1a− 1

3

)
for ` ∈ N0.(2.1)

From this definition we obtain using induction that, for each ` ≥ 1, the support of
g` is contained in the compact set

{
0, 1, . . . , 3` − `− 1

}
× Z×3 .

Hence the g` are appropriate candidates for a normalization procedure.

The link to Elka functions is provided by theorem IV.1.14 in [4]. To state it, let
numbers p`(m) be defined as the coefficients in the power series expansion

(2.2)
∏̀

j=0

1

1− zcj
=

∞∑

m=0

p`(m) zm,

where the exponents cj are defined by c0 = 1 and cj = 2 · 3j−1 for j ≥ 1. The
quantities p`(m) have a combinatorial meaning: p`(m) is the number of different
ways to pay cash down an amount ofm units, when only coins of values c0, c1, . . . , c`
are available. Some information about the growth behaviour of the p`(m) for m→
∞ is contained in formula (2.2), as the radius of convergence of the power series is
1, even in the limit ` =∞.
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Elka functions are linked to their generators as follows: For each k, ` ≥ 0 and
each a ∈ Z3, we have the convolution-type formula

(2.3) e`(k, a) =

k∑

j=0

p`(k − j)g`(j, a) =: (p` ∗ g`)(j, a).

Taking the 3-adic averages, g`(k) :=
∫

Z×
3

g`(k, a) da, we have the convolution formula

(2.4) e`(k) = (p` ∗ g`)(k).

The quantities g`(k) also have a combinatorial meaning, see [5]: the number of
different ways to distribute k indistinguishable balls into (` + 1) urns U0, . . . , U`,
where each urn Uj has capacity cj , is just 2 · 3`−1 · g`(k). It is known that, for large
` and k much smaller than 3`, the function g`(k) grows rapidly in k. Together with
the information that the p`(k) don’t grow so rapidly, and in view of formulae (2.3)
and (2.4), this makes the following conjecture plausible:

Conjecture 1 If there are real numbers δ1, µ1 > 0 such that

(?2) lim inf
`→∞

g`(k`, a)

g`(k`)
≥ µ1 uniformly for sequences (k`) ∈ Aδ1 ,

then condition (?1) of Theorem 1 holds.

3 Normalization and digital topology

Now the next step is to describe an appropriate procedure to normalize the functions

g` :
{
0, 1, . . . , 3` − `− 1

}
× Z×3 → N0.

As far as the second variable is concerned, there is no problem with the domain
of definition: for each ` ≥ 1, the arguments for second variable are taken from the
compact set Z×3 . On the other hand, the arguments for the first variable are taken
from a set which is rapidly increasing when ` tends to infinity. Intuitively, we shall
overcome this difficulty by ‘squeezing’ that large set into the unit interval [0, 1].
Formally, we shall use (a lifting of) the expansion map

[0, 1]→
{
0, 1, . . . , 3`

}
, x 7→ b3`xc,

where bξc := max{m ∈ Z : m ≤ ξ} (for any ξ ∈ R) denotes the floor function or
Gauß bracket.

In step (5) we will use the concept of continuity, and even that of equi-continuity.
To prepare for this, let us change the topology of the unit interval. The new
topology will be called the digital topology (to base 3). It is induced by a metric
taking information from the expansion of real numbers in base 3. To give a precise
definition, let

(3.1) x =

∞∑

j=1

x(j) · 3−j ,

denote the expansion of x ∈ [0, 1) in digits x(j) ∈ {0, 1, 2} to base 3 (we use upper
indices here to reserve the place for lower indices for another purpose). It is well-
known that the digits x(j) are uniquely determined by (3.1) and the additional the
condition that x(j) 6= 2 for infinitely many indices j. Now let y =

∑∞
j=1 y

(j) ·3−j be
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the digital expansion to base 3 of another real number y ∈ [0, 1). Then the digital
distance between x and y is defined by

d3(x, y) := 3−v3(x,y) with v3(x, y) := min
{
j ≥ 1 : x(j) 6= y(j)

}
,

where the minimum of an empty set is set to +∞. This is a metric on the half-open
interval [0, 1) satisfying the ultrametric inequality

d3(x, z) ≤ max{d3(x, y), d3(y, z)}.

The topology on [0, 1) generated by this metric is called the digital topology on
[0, 1). The digital topology has the property that each ball is both closed and open.
We call a metric space with this property a granulated space.

Denote by I3 the Cauchy completion of the interval [0, 1) w.r.t. the digital dis-
tance; as a set, I3 may be identified with the set

{
(x(j))j∈N : x(j) ∈ {0, 1, 2}

}
∼= {0, 1, 2}N

of all digit sequences to base 3. There is a natural projection

I3 → [0, 1],
(
x(j)

)
j∈N

7→
∞∑

j=1

x(j)

3j

which is surjective but not injective. We shall use the notation

b3`xc :=
∑̀

j=1

x(j) · 3`−j .

Now the measure space required in definition 2 is the set

X := I3 × Z×3 ,

the natural probability measure % on X is the tensor product of the lifted Lebesgue
measure on I3 and the normalized Haar measure on Z×3 . Taking % as reference
measure, the probability measure µ` is defined by the density

g̃` : X → R, g̃`(x, a) := γ` · g`
(
b3`xc, a

)

where γ` is a positive constant ensuring that µ` is a probability measure. We have
to choose γ` such that ∫

X
g̃` d% = 1 ;

according to [4], p. 107, this gives

γ` = 21−` · 3− 1
2
(`2−5`+2).

The topological vector space required in definition 2 is the normed linear space

V := C(X) = {f : X → R continuous }

with the topology induced by the sup-norm. As all the function g̃` are continuous
w.r.t. the (granulated) product topology on X = I3×Z×3 , the linear space V contains
all the probability measures µ`.
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The remaining step for section (iii) is to translate condition (?2) into this setting.
To this end, we first translate the class Aδ of ceratin integer sequences, as defined
in section (i), to a class of sequences in I3:

(3.2) Ãδ =




(
x` = (x

(j)
` )j∈N

)
`∈N

:


∑̀

j=1

x
(j)
` · 3`−j




`∈N

∈ Aδ



 .

We arrive at the following translation of theorem 1:

Theorem 2 If there are real numbers δ, µ > 0 and in index `0 such that
(?3)

g̃`(x`, a) ≥ µ

∫

Z×
3

g̃`(x`, a) da uniformly for sequences (x`) ∈ Ãδ and ` ≥ `0,

then condition (?2) of Conjecture 1 holds.

4 Transition operators

According to definition 2, the next step is to define a sequence of linear operators

S` : C(X)→ C(X)

performing the map µ`−1 7→ µ`. As described in the previous section, a measure
µ` is represented in the vector space V = C(X) by its density g̃` w.r.t. the reference
measure % on X. In this setting, our aim is to define the S` such that

(4.1) g̃` = S`(g̃`−1).

The definition of S` will be obtained by reformulating the recursion formula (2.1)
using the normalization process of section (iii). To this end, let (x, a) ∈ X = I3×Z×3
be given, and calculate (we set g̃`−1(y, a) = 0 if y /∈ I3):

g̃`(x, a) = γ` · g`
(⌊
3`x
⌋
, a
)

= γ`
∑

0≤j<2·3`−1

g`−1

(⌊
3`x
⌋
− j,

2j+1a− 1

3

)

= γ`
∑

0≤j<2·3`−1

g`−1

(⌊
3`−1

(
3x− j

3`−1

)⌋
,
2j+1a− 1

3

)

=
γ`
γ`−1

∑

0≤j<2·3`−1

g̃`−1

(
3x− j

3`−1
,
2j+1a− 1

3

)

=
1

2 · 3`−3
∑

0≤j<2·3`−1

g̃`−1

(
3x− j

3`−1
,
2j+1a− 1

3

)
.

This leads to the definition of the summation operators S` : C(X)→ C(X),

(4.2) S`f(x, a) :=
1

2 · 3`−3
∑

0≤j<2·3`−1

f

(
3x− j

3`−1
,
2j+1a− 1

3

)
,

where we set f(y, b) = 0 whenever (y, b) /∈ X. By construction, the operators S`
satisfy equation (4.1).

10



5 The limiting transition operator S∞

In the sequel, the sequence (S`)`≥1 of linear operators on V = C(X) will be shown
to converge to the following operator:

S∞ : V → V, f 7→ S∞f : X → R defined by:

(S∞f)(x, a) :=
3

2

∫

{t∈I3,3x−2≤t≤3x}

∫

Z×
3

f(t, b) db dt .(5.1)

Note that, in fact, (S∞f)(x, a) does not depend on a ∈ Z×3 ; w.r.t. the second
variable, the operator S∞ just integrates over all of Z×3 .

The following theorem is ‘dual’ to theorem IV.4.1 in [4]; in principle, the proof of
this theorem could be obtained by an appropriate ‘dualization’. Probably a better
idea is to consider this theorem as a variant of theorem 4.1 in [6], and taking the
direct proof given there, with the necessary changes. This is elaborated here.

Theorem 3 For each ` ∈ N, let S` be given by (4.2), and let S∞ be given by (5.1).

(a) The sequence (S`)`∈N converges to S∞ in the strong operator topology. That
means: For any f ∈ C(X)

lim
`→∞

‖S`f − S∞f‖∞ = 0.

(b) This convergence is uniform on bounded equi-continuous families.

Before proving the theorem on convergence, let us record the following lemma
linking the summation operators S` to integration. This lemma has been extracted
out of the proof of theorem 4.1 in [6].

Lemma 4 Let f : X → R be a digital-continuous function with modulus of conti-
nuity

ω(δ) := sup {|f(x, a)− f(y, b)| : max{d′3(x, y), d3(a, b)} ≤ δ} ,
where d′3 denotes the digital distance on I3 and d3 is the usual 3-adic metric on Z×3 .
In addition, let s ≥ r > 0 and k be integers with 2 ≤ k < 3r and set

Ik :=

[
k − 2

3r
+

1

3r+s
,
k

3r
+

1

3r+s

)
⊂ I3.

Then the following inequality is valid for any a ∈ Z×3 :
(5.2)∣∣∣∣∣∣

1

3r+s−1

∑

0≤j<2·3s

f

(
k

3r
− j

3r+s
,
2j+1a− 1

3

)
−
∫

Ik×Z×
3

f d%

∣∣∣∣∣∣
≤ 2

3r
ω
(
2 · 3−r

)
.

Proof: Let us first fix some notations. For b ∈ Z×3 we put

(b mod 3r) :=
{
a ∈ Z×3 a ≡ b mod 3r

}

for the residue class of b modulo 3r, which is precisely the closed ball with radius
3−r in Z×3 around b. Next consider the following boxes in the space X = I3 × Z×3 :

Q(b, r) := Ik × (b mod 3r) .

Then we can decompose a column Ik × Z×3 ⊂ X into such boxes:

(5.3) Ik × Z×3 =
⋃

(b mod 3r)

Q(b, r),
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where the union is taken over the 2 · 3r−1 prime residue classes modulo 3r.

For any a ∈ Z×3 and any integer s > 0, the set

{
2j+1a− 1

3
: j = 0, . . . , 2 · 3s − 1

}

intersects each residue class modulo 3s in exactly one point. It follows that the set
of second components in the set

∆(a, k, r, s) :=

{(
k

3r
− j

3r+s
,
2j+1a− 1

3

)
: j = 0, . . . , 2 · 3s − 1

}

intersects each residue class modulo 3r in exactly 3s−r points, whenever r ≤ s. This
implies that, for any b ∈ Z×3 and provided r ≤ s, the intersection

E(a, b, r) := Q(b, r) ∩∆(a, k, r, s)

contains precisely 3s−r points. We conclude that the integral of f on Q(b, r), divided
by the volume of Q(b, r), can be approximated by the average of f on the set
E(a, b, r) of evaluation points. As the boxes Q(b, r) have diameter ≤ 2 · 3−r, we
infer that the following inequality holds for any a, b ∈ Z×3 :

(5.4)

∣∣∣∣∣∣
1

3s−r

∑

E(a,b,r)

f − 1

%(Q(b, r))

∫

Q(b,r)

f d%

∣∣∣∣∣∣
≤ max

Q(b,r)
f − min

Q(b,r)
f ≤ ωf

(
2 · 3−r

)

(here the arguments of f are omitted to improve readability). To obtain the final
form for the estimate on boxes, compute the measure

%(Q(b, r)) =
2

3r
· 1

2 · 3r−1 =
1

32r−1
.

Inserting this into (5.4), and rearranging the formula to get a coefficient 1 in front
of the integral, we arrive at

(5.5)

∣∣∣∣∣∣
1

32r−1 · 3s−r
∑

E(a,b,r)

f −
∫

Q(b,r)

f d%

∣∣∣∣∣∣
<
ωf (2 · 3−r)

32r−1
.

To end the proof of (5.2), we take the sum of all the inequalities (5.5) when b runs
through the prime residue classes modulo 3r. By decomposition (5.3), this gives

∣∣∣∣∣∣
1

3s+r−1

∑

∆(a,k,r,s)

f −
∫

Ik×Z×
3

f d%

∣∣∣∣∣∣
≤ %

(
Ik × Z×3

)
· ωf

(
2 · 3−r

)
=

2

3r
ωf
(
2 · 3−r

)
.

This completes the proof of (5.2). ♦
Proof of Theorem 3: Let F be a bounded equi-continuous family of functions
f : X → R which are continuous w.r.t. the digital topology on X, and denote

M := sup{|f(x, a)| : (x, a) ∈ X, f ∈ F}.

Now let ε > 0 be given. We will prove that there is an index `0(ε) such that

(5.6) sup
f∈F

‖S`f − S∞f‖∞ ≤ (4M + 1)ε for ` ≥ `0(ε).
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Because F is an equi-continuous family, there exists δ ∈ (0, ε] such that

ωf (δ) ≤ ε for all f ∈ F .

To apply lemma 4, choose an integer r > 0 such that 2 · 3−r ≤ δ, whence

ωf
(
2 · 3−r

)
≤ ε for all f ∈ F .

Next choose s := ` − r − 1 (this gives s ≥ r if ` is sufficiently large) and put
I(x) := I3 ∩ [3x− 2, 3x] and

K(x) :=
{
k ∈ N : k even, Ik ⊂ I(x)

}
.

Then, for each k ∈ K(x), we conclude from lemma 4 the estimate
∣∣∣∣∣∣

3

2 · 3`−2
∑

0≤j<2·3s

f

(
k · 3r − j

3`−1
,
2j+1a− 1

3

)
− 3

2

∫

Ik×Z×
3

f d%

∣∣∣∣∣∣
≤ 2

3r
· ε.

The intervals Ik where k runs through the set K(x) generally do not cover all of
the interval I(x): on the left and the right end may remain intervals of total length
< 2δ ≤ 2ε not covered by the Ik. On these ends, the sum and the integral have to
be estimates by 4M in total. So we arrive at the final estimate

∣∣∣∣∣∣
3

2

∑

0≤j<2·3`−1

f

(
3x− j

3`−1
,
2j+1a− 1

3

)
− 3

2

∫

I(x)×Z×
3

f d%

∣∣∣∣∣∣
≤ (4M + 1) · ε;

note that the indices j in the summation are just those for which the first argument
of f is contained in the interval (3x− 2, 3x]. ♦

Corollary 5 The sequence (g`)`∈N of generators of Elka functions is weakly self-
similar in the sense of definition 2.

6 A strongly stable Markov chain

Let us have a closer look at the essential part of the limiting operator S∞. To this
end, consider the following operator mapping locally integrable real functions to
continuous functions:

(6.1) W3 : L
1
loc(R)→ C(R), (W3f)(x) =

3

2

∫ 3x

3x−2

f(t) dt.

It is not very difficult to prove some basic properties of W3:

Theorem 6 Let W3 be the operator defined in (6.1), and let f be an L1-function
on R with supp f ⊂ [0, 1]. Then:

(a) supp(W3f) ⊂ [0, 1]; that means W3 : L
1([0, 1])→ L1([0, 1]).

(b)
∫ 1
0
f(x) dx =

∫ 1
0
(W3f)(x) dx; that means W3 is integral-preserving.

(c) If
∫ 1
0
f(x) dx = 0, then ‖W3f‖1 ≤ 1

2‖f‖1.

The proof of this theorem is contained in the proof oh theorem IV. 5.1 in [4].
The main consequences of these properties are that W3 has a unique fix-point in
L1([0, 1]) and defines a strongly stable Markov chain on the unit interval [0, 1]. More
precisely:
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Corollary 7 There is unique function φ ∈ L1
loc

(R) satisfying

suppφ ⊂ [0, 1],

∫ 1

0

φ(x) dx = 1, W3φ = φ.

Moreover, φ is a C∞-function which is a polynomial on each interval lying outside
the classical Cantor set.

To prove this, observe that property (c) of theorem 6 means that W3 is a metric
contraction on each affine hyperplane

Hλ =

{
f ∈ L1([0, 1]) :

∫ 1

0

f(x) dx = λ

}
(λ ∈ R).

In addition, this implies the following convergence property.

Corollary 8 Let f0 ∈ Hλ be given. Then the sequence (fn)n∈N defined inductively
by

fn+1 :=W3fn, n ≥ 0,

converges in L1 to f∞ := λφ. Moreover, we have the estimate

‖fn − f∞‖1 ≤ 2−n+1‖f1 − f0‖1 for each n ∈ N.

The generators for Elka functions g`(k, a) are linked to the function φ of corol-
lary 7 via the formula

lim
`→∞

∫

Z×
3

g̃`(x, a) da = φ(x) for any fixed x ∈ I3.

This formula, together with the convergence of the transition operators S` proved
in Theorem 3, suggest the following assertion:

Conjecture 2 Consider the following two characteristic functions:

χ0(x) :=

{
1 for 0 ≤ x ≤ 2

3 ,

0 otherwise,
χ1(x) :=

{
1 for 13 ≤ x ≤ 1,

0 otherwise.

If there are real numbers δ, µ > 0 such that

(?4) lim inf
`→∞

(W `
3χ1)(x`)

(W `
3χ0)(x`)

≥ µ uniformly for sequences (x`) ∈ Ãδ,

then condition (?3) of Theorem 2 is fulfilled.

7 The asymptotics of a quotient

Condition (?4) concerns the behaviour of the quotient

(7.1)
(W `

3χ1)(x`)

(W `
3χ0)(x`)

for large `, where (x`) is a sequence in the class Ãδ. To get some feeling about what
can happen, let us consider the limiting behaviour of the quotient (7.1) for some

simple sequences outside the class Ãδ.
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Fix a number x satisfying 0 < x < 1, and consider the constant sequence x` = x
for all ` ∈ N. Then corollary 8 proves that

lim
`→∞

(W `
3χ1)(x) = lim

`→∞
(W `

3χ0)(x) =
2
3 φ(x),

where φ denotes the function of corollary 7, which uniquely determined by

(7.2) suppφ ⊂ [0, 1],

∫ 1

0

φ(x) dx = 1, W3φ = φ.

As φ(x) > 0 for any x ∈ (0, 1), we conclude that for a constant sequence x` = x ∈
(0, 1) the quotient in (7.1) converges to 1.

Next consider the sequence defined by x` = 3−`−1 for each ` ∈ N. This sequence
converges to 0 faster than any sequence in a class Ãδ. Looking at the quotient (7.1)
for this sequence (x`), first observe that

(
W `
3χ1

)( 1

3`+1

)
= 0 for each ` ≥ 1,

as one can easily prove by induction on `. On the other hand,

(
W `
3χ0

)( 1

3`+1

)
> 0 for each ` ≥ 0.

We infer that for x` = 3−`−1, the quotient (7.1) is equal to zero for each `.

Before going into the investigation what happens for sequences (x`) ∈ Ãδ, let us
have a closer look at the Markov chain generated by our operator W3. Define the
transition kernel by

K(x, t) := 3
2 χ[t,t+2](3x) =

{
3
2 for t ≤ 3x ≤ t+ 2,

0 otherwise.
(x, t ∈ R).

Then we have, for each f ∈ L1
loc

(R),

W3f(x) =

∫

R
K(x, t)f(t) dt .

Next define the iterated transition kernels inductively by

K0(x, t) = K(x, t), K`+1(x, t) =

∫

R
K(x, y)K`(y, t) dy .

Some properties of the iterated kernels are

K`(x, 0) =
3

2

(
W `
3χ0

)
(x) for each ` ≥ 0, x ∈ R,

K`(x, 1) =
3

2

(
W `
3χ1

)
(x) for each ` ≥ 0, x ∈ R,

K`(x, 0) = K`

(
x+

1

3`+1
, 1

)
for each x ∈ R,(7.3)

K`(x, 0) > φ(x) > K`(x, 1) for each ` ≥ 0 and 0 < x < 1
3 ,(7.4)

where φ : R → R is the function defined in corollary 7. In addition, we know that

lim
`→∞

K`(x, t) = φ(x) for each t ∈ [0, 1].
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It follows an argument why the sequences (x`) ∈ Ãδ just have the ‘borderline
speed’ making the limit of the quotient (7.1) positive. First observe the inequalities

K`(x, 1) = K`

(
x− 1

3`+1
, 0

)
by (7.3),

≥ φ

(
x− 1

3`+1

)
for small x, by (7.4),

≥ φ

(
x+

1

3`+1

)
− 2

3`+1
φ′
(
x+

1

3`+1

)
for small x.

On the other hand, we obtain from (7.3) and (7.4) that

K`(x, 0) = K`

(
x+

1

3`+1
, 1

)
< φ

(
x+

1

3`+1

)
for sufficiently small x.

Now let (x`) ∈ Ãδ and put x+` := x` +
1

3`+1
for abbreviation. Then we arrive

at the following estimate for the quotient (7.1):

(W `
3χ1)(x`)

(W `
3χ0)(x`)

=
K`(x`, 1)

K`(x`, 0)
≥ φ

(
x+ 1

3`+1

)
− 2
3`+1φ

′
(
x+ 1

3`+1

)

φ
(
x+ 1

3`+1

) = 1− 2

3`+1
· φ
′(x+` )

φ(x+` )
.

In order to ensure condition (?4) of Conjecture 2, it would suffice to prove that

(7.5) lim sup
`→∞

2

3`+1
· φ
′(x+` )

φ(x+` )
≤ 1− µ < 1.

As (x`) ∈ Ãδ, we have the asymptotics x` ∼ x+` ∼ ` · 3−`. This implies

(7.6)
2

3`+1
∼ 2

3`
x+` ∼

c x+`
ln(x+` )

with the constant c = − 23 ln 3. To compute the derivative φ′(x), we go back to the
properties (7.2) which uniquely determine φ. For x ≤ 2

3 , the lower limit 3x− 2 for
integration is ≤ 0, which implies

φ(x) =
3

2

∫ 3x

0

φ(t) dt for 0 ≤ x ≤ 2

3
.

Differentiating this gives

(7.7) φ′(x) =
9

2
φ(3x) for 0 ≤ x ≤ 2

3
.

We come to the following formula for the term occurring in (7.5):

(7.8)
2

3`+1
· φ
′(x+` )

φ(x+` )
=

9c

2
· x+`
ln(x+` )

· φ(3x
+
` )

φ(x+` )
.

To prove (7.5), we are seeking information about the quotient φ(3x)/φ(x) when
x→ 0. For this, it would be very helpful to know something about the asymptotic
behavior of φ(x) when x→ 0. This asymptotics has been investigated by Berg and
Krüppel [1] in the following way: First they consider the differential equation

(7.9) λφ′(t) = a(φ(at)− φ(at− a+ 1)).
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Differentiating the equation W3φ = φ we see that our function φ satisfies this
equation for the parameter values a = 3 and λ = 2

3 . Berg and Krüppel give some
relations between the solutions of (7.9) and the solutions of the truncated equation

(7.10) λg′(t) = a g(at);

note that the space of all solutions of this equation (without further restrictions) is
an infinite-dimensional linear space. Using Laplace transformation and the saddle-
point method, Berg and Krüppel determine the precise asymptotics of a special
solution g0 of (7.10). Moreover, they give some arguments why they expect that
φ has an asymptotic as g0 up to factor which is both bounded and bounded away
from zero.

Let’s have a look at the asymptotics of g0 given in [1]:

(7.11) g0(t) ∼ φ0(t) :=
(2β)ε√

2π
exp

(
γ ln t+ δ ln(− ln t)− β ln2

(
t

− ln t

))
,

with some constants β, γ, δ, ε depending on the parameters λ and a by explicitly
given formulae. Note that, moreover, φ0 is an asymptotic solution of (7.10) in the
sense that

(7.12) lim
t→0

λφ′0(t)

aφ0(at)
= 1.

For this function φ0, a somewhat lengthy calculation shows that (for any δ > 0)

(7.13) lim
`→∞

2

3`+1
· φ
′
0(x`)

φ0(x`)
=

2

3
< 1 uniformly for sequences (x`) ∈ Ãδ.

This result would imply inequality (7.5), if we could replace φ by φ0 under the limit.
That replacement would be possible, if, e.g., φ ∼ cφ0 for some constant c > 0.

It turns out that the following (slightly weaker) conjecture about the asymptotics
of φ suffices to imply (?4):

Conjecture 3 There are positive real constants c and δ5 such that

(?5) lim
`→∞

φ(z`)

φ0(z`)
= c > 0 uniformly for sequences (z`) ∈ Ãδ5 .

(Note that the results given in section 9 of [1] suggest that conjecture 3 is true.)

The implication (?5) ⇒ (?4) is shown as follows: Suppose that (x`) ∈ Ãδ is

given. Then, for δ5 > δ, there are sequences (x̂`), (ŷ`) ∈ Ãδ5 with the property

(7.14) x̂` = x+` , ŷ`−1 = 3x+` for all but finitely many indices `.
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Now we are ready to calculate the limit of the sequence considered in (7.5):

lim
`→∞

2

3`+1
· φ
′(x+` )

φ(x+` )
= lim

`→∞

2

3`+1
·
9
2φ(3x

+
` )

φ(x+` )
by (7.7),

= lim
`→∞

2

3`+1
·

9

2
φ0(ŷ`−1) ·

φ(ŷ`−1)

φ0(ŷ`−1)

φ(x̂`)

φ0(x̂`)
· φ0(x̂`)

by (7.14),

= lim
`→∞

2

3`+1
·
9
2φ0(ŷ`−1)

φ0(x̂`)
by conjecture 3,

= lim
`→∞

2

3`+1
· φ
′
0(x

+
` )

φ0(x
+
` )

by (7.14) and (7.7),

=
2

3
by (7.13),

which implies (7.5) and therefore (?4). ♦
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