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Multiplication by 2

Let T = R/Z, and let T2 : T −→ T be the surjective group homo-

morphism given by T2x = 2x (mod 1) for every x ∈ T.

If λ is Lebesgue measure (= length) on T = [0,1), and if I = [a, b) ⊂
T = [0,1), then

T−1
2 (I) = [a/2, b/2) ∪ [a/2 + 1/2, b/2 + 1,2),

and λ(T−1
2 (I)) = λ(I). Hence λ(T−1

2 (B)) = λ(B) for every Borel set

B ⊂ T, i.e. T2 preserves λ.

Define a map θ : Y = {0,1}N −→ [0,1] by

θ(y) =
∑
j≥1

2−jyj

for every y = (y1, y2, . . . ) ∈ Y . Then θ is surjective, injective on the

complement of a countable set D ⊂ Y , and

θ ◦ σ = T2 ◦ θ

for every y ∈ Y r D, where σ is the shift (σy)n = yn+1 on Y .
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Let Z ⊂ Y be the set consisting of all sequences y = (yn) with

yjyj+1 = 0 for all j ≥ 1. Then σB ⊂ B, and hence C = θ(B) ⊃ T2C.

Note that C is infinite, but C 6= T.

By varying this construction we get infinitely many infinite closed

sets A ⊂ T which are T2-invariant in the sense that T2A ⊂ A.

We can also construct infinitely many T2-invariant probability meas-

ures on T: put νp(0) = p, νp(1) = 1 − p with p ∈ (0,1), and put

mp = νN
p . Then mpσ−1 = mp and mp is nonatomic and ergodic

under σ.

For every p ∈ (0,1), the probability measure µp = θ∗mp (defined

by θ∗mp(B) = mp(θ−1(B)) for all Borel sets B ⊂ T) is T2-invariant,

ergodic and nonatomic. We obtain uncountably many T2-invariant,

ergodic, nonatomic probability measures on T.

The map T3 = 3x (mod 1) on T has similar properties: it has infin-

itely many infinite closed invariant subsets and uncountably many

invariant, ergodic and nonatomic probability measures.

2



Furstenberg’s example (1967)

Let α be the N2-action on T defined by

α(m,n)x = Tm
2 Tn

3 x = 2m3nx (mod 1)

for every (m, n) ∈ N2 and x ∈ T.

Theorem. The only infinite closed subset A ⊂ T with α−nA ⊂ A for
all n ∈ N2 is T itself.

Conjecture. Let µ be a nonatomic α-invariant probability measure
on T. Then µ = λ.

Rudolph (1990) proves the conjecture under the additional hypo-
thesis that µ is ergodic under α and at least one of the maps T2 or
T3 is noninvertible (mod µ). The general case remains open.

Furstenberg’s example shows that the dynamical properties of sev-
eral commuting group automorphisms (or, in this case, homomorph-
isms) can differ quite radically from those of single automorphisms
(or homomorphisms).

In order to understand why this is so we have to take a closer look
at group automorphisms.
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Basic facts from harmonic analysis

Let X be a compact abelian group with Haar measure λ = λX, and

let S = {z ∈ C : |z| = 1} ∼= T.

The dual group (or character group) X̂ = Hom(X, S) is the group of

all continuous homomorphisms from X into S. We view X̂ as a dis-

crete additive group and denote by 〈a, x〉 the value of the character

a ∈ X̂ at x ∈ X. Pontryagin’s duality theorem implies that X̂ sep-

arates the points of X, and that every homomorphism χ : X̂ −→ S
is therefore of the form χ(a) = 〈a, x〉 for some unique x ∈ X (i.e.
ˆ̂X = X).

Since distinct elements a, a′ ∈ X̂ are orthonormal in L2(X, λ), X̂ is

a complete orthonormal system in L2(X, λ) by Stone-Weierstrass.

If Y ⊂ X is a closed subgroup then

Y ⊥ = {a ∈ X̂ : 〈a, x〉 = 1 for all x ∈ Y }

is the annihilator of Y , Ŷ = X̂/Y ⊥ and X̂/Y = Y ⊥.
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Examples.

(1) Ẑ/nZ = Z/nZ: every (continuous) homomorphism from Z/nZ to

S is of the form m 7→ e2πim/n for some m ∈ {0, . . . , n− 1}.

(2) T̂ = Z: every continuous homomorphism from T to S is of the

form t 7→ e2πikt for some k ∈ Z.

(3) Let Z2 be the group of dyadic integers: Z2 = (Z/2Z)N as a

set, but we identify each x = (xn) ∈ Z2 with the rather large integer

s(x) =
∑

n≥1 xn2n−1. Addition is therefore component-wise, carrying

to the right. For example,

1010100 . . .

+ 0111000 . . .

= 1100010 . . .

If q = a/2m is a dyadic rational number, then q defines an aq ∈ Ẑ2

by 〈aq, x〉 = e2πiqs(x) for every x ∈ Z2. Since these homomorphism

separate the points of Z2, Ẑ2 = Z[12]/Z.
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Group automorphisms

Let α be a continuous group automorphism of a compact abelian

group X.

• For every a ∈ X̂, the map x 7→ 〈α̂(a), x〉 := 〈a, α(x)〉 defines an

element α̂(a) of X̂, and the map a 7→ α̂(a) from X̂ to X̂ is the

dual automorphism of α.

• α preserves the Haar measure of X.

• If α̂ has a finite nonzero orbit then α is nonergodic.

• If every nonzero orbit of α̂ is infinite then α is ergodic.

• If α is ergodic then it is mixing.

Exercise: Show that multiplication by 3 is an automorphism of

Z[12]/Z. Hence the map T3x = 3x is an automorphism of Z2. Is it

ergodic?
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Toral automorphisms

Let A ∈ GL(n, Z), and let α be the automorphism of X = Tn defined

by the linear action of A on Rn. Then α̂ is the linear action of A>

on X̂ = Zn.

Many dynamical properties of α can be expressed purely in terms of

the eigenvalues of A.

• α is ergodic if and only if no eigenvalue of A is a root of unity

(⇔ A> has no finite nonzero orbit in Zn).

• The entropy of α is given by

h(α) =
∑
γ

log max (1, |γ|),

where γ varies over the eigenvalues of A (with multiplicity).

• If α is ergodic it has positive entropy (Kronecker’s Theorem).

In fact, it is Bernoulli.
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Expansiveness

The automorphism α is expansive if⋂
n∈Z

αn(O) = {0}.

for some open set O with 0 ∈ O ⊂ Tn. α is expansive if and only if

A has no eigenvalues of absolute value 1.

Let Rn = W (u) ⊕ W (s) ⊕ W (0) be the decomposition of Rn into

the unstable (= expanding), stable (= contracting) and central

subspaces (corresponding to the eigenvalues of A with absolute

values > 1, < 1 and = 1). If π : Rn −→ Tn is the quotient map,

then X(u) = π(W (u)), X(s) = π(W (s)) and X(0) = π(W (0)) are the

stable, unstable and central subgroups of Tn. The automorphism α

is expansive (or hyperbolic) if and only if W (0) = {0}.
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A class of examples

The shift (σx)n = xn+1 is an automorphism of the compact abelian

group TZ. For every polynomial f(u) = f0 + f1u + · · ·+ fmum with

integer coefficients we set f(σ) = f0 + f1σ + · · ·+ fmσm and define

a closed, shift-invariant subgroup

Xf = {(xn) ∈ TZ : f0xk + · · ·+ fmxk+m = 0 for all k} = ker f(σ)

and denote by αf = σ|Xf
the restriction of σ to Xf .

We write R1 = Z[u±1] for the ring of Laurent polynomials with

integer coefficients and identify T̂Z =
∑

Z Z with R1 by setting

〈h, x〉 = e2πi
∑

n∈Z hnxn

for every h =
∑

n∈Z hnun ∈ R1 and x = (xn) ∈ TZ. Under this identi-

fication

X̂f = T̂Z/X⊥
f = R1/(f),

where (f) = fR1, and α̂f is multiplication by u on R1/(f).
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Dynamical properties of these examples

We assume for simplicity that the polynomial f is irreducible.

• αf is ergodic if and only if f is not cyclotomic (i.e. f does not

divide um−1 for any m ≥ 1 or, equivalently, no root of f is a root

of unity). Reason: if αf is nonergodic, then α̂n
fa = una = a for

some n > 0 and 0 6= a ∈ R1/(f), and hence (un − 1)h ∈ (f) for

some h /∈ (f). As f is irreducible this implies that it is cyclotomic.

• αf is expansive if and only if f has no roots of absolute value 1.

Reason: if αf is nonexpansive, then there exist distinct points

x = (xn) and y = (yn) in Xf such that

|xn − yn| < 1/3‖f‖1 =
(
3
∑
n∈Z

|fn|
)−1

for every n ∈ Z. But z = x − y ∈ Xf , and hence, for every

n ∈ Z,
∑

m∈Z fmzm+n = 0 in R, not just in T. But this implies

that z is a linear combination of bounded vectors of the form

w = (wn) = (γn) with f(γ) = 0, i.e. that f must have roots of

absolute value 1.
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(1) If f0fm = ±1, then the map x = (xn) 7→ φ(x) =
[ x0...

xm−1

]
is a

group isomorphism from Xf to Tm with β ◦ φ = φ ◦ αf , where β is

the toral automorphism defined by the companion matrix

B =

 0 1 0 ... 0
0 0 1 0... ... ...
0 ... 0 1

−fm −f2 −f1


of f . The eigenvalues of B are the roots of f , and αf is ergodic (or

expansive) if and only if f has no unit roots (or roots of absolute

value 1).

Let us try this with f = 1 + u− u2: then B =
[
0 1
1 1

]
.

Which matrices B can we get in this way? More generally, if we

call B, B′ ∈ GL(n, Z) algebraically conjugate if there exists a C ∈
GL(n, Z) with BC = CB′, can we get all B ∈ GL(n, Z) up to algebraic

conjugacy?

Exercise: You can get
[
1 1
1 0

]
, but not

[
1 1
1 2

]
. Why not?
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(2) Let f = 2− u. Then

Xf = R̂1/(f) = {(xn) ∈ TZ : xn+1 = 2xn for all n},

and the surjective group homomorphism φ(x) = x0 from Xf to T
satisfies that φ ◦αf = T2 ◦ φ, where αf is the shift on Xf . Note that

αf is expansive, since f has no roots of absolute value 1.

What is Xf?

(a) Xf a projective limit of tori · · · T2−→ T T2−→ T T2−→ T, and αf acts

as multiplication by 2 on each component,

(b) Xf = (R × Z2)/Z[12], where Z2 is the dyadic integers, Z[12] is

diagonally embedded in R×Z2, and αf is multiplication by 2 on

each component of R× Z2.

In (b) you can see explicitly the expanding and contracting sub-

groups (R×{0})/Z and ({0}×Z2)/Z of the ‘hyperbolic’ automorph-

ism αf .
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(3) Let f = 3− 2u. Then

Xf = R̂1/(f) = {(xn) ∈ TZ : 2xn+1 = 3xn for all n}
∼= (R× Z2 × Z3)/Z[16],

where Z3 denotes the tri-adic integers, Z[16] is again embedded di-

agonally (where we are using that multiplication by 2 and 3 are

automorphisms of Z3 and Z2, respectively), and the shift αf on

Xf corresponds to multiplication by 3/2 on each component of

R× Z2 × Z3.

Note that multiplication by 3/2 expands (R × Z2 × {0})/Z[16] and

contracts ({0} × {0} × Z3)/Z[16] and is thus again ‘hyperbolic’.
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Commuting group automorphisms

The last examples show that certain automorphisms of compact

abelian groups are dual to multiplication by the variable u on the

R1-module R1/(f), where f ∈ R1 is a Laurent polynomial.

More generally, if α is any continuous automorphism of a compact

abelian group X, then M = X̂ is a module over the ring R1 with

module operation
h · a =

∑
n∈Z

hnα̂n(a)

for every a ∈ X̂ and h =
∑

n∈Z hnun ∈ R1, and α̂(a) = u · a.

Conversely, every R1-module M defines an automorphism αM of the

compact abelian group XM = M̂ dual to multiplication by u on M .

This also works if we replace R1 by the ring Rd = Z[u±1
1 , . . . , u±1

d ]

of Laurent polynomials in d variables: if M is a module over Rd,

then we obtain d commuting automorphisms α1, . . . , αd of XM =

M̂ dual to multiplication by u1, . . . , ud, and hence a Zd-action n =

(n1, . . . , nd) 7→ αn = α
n1
1 · · ·αnd

d by automorphisms of XM .
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Conversely, if α1, . . . , αd are commuting automorphisms of a com-

pact abelian group X, then the dual group M = X̂ is a module over

the ring Rd with module operation

h · a =
∑

n∈Zd

hnα̂n(a)

for every a ∈ X̂ and h =
∑

n∈Zd hnun, where αn = α
n1
1 · · ·αnd

d and

un = u
n1
1 · · ·und

d for all n = (n1, . . . , nd) ∈ Zd. This module M = X̂ is

the dual module of the Zd-action α : n 7→ αn.

The simplest Rd-modules are those of the form Rd/I, where I ⊂ Rd

is an ideal. We denote by σ the shift-action (σmx)n = xm+n of Zd on

TZd
and set f(σ) =

∑
n∈Zd fnσn for every f =

∑
n∈Zd fnun. As before

we see that

XRd/I = {x ∈ TZd
: f(σ) = 0 for all f ∈ I} =

⋂
f∈I

ker f(σ),

and that αRd/I = σ|XRd/I
is the restriction of σ to XRd/I.
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(1) Let I = (2− u1,3− u2) = (2− u1)R2 + (3− u2)R2 ⊂ R2. Then

R̂2/I = XR2/I = {x = (xk,l) ∈ TZ2
:

xk+1,l = 2xk,l and xk,l+1 = 3xk,l for all k, l}.

The group homomorphism φ(x) = x0,0 from XR2/I to T satisfies that

φ ◦ α
(1,0)
R2/I

= T2 ◦ φ and φ ◦ α
(0,1)
R2/I

= T3 ◦ φ (Furstenberg’s example).

(2) Let α be the Z2-action on T3 given by αn = An1Bn2 for every

n = (n1, n2) ∈ Z2, where

A =
[

0 1 0
0 0 1

−1 6 −3

]
, B =

[
2 −4 −1
1 −4 −1
1 −5 −1

]
.

We know that α = αM for some R2-module M . Is M = R2/I for

some ideal I? If so, what is I?

Hint: A is the companion matrix of the irreducible polynomial

g = x3 + 3x2 − 6x + 1,

and B = 2I − 4A−A2.
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The dictionary

We have established a one-to-one correspondence between Rd-mod-

ules and algebraic Zd-actions αM (i.e. Zd-actions by automorphisms

of compact abelian groups) and Rd-modules M . This correspond-

ence should enable us to translate dynamical properties of αM into

algebraic properties of M and to ‘design’ Zd-actions by using com-

mutative algebra.

It turns out that many properties of αM can be expressed in terms

of the associated prime ideals of M , i.e. in terms of the prime ideals

p ⊂ Rd of the form

p = {f ∈ Rd : f · a = 0}

for some a ∈ M . The set of prime ideals associated with M is

denoted by asc(M); if M is Noetherian then asc(M) is finite.
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Property α = αRd/p α = αM

1 Expansive-

ness

VC(p) ∩ Sd = ∅ M is Noetherian and

αRd/p is expansive for

every p ∈ asc(M)
2 Ergodicity {ukn − 1 : n ∈ Zd} 6⊂ p

for every k ≥ 1

αRd/p is ergodic for

every p ∈ asc(M)
3 Mixing un − 1 /∈ p for every

n ∈ Zd, n 6= 0

αRd/p is mixing for

every p ∈ asc(M)
4 Mixing of

every order

p = pRd for some

p ∈ Z, or p ∩ Z = {0}
and αRd/p is mixing

For every p ∈ asc(M),

αRd/p is mixing of

every order

5 h(α) > 0 p is principal and

αRd/p is mixing

h(αRd/p) > 0 for some

p ∈ asc(M)

6 h(α) < ∞ p 6= {0} If M is Noetherian:

{0} /∈ asc(M)
7 Bernoulli h(αRd/p) > 0 h(αRd/p) > 0 for every

p ∈ asc(M)
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The correspondence between ‘algebra’ and ‘dynamics’ goes quite

deep. Let us pursue this connection in the case of mixing.

Higher order mixing

Let α be an algebraic Zd-action with dual module M = X̂. If α

is not mixing, then there exist Borel sets B1, B2 ⊂ X, a sequence

(nk, k ≥ 1) in Zd with limk→∞ nk = ∞, and a c ≥ 0 with

c = lim
k→∞

λX(B1 ∩ α−nkB2) 6= λX(B1)λX(B2).

Fourier expansion yields a1, a2 ∈ M r {0} such that

a1 + unk · a2 = 0

for infinitely many k ≥ 1. In particular,

(um − 1) · a2 = 0

for some nonzero m ∈ Zd.
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More generally, α is not mixing of order r ≥ 2 (or r-mixing) if
and only if there exist Borel sets B1, . . . , Br in X and a sequence
((n(1)

k , . . . ,n(r)
k ), k ≥ 1) in (Zd)r such that

lim
k→∞

n(i)
k − n(j)

k = ∞

for i 6= j and

c = lim
k→∞

λX

( r⋂
i=1

α−n(i)
k Bi

)
6=

r∏
i=1

λX(Bi),

and hence elements a1, . . . , ar in M , not all equal to zero, with

un(1)
k · a1 + · · ·+ un(r)

k · ar = 0 (1)

for every k ≥ 1.

It is a famous open problem whether a single mixing (= 2-mixing)
transformation can fail to be r-mixing for some r ≥ 3, but every
mixing group automorphism is certainly mixing of all orders.

For algebraic Zd-actions with d > 1, higher order mixing may fail,
and it may even fail in a particularly regular way, as the following
example shows.
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Example (Ledrappier). Let p = (2,1+u1+u2) = 2R2+(1+u1+
u2)R2, M = R2/p, and let α = αM be the corresponding algebraic
Z2-action on X = XM = M̂ . Then α is mixing, but not three-mixing,
and

λX(B ∩ α−(n,0)(B) ∩ α−(0,n)(B)) 6→ λX(B)3

for some Borel set B ⊂ X, as n →∞.

Remember that

X = {(xn) ∈ TZ2
: x(n1,n2)

∈ {0,1/2} and

x(n1,n2)
+ x(n1+1,n2)

+ x(n1,n2)
= 0 for all (n1, n2)}.

Since (1 + u1 + u2)
2n − (1 + u2n

1 + u2n

2 ) ∈ p for every n ≥ 1, we get
that 1 + u2n

1 + u2n

2 ∈ p and

x(n1,n2)
+ x(n1+2n,n2)

+ x(n1,n2+2n) = 0 (mod 1).

for every n ≥ 1. For B = {x ∈ X : x(0,0) = 0} it follows that

B ∩ α−(2n,0)(B) ∩ α−(0,2n)(B) = B ∩ α−(2n,0)(B)
and

λX(B ∩ α−(2n,0)(B) ∩ α−(0,2n)(B)) = λX(B ∩ α−(2n,0)(B)) = 1/4

for every n ≥ 0.
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This example suggests the following definition:

A nonempty finite subset S ⊂ Zd is mixing under α if

lim
k→∞

λX

( ⋂
n∈S

α−knBn

)
=

∏
n∈S

λX(Bn)

for all Borel sets Bn ⊂ X, n ∈ S, and nonmixing otherwise.

In the last example, the set S = {(0,0), (1,0), (0,1)} turned out to

be nonmixing.

If α is r-mixing, then every set S ⊂ Zd with cardinality |S| = r is

obviously mixing. The reverse implication for algebraic Zd-actions is

a much more complicated problem.

As in (1) one sees that a nonempty finite set S ⊂ Zd is nonmixing

if and only if there exist elements an ∈ M, n ∈ S, not all equal to

zero, such that ∑
n∈S

ukn · an = 0 (2)

for infinitely many k ≥ 1.
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The higher order mixing behaviour of an algebraic Zd-action α with
dual module M is again completely determined by that of the actions
αRd/p with p ∈ asc(M).

Theorem. Let α be an algebraic Zd-action on a compact abelian
group X with dual module M = X̂.

(1) For every r ≥ 2, α is r-mixing if and only if αRd/p is r-mixing for
every p ∈ asc(M).

(2) For every nonempty finite set S ⊂ Zd, S is α-mixing if and only
if S is αRd/p-mixing for every p ∈ asc(M).

In order to exhibit the connection between mixing properties and
additive relations in fields we need a simple observation:

Let p ⊂ Rd be a prime ideal, and let K = Q(Rd/p) be the field
of fractions of the integral domain Rd/p. Then the following are
equivalent:

(1) XRd/p is connected,

(2) p contains no nonzero constant,

(3) char(K) = 0.
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We begin with the connected case and recall a famous result by

Mahler.

Theorem. Let K be a field of characteristic 0 and let a1, . . . , ar be

nonzero elements of K. If we can find nonzero elements c1, . . . , cr

such that the equation
r∑

i=1

cia
k
i = 0

has infinitely many solutions k ≥ 0, then there exist integers s ≥ 1

and i, j with 1 ≤ i < j ≤ r such that as
i = as

j.

We set K = Q(Rd/p) ⊃ Rd/p, choose a finite set S = {n1, . . . ,nr} ⊂
Zd and set ai = uni for i = 1, . . . , r. Mahler’s Theorem is equivalent

to the following statement:

Theorem. Let α be a mixing algebraic Zd-action on a compact

connected abelian group. Then every finite subset S ⊂ Zd is mixing.
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If an algebraic Zd-action α is not mixing of every order, then there

exists a smallest integer r ≥ 2 such that α is not r-mixing. We set

K = Q(Rd/p) and write G ⊂ K× for the subgroup {un : n ∈ Zd}. The

assumption that αRd/p is mixing is equivalent to the condition that

G ∼= Zd. The following results are again equivalent.

Theorem (S-unit theorem). Let K be a field of characteristic 0 and

G a finitely generated multiplicative subgroup of K× = K r {0}. If

r ≥ 2 and (c1, . . . , cr) ∈ (K×)r, then the equation

r−1∑
i=1

ciai = 1 (3)

has only finitely many solutions (a1, . . . , ar−1) ∈ Gr−1 such that no

sub-sum on the left-hand side of (3) vanishes.

Theorem. Let α be a mixing algebraic Zd-action on a compact

connected abelian group X. Then α is mixing of every order.
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For algebraic Zd-actions on disconnected groups the situation is
considerably more complicated due to the possible presence of non-
mixing sets.

The following result by Masser (already translated into our dynam-
ical setting) allows one to determine the nonmixing sets of αRd/p:

Theorem. Let p ⊂ Rd be a prime ideal containing a rational prime
p > 1, and let α = αRd/p on X = XRd/p. Let K̄ be the algebraic clos-
ure of the quotient field K = Q(Rd/p) ⊃ Rd/p. For every nonempty
finite set S ⊂ Zd the following conditions are equivalent:

(1) S is not α-mixing;

(2) There exists a rational number s > 0 such that the set {usn :
n ∈ S} ⊂ K̄ is linearly dependent over F̄p ⊂ K.

The ‘order of mixing’ problem is solved by another recent result by
Masser:

Theorem. If αRd/p is not r-mixing, then there exists a nonmixing
set of size r.
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Isomorphism rigidity

Two measure-preserving Zd-actions α1 and α2 on probability spaces

(Xi, Si, µi) are measurably conjugate if there exists a measure-pre-

serving isomorphism φ : X1 −→ X2 which is equivariant, i.e. which

satisfies that φ ◦ αn
1 = αn

2 ◦ φ µ1-a.e., for every n ∈ Zd.

For a single ergodic toral automorphism α, entropy is a complete

invariant of measurable conjugacy, since α is Bernoulli. In particular,

α is conjugate to α−1, α2 is conjugate to α× α, etc.

The same is true for algebraic Zd-actions which have completely

positive entropy (and are therefore Bernoulli).

For algebraic Zd-actions with zero entropy (like commuting toral

automorphisms) the picture changes.

Theorem. Let d > 1, and let pi, i = 1,2, be prime ideals in Rd such

that αRd/pi
is mixing and has entropy zero. Then every measurable

equivariant map φ : XRd/p1
= R̂d/p1 −→ XRd/p2

= R̂d/p2 coincides

a.e. with an affine map.
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Example.

Let α be the Z2-action on T3 given by αn = An1Bn2 for every

n = (n1, n2) ∈ Z2, where

A =
[

1 2 −1
−1 −2 2
2 5 −2

]
, B =

[
−1 1 1
1 2 1
1 4 2

]
.

The matrices A and B have the same irreducible characteristic poly-

nomial
g = x3 + 3x2 − 6x + 1,

and α is expansive and mixing.

Let V =
[−2 2 1

0 3 0
−1 4 2

]
, put

A′ = V −1AV =
[

0 1 0
0 0 1

−1 6 −3

]
, B′ = V −1BV =

[−2 4 1
−1 4 1
−1 5 1

]
,

and denote by α′ the Z2-action n 7→ A′n1B′n2. It is clear that αn and

α′n are measurably conjugate for every n ∈ Z2. However, A and A′

are not algebraically conjugate (why not?), and hence α and α′ are

not algebraically — and therefore also not measurably — conjugate.
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