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Multiplication by 2

Let T = R/Z, and let T>: T — T be the surjective group homo-
morphism given by Trx = 2z (mod 1) for every x € T.

If \ is Lebesgue measure (= length) on T=1[0,1), and if I = [a,b) C
T =[0,1), then
751 (1) = [a/2,b/2) U [a/2 + 1/2,b/2 + 1,2),

and A(T5 1 (1)) = A(I). Hence A(T5 *(B)) = A(B) for every Borel set
B CT, i.e. Th preserves .

Define a map 6: Y = {0,1}N — [0, 1] by
0(y) =Y. 277y,

j=>1
for every y = (y1,vyo,...) € Y. Then 6 is surjective, injective on the
complement of a countable set D C Y, and
Qoo =1Tro00

for every y € Y . D, where o is the shift (oy)n = y,41 On Y.



Let Z C Y be the set consisting of all sequences y = (yn) with
yjyj+1 =0 for all j > 1. Then oB C B, and hence C' = 0(B) D T>C.
Note that C is infinite, but C = T.

By varying this construction we get infinitely many infinite closed
sets A C T which are T-invariant in the sense that T, A C A.

We can also construct infinitely many T5-invariant probability meas-
ures on T: put vp(0) = p, vp(1) = 1 —p with p € (0,1), and put
mp = VS. Then mpo~! = my and m, is nonatomic and ergodic
under o.

For every p € (0,1), the probability measure up, = 6+myp (defined
by 0.mp(B) = myp(0~1(B)) for all Borel sets B C T) is Th-invariant,
ergodic and nonatomic. We obtain uncountably many T5-invariant,
ergodic, nonatomic probability measures on T.

The map 73 = 3z (mod 1) on T has similar properties: it has infin-
itely many infinite closed invariant subsets and uncountably many
invariant, ergodic and nonatomic probability measures.



Furstenberg’s example (1967)
Let a be the N2-action on T defined by

M)y — T3'TYe =2™3"z (mod 1)
for every (m,n) € N2 and z € T.

Theorem. The only infinite closed subset A C T with o A C A for
all n € N2 is T itself.

Conjecture. Let u be a nonatomic a-invariant probability measure
on T. Then u=\.

Rudolph (1990) proves the conjecture under the additional hypo-
thesis that u is ergodic under o and at least one of the maps 75 or
T3 is noninvertible (mod u). The general case remains open.

Furstenberg’'s example shows that the dynamical properties of sev-
eral commuting group automorphisms (or, in this case, homomorph-
isms) can differ quite radically from those of single automorphisms
(or homomorphisms).

In order to understand why this is so we have to take a closer ook
at group automorphisms.



Basic facts from harmonic analysis

Let X be a compact abelian group with Haar measure A = Ay, and
et S={z€C:|z|=1} =T.

The dual group (or character group) X = Hom(X,S) is the group of
all continuous homomorphisms from X into S. We view X as a dis-
crete additive group and denote by (a,x) the value of the character
a € X at x € X. Pontryagin’s duality theorem implies that X sep-
arates the points of X, and that every homomorphism y: X —S
is therefore of the form x(a) = (a,x) for some unique =z € X (i.e.
£ =Xx).

Since distinct elements a,a’ € X are orthonormal in L2(X,)), X is
a complete orthonormal system in LQ(X, A) by Stone-Weierstrass.

If Y C X is a closed subgroup then
Yt ={aecX:(a,z)=1 forall zeY}
is the annihilator of Y, ¥ = X/Y+ and X/Y =Y.



Examples.

(1) Z//n\Z = Z/nZ: every (continuous) homomorphism from Z/nZ to
S is of the form m — e2™™m/" for some m € {0,...,n — 1}.

(2) T = Z: every continuous homomorphism from T to S is of the
form t — 2™kt for some k € Z.

(3) Let Z, be the group of dyadic integers: Z, = (Z/2Z)N as a
set, but we identify each x = (z5,) € Z> with the rather large integer
s(z) = > >1 2"~ 1. Addition is therefore component-wise, carrying
to the right. For example,

1010100...
+ 0111000...
= 1100010...

If ¢ = a/2™ is a dyadic rational number, then ¢ defines an aq € ZZ
by (ag,x) = e2mias(z) for every z € Z,. Since these homomorphism
separate the points of Zy, Zy = Z[3]/Z.



Group automorphisms

Let o be a continuous group automorphism of a compact abelian
group X.

o For every a € X, the map z — (a(a),z) := {(a,a(x)) defines an
element a(a) of X, and the map a — a(a) from X to X is the
dual automorphism of «.

e o preserves the Haar measure of X.

e If & has a finite nonzero orbit then « is nonergodic.

e If every nonzero orbit of o is infinite then « is ergodic.
o If o is ergodic then it is mixing.

EXxercise: Show that multiplication by 3 is an automorphism of
Z[3]/Z. Hence the map Tsz = 3z is an automorphism of Z,. Is it
ergodic?



Toral automorphisms

Let A e GL(n,Z), and let o be the automorphism of X = T" defined
by the linear action of A on R"™. Then & is the linear action of AT
on X = 7",

Many dynamical properties of o can be expressed purely in terms of
the eigenvalues of A.

e « iS ergodic if and only if no eigenvalue of A is a root of unity
(& A" has no finite nonzero orbit in Z").

e T he entropy of o is given by
h(a) =) log max(1,l|y]),
Y
where ~ varies over the eigenvalues of A (with multiplicity).

e If o is ergodic it has positive entropy (Kronecker’'s Theorem).
In fact, it is Bernoulli.



EXxpansiveness

The automorphism « is expansive if

() «"(0) ={0}.

nez
for some open set O with 0 € O C T". « is expansive if and only if
A has no eigenvalues of absolute value 1.

Let R* = W ¢ W) ¢ w(0) pe the decomposition of R™ into
the wunstable (= expanding), stable (= contracting) and central
subspaces (corresponding to the eigenvalues of A with absolute
values > 1, < 1 and = 1). If =: R® — T" is the quotient map,
then X = z(W), X&) = z(W)) and X0 = z(W(0) are the
stable, unstable and central subgroups of T". The automorphism «
is expansive (or hyperbolic) if and only if w0 = {0}.



A class of examples

The shift (ox)n = x,41 iS an automorphism of the compact abelian
group TZ. For every polynomial f(u) = fo + fiu+ -+ + fmu™ with
integer coefficients we set f(o) = fo+ fio0+ - -+ fmo™ and define
a closed, shift-invariant subgroup

Xf = {(:Un) c TZ : f()a?k + -+ fm:vk—l—m = 0 for all k} = kerf(a)
and denote by ap = a\Xf the restriction of o to Xf.

We write R1 = Z[uil] for the ring of Laurent polynomials with
integer coefficients and identify TZ = Y., Z with Ry by setting

for every h = ¥,,c7 hnu™ € Ry and = = (zp) € TZ. Under this identi-
fication

Xp=TL/X7 = R1/(f),
where (f) = fRy, and ay is multiplication by u on R1/(f).



Dynamical properties of these examples
We assume for simplicity that the polynomial f is irreducible.

e «y is ergodic if and only if f is not cyclotomic (i.e. f does not
divide u™—1 for any m > 1 or, equivalently, no root of f is a root
of unity). Reason: if af is nonergodic, then 647}& = u"a = a for
somen >0 and 0 # a € R1/(f), and hence (u™ — 1)h € (f) for
some h ¢ (f). As f isirreducible this implies that it is cyclotomic.

e oy is expansive if and only if f has no roots of absolute value 1.
Reason: if af IS nonexpansive, then there exist distinct points
r = (zn) and y = (yn) in Xy such that

n—ynl < 1/30 1= (3 fal)

nez
for every n € Z. But z = x —y € Xf, and hence, for every
n € 2L, Ymez Jmzm+n = 0 in R, not just in T. But this implies
that z is a linear combination of bounded vectors of the form
w = (wn) = (/™) with f(y) = 0, i.e. that f must have roots of
absolute value 1.
10



L0

(1) If fofm = %1, then the map z = (zn) — ¢(x) = [ ] is a

m—1
group isomorphism from Xr to T™ with Bo ¢ = gboozf, where (g is
the toral automorphism defined by the companion matrix

- 0 10 ... O 7T
O 01 0
B = ; Cel
0 .. O 1

L —fm —Jf2 —f1

of f. The eigenvalues of B are the roots of f, and ay is ergodic (or
expansive) if and only if f has no unit roots (or roots of absolute
value 1).

Let us try this with f =1 4 v — u?: then B = [Cl) H

Which matrices B can we get in this way? More generally, if we
call B,B" € GL(n,Z) algebraically conjugate if there exists a C ¢
GL(n,Z) with BC = CB’, can we get all B € GL(n,Z) up to algebraic
conjugacy?

Exercise: You can get H (ﬂ . but not H %] . Why not?
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(2) Let f =2 —w. Then

Xp= Rm) = {(zn) € TZ : Tn4+1 = 2z for all n},

and the surjective group homomorphism ¢(z) = xg from Xy to T
satisfies that poay =15 0¢, where ay is the shift on X,. Note that
ay IS expansive, since f has no roots of absolute value 1.

What is Xf?

15 T

L . . T T
(a) X a projective limit of tori --- 2, T 2, T, and oy acts

as multiplication by 2 on each component,

(b) X; = (R x Zp)/Z[3], where Zj, is the dyadic integers, Z[3] is
diagonally embedded in R x Z>, and ay is multiplication by 2 on
each component of R x Zo.

In (b) you can see explicitly the expanding and contracting sub-
groups (R x{0})/Z and ({0} x Z5)/7Z of the ‘hyperbolic’ automorph-
ism Oéf.

12



(3) Let f =3 —2u. Then

Xy = Rl//G) = {(zn) € T%: 2x,41 = 3xn for all n}
= (R x Zp x Z3)/Z[],

where Z3 denotes the tri-adic integers, Z[%] IS again embedded di-
agonally (where we are using that multiplication by 2 and 3 are
automorphisms of Z3 and Z», respectively), and the shift ar On
X corresponds to multiplication by 3/2 on each component of
R x ZQ X Z3.

Note that multiplication by 3/2 expands (R x Zp x {0})/Z[%] and
contracts ({0} x {0} x Z3)/Z[%] and is thus again ‘hyperbolic’.

13



Commuting group automorphisms

The last examples show that certain automorphisms of compact
abelian groups are dual to multiplication by the variable v on the
Ri-module R1/(f), where f € Ry is a Laurent polynomial.

More generally, if o is any continuous automorphism of a compact
abelian group X, then M = X is a module over the ring Ry with

module operation
h-a= ) hpa"(a)
nez
for every a € X and h =3 ,,cz hnu™ € Ry, and a(a) =u - a.

Conversely, every Ri-module M defines an automorphism «,; of the
compact abelian group X5 = M dual to multiplication by v on M.

This also works if we replace Rq by the ring R; = Z[ufl,...,ufl]
of Laurent polynomials in d variables: if M is a module over R,
then we obtain d commuting automorphisms «q,...,a4 of Xy =
M dual to multiplication by wu1,...,ug, and hence a Z%-action n =
(R1,...,ng) — o™ =ajl---a,? by automorphisms of X,;.
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Conversely, if a1,...,agq are commuting automorphisms of a com-
pact abelian group X, then the dual group M = X is a module over
the ring R; with module operation

h-a= > hnd"(a)
neZzd
for every a € X and h = ¥ _jahnu®, where o = ayt- o and
u = ull --ugd for all n = (nq,...,ny) € Z% This module M = X is
the dual module of the Z%action a: n — am.

The simplest R;-modules are those of the form R;/I, where I C Ry
is an ideal. We denote by o the shift-action (6™ )n = x4, Of 74 on
TZ" and set f(o) =3 czd fno® for every f =3 a4 fou™. As before
we see that

Xp, ={z €T f(o)=0 forall feI}= () kerf(o),
fel

and that ag ;= Is the restriction of o to Xp ;.

= 0lxg
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(DLetI=2—-u1,3—up) =(2—u1)R>+(3—ur)R> C Ry. Then

— 2
Ro/I = Xp, ;1 ={z = (z) € TZ
Th+41, = ka,l and Thl4+1 = 3xk:,l for all k‘,l}.

The group homomorphism ¢(z) = zg g from XRg, /1 to T satisfies that

¢ o o\ 10) — T>0¢ and ¢ o o'01) — T3 o ¢ (Furstenberg’s example).
Ro/I Ro/1

(2) Let « be the ZZ2-action on T3 given by o™ = A™M B"2 for every
n=(ny,ng) € Zz, where

Az[g (1) Cl)], B:[1—4—1
-1 6-3 1 -5-1
We know that a = «aj; for some Ryo-module M. Is M = Ry/I for

some ideal I? If so, what is I7

p —1]

Hint: A is the companion matrix of the irreducible polynomial
g=:1:3—|—3:1:2—6:1:—|-1,
and B=2] —4A — AZ.
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The dictionary

We have established a one-to-one correspondence between R;-mod-
ules and algebraic Z%actions ay; (i.e. Z%actions by automorphisms
of compact abelian groups) and Rjz-modules M. This correspond-
ence should enable us to translate dynamical properties of a,; into
algebraic properties of M and to ‘design’ 7Z%-actions by using com-
mutative algebra.

It turns out that many properties of a,; can be expressed in terms
of the associated prime ideals of M, i.e. in terms of the prime ideals
p C R, of the form

p={f€Ry:f-a=0)

for some a € M. The set of prime ideals associated with M is
denoted by asc(M); if M is Noetherian then asc(M) is finite.

17



Property

&= XRy/p

O — X\

Expansive- | Vp(p) NS¢ = @ M is Noetherian and
ness apR./p 1S €xpansive for
every p € asc(M)
Ergodicity {u"—1:neZ% ¢p |ag,y, is ergodic for
for every k> 1 every p € asc(M)
Mixing u™ — 1 & p for every AR, /p is mixing for
neZd n#0 every p € asc(M)
Mixing of p = pRy for some For every p € asc(M),

every order

p€eZ, or pNZ = {0}
and ap/, IS Mixing

apR,/p 1S MiXing of
every order

h(a) >0 p is principal and h(aRd/p) > 0 for some
ap,/p IS MiXing p € asc(M)
h(a) < oo p #= {0} If M is Noetherian:
{0} ¢ asc(M)
Bernoulli h(alid/P) > 0 h(ag, ) > 0 for every

p € asc(M)

18




The correspondence between ‘algebra’ and ‘dynamics’ goes quite
deep. Let us pursue this connection in the case of mixing.

Higher order mixing

—~

Let o« be an algebraic 7Z%-action with dual module M = X. If «
is not mixing, then there exist Borel sets B1, By, C X, a sequence
(ng, k> 1) in Z¢ with lim;_ ., ni = oo, and a ¢ > 0 with

c= lim Ax(B1N a "kBp) # Ax (B1)Ax(B2).
Fourier expansion yields a1,ap € M ~ {0} such that
a1 +u-ap =0
for infinitely many k£ > 1. In particular,

(u™ —1)-a> =0

for some nonzero m € Z2.

19



More generally, o is not mixing of order r > 2 (or r-mixing) if
and only it there exist Borel sets B1,...,By in X and a sequence
(P, .. 0l k> 1) in (Z4)T such that

im n{? —n) = o

k—o00
for + = 45 and
(
c= |lim )\X<ﬂa )#H)\X(B)
k—o00 i—1
and hence elements a1,...,ar In M, not all equal to zero, with
(1) ()
u a1 +---F+u car=0 (1)

for every k£ > 1.

It is a famous open problem whether a single mixing (= 2-mixing)
transformation can fail to be r-mixing for some r > 3, but every
mixing group automorphism is certainly mixing of all orders.

For algebraic Z%-actions with d > 1, higher order mixing may fail,
and it may even fail in a particularly regular way, as the following
example shows.
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Example (Ledrappier). Let p = (2,14 u1+u>) =2R>+(14+u1+
’U/Q)RQ, M = R>/p, and let a = oy be the corresponding algebraic
Z2-action on X = Xy = M. Then ais mixing, but not three-mixing,

and
Ax (BN a~MO(B) na=(Om)(B)) £ Ax(B)3

for some Borel set B C X, as n — oo.
Remember that
X = {(an) € T : 2, o,y € {0,1/2} and
Fnang) b EmtLing) T Enyng) =0 Torall (na,na)}
Since (1 + U1 + u2)2n —(14+u? +u3") €p for every n > 1, we get
that 1+u1 -|-u2 € p and

T(n1nz) T F(ng427n) T T(nynptony =0 (mod 1).
for every n > 1. For B ={z € X ! (g ) = 0} it follows that

; Bna @09(B)na 02 (B) = Bna ("0 (B)
an

Av(BNa=@"0(B)Yna02)(B) = Ay (Bna ("0 (B)) = 1/4

for every n > 0.
21



This example suggests the following definition:

A nonempty finite subset S C 7% is mixing under « if

lim AX( ﬂ oz_kan> — H )\X(Bn)
k—00 nes nes

for all Borel sets Bh C X, n € S, and nonmixing otherwise.

In the last example, the set S = {(0,0),(1,0),(0,1)} turned out to
be nonmixing.

If o is r-mixing, then every set S C Z% with cardinality |S| = r is
obviously mixing. The reverse implication for algebraic Z%-actions is
a much more complicated problem.

As in (1) one sees that a nonempty finite set S C 74 is nonmixing
if and only if there exist elements an € M, n € S, not all equal to
zero, such that

> gy =0 (2)
nes
for infinitely many k£ > 1.
22



The higher order mixing behaviour of an algebraic Z4-action a with
dual module M is again completely determined by that of the actions
ap,p With p € asc(M).

Theorem. Let o be an aIgebraicAZd—action on a compact abelian
group X with dual module M = X.

(1) For every » > 2, « is r-mixing if and only if QR /p is r-mixing for
every p € asc(M).

(2) For every nonempty finite set S C Z%, S is a-mixing if and only
if S'is ag /,-mixing for every p € asc(M).

In order to exhibit the connection between mixing properties and
additive relations in fields we need a simple observation:

Let p C R; be a prime ideal, and let K = Q(Ry;/p) be the field
of fractions of the integral domain R;/p. Then the following are
equivalent:

(1) Xp,/p IS connected,
(2) p contains no nonzero constant,
(3) char(K) = 0.

23



We begin with the connected case and recall a famous result by
Mahler.

Theorem. Let K be a field of characteristic O and let aq,...,a,r be
nonzero elements of K. If we can find nonzero elements c1,...,cr
such that the equation

.
Z ciaf =0
1=1

has infinitely many solutions k& > 0, then there exist integers s > 1

and 4,5 with 1 <7 <j <r such that af = aj.
We set K = Q(Ry/p) D Ry/p, choose a finite set S = {n1,...,n;} C
79 and set a; =u" for ¢t =1,...,r. Mahler's Theorem is equivalent

to the following statement:

Theorem. Let o« be a mixing algebraic 7Z%-action on a compact
connected abelian group. Then every finite subset S C 79 is mixing.
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If an algebraic Z9-action « is not mixing of every order, then there
exists a smallest integer r > 2 such that « is not -mixing. We set
K = Q(Ry/p) and write G C KX for the subgroup {u™: n € Z%}. The
assumption that QAR /p IS MiXing is equivalent to the condition that

G = 72, The following results are again equivalent.

Theorem (S-unit theorem). Let K be a field of characteristic O and
G a finitely generated multiplicative subgroup of K* = K ~ {0}. If
r>2and (cq1,...,cr) € (KX)", then the equation

r—1
Y cia;=1 (3)
i=1

has only finitely many solutions (a1,...,a,_1) € G"~1 such that no

sub-sum on the left-hand side of (3) vanishes.

Theorem. Let o« be a mixing algebraic 7Z%-action on a compact
connected abelian group X. Then « is mixing of every order.
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For algebraic Z%-actions on disconnected groups the situation is
considerably more complicated due to the possible presence of non-

mixing sets.

The following result by Masser (already translated into our dynam-
ical setting) allows one to determine the nonmixing sets of ap_ /'

Theorem. Let p C R; be a prime ideal containing a rational prime
p>1,andleta=ap 0N X = Xp /. Let K be the algebraic clos-

ure of the quotient field K = Q(Ry/p) D Ry/p. For every nonempty
finite set S C Z¢ the following conditions are equivalent:

(1) S is not a-mixing;

(2) There exists a rational number s > 0 such that the set {u’" :
nesStc K is linearly dependent over Fp C K.

The ‘order of mixing' problem is solved by another recent result by
Masser:

Theorem. If AR, /p IS not r-mixing, then there exists a nonmixing

set of size r.
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Isomorphism rigidity

Two measure-preserving Z%actions a1 and ao on probability spaces
(X;,8;, u;) are measurably conjugate if there exists a measure-pre-
serving isomorphism ¢: X1 — X»> which is equivariant, i.e. which
satisfies that ¢ oo = a8 o ¢ uy-a.e., for every n € Z°.

For a single ergodic toral automorphism «, entropy is a complete
invariant of measurable conjugacy, since « is Bernoulli. In particular,

a is conjugate to a— 1, o2 is conjugate to a x a, etc.

The same is true for algebraic Z%-actions which have completely
positive entropy (and are therefore Bernoulli).

For algebraic 7Z9-actions with zero entropy (like commuting toral
automorphisms) the picture changes.

Theorem. Let d > 1, and let p;, « = 1,2, be prime ideals in R; such
that AR /p; IS mixing and has entropy zero. Then every measurable

e~ L~

equivariant map ¢: Xg . = Rg/p1 — Xg /n, = Rg/p2 coincides
a.e. with an affine map.
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Example.

Let o be the ZZ2-action on T3 given by o = A" B"2 for every
n = (ny,no) € Z2, where

1 2 -1 -1 1 1
A:[—l—Q 2], B:[ 1 2 1]
2 5 -2 1 4 2

The matrices A and B have the same irreducible characteristic poly-
nomial
g=a23432°—62+1,

and « is expansive and mixing.
—2 2 17

Let V=| 0 3 0}, put
-1 4 2
[ 0 1 O —2 4 1
A=viav=|0 0 1|, B/=V_1BV=[—1 4 1],
| —1 6 -3 -1 5 1

and denote by o/ the Z2-action n — A’"1B™2 It is clear that o® and
o'™ are measurably conjugate for every n € 72 However, A and A’
are not algebraically conjugate (why not?), and hence o and o/ are
not algebraically — and therefore also not measurably — conjugate.
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